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ABSTRACT 

 
Increasing popularity for mobile devices has prompted industrial and academic research 

towards improving the performance of wireless applications. Transmission Control Protocol 

(TCP) plays an important role in defining a network’s performance, and its use in wireless 

networks has exposed several inadequacies in its operation. Tight coupling of TCP’s error 

and congestion control mechanisms has proven to be incompatible with the unique 

characteristics of wireless channels. TCP, designed for wired networks, assumes any loss of 

packet to be an indication of congestion in the network. Wireless networks exhibit a higher 

bit error rate, low and varying bandwidth, and disconnections of hosts due to mobility. All of 

the aforementioned reasons can result in random packet loss which is misinterpreted as a 

sign of congestion by TCP. Such erroneous triggering of congestion control measures can 

unnecessarily reduce TCP throughput. In this report, we will delve deeper into TCP’s 

operation, and discuss its performance issues in wired-cum-wireless networks. We also 

present a survey of existing schemes that tackle these issues, and introduce a new scheme 

called TCP-ECN to enhance TCP performance in wireless networks.  

 

The essence of the new scheme is to use Explicit Congestion Notification to enable the 

wireless host to distinguish between wired and wireless losses. Another facet of our scheme 

is to allow the base station to “freeze” the sender when it notices an imminent disconnection 

of the mobile host. The objective of TCP-ECN is to insulate the TCP sender from the 

idiosyncrasies of the wireless channel. We have both simulated and implemented the new 

scheme. This report details the new scheme in depth, and analyzes the test results obtained. 
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 ACRONYMS 

 

ACK : Acknowledgement 

AIMD : Additive Increase, Multiplicative Decrease 

AP : Access Point 

ARQ : Automatic Repeat reQuest 

BER : Bit Error Rate 

BS : Base Station 

Cwnd : Congestion window 

CRC : Cyclic Redundancy Check 

DupACK : Duplicate Acknowledgement 

ECN : Explicit Congestion Notification 

ELN : Explicit Loss Notification 

FEC : Forward Error Correction 

FA : Foreign Agent 

FH : Fixed Host 

HA : Home Agent 

IP : Internet Protocol 

MAC : Medium Access Control 

MH : Mobile Host 

MSS : Maximum Segment Size 

MTU : Maximum Transmission Unit 

RTO : Retransmission Time Out 

RTT : Round Trip Time 

SACK : Selective Acknowledgement 

SNR : Signal to Noise Ratio 

TCP : Transmission Control Protocol 

WLAN : Wireless Local Area Network 

WWAN : Wireless Wide Area Network 

ZWA : Zero Window Advertisement 
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Chapter 1.   INTRODUCTION 

Years of research, experience, and fine tuning has resulted in the current design of one of the 

most important protocols in the networking stack—Transmission Control Protocol (TCP). 

TCP has proven to be essential for reliable communication, and resilient to the uncertainties 

in the network. Today, the world’s biggest network, the Internet, relies heavily on TCP for 

sustainable performance. Although TCP is indispensable for reliable communication in the 

wired network, its performance is sub-par when used in wired-cum-wireless networks. TCP’s 

error and congestion control mechanisms have been found wanting in the face of unique 

challenges posed by wireless networks. In this report, we will study the intricacies of TCP’s 

operation, and the effect of wireless network characteristics on its performance. Several 

enhancements and workarounds have been proposed to overcome TCP’s inadequacies in 

wireless networks. We will present a survey of some of these proposals in this report. 

 

The knowledge we gained by surveying several wireless TCP enhancement proposals aided 

us in developing a new scheme we call TCP-ECN. Our main focus was to utilize the 

principles of local recovery techniques, and overcome their main problem—competing local 

and TCP retransmissions. We achieve this by adapting the Explicit Loss Notification 

technique in order to provide Explicit Congestion Notification (ECN) to the wireless hosts. 

The information provided by ECN enables the wireless host to differentiate between wired 

and wireless losses, and hence prevents it from sending unnecessary duplicate 

acknowledgements. Our scheme also tries to solve the problem of long disconnections of 

wireless hosts by using sender freezing by the base station. We primarily concentrate on the 

scenario where the wireless host is idle for a while and then immediately disconnects. We 

have simulated TCP-ECN using ns2 [24], and implemented part of the scheme in the Linux 

kernel. Our tests have shown marked TCP performance improvement when TCP is coupled 

with TCP-ECN.  

 

The report has been organized as follows: chapter 2 provides an overview of TCP’s 

important functions; chapter 3 lists a few important characteristics of wireless networks 

pertinent to the topic; chapter 4 discusses the interplay between wireless networks and TCP 

operation; an extensive survey of schemes proposed to solve TCP issues in wireless 

environment is presented in chapter 5; design of the new scheme, TCP-ECN, is described in 

chapter 6; details of simulation and implementation of TCP-ECN, along with the analyses of 

test results are presented in chapters 7 and 8; and finally, in chapter 9, we conclude the report 

and discuss future work. 
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Chapter 2.   TCP SEMANTICS 

Transmission Control Protocol (TCP) [1][7][19][22][29] is the most widely used layer-4 

protocol in the Internet today, handling about 95% of the total traffic [33]. Decades of 

experience with the internet has helped fine tune TCP’s operation to provide reliable 

communication between application layer processes. Any protocol designed to provide 

reliability must clone TCP in some form. In addition, TCP is fundamental to controlling 

congestion in the internet. TCP’s indispensability for reliable communication and congestion 

control can be better understood by taking a deeper look into its operation. The primary 

responsibilities of TCP are multiplexing/de-multiplexing segments from/to application 

processes, connection set up and management, error control, flow control, and congestion 

control [20]. We will look at each of these aspects briefly, emphasizing on error and 

congestion control, as they are crucial to our discussion.  

2.1 Multiplexing and de-multiplexing data 

TCP provides logical communication between two application processes, as Internet Protocol 

(IP) provides logical communication between two hosts. Data addressed to a host can be 

destined to any of the several processes currently executing on that host. TCP is responsible 

for delivering segments arriving at the host to respective processes. This task is called de-

multiplexing. Similarly, multiplexing refers to the task of processing segments from different 

sockets (processes), like attaching headers etc., and passing them down to IP [20].  

2.2 Connection set up and management 

TCP uses three-way handshaking to establish a full-duplex, point-to-point, logical connection 

between two processes. TCP on the host initiating the connection sends a SYN segment, 

which is acknowledged by the peer TCP in a segment that also includes a SYN for the other 

direction (SYN + ACK). Finally, the initiator acknowledges the SYN from the receiver to 

complete the connection establishment. The handshaking is used to set up buffers and initial 

parameters such as sequence numbers, maximum segment size (MSS) etc., on both the ends. 

Once the connection is set up, TCP manages these parameters in both the directions for the 

entire lifetime of the connection. A connection is torn down by exchanging FIN segments 

and their respective ACKs. 

2.3 Error control 

Since IP, and hence, the underlying network provides only best-effort service (no 

guarantees), the onus of providing reliable communication service to the application layer 

rests upon TCP. When data, broken into segments, is sent from the source, there are several 

scenarios in which the segments may fail to arrive at the destination intact. Some segments 

could be dropped in the network; segments could arrive with a few of their bits garbled; the 

destination may receive the segments out-of-order, as each segment can take a different path 

in a packet-switched network; or the destination may receive segments more than once 

(duplication). TCP must account for all of these contingencies. Positive cumulative 

acknowledgements (ACKs), acknowledgement numbers, along with a timer are used by TCP 
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to recognize loss of packets, or their ACKs. Checksums are used to verify the integrity of 

segments, and sequence numbers are used to distinguish original segments from their 

duplicates. 

 

When a source sends a segment, it numbers it with the next sequence number for that 

direction, and includes the correct checksum. The source TCP also sets a timer for the oldest 

unacknowledged segment. Upon receiving a segment, the destination accepts the segment 

only if the checksum is correct. It then checks the sequence number against the number it 

was expecting. If it is an in-order segment, it sends an ACK. If the segment is duplicated, the 

receiver resends the ACK, but discards the segment. If the received segment is out-of-order 

(previous segment(s) missing), it buffers the segment, and resends an ACK to the most recent 

in-order segment. At the sender’s end, segment loss is assumed if the timer expires, or if it 

receives three duplicate acknowledgements (value of three was chosen heuristically). Such an 

event automatically triggers a retransmission of the oldest unacknowledged segment from the 

sender. 

 

TCP timer management is very subtle, and couples the functions of error and congestion 

control tightly. The combined time taken by a segment to reach the receiver and its ACK to 

reach the source is termed as round trip time (RTT). A single timer is used, and is set only for 

the oldest unacknowledged segment. TCP maintains a running, weighted average of the 

RTTs using: 

 
SmoothRTT = (1 – α) SmoothRTT + α * RTT 

 

where α = 0.125. In addition to average RTT, RTT deviation is also maintained using: 

 
DevRTT = (1 – β) DevRTT + β * |SmoothRTT – RTT| 

 

Where β = 0.25. The retransmission timeout (RTO) value is computed as: 

 
RTO = SmoothRTT + 4 * DevRTT 

 

This subsection provided a brief introduction to TCP error control. For a more detailed 

discussion, please refer to [1][7][19][20][29][22]. 

2.4 Flow control 

The sender and the receiver applications could be processing data at different speeds. To 

avoid a fast sender from swamping a slow receiver with more segments than its buffer 

capacity, TCP has been designed to provide the receiver with full control of the flow rate. 

The window field in the TCP header is used to implement a sliding window scheme to 

achieve this. Every ACK sent by the receiver contains a value in the window field which 

reflects the available buffer capacity at its end (this value could also be zero, if the buffer is 

full). The sender paces its transmission rate based on this value. Window scale factor is 

decided during connection establishment. Amount of data (bytes) that can be sent in a full-

sized segment—maximum segment size (MSS)—is also decided during the connection 

establishment. 
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2.5 Congestion control 

Congestion occurs in a network if a router’s queue is full, and it is forced to drop any new 

incoming packets. In order to counter congestion, all the sources in the network must 

collaborate and reduce their transmission rates. TCP plays a pivotal role in controlling 

congestion in the internet. TCP bases its congestion control decisions upon its perception of 

congestion, or in other words, its estimation of the degree of congestion [20]. To make this 

estimation, it relies on the error control mechanisms discussed earlier—timeouts and 

duplicate-acknowledgements. Thus, error and congestion control mechanisms are tightly 

coupled. The sender’s transmission rate is not only controlled by receiver’s buffer 

availability, but also by another variable called the congestion window (cwnd). Congestion 

window is measured in terms of segments, unlike receiver window which is measured in 

terms of bytes. 

 
Current sending window = min (receiver window, congestion window) 

 

The congestion control algorithm of TCP is characterized by an additive increase, 

multiplicative decrease (AIMD) of the congestion window. Other features include Slow start, 

reaction to timeouts, Fast retransmit, and Fast recovery. We will discuss each of these 

briefly.  

2.5.1 Additive increase, multiplicative decrease (AIMD) 

Whenever TCP detects a loss of segment, it is evident that the sending rate has to be reduced, 

as the loss is perceived to be a mark of congestion. For this purpose, TCP uses a 

multiplicative reduction strategy, wherein it halves the current congestion window for every 

loss. Hence, for several consecutive losses, congestion window reduces exponentially. 

Nevertheless, cwnd size is never less than one segment.  In contrast, TCP adopts a more 

conservative approach when increasing the congestion window. The congestion window is 

increased by (MSS
2
/cwnd) bytes for every ACK [20], or in other words, cwnd is increased by 

one after all the ACKs for a cwnd worth of segments arrive. This linear increase is also called 

congestion avoidance. 

2.5.2 Slow start 

Immediately after connection establishment, cwnd is set at one segment, and another variable 

called threshold is set at 64Kbytes. Even though, receiver’s buffer is empty initially, sender 

cannot start bursting segments, as it does not know the network’s capacity (capacity of 

intermediate routers). So the sender starts with cwnd set to one. But, unlike the congestion 

avoidance phase, during the slow start phase, TCP increases cwnd by one segment for every 

ACK received. This effectively increases cwnd exponentially for every RTT. The 

exponential increase continues until cwnd = threshold or cwnd = receiver window. 

2.5.3 Reaction to timeouts 

If a loss of segment is detected via a timeout, TCP sets the threshold to cwnd/2 

(multiplicative decrease), and sets cwnd to one. In addition, the RTO value is doubled. 

Hence, successive losses exponentially increase the value of RTO. Slow start phase is then 

initiated. As stated in the previous discussion, cwnd is exponentially increased in the slow 
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start phase until cwnd = threshold. After this, congestion avoidance, or additive increase of 

cwnd, is initiated.  

2.5.4 Fast retransmit and Fast recovery 

Loss of segments detected through timeouts and three duplicate ACKs are treated differently 

by TCP. We have just seen the reaction to timeouts. In this subsection, we will take look at 

TCP’s behavior when it receives three duplicate ACKs (dupACKs). Since duplicate ACKs 

are sent by the receiver whenever it receives out of order segments, the sender deduces that 

the segments are still getting across to the receiver, and the network is not fully congested. 

Unlike in the case of a timeout, invoking slow start would be too drastic here, and would 

unnecessarily reduce the throughput. Hence, in response to the reception of three dupACKs, 

the sender first retransmits the lost segment, then increases cwnd by the number of dupACKs 

received, and continues to increment cwnd for every dupACK received. As soon as an ACK 

for new data arrives, incremental addition to cwnd is stopped. The sender then reduces cwnd 

by half (multiplicative decrease) of it original value (before receiving 3 dupACKs), and 

invokes congestion avoidance (additive increase). The process of resending the lost packet 

upon the reception of 3 dupACKs, and not waiting for a timeout to occur, is termed as Fast 

retransmit. The aforementioned incremental addition and halving of the cwnd and invocation 

of congestion avoidance instead of slow start is termed as Fast recovery. 

2.6 Congestion control in different versions of TCP 

One of the earliest versions of TCP, TCP Tahoe, included Slow start, congestion avoidance 

and Fast retransmit algorithms. TCP Reno was an improvement over TCP Tahoe in terms of 

throughput, due to the inclusion of the Fast recovery algorithm. The next version of TCP, 

TCP New-Reno, corrected the problems in TCP Reno for multiple losses in the same 

window. TCP Reno invokes Fast retransmit and Fast recovery upon receiving 3 dupACKs, 

and exits the phase as soon as it receives a new ACK. If several losses are encountered close 

to each other, the sender continually halves it congestion window due to repeated invocation 

of Fast recovery. A situation may be reached, wherein the congestion window is so small that 

the sender cannot send enough packets for the receiver to send dupACKs. This will lead to 

the sender and the receiver waiting for each other, and network resources being wasted. New-

Reno overcomes this problem by making the sender set the congestion window to one, 

initiating slow start upon the reception of 3 dupACKs. This is called the Fast retransmission 

phase, wherein the sender retransmits unacknowledged segments. The sender exits this phase 

only after all the segments sent before the start of the phase are acknowledged. After the 

sender retransmits the first lost segment, the receiver sends a partial ACK indicating the next 

loss. New-Reno results in redundant retransmissions, but efficiently handles multiple losses 

in the same window [13]. 

 

TCP SACK or TCP with Selective Acknowledgements was proposed to handle multiple 

losses efficiently. SACK options are included in the duplicate acknowledgements sent by the 

receiver, upon detection of a loss of segment followed by the reception of a block of in order 

segments. The SACK option includes the sequence numbers of the first and the last in-order 

segment blocks buffered at the receiver. After receiving the third dupACK with the SACK 

option, the sender retransmits only the lost segments. Unlike the older versions of TCP, TCP 

VEGAS monitors the actual segment flow rate, and also maintains an estimated segment flow 
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rate. It uses the difference in the two rates to estimate the degree of congestion, and hence, 

deduce the sending window. The closer the actual flow rate is to the estimated rate, lesser the 

perceived congestion. TCP VEGAS tries to be proactive in countering congestion, rather than 

being reactive [13].  
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Chapter 3.   UNIQUE CHARACTERISTICS OF 

WIRELESS NETWORKS 

Wireless communication is fast gaining popularity due to its flexibility, and convenience of 

on-the-fly access to network resources. Cellular telephony has already established itself as an 

indispensable service, and wireless data communication is catching up quickly. Wireless 

Local Area Networks (WLAN) are being installed in business establishments and homes to 

enhance flexibility. Similarly cellular networks are being used to carry data traffic to allow 

wider range of accessibility. Wireless networks are characterized by some unique features 

that pose several restrictions on applying the existing wired networking principles on them. 

 

 Limited bandwidth availability:  WLANs usually employ 802.11 wireless networking 

standards. Currently two of the standards are more prevalent than the others: 802.11b 

operating at 2.4-2.485 GHz, providing a bandwidth of up to 11Mbps; and 802.11g 

operating at the same frequency range, but allowing a maximum bandwidth of 

54Mbps. Cellular networks provide long range communication facility at the cost of 

much lower bandwidth availability. Current 2.5G systems using GPRS provide data 

rates in the vicinity of 50Kbps. 3G systems using either UMTS or CDMA-2000 

standards provide bandwidths that range from 144Kbps to 2Mbps [20]. In contrast, a 

typical Ethernet connection operates at 100Mbps, and Gigabit Ethernet is fast gaining 

ground. 

 

 High Bit Error Rate (BER):  Wireless links are more prone to random bit errors, and 

bursty losses. Since 802.11 networks operate within unlicensed frequency bands, 

signals from other devices such as a 2.4GHz telephone, or electromagnetic noise from 

a microwave can interfere with the signals from an 802.11b or 802.11g device 

causing errors. Radio waves taking different paths after being reflected off objects 

can cause a decrease in signal intensity at the receiver (multipath propagation) and bit 

errors. In addition, as a wireless device moves away from the base station, signal 

intensity decreases causing loss of data [20]. While the BER in wired networks is 

around 10
-6

, wireless networks exhibit a BER in the vicinity of 10
-3

 [13]. 

 

 Mobility:  One of the primary advantages of using wireless devices is the ease of 

movement. WLANs allow limited mobility ranging a few hundreds of meters, 

whereas WWANs allow coverage of a few kilometers [27].  

 

 Varying bandwidth:  Movement of mobile hosts from one base station’s range to 

another’s makes the number of mobile hosts associated with a base station variable at 

any given point in time. Since all the mobile hosts in a given range share the total 

bandwidth, the bandwidth available per host also varies with time. 

 

 Limited power availability:  Most of the mobile devices are battery operated, and 

hence, require prudent use of available power.  
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Chapter 4.   EFFICIENCY OF TCP IN WIRELESS 

NETWORKS 

Typical wireless networks comprise of a mobile host connected wirelessly to a base station, 

which in turn is connected to the wired backbone (possibly the Internet). Hence, studying the 

performance of TCP in a network with both wired and wireless links has generated 

tremendous research interest of late. Since TCP was designed and fine-tuned for wired 

networks, wireless network characteristics, discussed in the previous section, can pose subtle 

and complex problems to their interoperability. Let us take a look at the effects of each of the 

wireless characteristics on TCP’s operations. For the purpose of discussion, we use the term 

fixed host (FH) to refer to a device connected to the wired network, and mobile host (MH) to 

refer to a wireless device. 

4.1 Effects due to high bit error rate 

As mentioned earlier, TCP has been tried and tested for various problems that can arise in 

wired networks. One of the primary problems countered by TCP is congestion. TCP detects 

congestion whenever it notices a loss of segment, either in the form of a timeout, or in the 

form of three dupACKs. In fact, any loss of segment is automatically assumed to be due to 

congestion. This assumption works well in wired networks. But, in wireless networks, 

segments could be lost due to high BER, which is a transient condition, unlike congestion in 

routers. TCP takes congestion control measures whenever a loss occurs in the wireless link, 

and reduces its congestion window, thereby reducing throughput unnecessarily. Since TCP 

ACKs cannot convey enough information about the type of loss, TCP treats congestion and 

random losses alike. 

 

Average throughput of a connection can be expressed as  

 
Average throughput = (1.22 * MSS) / (RTT * √L) 

 

where L is the loss rate of the connection [22]. Clearly, average throughput is inversely 

proportional to the square root of the loss rate. Wireless links with a higher loss rate reduce 

the overall average throughput of the end-to-end connection [33]. 

 

Retransmissions also have an important side effect of exponentially backing off the RTO at 

the sender, and a large RTO value can render TCP less capable of sensing error-free 

conditions. As a result, overall end-to-end connection time will be increased. Given the 

limited power availability to the mobile host (MH), unnecessary increase in connection time 

can prove to be expensive. This problem can arise irrespective of whether the fixed or the 

mobile host is the sender [36]. Increase in RTO will also increase the idle time in the network 

bringing down the end-to-end throughput. 
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4.2 Effects due to mobility 

A mobile host moving from one base station’s range to another’s may experience a short 

period of disconnection. The mobile host could also temporarily move out of range of its 

base station, thus losing connectivity. Connectivity can also be lost if the signals are 

interrupted by obstacles. In WLANs random access of the channel is used to achieve fairness. 

If there are several mobile hosts in a base station’s range at a given point in time, a host may 

not get a chance to use the channel for a while, because of the other hosts hogging the 

channel (capture syndrome [33]). All of the aforementioned reasons could result in loss of 

segments during the period of inaccessibility to the channel. A fixed host (FH) sender in the 

wired network is oblivious of these reasons for the loss, and invokes congestion control 

algorithms erroneously, thus reducing effective throughput upon reconnection.  

 

Consider the scenario where the FH transmits a segment, and the MH is disconnected. This 

results in the FH timing out and backing off the RTO after retransmission. If the mobile host 

gets disconnected again before receiving this retransmission, the FH will time out again, and 

back off the RTO further. This process can continue until the RTO value becomes 

considerable. Now even if the MH is reconnected, FH does not retransmit until this large 

value of RTO expires. The channel will remain idle wasting network resources, and 

decreasing the effective throughput. This scenario is caused by serial timeouts [14].  

 

A different problem can arise if MH is the sender. MH TCP will not be aware of 

disconnections and reconnections (since it is handled by the lower layers), it might 

misinterpret a loss due to a disconnection as congestion, and repeatedly try to retransmit in 

vain. This will increase the power consumption for no reason [36].  

4.3 Effects due to low and variable bandwidth 

The rate of increase in TCP’s congestion window depends on the rate of arrival of the ACKs. 

This property of TCP is known as ACK clocking [29][20]. The rate of arrival of ACKs, in 

turn depends on the bandwidth in both the forward and reverse paths. Wireless links have 

lower channel capacity compared to their wired counterparts. This makes the end-to-end 

delay longer, or in other words, RTT is large. Research has shown that TCP is biased to 

connections that have shorter RTTs, as this would result in faster growth of congestion 

window. Connections with wireless links are disadvantaged by this aspect. Typical 

connections last for a very short duration, and most of the communication completes in the 

initial Slow start phase itself. If the exponential increase in cwnd is slowed in this phase, TCP 

throughput is affected considerably [6].  

 

As a consequence of increase in RTT, RTO value at the sender becomes large as it is 

dependent on the RTT. Large RTO values make sender TCP less sensitive to actual 

congestion losses. Hence, if congestion occurs, the sender takes a while to reduce its 

congestion window, aggravating the congestion scenario. If RTO is large, TCP will also be 

unable to sense error-free conditions quickly. Longer RTT also has the inevitable problem of 

increasing the connection time which results in more power consumption at the MH [38]. 
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Chapter 5.   SURVEY OF SCHEMES PROPOSED  

More than a decade’s extensive research has resulted in umpteen proposals to improve TCP’s 

performance in networks with wireless links. Several surveys have been undertaken by 

researchers to weigh the pros and cons of some of these proposals 

[3][6][13][14][23][27][33][36]. Typically, the surveys classify the proposed schemes as link 

layer enhancements (TCP-aware and TCP-unaware), split connection schemes, and end-to-

end schemes. Some of the other surveys categorize these schemes as local enhancements 

(involving only MHs and base stations) that hide wireless losses and TCP level 

enhancements (involving changes to the FHs as well) that handle wireless losses. For our 

discussion, we intend to take a different approach, and instead of classifying the schemes 

based on their semantics, we classify focusing on the wireless link problems, and how the 

schemes solve them. Consequently, the schemes are categorized as ones that handle high 

BER, ones that counter disconnection issues, and ones that handle varying bandwidth 

problems in wireless links.  

 

Most of the schemes that we chose for our survey involve changes at either the base stations 

or MHs, as we consider schemes requiring changes to the FH-TCP impractical. Changing the 

FH-TCP involves altering the protocol stack of every single end host in the wired network. 

Although some researchers argue that redesigning TCP to account for wireless problems is 

the cleanest and a long term solution to the issues, we argue in favor of practicality and 

backward compatibility [23][4].  

5.1 Schemes that address high BER issues 

A large percentage of the researched work is dedicated to solving TCP problems due to high 

BER in wireless links. Most of these concentrate on issues when FH is the sender. We will 

briefly describe the techniques used in some of these schemes.  

5.1.1 Snoop 

Snoop [4] is by far the most prominent proposal to solve high BER problems in wireless 

channels which has been proven to achieve a high throughput [3]. It is a TCP-aware Link 

layer scheme, i.e. a cross layer interaction between layer 2 and 4 is used for the design. The 

module is implemented at the base station which monitors and caches all the 

unacknowledged segments flowing across, between the FH and MH. The base station relies 

on dupACKs received from the MH, and timeouts to detect a loss in the wireless link. Upon 

detecting a loss, the base station locally retransmits the segment. Timeouts are finer than TCP 

timeout values, and hence, the base station tries to locally recover from the losses before a 

timeout is triggered at the FH sender. DupAcks from the MH are suppressed by the base 

station, thus preventing the FH from initiating the Fast retransmit procedure. Finally, any 

retransmission from the FH is also suppressed by the base station, in order to avoid 

competition to local retransmission in the wireless channel. For MH to FH transfer, negative 

acknowledgements are used by the base station to indicate to the MH about a loss in the 

wireless link. 
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Snoop has been tested and has exhibited good performance improvement over current TCP 

versions. Local recovery and implementation avoid the need to change the existing wired 

framework. TCP awareness of the link layer prevents retransmissions from TCP and Link 

layer from competing with each other, thus avoiding bandwidth wastage in the wireless 

channel. Nevertheless, Snoop also does not perform well when there are several losses in the 

same window [30]. In addition, when the percentage of wireless RTT is smaller compared to 

the end-to-end RTT (e.g. WWANs), Snoop’s performance improvement is not significant, as 

it fails to prevent the FH from timing out [27]. Since the base station caches and processes 

segments, buffer requirements at the base station can prove to be a bottleneck when several 

MHs are associated with it. Also, a small delay is introduced into the end-to-end RTT due to 

additional processing. IPSec cannot be employed with Snoop, as the base station needs 

access to the TCP header, and IPSec encrypts it [37].  

5.1.2 Explicit Loss Notification when MH is the sender 

Explicit loss notification is a general technique used for several wireless applications. In this 

scheme, it is used to enhance TCP performance when the mobile host is the sender [5]. For 

traffic in the reverse direction, Snoop technique is employed in the experiments. So, the 

proposed technique can work in tandem with the Snoop protocol. Here, the base station keeps 

track of all the segments flowing from the MH to the FH. It maintains a list of sequence 

numbers. If any segment is lost in the wireless channel, the base station notes this as a hole in 

the list. When the first dupACK arrives from the FH indicating this loss, the base station sets 

the ELN (Explicit Loss Notification) bit in the ACK header. The MH, upon receiving this 

ACK, immediately retransmits the segment without changing its congestion window. This 

eliminates the need to wait for 2 other dupACKs to be sent, and the MH-TCP does not reduce 

its congestion window unnecessarily. 

5.1.3 SNACK with New Snoop 

Selective Negative Acknowledgement or SNACK with Snoop [34] is a combination of the 

Snoop scheme and TCP SACK. There are two components to the protocol, SNACK-Snoop 

which is implemented at the base station, SNACK TCP which is implemented at the MH. The 

scheme handles both FH to MH and MH to FH transmission scenarios. The base station plays 

a pivotal role in buffering segments, and monitoring the sequence numbers. SNACK blocks 

are added as TCP options, similar to TCP SACK. When FH is the sender, SNACK-TCP at 

the MH is responsible for detecting losses, and piggybacking the SNACK blocks with the 

DupACKs. SNACK-Snoop at the base station is responsible of processing the SNACK 

blocks arriving from the MH and locally retransmitting the lost segments. When MH is the 

sender, SNACK-Snoop adds SNACK blocks to the DupAcks arriving from the FH to 

indicate losses in the wireless link. SNACK-TCP at MH processes the SNACK blocks, and 

retransmits as soon as possible. 

5.1.4 TULIP 

Transport Unaware Link Improvement Protocol (TULIP) [24] is a TCP unaware protocol that 

can withstand high BER in the wireless link. It is designed for half duplex links, and requires 

service-type information (reliable or unreliable). TULIP provides reliable service for TCP 

data, and unreliable service for TCP ACKs. The receiver ensures in-order delivery of packets 

to higher layers, thus eliminating dupACK generation. TULIP module resides in between the 
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IP and MAC layers in the protocol stack at the base station. Data packets and link layer 

ACKs are interleaved based on the maximum propagation delay of the wireless link. TULIP 

receives packets from IP, and passes them down to the MAC layer for transmission. After the 

passing the first packet, TULIP waits for a predefined amount of time (computed using the 

maximum propagation delay) and allows the receiver to respond with an ACK. Once the wait 

period elapses, TULIP passes down the next packet, unless the MAC layer explicitly requests 

it to wait. Two signals, TRANS and WAIT are used for interaction between the TULIP 

module and MAC. TRANS signal is used by MAC to indicate to the TULIP module that the 

transmission of a packet has begun. TULIP waits for a specific amount of time for the Link 

layer ACK to arrive from the receiver, and initiates transmission of the next packet during the 

next time slot. The WAIT signal is used by MAC make the TULIP module wait for an 

additional amount of time (to allow transmission of variable length packets) before passing 

down the next packet for transmission. Flow control across the link is achieved using a 

window based scheme, and a bit vector is used by the receiver to indicate losses.  

5.1.5 Delayed Duplicate Acknowledgements 

In this proposal [37], modifications are restricted to the MH alone, and the base station 

requires no changes. The scheme was motivated by Snoop’s inability to interoperate with 

IPSec. Link layer retransmissions are used to locally recover from wireless losses. In-order 

delivery of segments is not assured. But, if the MH receives out-of-order segments, it sends 

the first two dupACKs, and withholds the thirds and successive dupACKs for a predefined 

amount of time d. This delay postpones the triggering of Fast retransmit at the FH. If the loss 

was indeed in the wireless link, the base station must locally retransmit the lost packet within 

d. After d, if an in-order segment has not arrived at the MH yet, then all the withheld 

dupACKs are sent. The scheme works well if the losses are actually in the wireless channel. 

But, if the losses were due to congestion in the wired network, then the delaying of 

dupACKs, in fact, worsens the situation. In addition, an optimum value for d is hard to arrive 

at, given the varying RTT in the wireless link. The proposal is still open to further research. 

5.1.6 Explicit Loss Notification with Link layer retransmission 

The authors of the proposal [38] discuss the problem of finding the optimum number of 

retransmissions at the link layer at the base station to enable local recovery. Higher the 

number of retransmissions, better the chance to locally recover from a loss without affecting 

the FH sender. But, higher number of retransmissions also affect the end-to-end RTT, and 

hence, the RTO at the FH sender. This makes the sender incapable of acting quickly in the 

face of congestion. A new technique, wherein the base station ACKs every segment sent 

from the FH, is employed. Here, whenever the FH sends a segment, both the base station and 

the MH send ACKs. The ACK from the base station is called the lhack (last hop ACK). The 

arrival of a lhack indicates that any loss of the segment (if the ACK from MH fails to arrive) 

is in the wireless link, and hence, the sender does not alter its congestion window. FH also 

refrains from retransmitting, allowing local recovery. If the lhack fails to arrive and there is a 

loss of segment, it is perceived to be actual congestion, and the sender responds immediately 

without waiting for a timeout. Increasing the number of Link layer retransmissions at the 

base station will have no effect on the sender’s sensitivity to react to congestion, as it bases 

its decision on the arrival of lhacks. The flip side of this technique is the doubling of reverse 

traffic, as 2 ACKs are being sent for a segment. 



Survey of schemes proposed   TCP for Wireless Networks 

Shruthi Krishnan   21 of 65 

5.1.7 Wireless-TCP (W-TCP) 

TCP operation is mimicked at the base station in this scheme [30]. The base station caches 

unacknowledged segments sent from the FH, and forwards it to the MH. Independent flow 

control is performed by the W-TCP agent at the base station. DupAcks and timeouts indicate 

losses in the wireless link. If a dupACK is received, then retransmission is performed, and 

the wireless transmission window is not altered at the base station. But, a timeout causes the 

wireless transmission window size to be set to 1, and unlike TCP, reception of a new ACK 

sets it back to the original value. Time spent in processing segments at the base station is 

hidden from the FH by using the TCP timestamp option whose value is modified at the base 

station to reflect the actual RTT. End-to-end semantics are maintained by the base station, as 

the only ACKs sent to the FH are the ones generated by the MH. 

5.1.8 Indirect-TCP 

I-TCP [2] is a split connection scheme, i.e. two separate connections are maintained between 

the FH and the MH. When the FH and MH establish a connection, FH actually connects to 

the MH’s current Mobile Support Router (MSR). The FH is not aware of this split in 

connection, and sees an image of the MH at the MSR. A special transport layer protocol, I-

TCP, is implemented between the MH and MSR. When the FH sends a segment, it is 

received by the MSR which immediately acknowledges it to the FH. The received segment is 

buffered at the MSR, and I-TCP is used to transmit it over the wireless link. Wireless 

channel’s problems are completely hidden from the FH sender. End-to-end TCP semantics 

are lost in this scheme, as an ACK from the MSR does not mean the MH has received the 

segment. In fact, MH may never receive the segments if the MSR crashes. In addition, 

applications at the MH need to be modified to replace TCP systems calls with I-TCP system 

calls.  

5.1.9 Combined use of link layer schemes 

In this scheme [15], three link layer correction techniques, FEC (Forward Error Correction), 

ARQ (Automatic Repeat Request) and Snoop [4], are to achieve an enhanced TCP 

performance. Both ARQ and FEC are employed at the link layer, and each operates 

independent of the other. Experiments were used to arrive at the average number of damaged 

bits for the worst case MTU, and low Signal to Noise Ratio (SNR). It was found that for 70% 

of the frames in error, number of damaged bits were less than 30. Hence an FEC scheme that 

can correct a maximum of 15 symbols was used. FEC is selectively employed, i.e. a frame at 

the base station is encoded with an FEC only if the channel conditions are perceived to be 

bad. The channel condition is continuously monitored using the signal-to-noise ratio. Also, in 

order to reduce overhead, decoding of FEC at the MH is performed only if the CRC is in 

error. 

5.2 Schemes that address long and frequent disconnection issues 

In this subsection, we will discuss some schemes that tackle TCP performance issues caused 

due to the movement of MHs that may result in disconnections. Problems arise not just 

during the disconnection, but also after the MH has reconnected to the same or a different 

base station. In order to achieve high TCP performance, sender TCP should not transmit, or 

alter its congestion window during the disconnection, and transmission has to immediately 

begin in full flow after reconnection. Disconnections can be long or frequent or both. 
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Frequent disconnections can cause serial timeout problems (see subsection 4.2). Most of the 

schemes discussed below that require changes to the MH-TCP assume the use of Mobile IP 

for movement across subnets [28], and cross layer signaling. Cross layer signaling is 

essential, because TCP is not aware of disconnections and reconnections, and requires this 

information to be provided from lower layers. 

5.2.1  Triplicate Acknowledgements 

Being one of the earliest schemes to address the TCP problems related to MH movement, this 

proposal [9] aims to reduce the delay in resuming transmission after the reconnection of the 

MH. If the disconnection time is long, FH sender will timeout serially, reducing its 

congestion window, and backing off its RTO value multiple times. After reconnection, 

transmission cannot resume immediately, as the FH has to wait for the exaggerated RTO to 

expire (refer to section 4.2). Meanwhile, network resources are being wasted. One of 

techniques proposed by the authors of this paper is to make the MH send 3 dupACKs 

immediately after reconnection, thus invoking Fast retransmission at the FH sender. The 

scheme assumes that MH TCP is aware of the reconnection event through cross layer 

interaction. Flip side of this approach is the reduction in the sender’s congestion window on 

account of the Fast retransmission. 

5.2.2 Freeze TCP 

In our discussion about TCP flow control (subsection 2.4), we mentioned that the receiver 

can send an ACK with its window field set to zero, preventing the sender from transmitting. 

This process is called freezing. When the sender is ―frozen,‖ it transmits probes at 

exponentially increasing intervals (up to a maximum of 1 minute) to check if the receiver’s 

buffer is still full. The probes have to be acknowledged by the receiver, but loss of probe-

ACKs is ignored. Freeze-TCP [17] uses this concept to freeze the FH sender just before the 

disconnection, in order to avoid the decrease in congestion window, and unnecessary 

retransmissions. After reconnection, since a probe may not arrive in time to avoid idling, 

triplicate dupACKs are sent by the MH to enable immediate transmission (similar to the 

scheme used in [9]). For the MH-TCP to successfully send a Zero Window Advertisement 

(ZWA) before the disconnection, it must become aware of the impending disconnection 1 

RTT prior to the event. If the ZWA is sent earlier than an RTT before disconnection, 

performance can degrade due to idling; if the ZWA is sent a little after, it may not reach the 

sender in time to freeze it successfully. In addition, predicting the disconnection in a network 

is a difficult feat to achieve [32]. Another problem noted by the authors is the determination 

of the optimum sending window size (sending rate) after reconnection. This becomes 

important if the new cell has a different available bandwidth compared to the old one.  

5.2.3 Freeze TCP with timestamps 

An extension to Freeze TCP [17], Freeze TCP with timestamps [11] considers the case where 

sender freezing fails before the disconnection. This can happen if the MH-TCP does not 

receive information about the impending disconnection in time. After reconnection, 3 

dupACKs are sent by the MH to resume transmission. Since the ACK sent before the 

disconnection has not reached the FH, the first dupACK after reconnection is actually an 

original ACK from the FH’s perspective. As such, FH uses this ACK’s arrival time for the 

RTT, and hence, RTO estimation. This is erroneous, as the RTT estimate will now include 
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the disconnection time as well. To solve this issue, the researchers propose the use of TCP 

timestamp option, and to make the MH update the timestamp echo value after removing the 

disconnection time. Now, the timestamp value in the original ACK will depict the actual 

RTT (without the disconnection time), and the FH can make correct estimates. 

5.2.4 M-TCP 

M-TCP [8] was proposed to solve the problems of disconnections and varying bandwidth in 

the wireless links. In this section, we will look at the manner in which disconnection 

problems are solved by M-TCP. A three-tier architecture comprising of the MHs at the lower 

level, Mobile Support Stations (MSS) at the next higher level, and Supervisor Hosts (SH) at 

the highest level, is used for the design. Several MHs are controlled by an MSS, and several 

MSSs are controlled by an SH. The MH and the SH implement M-TCP as the Transport 

layer protocol. Along with the M-TCP client, an SH-TCP client resides at the SH which is 

responsible for interacting with the FH. When the FH sends a segment, it is received by the 

SH-TCP client at the SH, and passed on to the M-TCP client at the SH itself, which in turn 

sends it to the MH. The reverse path is followed by the ACKs. But, the SH withholds the 

latest ACK at all times. The M-TCP client at the MH is responsible for freezing all its timers 

upon disconnection, and sending a special ACK to the SH’s M-TCP client upon 

reconnection. When the SH is aware of the disconnection, it uses the withheld ACK to 

―freeze‖ the FH sender. Similarly, when reconnection occurs, SH unfreezes the sender to 

resume transmission. 

5.2.5 ATCP 

Both FH to MH and MH to FH transfers are considered in this scheme [32]. Changes are 

proposed only to the MH. For FH to MH transfer, MH withholds the last two ACKs for a 

period less than TCP’s typical timeout value (about 500ms). Upon reconnection, the first of 

these withheld ACKs is sent with a zero window advertisement by the MH, and second is 

sent with full window advertisement. This approach is suggested instead of the 3 dupACKs 

approach used in Freeze TCP [17][9], because the reduction in congestion window at the FH 

sender due to Fast retransmission is avoided. For MH to FH transfer, the following approach 

is proposed: 

 If the send window is not full before disconnection, all timers are cancelled when 

disconnected, and the MH does not expect any ACKs. Instead, if the send window is 

full, MH waits for a timeout, even after disconnection. 

 If a timeout occurs while disconnected, the MH reduces the cwnd to 1, but sets the 

threshold to the value just before disconnection, enabling a longer Slow start period 

(cwnd increases faster than normal TCP). 

 After reconnection, if the send window is not full, MH resends the segments, and 

waits for a cumulative ACK. Else, if the send window is full, and a timeout occurs 

after reconnection, segment is retransmitted and cwnd is not altered.  

 If there was no disconnection event, MH-TCP operates as normal TCP. 

5.2.6 Indirect-TCP 

We discussed I-TCP [2] semantics in section 5.1.8, and the way it hides the high BER from 

the FH. In this section, we will delve into I-TCP’s technique to solve the disconnection 

problem. When the MH moves from one cell to another, the Mobile Support Router (MSR) 
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associated with the MH also changes. Since the end-points, MH and the FH, remain the same 

after reconnection, transferring the image of the MH from the old MSR to the new MSR will 

suffice. The FH is oblivious of this movement, and continues to communicate with the new 

MSR. Although this technique may seem simple in theory, handoffs and transfer of states can 

be complex in practice. In spite of the complexity, I-TCP cannot handle long disconnections 

efficiently, as it requires the MSR to buffer packets while the MH is disconnected. Buffer 

size at the MSR can pose a restriction on the duration of the disconnection. 

5.3 Schemes to address varying bandwidth issues 

Wireless channel bandwidth is low compared to their wired counterparts. Split connection 

schemes like I-TCP [2] can hide this fact from the FH, because the ACKs are generated by 

the base station. Eventually, the difference in bandwidths of the two connections will place a 

burden on the buffer requirements at the base station. In this section, we will consider the 

problem of varying bandwidth in wireless links. Mobility of wireless devices makes it 

difficult to predict the amount of bandwidth available for individual MHs at all times. If the 

bandwidth per MH reduces drastically, data transmission effectively ceases for the MH. This 

scenario is similar to the case where the MH is disconnected. Let us look at a few schemes 

that try to avoid the problems to FH-TCP due to varying bandwidth available to the MH.  

5.3.1 Adaptive-TCP 

A-TCP [31] solves all the three problems: high BER, disconnection losses, and varying 

bandwidth. But, the solution to the varying bandwidth problem is the original contribution of 

this proposal. For high BER and disconnection problems, the authors use Snoop and M-

TCP’s solutions respectively. An A-TCP agent resides at the base station, and generates a 

virtual host object for every connection between an MH and an FH. Every virtual host object 

has a send and a receive buffer. A segment from the FH is first buffered in the virtual host’s 

retransmission buffer, and sent to the MH. Segments are removed from the retransmission 

buffer when acknowledgements from the MH arrive. If the channel conditions are bad, or the 

available bandwidth in the channel is low, the rate of removal of segments from the 

retransmission buffer will be slower. Hence, the buffer occupancy is a clear indication of the 

channel conditions. Before forwarding the ACK from the MH to the FH, the virtual host 

object modifies the window field in the ACK to a value which is the minimum of receiver 

window size and available retransmission buffer size. This ensures that the FH does not 

transmit at a rate faster than what the current wireless channel conditions permit. 

5.3.2 M-TCP 

In section 5.2.4, we briefly discussed the way disconnections are handled by M-TCP [8]. In 

this section, we will look at how M-TCP handles the varying bandwidth problems. A 

bandwidth management module resides in the SH which allocates a fixed amount of 

bandwidth to each MH during connection establishment. This amount can vary during the 

lifetime of the connection depending on the number of users in the cell, and the status of the 

connection. The bandwidth available to each MH in a cell is continuously monitored by the 

SH. If this value goes below a threshold, SH uses the withheld ACK to send a zero window 

advertisement to the FH sender. The sender is allowed to transmit again when there is enough 

bandwidth available to the MH. This technique prevents the FH from timing out and 

reducing its congestion window. 



TCP-ECN: A new scheme to improve TCP performance TCP for Wireless Networks 

Shruthi Krishnan   25 of 65 

Chapter 6.   TCP-ECN: A NEW SCHEME TO 

IMPROVE TCP PERFORMANCE 

The extensive survey presented in the previous section helped us understand the major causes 

of TCP performance issues, and the requirements to overcome these. In [14], the author lists 

the desirable properties in a transport protocol as applied to wired-cum-wireless networks. 

Primarily, the protocol must be capable of differentiating congestion losses from random 

losses due to high BER, losses due to mobility, and wireless bandwidth related losses. The 

protocol must also retain end-to-end semantics, and not require changes to existing wired 

infrastructure. It is preferable that additional processing, and resource requirements are kept 

to a minimum, and the variation in end-to-end RTT is negligible. The protocol must provide 

good throughput for traffic in either direction. Satisfying all of these requirements is 

extremely difficult, as each requirement subtly affects the other. Hence, while designing a 

new scheme, we have to prioritize the requirements, satisfying the most important ones, and 

compromising on the others. 

6.1 Motivation 

For our new scheme, we chose a local recovery approach (involving changes to the MH and 

base station) without requiring any changes to FH. We focus on FH to MH data transfer, and 

on solving problems due to high BER and long disconnections in the wireless links. We also 

intend to keep the memory and processing requirements at the base station to a minimum. 

Primarily, our experiments involve WLANs (802.11 networks), but the same principles can 

be applied to cellular networks as well.  

 

We have based the central idea of our scheme on the approaches used in [5], [37] and [8] 

with several variations. Explicit Loss Notification (ELN) is a general idea that is used in 

several wireless applications. In ELN schemes, single bit information is used to intimate the 

type of the loss (congestion related or random). Most of the ELN based schemes, like those 

proposed in [5][38], provide information about a loss to the sender. In contrast, our scheme 

uses single bit information to intimate the type of loss to the receiver (MH). We call it 

Explicit Congestion Notification.  

6.2 TCP-ECN: Design details 

Our scheme, TCP-ECN, tries to solve both high BER and long disconnection problems in 

wireless links. In section 6.2.1, we present the solution to high BER, and in section 6.2.2, we 

will discuss the solution to the long disconnection problem. 

6.2.1 Handling high BER 

Local recovery based schemes rely on Link layer retransmissions at the base station. There 

are several Link layer schemes that do not use TCP awareness, like those in [37][24]. 

Researchers [3] have found TCP-unaware Link layer schemes lacking mainly because of the 

following reasons:  
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 Independent timers at TCP and Link layers: Since the Link layer timer at the base 

station, and the TCP timer at the fixed host do not depend on each other, competing 

retransmissions can occur. This happens if the Link layer is trying to locally 

retransmit, and the FH-TCP times out to initiate an unnecessary retransmission. 

Given the low bandwidth availability in the wireless channel, these redundant 

retransmissions can prove detrimental to the overall throughput. 

 Out of order delivery of segments to the MH: The Link layer at the base station may 

not ensure in-order delivery of segments which can result in dupACKs being 

generated by the MH. If these dupACKs are received by the FH, Fast retransmission 

is triggered unnecessarily as the situation can be handled locally by the base station. 

Consequently, not only is the congestion window reduced, but local recovery is 

delayed due competing retransmission from FH-TCP. 

 RTT and RTO exaggeration at the FH:  Aggressive local retransmissions will 

increase the end-to-end RTT, and consequently the RTO value. This will make the 

FH less sensitive to congestion losses in the wired network, and also affect the FH’s 

ability to sense error-free conditions quickly [36]. 

 

Experiments and extensive research have shown that in order to achieve an efficient solution 

to wireless-TCP problems, an interaction between layer 2 and layer 4 is essential [23][3]. 

Hence, we employ a TCP-aware (snoopy) scheme, and try to solve the aforementioned 

problems in local recovery schemes, focusing on reducing the overhead at the base station. 

Our scheme solves the second problem in local recovery schemes (problem due to out of 

order segment delivery). 

6.2.1.1 Problem due to independent timers 

TCP uses coarse timers, typically around 500ms. Link layer timers are comparatively finer, 

usually much less than 100ms. For our scheme, we assume that the two timers collide rarely 

[38]. Hence, currently we choose not to handle this problem. 

6.2.1.2 Problem due to spurious dupACKs  

Generation of dupACKs by the MH as a result of losses in the wireless channel is one of the 

fundamental reasons for TCP performance degradation. These dupACKs are not only 

unnecessary, but also consume precious bandwidth in the bandwidth-depleted wireless 

channel (e.g. 802.11 networks are half duplex in nature). They compete with the data flow in 

the other direction, and delay the retransmissions, and hence, local recovery. Consequently, 

for our scheme, we focus on avoiding these spurious dupACKs from being generated by the 

MH. 

 

We use ECN sent by the base station to enable the MH to differentiate between a congestion 

loss and a random loss. The base station maintains a sorted list of unacknowledged TCP 

sequence numbers. Congestion losses are immediately evident at the base station, as it results 

in a jump in the sequence number list. The next out-of-order packet arriving at the base 

station is marked with the ECN bit, and forwarded to the MH. The MH, upon discovering the 

missing segment, checks to see if the ECN bit is set in the successive segments. If so, it 

understands that the loss was in the wired network. It then sends dupACKs (normal TCP 

operation). If the loss was in the wireless channel, the base station has seen segments in 
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order, and therefore does not set the ECN bit in the successive segments. When the MH 

notices a loss, and fails to see the ECN bit set in the next segment, it withholds dupACKs, 

and waits for local recovery. We will describe the scheme in detail with the aid of the 

following four cases: 

 

 Case 1: 

 
Figure 1: Handling congestion loss 

 

Figure 1 depicts two scenarios: a normal error-free scenario and one where a congestion loss 

occurs. Let us assume that a segment numbered X arrives at the base station without errors. 

The sequence number X is added to the list at the base station, and the segment will be 

forwarded by the base station without any modifications. This is the normal case. Now, let us 

assume that segment numbered X+1 is lost due to congestion, and the next segment X+2 

arrives at the base station. The base station notices the loss of X+1, marks the segment X+2 

with the ECN bit, and forwards it to the MH. When the MH notices the missing segment 

X+1, and the ECN bit set in the next segment X+2, it deduces that the loss was due to 

congestion. Therefore, the MH sends a dupACK. 

 

 Case 2: 

 
Figure 2: Handling loss in wireless link 



TCP-ECN: A new scheme to improve TCP performance TCP for Wireless Networks 

Shruthi Krishnan   28 of 65 

 

We will now take a look at the scenario where the loss is in the wireless link. In Figure 2, 

segment X+1 is lost in the wireless link. When the MH receives segment X+2, it discovers 

the loss, but unlike the previous case, the ECN bit is not set for X+2. The ECN bit is not set, 

because the base station has seen all the segments in order. In this scenario, the MH avoids 

sending spurious dupACKs, waiting for local recovery. 

 

 Case 3: 

 

In cases 3 and 4, we will consider both congestion and wireless losses occur. Firstly, in 

Figure 3, we look at a case where a congestion loss precedes a wireless loss. The base station 

notices the congestion loss of X, and sets the ECN bit for all the successive segments. When 

the MH receives X+2, it sends a dupACK for X, as the ECN bit is set in segment X+2. Once 

the segment X is retransmitted by the FH, the base station’s list is complete, so it stops 

setting the ECN bit. Segment X is forwarded without the ECN bit set.  Hence, the MH waits 

for local transmission of X+1, and does not send dupACKs for it. 

 

 
Figure 3: Congestion loss followed by wireless loss 

 

 

 Case 4: 
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Figure 4: Wireless loss followed by congestion loss 

 

If a wireless loss precedes a congestion loss, as shown in Figure 4, the ECN bit is set for 

X+2, and hence, the MH assumes that X was lost in congestion. This is a special scenario 

where the base station cannot convey enough information in a single bit to avoid spurious 

dupACKs. As such, any dupACKs generated for X have to be discarded at the base station. 

 

Since dupACKs are being withheld only for wireless losses, FH’s reaction to congestion is 

not affected, unlike [37]. This provides us the flexibility of allowing the MH to wait for 

either local recovery, or in the worst case, for the FH to timeout. As we can quickly 

retransmit packets locally, the latter case occurs rarely. Failure to retransmit locally after 

multiple tries indicates extremely poor wireless channel conditions. In such cases, sender’s 

timing out and reducing congestion window become imperative. Hence, the changes at MH 

are kept minimal: it just waits for local retransmission of a packet lost in the wireless link. 

6.2.2 Handling disconnection and handoff problems 

We make an assumption that Mobile IP [28] is being used to allow movement of the MH 

across subnets. Our scheme uses sender ―freezing‖ as in the case of [17] (see section 5.2.2), 

but instead of the MH sending ZWA, here, the onus of freezing the FH is on the base station. 

Several schemes we surveyed including [17], have failed to address the case where the MH is 

idle for a while, and then immediately gets disconnected. Since TCP traffic is bursty in 

nature, we cannot assume that there will always be a segment transmitted by FH just before 

disconnection allowing the base station or the MH to freeze the sender. To overcome this 

problem, we allow the base station to buffer segments arriving during or after MH’s 

disconnection, and send an ACK for the first segment with zero window advertisement to the 

sender. Once the MH is reconnected to another base station, Mobile IP [28] is used to 

transfer the buffered segment(s) to the MH. This technique accounts for the burstiness of 

TCP traffic. 
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A base station implementing TCP-ECN maintains a list of sequence numbers flowing across, 

but does not buffer the segments themselves. Only in the face of an impending disconnection 

will the base station buffer segments and ACK the first segment with ZWA. The base station 

can detect impending disconnections through 802.11 disassociation requests [25], or it can 

monitor the signal strength to detect fading. All the base stations interact with the home and 

foreign agents implementing Mobile IP. As soon as the MH reconnects to a new base station, 

the list of sequence numbers is transferred to the new base station, with the aid of home and 

foreign agents. The new base station unfreezes the FH, and takes over the responsibility of 

monitoring the sequence numbers. When transferring states between base stations only the 

list of sequence numbers need be transferred, and not the segments themselves. Therfore, in 

our new scheme, handoffs are less expensive and the complexity is minimal, unlike others 

schemes like Snoop [4].  
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6.3 High level design 

6.3.1 Flow chart for enhancement at the base station 

 
Figure 5: High level design of the enhancement at the base station 



TCP-ECN: A new scheme to improve TCP performance TCP for Wireless Networks 

Shruthi Krishnan   32 of 65 

6.3.2 Pseudo code and description 

1. Receive segment from FH or MH 

2. If MH’s COA = my COA then 

3.    If segment received is a TCP-data segment then  //From FH 

4.       If segment is a SYN segment then     //New TCP connection 

5.          Create a new list of sequence numbers for the connection 

6.       Else                            //Existing TCP connection 

7.          If new seq no. >= next expected seq then 

8.             Add seq no. at the end of the list for the connection 

9.          Else                                    //fills a hole 

10.       Insert seq no. at the correct position in the list 

11.    End-if 

12. End-if 

13. If list has at least one hole then       //List is incomplete 

14.    Set the ECN bit in the TCP header 

15.    Re-compute TCP checksum 

16. End-if 

17. If MH is disconnected then 

18.    Freeze the FH by sending Zero Window Acknowledgement 

19.    Buffer the segment 

20.    Wait for handoff and then forward segment to foreign agent 

21. Else 

22.    Forward segment to MH 

23. End-if 

24. Else      //Segment received is a TCP-ACK from MH 

25. If new ACK no. = last ACK no. then        //Duplicate ACK 

26.    If the ACK no. is present in the list then 

27.       //Base station has seen the sequence number, and hence 

28.       //can be locally retransmitted 

29.       Discard the dupACK 

30.    End-if 

31. End-if 

32. Forward ACK to FH 

33. End-if 

32. Else  //MH is associated with some other base station 

33.    Forward segment 

34. End-if 

 

Flowchart in Figure 5 and the above pseudo code depict the high level design of the 

enhancement at the base station. Now, we will describe the flowchart in detail. For our 

discussion, we assume that TCP data segments received at the base station are sent by the 

FH, destined to the MH. And, TCP-ACKs are sent by the MH to the FH which are snooped 

into by the base station. First, we will discuss TCP-data handling at the base station. Every 

base station implementing TCP-ECN enhancement maintains lists of TCP sequence numbers 

of all the TCP connections flowing through it. Evidently, only the base station to which an 

MH is currently associated (or the base station who is the owner of the Care-Of-Address of 
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the MH) should manage the TCP sequence lists for that MH. This is ensured by using the 

Care-Of-Address (COA) of the MH. A base station whose COA is not the same as the MH’s 

COA simply forwards the segment to the foreign agent of the MH. Otherwise, sequence 

numbers of segments received on the connection are compared with the sequence numbers in 

the list by the base station. 

 

If the data segment is received on a new connection, a new list of unacknowledged sequence 

numbers is created, and initialized. Otherwise, the sequence number of the new segment is 

checked to see if it is in order (the next expected sequence number). If the new sequence 

number is the next expected, it is added to the end of the sequence list. If not, the new 

sequence number could either fill a hole in the list, or is creating a new hole. For example, if 

the current list at the base station is as follows (segment size assumed to be 500 bytes): 500, 

1000, 1500, 2500, and 3000. Let the newly arriving sequence number be 2000. Clearly, it is 

out of order, and is filling a hole in the list. In such cases, the new sequence is inserted at the 

correct position (list is kept sorted). Instead, if the new sequence number is 4000, it is out of 

order, but is creating a new hole in the list. Such sequences will be inserted at the end of the 

list.  

 

Before forwarding the data segment to the MH, the list is checked for completeness. If the 

list is not complete, it is an indication of either congestion losses, or an abnormal forwarding 

delay in the wired network. The base station indicates this to the MH by setting the ECN bit 

in the out-of-order segment, and re-computing TCP checksum. In addition, MH’s 

disconnection status is checked. If the MH is disconnected, the base station buffers the 

segment, and waits for the handoff to complete before forwarding the segment to the foreign 

agent. In addition, the base station ―freezes‖ the FH sender by sending a zero window 

acknowledgement (ZWA). If there is no impending disconnection of the MH, the segment is 

forwarded to the MH. 

 

We will now focus our attention on TCP-ACK handling at the base station. When a TCP 

ACK sent by the MH is received by the base station, it checks to see if the ACK is a 

duplicate (same as the last seen). If it is a new ACK, the base station removes all the 

sequence numbers from the list that are less than the ACK number (TCP ACKs are 

cumulative). Instead, if the received ACK is a dupACK, the base station first confirms that it 

has not seen the segment with the dupACK number, and then forwards the dupACK to FH. 

But, if it has seen the segment with the dupACK number, it simply discards the dupACK 

(loss was in the wireless link, and can be recovered locally, refer to case 4 shown in Figure 

4).  
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6.3.3 Flowchart for enhancement at MH 

 
Figure 6: High level design of the enhancement at the MH 

6.3.4 Pseudo code and description 

1. Receive segment from base station 

2. If new seq no. <> next expected seq no. then 

3.    If ECN bit set is in the received segment then 

4.       Withhold dupACK  

5.       Wait for local retransmission of lost segment 

6.    Else 

7.       Send dupACK to FH 

8.    End-if 

9. Else 

10. Adhere to normal TCP operation 

11. End-if 

 

Design of the enhancement to be implemented at the MH is shown in Figure 6 and the 

pseudo code in this section. Under normal TCP operation, whenever a segment is received 

out of order, the TCP receiver (in our case, the MH) sends a dupACK to the TCP sender 

(FH). With TCP-ECN enhancement, every out-of-order segment received by the MH is 

checked to see if the ECN bit is set by the base station. If the ECN bit is set, MH sends 

dupACKs to the FH, as the loss was in the wired network. Otherwise, it withholds the 

dupACKs, and waits for local recovery. Under all other circumstances, we adhere to normal 

TCP behavior. Evidently, the amount of change required at the MH is minimal.  

6.4 Innovation 

The main contribution of our scheme is to solve the problem of spurious dupACKs generated 

in TCP-unaware Link layer schemes that use local recovery. Our scheme uses TCP 

awareness, but is unlike other TCP-aware schemes like Snoop [4]. In Snoop, dupACKs sent 
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by the MH are used only to indicate a wireless loss, and are eventually discarded by the base 

station. We intend to avoid the generation of unnecessary dupACKs altogether, thus saving 

wireless bandwidth. 

 

Another contribution of our scheme is to handle burstiness of TCP transmission in the face of 

long disconnections. Most schemes concentrate on solving the disconnection problem 

assuming continuous transmission of data. A more challenging scenario is when the MH is 

idle for a while before getting disconnected, and the FH transmits during the disconnection. 

Our scheme aims to solve this issue. Handoff complexity is highly reduced in the new 

scheme, as only the list of sequence numbers need to be transferred between base stations. 
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Chapter 7.   SIMULATION OF TCP-ECN 

7.1 Simulation details 

We used ns2, version 2.29 [24], for simulating and testing TCP-ECN for wired-cum-wireless 

networks, and to verify its performance in high BER and long disconnection scenarios. For 

an introduction to ns-2, please refer to Appendix A. A new ns component was created, called 

LLTcpEcn. This component replaces the Link layer component at the base station. LLTcpEcn 

is responsible for processing only TCP packets and encapsulates TCP-ECN’s base station 

functionality (refer to the flow chart in Figure 5). Minor modifications to tcp-sink.cc were 

made to refect the MH functionality of TCP-ECN (refer to flow chart in Figure 6). 

 

The current version of ns2 does not support receiver driven flow control in TCP. As such, we 

had to modify tcp-reno.cc to handle sender freezing (ZWA). We achieved this by introducing 

a ―freeze‖ bit in hdr_flags structure. We have also added an ECN bit to the same structure as 

required by our scheme. Both wireless and wired losses were introduced during testing by 

attaching error modules to the links (done in the TCL script). A new header structure called 

hdr_tcpecn was created to store per-packet information. 

 

TCP-ECN enables the MH to distinguish between congestion and wireless losses. In 

consequence, the MH can withhold unnecessary dupACKs generated for wireless losses. An 

efficient mechanism is required at the base station to ensure timely local recovery to avoid 

triggering a timeout at the FH sender. In TCP-ECN we allow 802.11 MAC to return packets 

to the Link layer after it has given up retransmitting them. This MAC callback mechanism 

eliminates the need to buffer packets at the base station. The Link layer can place a ceiling on 

the number of retransmission tries allowed for a packet (for our simulation, three), and 

accordingly perform local recovery. The current number of Link layer retransmission tries 

for a packet is stored in the hdr_tcpecn part of its ns2 packet header.  

Note: The Link layer retransmissions that we mention here are different from the 802.11 

MAC retransmissions. For example, if the maximum number of MAC retransmissions is 7, 

and the maximum number of Link layer retransmissions is 3, in the worst case, the packet 

will be retransmitted 7*3=21 times. 

 

In the next two sections, we will describe the algorithms used to deal with the high BER and 

disconnection scenarios in greater detail. 

 

7.1.1 Details of algorithm used for handling high BER 

A new component called LLTcpEcn is implemented in C++, and it resides at the base station. 

Figure 7 depicts the ns2 networking stacks at FH, base station and MH. The flowchart shown 

in Figure 5 is followed closely in the implementation of LLTcpEcn. TCP data from FH is 

processed in the function TcpEcn::FHdata, and ACKs from the MH are handled in the 

function TcpEcn::MHack. LLTcpEcn maintains one TcpEcn object for every connection 

between FH and MH. Each of these TcpEcn objects maintains a circular list of 

unacknowledged TCP sequence numbers for the connection. We do not store every sequence 
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number in the list. Instead, in order to reduce memory requirement, we store only the start 

and end sequence numbers of contiguous blocks of TCP sequence numbers. For example, let 

us assume that the base station sees segments with sequence numbers 500, 1000, 1500, 2500, 

and 3000, each of length 500 bytes. Instead of storing five sequence nodes in the list, the base 

station stores only two nodes. The first node has start sequence as 500, and its end sequence 

is 1500 (first contiguous block). The second node’s start sequence is 2500, and the end 

sequence is 3000 (second contiguous block). A new node is created only when the newly 

received sequence number is not the next expected. Otherwise, the end sequence of the last 

node is updated.  

Note: Ns2 sequence numbers are consecutive, and are independent of the length of segments. 

This allows us to use the aforementioned data structure as we need not store per-sequence 

information, like segment length, in the list. 

 

 
Figure 7: Snapshot of the TCP/IP stack at FH, BS and MH 

 

 
Figure 8: Sequence list structure 

 

We use ns2’s MAC layer callback functionality to return packets to LLTcpEcn, when their 

transmission repeatedly fails on the wireless link. The function TcpEcn::retransmit is 

invoked upon callback. This function determines if a packet can to be retransmitted again 

depending on the number of Link layer retries allowed. A packet to be retransmitted is 

simply passed to the MAC again, after incrementing the number of Link layer retries in the 

packet’s header. 

 

A global variable tcpecn_enabled is used to control MH-TCP’s behavior to the ECN bit in 

TCP headers. If this variable is set, MH-TCP sends dupACKs whenever it notices a missing 

segment and the ECN bit set in the following segments. Instead, if the ECN bit is not set in 

the following TCP segments, MH withholds the dupACKs. To disable TCP-ECN 

enhancement, tcpecn_enabled is turned off. 
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7.1.2 Details of algorithm used for handling disconnections 

We use ns2’s Mobile IP implementation for handling disconnection scenarios. In the 

following discussion, we will refer to the home agent as HA, and foreign agent as FA. The 

HA initially maintains the sequence lists for all the connections associated with an MH. 

When the MH moves away from HA and into the range of FA, all its corresponding sequence 

lists have to be transferred to FA, so that the FA can continue monitoring the sequence 

numbers. This is achieved by using Mobile IP’s first registration request and registration 

reply messages. Upon receiving the first registration request from the MH after reconnection 

(forwarded by the FA), the HA attaches all the sequence lists associated with that MH in the 

corresponding registration reply packet. Subsequently, when the FA receives the first 

registration reply from the HA, it updates its list cache with the sequence lists sent by the HA 

in the reply packet. In this way the current states of sequence numbers in each of MH’s 

connections are transferred to the FA.  

Note: In ns2, the base stations are HA and FA themselves. There are no separate Mobile IP 

capable routers. 

 

As we had mentioned earlier, receiver driven TCP flow control is not implemented in ns2. As 

such, we have introduced a new flag to enable the sender to freeze its congestion window 

upon intimation by the base station. When the base station (HA) determines that the MH is 

moving away from its range, it sets the freeze bit to 1 in the ACK sent from the MH to the 

FH. We have made a minor modification to the TCP sender at the FH to handle the freeze bit. 

When the sender notices the freeze bit set in an incoming ACK, it cancels its current 

retransmission timer, and does not alter its congestion window. In addition, it refrains from 

sending any more segments. This will continue until it receives an ACK with the freeze bit 

reset. 

 

In ns2, the base station does not know the exact time at which the MH starts moving out of 

its range. Hence, we have used the ―receive power‖ of a packet to simulate this scenario. 

Wireless PHY of the base station (HA) discards any packet whose receive power is less than 

a threshold called RXThresh (default value in ns2 is 3.652 X 10
-10

W). At the link layer, TCP-

ECN module at the base station checks the receive power of a successfully received packet. 

If this value is very close to RXThresh, then a disconnection is anticipated in the near future. 

A new threshold called FZThresh (default value set to 0.5 X 10
-10

W) is used to decide 

whether freezing should be performed by the base station.  

 
Packet received power < RXThresh + FZThresh 

 

Whenever the above condition is true for an ACK packet received from the MH, the base 

station freezes the FH by setting the freeze bit in the ACK before forwarding it. The receive 

power value at which the base station freezes the FH has to be chosen very carefully. For a 

relatively large value of FZThresh early freezing can occur, thus reducing throughput. In 

contrast, for a relatively low value freezing may fail to occur. Upon reconnection, the last 

ACK segment is resent by the FA with the freeze bit reset. This enables the FH TCP to 

resume transmission. 

 

Start of disconnection period is computed as the time when the wireless PHY at the HA 

discards a packet for the first time due to insufficient received energy (packet received power 
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< RXThresh). End of disconnection period is the time when the MH has successfully 

reconnected to the FA, and is ready to receive TCP packets again. 

7.2 Testing with only high BER 

In order to better evaluate our new scheme, we have compared its performance with not only 

TCP Reno’s performance, but also with that of Snoop [4]. Snoop has proven in the past to be 

better performing than most wireless TCP enhancements. In addition, we believe that TCP-

ECN and Snoop are similar in terms of their scope: both operate at the base station, and both 

use local retransmissions to recover from wireless losses. Furthermore, both Snoop and TCP-

ECN improve TCP performance for FH to MH data transfer scenario. Hence, we choose 

Snoop as a fair scheme to compare TCP-ECN with. 

 

We have used the implementation of Snoop available with ns2 distribution for the purpose of 

testing. Implementation of Snoop in ns-2 has not been designed to work with 802.11 

networks. We had to make minor modifications to Snoop code (both TCL and C++) in order 

to satisfy WLAN requirements. Firstly, we used the wireless error model, instead of wired 

error model (originally used) for simulation. Secondly, Snoop code has been modified to 

bypass processing of any packets other than TCP and ACK packets. This allows other packet 

types, like ARP requests and responses, to be handled normally without the intervention of 

Snoop module. 

7.2.1 Simulation scenario: Single source and single receiver 

7.2.1.1 Simulation setup 

For the first set of tests, we use a simple topology with a single source (FH), and a single 

receiver (MH), connected through a base station (access point). Figure 9 depicts the topology 

we used to run our simulation scripts. Disconnections were not introduced in this set of tests.  

 

 
Figure 9: Topology used for simulation: 1 source and 1 receiver 

7.2.1.2 Results and analyses 

 TCP sequence number progression 

 The graph is presented in Figure 10. The simulation parameters for this test case were 

 Wireless error rate: 0.2 

 Wireless bandwidth: 11Mbps 

 Wired bandwidth: 100Mbps 

 Wired network delay: 500ms 

 Simulation time: 250 seconds 

 No wired network errors 

100Mbps 11Mbps 

BS FH 
MH 
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TCP Sequence number progression vs. simulation time
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Figure 10: TCP sequence number progression (1 source, 1 receiver) 

 

Figure 10 shows the TCP sequence number progression as measured at the TCP receiver 

(MH). Steady increase in sequence numbers is an indication of better insulation of FH-TCP 

from wireless losses. The curves for TCP-ECN and Snoop coincide with each other. Both 

these schemes show marked performance improvement over TCP Reno.  

 

 TCP throughput vs. wireless error rate 

 The simulation parameters for this test case were  

 Wireless bandwidth: 11Mbps 

 Wired bandwidth: 100Mbps 

 Wired network delay: 500ms 

 Simulation time: 250 seconds 

 No wired network errors 
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Figure 11: TCP throughput vs. wireless error rate (1 source, 1 receiver) 

 

When we varied the wireless error rate, and measured TCP throughput at MH, we obtained 

the graph shown in Figure 11. Both TCP-ECN and Snoop perform better than TCP Reno for 

all error rates. But, as the error rate increases, base station’s buffering capacity becomes a 

bottleneck for Snoop, as the number of packets to be buffered increases proportionally. In 

addition, the number of dupACKs sent by the MH increases with an increase in wireless error 

rate. All these dupACKs compete with local retransmissions (802.11 links are half duplex) 

for wireless bandwidth, thus reducing effective throughput. TCP-ECN eliminates 

unnecessary dupACKs allowing faster local recovery. Consequently, TCP-ECN performs 

better than Snoop for higher error rates. 

 

 TCP throughput vs. wired network delay 

 The simulation parameters for this test case were  

 Wireless error rate: 0.2 

 Wireless bandwidth: 11Mbps 

 Wired bandwidth: 100Mbps 

 Simulation time: 250 seconds 

 No wired network errors 
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TCP Throughput vs. wired network delay
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Figure 12: TCP throughput vs. wired network delay (1 source, 1 receiver) 

 

Wired network can involve several hops, and increase in wired network delay has a direct 

consequence on TCP’s RTT and RTO calculations. Figure 12 shows the performance of the 

three schemes with varying wired network delay. As expected, an increase in wired network 

delay causes a proportional decrease in throughput with all three schemes. But, both TCP-

ECN and Snoop perform consistently better than TCP Reno, in spite of the variation in RTO 

at the FH sender.  

Note: Decrease in RTO can cause early retransmission from sender TCP hindering local 

retransmissions. 

 

 TCP Throughput vs. wired loss rate 

 The simulation parameters for this test case were 

 Wireless error rate: 0.2 

 Wireless bandwidth: 11Mbps 

 Wired bandwidth: 100Mbps 

 Wired network delay: 500ms 

 Simulation time: 250 seconds 
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Figure 13: TCP throughput vs. congestion loss rate (1 source, 1 receiver) 

 

Figure 13 presents the graph for the simulation scenario with both wired and wireless losses. 

We keep the wireless error rate as a constant, and vary wired error rate (congestion loss rate). 

Higher congestion deteriorates TCP performance with all three schemes. However, TCP-

ECN performs the best among the three schemes. Snoop suffers from high buffer occupation 

for higher congestion losses. When a packet is lost in the wired network, all the successive 

packets have to be buffered at the base station until the FH retransmits the lost packet. If this 

situation is coupled with wireless losses, buffer requirement at the base station becomes very 

high for Snoop. In addition, wireless losses cause unnecessary dupACKs in wireless link. 

These reasons cause Snoop to perform slightly worse than TCP-ECN and TCP Reno for high 

wired error rates.  

 

For both TCP-ECN and Snoop, an increase in congestion loss rate decreases the advantage of 

local recovery. The base station does not have packets to locally retransmit and has to wait 

for the FH to retransmit. As such, performances of these schemes are comparable to that of 

normal TCP for higher congestion loss rates. 

7.2.2 Simulation scenario: Two sources and two receivers 

7.2.2.1 Simulation setup 

We added a source and a receiver to the topology shown in Figure 9 to create the topology 

shown in Figure 14. Two TCP connections were maintained (FH1-to-MH1 and FH2-to-

MH2), and packets from both connections were processed by a single base station. All three 

schemes: TCP-ECN, Snoop and TCP Reno, were evaluated for this setup. 
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Figure 14: Topology for simulation (2 sources and 2 receivers) 

7.2.2.2 Results and analyses 

 TCP sequence number progression 

 The simulation parameters for the test case were: 

 Wireless bandwidth: 11Mbps 

 Wired bandwidth on both links: 100Mbps 

 Wired link delay: 500ms 

 Simulation time: 250 seconds 

 Wireless error rate: 0.2 

 No wired network loss 
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Figure 15: TCP sequence number progression at sink1 (2 sources, 2 receivers) 
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TCP Sequence number progression vs. simulation time at sink2
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Figure 16: TCP sequence number progression at sink2 (2 sources, 2 receivers) 

 

Figure 15 and Figure 16 show the sequence number progression measured at MH1 and MH2 

respectively. Curves for TCP-ECN and Snoop coincide with each other in both cases. When 

compared with Figure 10, there is little variation in TCP-ECN and Snoop’s performances. 

Similar to the results from the previous setup, both TCP-ECN and Snoop perform better than 

TCP Reno. 

 

 TCP throughput vs. wireless error rate 

 The simulation parameters for the test case were: 

 Wireless bandwidth: 11Mbps 

 Wired bandwidth on both links: 100Mbps 

 Wired link delay: 500ms 

 Simulation time: 250 seconds 

 No wired network errors 
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Figure 17: TCP throughput vs. wireless error rate at sink1 (2 sources, 2 receivers) 

 

TCP Throughput vs. wireless error rate at sink2
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Figure 18: TCP throughput vs. wireless error rate at sink2 (2 sources, 2 receivers) 

 

TCP throughput measurements for varying wireless error rates were measured at MH1 and 

MH2, and are shown in Figure 17 and Figure 18 respectively. Since the base station’s 

memory requirement is doubled compared to the single-source-single-receiver scenario, 

Snoop’s performance reduces drastically for higher error rates. Yet another problem with 

Snoop that compounds the previous problem is due to spurious dupACKs consuming 

wireless bandwidth. TCP-ECN performs consistently better than both TCP Reno and Snoop 

for higher error rates. 



Simulation of TCP-ECN  TCP for Wireless Networks 

Shruthi Krishnan   47 of 65 

7.3 Testing with only disconnections 

7.3.1 Simulation setup 

We introduced another base station to the setup shown in Figure 9. The topology used for 

this set of tests is shown in Figure 19. MH moves from BS1’s range to BS2’s range. Both the 

base stations implement Mobile IP. BS1 is the HA, and BS2 is set up as the FA. BS1 is 

placed at co-ordinates (1, 2, 0), and BS2 is placed at (650, 600, 0), in order to have the worst 

case distance (about 8 km) between the two. No wireless losses or wired network losses were 

introduced. Disconnection time was varied by altering the speed of the MH. We measure 

disconnection time as explained in section 7.1.2. 

 

 
Figure 19: Topology used for simulation of disconnection scenarios 

 

7.3.2 Results and analyses 

 TCP sequence number progress 

 The simulation parameters were set up as: 

 Wireless bandwidth: 11Mbps 

 Wired bandwidth: 100Mbps 

 Wired network delay: 500ms 

 Simulation time: 150 seconds 

 No wired network errors 
 Disconnection time: 31.4 sec 

 Wireless error rate: 0 
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TCP sequence number progression vs. simulation time
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Figure 20: TCP sequence number progression with disconnections 

 

Figure 20 depicts the sequence number progression as measured at the MH for a 

disconnection period of 31.4s. The curves for TCP Reno and Snoop coincide with each other. 

Snoop’s implementation in ns2 does not handle disconnections. Hence, it behaves like TCP 

Reno when there are no wireless losses. Sequence numbers increase linearly after 

reconnection when TCP-ECN is used, whereas they increase slowly for TCP Reno and 

Snoop. This is because the FH’s congestion window is reduced when packets are lost during 

the disconnection period. Since TCP-ECN freezes the FH just before the disconnection, FH’s 

congestion window is not affected during disconnection. FH resumes from where it left off, 

after reconnection. Although, note that disconnection happens slightly earlier for TCP-ECN. 

The reason for this behavior is that the base station freezes FH when the receive power of the 

incoming ACK from MH is marginally greater than RXThresh (refer to section 7.1.2). This 

causes the FH to stop sending segments slightly earlier than the actual disconnection. 

 

 Throughput vs. disconnection time 

 The simulation parameters were setup as: 

 Wireless bandwidth: 11Mbps 

 Wired bandwidth: 100Mbps 

 Wired network delay: 500ms 

 Simulation time: 150 seconds 

 No wired network errors/ wireless error rate: 0 
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Figure 21: TCP Throughput vs. disconnection time 

 

TCP throughput with TCP-ECN is better than TCP Reno and Snoop for varying 

disconnection periods as shown in Figure 21. Snoop’s performance is similar to TCP Reno’s 

for reasons stated earlier. 

7.4 Testing with both high BER and disconnections 

7.4.1 Simulation setup 

Topology shown in Figure 19 was reused for this set of tests. However, now we introduce 

wireless errors in addition to disconnections. 

7.4.2 Results and analyses 

 TCP Sequence number progression vs. time 

 The simulation parameters were setup as follows: 

 Wireless bandwidth: 11Mbps 

 Wired bandwidth: 100Mbps 

 Wired network delay: 500ms 

 Simulation time: 150 seconds 

 No wired network errors 
 Disconnection time: 21.5 sec 

 Wireless error rate: 0.15 
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Figure 22: TCP sequence number progression with disconnections and wireless losses 

 

Figure 22 shows the TCP sequence number progression with all three schemes. Although 

Snoop’s performance is better than TCP Reno’s and similar to that of TCP-ECN until the 

disconnection, it deteriorates after the reconnection. TCP Reno’s performance dips heavily 

due to both wireless losses and the disconnection. 

 

 TCP Throughput vs. wireless error rate 

 The simulation parameters were setup as follows: 

 Wireless bandwidth: 11Mbps  

 Wired bandwidth: 100Mbps 

 Wired network delay: 500ms 

 Simulation time: 150 seconds 

 No wired network errors 

 Disconnection time: 33.56 sec 
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TCP Throughput vs wireless error rate for disconnection period = 33.56s
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Figure 23: TCP Throughput vs. wireless loss rate for a fixed disconnection period 

 

Higher wireless error rates affect both TCP Reno and Snoop’s TCP throughput, as shown in 

Figure 22. TCP-ECN maintains almost uniform throughput in spite of varying error rate and 

the disconnection.  

 

7.5 Maximum memory requirement at the base station 

We compared the maximum memory requirement at the base station for TCP-ECN and 

Snoop, as both maintain state at the base station. Figure 24 depicts the values with both these 

schemes for varying wireless error rate. The buffer requirement for TCP-ECN is very 

minimal as it maintains only TCP sequence numbers at the base station, and does not buffer 

packets themselves. Snoop, on the other hand, shows varying and comparatively high buffer 

requirement, as it needs to buffer packets at the base station. This can prove to be a non-

negligible bottleneck when a very large number of connections are handled by the base 

station. The simulation parameters for this test were: 

 Wireless bandwidth: 11Mbps 

 Wired bandwidth: 100Mbps 

 Wired network delay: 500ms 

 Simulation time: 250 seconds 

 No wired network errors 
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Maximum memory requirment at the base station vs. wireless error rate
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Figure 24: Maximum memory requirement at the base station vs. wireless error rate 
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Chapter 8.   IMPLEMENTATION OF TCP-ECN 

We have implemented TCP-ECN in the Linux kernel, version 2.6.12. Although, simulation 

environment allowed us to create complex topologies, we were restricted to use a simple 

topology for implementation due to hardware constraints. In addition, we have implemented 

and tested only the high BER handling module of TCP-ECN. Due to time and resource 

restrictions, we could not implement the disconnection handling module. In the next few 

sections, we will discuss the details of implementation and testing. 

 

8.1 Topology and setup used for implementation 

The topology used for implementation and its testing is shown in Figure 25. Two laptops, an 

IBM Thinkpad and a Dell Inspiron 6000, each with an Intel® Pentium® M 1.5GHz 

processor were used. The IBM Thinkpad represented BS, or the access point, and Dell 

Inspiron 6000 was used as the MH. For the FH, we used a Dell 400SC server. A 100MBps 

Ethernet cable was used to connect the FH and the BS. BS and MH communicated 

wirelessly. The MH used an Intel® PRO/Wireless 2200BG network adapter with the 

ipw2200 wireless driver, version 1.0.2. An Atheros® 108 Mbps 802.11b/g WiFi PCI 

Wireless Card with the MADWiFi wireless driver, version 0.9.2 [21] was used in the BS. 

 

 
Figure 25: Topology used for implementation of TCP-ECN 

8.2 Implementation details 

We have modified the MADWiFi wireless driver [21] on the BS to incorporate the 

functionality depicted in flowchart of Figure 5. Similarly, we have modified the TCP 

implementation of Linux on MH to include the functionality shown in Figure 6.  

 

linux/include/linux/tcp.h was modified to convert one of the reserved bits in the TCP header 

to ECN flag. linux/net/ipv4/tcp_input.c was modified on the MH to withhold dupACKs 

whenever the ECN bit was set in an incoming TCP segment. Two global variables were 

introduced to turn on/off TCP-ECN capability: tcp_ecn_enabled and sysctl_te_max_retries. 

Tcp_ecn_enabled was used in the MH, and sysctl_te_max_retries was used in the BS to set 

the maximum number of Link layer retransmissions. 

 

On the base station, we have modified madwifi/ath/if_athvar.h and madwifi/ath/if_ath.c to 

invoke FH data, MH ack and MAC callback processing. Incoming FH TCP data is processed 

in the ath_hardstart function, and ACKs from the MH are handled in the ath_rx_tasklet 

100MBps 54MBps 

BS FH 
MH 
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function in file madwifi/ath/if_ath.c. MAC callback functionality is handled in 

ath_tx_processq function. The data structure to maintain sequence lists for different 

connections is implemented as part of the private area in the net_device structure. This data 

structure is implemented as a hash table of linked lists of connection entities. Each of these 

connection entities holds a linked list of sequence numbers. Hash value is computed using 

source address, destination address, source port number and destination port number of an 

incoming packet. Figure 26 depicts this structure more succinctly.  

 

 
Figure 26: Data structure to maintain sequence lists for all the connections 

 

The structure of the connection and sequence entities shown in Figure 26 are as follows: 

 Seq node 

– Seq number 

– Length of segment 

– Retries 

– Next seq node pointer 

– Prev seq node pointer 

 Connection node 

– Source port 

– Dest port 

– Src IP 

– Dest IP 

– Seq node pointer 

– Next connection node pointer 

– Prev connection node pointer 

 

A new connection entity is created when a TCP-SYN segment is seen at the access point. An 

existing connection entity is deleted when a TCP-FIN or a TCP-RST segment is received by 

the base station. 
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8.3 Test Results and analyses 

We tested our implementation in low and high wireless error conditions. We could not repeat 

all the tests we performed during simulation, since it is very difficult to quantify wireless 

error rate in real world scenarios. In order to create low wireless error conditions, we ran our 

implementation with the BS and the MH next to each other, without any obstructions 

between them. Also, we allowed the network interface to choose the best rate to operate in. 

In contrast, to create high wireless error conditions, we fixed the rate to the maximum 

possible: 54Mbps (higher data rates suffer from higher loss rates).  Furthermore, we kept the 

BS and MH as far apart as possible with a lot of obstructions in between. For both the 

scenarios, we have turned off TCP SACK, TCP FACK and TCP timestamp options. 

 

We used iperf [12] to generate TCP traffic between FH and MH. We ran iperf for 10 

seconds. Tcptrace [35] was used to obtain sequence plots. Finally, Gnuplot [16] was used to 

convert Tcptrace plots to the graphs shown in Figure 27, Figure 28, Figure 29, and Figure 30. 

 

8.3.1 Time-sequence plots for low wireless error conditions 

Figure 27 and Figure 28 are the plots obtained by running our implementation in low 

wireless error conditions. Clearly, there is very little difference in TCP sequence number 

progression between the two plots. 

 

 
Figure 27: TCP sequence number progression for TCP without ECN enhancement 
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Figure 28: TCP sequence number progression for TCP with TCP-ECN enhancement 

 

 

8.3.2 Time-sequence plots for high wireless error conditions 

Plots shown in Figure 29 and Figure 30 were obtained for high wireless error conditions 

without and with TCP-ECN enhancement, respectively. Clearly, TCP without enhancement 

suffers from low throughput due to wireless losses. On the contrary, TCP-ECN enhancement 

maintains almost the same throughput as the low error rate scenario (Figure 28). 



Implementation of TCP-ECN  TCP for Wireless Networks 

Shruthi Krishnan   57 of 65 

 
Figure 29: TCP sequence number progression for TCP without TCP-ECN enhancement 

 

 
Figure 30: TCP sequence number progression for TCP with TCP-ECN enhancement 
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8.3.3 Throughput plots 

Figure 31 shows TCP throughput with and without TCP-ECN enhancement. For high 

wireless error conditions, TCP-ECN improves TCP performance by about 119 percent.  

 

TCP throughput vs. wireless error conditions
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Figure 31: TCP throughput plot for two different wireless error conditions 
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Chapter 9.   CONCLUSION AND FUTURE WORK 

The report provided a succinct introduction to TCP’s operation, highlighted important 

characteristics of wireless networks, and analyzed the effects of these characteristics on 

TCP’s performance in wired-cum-wireless networks. An extensive survey of schemes 

proposed over the past decade was presented. These proposals aim to solve the three 

principal problems in wireless networks: high BER, long and frequent disconnections, and 

variable bandwidth. We introduced a new scheme called TCP-ECN which focused on 

solving TCP problems due to high BER and long disconnections.  

 

The essence of the new scheme is to use Explicit Congestion Notification to enable the MH 

to distinguish between wired and wireless losses. In addition, we also allow the base station 

to perform sender freezing in the face of an impending disconnection of the MH. Both these 

techniques insulate the FH sender from the idiosyncrasies of the wireless channel. We 

simulated TCP-ECN using ns2, and implemented the solution to high BER in the Linux 

kernel. The results of our tests were analyzed, and the performance of TCP-ECN was 

compared with the existing version of TCP, and Snoop. TCP-ECN markedly improved TCP 

throughput, and performed better than Snoop for higher wireless error rates.  

 

For the future, we intend to implement TCP-ECN’s solution to long disconnections in the 

Linux kernel. In addition, we would like to evaluate its performance with newer 

enhancements to TCP, like TCP SACK, and modify its semantics to accommodate these 

enhancements. 
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APPENDIX A 

Basics of ns2 
 

Ns2 is a discrete event simulator that is developed using two languages: C++ and OTcl. All 

the network components are pre-compiled into the ns2 library, and are written in C++. User 

simulation scripts are executed by an OTcl interpreter. C++ components execute faster, but 

are cumbersome for making minor changes as they require re-compilation. Hence time-

sensitive simulation components are implemented in C++, whereas OTcl is used for writing 

the simulation scripts. Since OTcl scripts are interpreted, making changes to the simulation 

setup becomes easier. An independent discrete event scheduler is implemented which is 

accessible to all the network components.  

 

 

 
Figure 32: Control and data flow in ns2 [10] 

 

 

 
Figure 33: User view of the ns2 system [10] 
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Figure 32 depicts the control and data flow in ns2. Figure 33 shows the user’s view of the 

system when viewed from the from the bottom left corner. Tclcl is used to interface between 

the OTcl and C++ domains. 

 

The following code snippet [10] in Figure 34 demonstrates a C++ class that establishes the 

shadow object relationship between the OTcl class Agent/MyAgentOtcl and the C++ class 

MyAgent. Whenever the user creates an object of Agent/MyAgentOtcl, ns2 automatically 

creates the shadow object MyAgent in the C++ domain. Hence the OTcl hierarchy is 

reflected in the C++ hierarchy as shown in Figure 35. There could be a few classes in C++ or 

OTcl without any shadow counterparts. 

 

 
Figure 34: Code snippet to create shadow object association [10] 

 

 
Figure 35: Reflection of class hierarchies in C++ and Otcl domains [10] 
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The code snippet in Figure 36 shows how a C++ variable can be bound to an OTcl variable, 

so that a user can have direct access to the C++ variable from the simulator. The binding is 

done in the C++ class constructor. 

 

 
Figure 36: Binding variables [10] 

 

 
Figure 37: Accessing C++ commands in the simulator [10] 

 

 
Figure 38: Executing OTcl commands in a C++ program [10] 

 

Figure 37 shows how a C++ ―command‖ can be issued in the simulator. Here call-my-priv-

func can be invoked as an OTcl function by the user in a simulation script, and the control is 

transferred to the C++ domain during execution. In Figure 38, OTcl instructions are being 

executed in a C++ function by using tcl.eval and tcl.evalf functions. The string passed to 

these functions is actually executed in the OTcl interpreter, and the result of this execution 

can be accessed by the C++ function.  

 

The above techniques allow an ns2 developer to switch between C++ and OTcl domains with 

ease. This section aimed to provide a brief introduction to the architecture and mechanics of 

ns2. For further details, please refer to ns documentation at [24], or tutorials at [10][18] 
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