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ABSTRACT
TRIGGERING OF JUST-IN-TIME COMPILATION IN THE JAVA VIRTUAL
MACHINE
by Rouhollah Gougol

The Java Virtual Machine (Standard Edition) normally interprets Java byte
code but also compiles Java methods that are frequently interpreted and runs them
natively. The purpose is to take advantage of native execution without having too
much overhead for Just-In-Time compilation. A former SJSU thesis tried to enhance
the standard policy by predicting frequently called methods ahead of their actual
frequent interpretation. The project also tried to increase the compilation throughput
by prioritizing the method compilations, if there is more than one hot method to
compile at the same time. The paper claimed significant speedup. In this project, we
tried to re-implement the previous work on a different platform to see if we get the
same results. Our re-evaluation showed some speedup for the prediction approach
but with some adjustments and only for server applications. It also showed some
speedup for the prioritizing approach for all the benchmarks. We also designed two
other approaches to enhance the original policy. We tried to reduce the start-up delay
that is due to overhead of Just-In-Time compilation by postponing some of Just-In-
Time compilation. We also tried to increase the accuracy of detecting frequently
interpreted methods that contain nested loops. We could not gain any speedup for
our former postponing approach but we could improve the performance using our

latter measuring approach.



CONTENTS

CHAPTER

1 ANALYSIS 1
1.1 Imtroduction . . . . . . . . ... 1
1.1.1  Just-In-Time Compilation . . . . . . ... ... ... ... .. 1

1.1.2  Java HotSpot Compiler . . . . . . . . .. ... ... ... ... 3

1.1.3 Previous Work . . . . . . ... ..o )

1.1.4 Integrating Previous Work with Multi-Tier Compilation . . . )

1.1.5 Our Two New Approaches . . . . . . . . ... ... ... ... 6

1.1.6  Our Evaluation Approaches . . . . .. ... ... ... .... 7

1.1.7 Dynamic Optimizations . . . . . ... .. .. .. ... .... 8

1.2 HotSpot Policies . . . . . . . . .. . .. 17
1.2.1 Profiling in HotSpot . . . . . . . . ... ... L. 17

1.2.2  Triggering during Loop Iterations . . . . . . . .. .. .. ... 19

1.3 Method Grouping . . . . . . . . .. ... 21
1.3.1 Jiva’s Analysis . . . .. ... o 21

1.3.2  Evaluation of Jiva’s Approaches . . . . . . . ... ... .. .. 22

1.3.3 Updating Method Threshold . . . . . . . ... ... ... ... 22

1.3.4 Shortest First . . . . . .. .. ..o 24

1.4 Our Two New Approaches . . . . . . ... ... ... ... ... ... 24



1.4.1 Relative Approach . . . . . ... ... ... ...

1.4.2 Blocksize Approach . . . . . . . . ... ... ... .. ... ..
2 DESIGN
2.1 HotSpot Architecture . . . . . . . . . ...
2.1.1 Integration with the Interpreter . . . . . . . .. .. ... ...
2.1.2  Just-In-Time Queuing . . . . . . . . .. ...
2.1.3 The Bit Mask of the Counter . . . . . .. ... ... .. ...
2.2 Method Grouping . . . . . . . . . ...
2.3 Evaluation of Jiva’s Design . . . . . . . ... ... ... ...

3 IMPLEMENTATION

3.1
3.2
3.3
3.4
3.5
3.6

HotSpot Source Code . . . . . . . . . . . .. ... ... ... ...
Just-In-Time Compilation Triggering . . . . . . . .. ... ... ...
Method Size . . . . . . . . .
Method Counters . . . . . . . . . . . ...
Tiered Compilation . . . . . . . .. ... ...

C++ Code within Assembly . . . . . ... ... ... ... ......

4 EVALUATION

4.1
4.2
4.3
4.4

HotSpot VM Options . . . . . . . .. . .. .. ... .. ... ...
IBM Ashes Benchmark . . . . . .. ... .. ... ... ...
Evaluation on Jiva’s Benchmark Results . . . . ... ... ... ...
Benchmark Results . . . . . .. . ... ... oL
4.4.1 Jiva’s Approaches . . . . . ... ..o
4.4.2 Priority Approach . . . . . . ... ..o
4.4.3 Blocksize. . . . . ..

vi

28
28
28
28
28
29
30

31
31
31
32
32
33
34



4.5

4.4.4 Grouping Approach . . . . . . . ... ... L.

Relative Approach . . . . . . . . . ... ... ...

5 RELATED WORK

5.1
5.2
5.3
5.4
9.9
5.6
5.7
5.8

Mixed Mode Interpretation (MMI) in the IBM JVM . . . . . . .. ..

Smart Just-In-Time . . . . . . . . . . .

Future Work . . . . . . . s,

Conclusion . . . . . . . .

BIBLIOGRAPHY

APPENDICES

A SOURCE CODE

Al
A2
A3
A4
A5

Priority . . . . . ..
Blocksize . . . . . . .
Relative . . . . . . .
Method Grouping . . . . . . . . .. ...

Tiered Grouping . . . . . . . . . ...

vii

46
46
48
o1
52
52
52
93
95

56



Table

1.1
1.2

3.1

4.1

4.2

4.3

4.4

4.5

4.6

5.1

TABLES

Peephole Optimizations . . . . . . . . . . . . . ... .. .. ...... 15

Constant Values in the Formula of the Just-In-Time Compiling and

Profiling Thresholds . . . . . . . . . .. ... ... ... ... 20
Intel x86 registers . . . . . . ... Lo 33
Non-standard Options of JVM used for Testing. . . . . . . ... ... 37
The Set of IBM Ashes Benchmarks used in Tests . . . . . ... ... 38

Time of Ashes Benchmark for the Approaches (in seconds, lower better). 40
Throughput of SPECjvm2008 Benchmark for the Approaches (opera-
tions per minutes, higher better) . . . . . . . .. ... ... 41
Throughput of Volano Mark Benchmark for the Approaches (messages
per second, higher better) . . . . . . ... ... L. 42
Speedup of Unmodified Tiered Mode and Tiered Grouping Relative to
Unmodified Ordinary Mode (not Tiered) . . . . ... ... ... ... 43

Alias Names of the Approaches that are Evaluated in Figure 5.1. . . 47

viil



Figure

1.1

1.2
1.3
1.4
1.5
1.6

1.7

3.1

4.1

5.1

FIGURES

Control Flow of the Original Method Code that is to be Specialized
based on Register $18 [32] . . . . . . .. ... ... oL
Distribution of Register $18 [32] . . . . . ... ... ... ... ...
Control Flow of Specialized Method with Register $18 Equals 1 [32]

De-virtualization based on Class Hierarchy Analysis . . . . . . . . ..
Reverting a De-virtualized Method Call to the Original [19] page 122
Just-In-Time Compilation and Native Code Execution with On Stack
Replacement within the Loop Iterations[7]. . . . . . . ... ... ...

a Method with a inside Loop . . . . . . . . . .. ... .. ... ... .
Class Diagram of a Method in C Interpreter of Java HotSpot.
Average Speed of the Approaches using the Benchmarks Suites.

Startup Performance of GUI-Based Applications for IBM Just-In-Time
in Variant Modes. The Bars Indicate the Execution Speed Relative to
the Compile-Only Mode without any Optimization (the higher bars,
the better). The Initialization Speed of the Multi-Level Just-In-Time
Compilation is as fast as the Startup of the Interpretation-Only [8].

The approaches in this graph are indicated in Table 5.1 . . . . . ..

1X

10
10
11
13

20
26

32

45



5.2

5.3

5.4

5.5

Size of the Just-In-Time Code Generation at the Startup of Application
Websphere (in KB). Interpretation-Only Indicates Bytecode Size of the
Interpreted Methods [8]. . . . . . . . .. ...
Mixed Mode Interpretation and Just-In-Time Environment with Two
Processors of Interpreter and Compiler [21]. . . . . .. ... ... ..
Flowchart of Initializing and Adjusting Invocation Counts of the Meth-
ods [27]. . . L

Offsets and the Sizes of the Corresponding Methods [27]. . . . . . .



CHAPTER 1

ANALYSIS

1.1 Introduction

1.1.1 Just-In-Time Compilation

Just-In-Time compilation is the process of compiling code just prior to and
parallel to the code execution. This approach is very flexible and advantageous but
its most well-know application is in JVM. Since a Java application is in the format
of Java byte code, JVM needs to either interprets the byte code or dynamically
translates it to the native code of the running platform and executes the native code
simultaneously. Such Just-In-Time compilation can improve the performance without
compromising portability, security, and other features of Java.

A Just-In-Time compiler can detect the frequently called methods and the fre-
quently iterated loops to bias the optimizations for the most useful code. This ap-
proach is significantly effective since, in an application run, often less than 50% of
the methods ever run [14] and only 3% to 4% of all the methods perform most of
the functionality [8]. A dynamic compiler can adapt the optimizations using a small
threshold for a fast compilation and using a larger execution limit for an aggressive
optimization.

Historically, computer systems used to be low in memory and could not do the



compilation of the whole source code in memory. Such compilers did the source code
gradually, so they selected only a section of the source code, compiled it, saved it as
files, and then went for the other parts of the source code. The name of the process
was compilation ”on the fly” [28], the name which is nowadays used for modern Just-
In-Time compilation too. This process was also analogous to today’s Just-In-Time
compilation since Just-In-Time also compiles the source code gradually.

Adapting the Just-In-Time optimizations based on the execution frequency can
also improve the start-up performance. Because the call frequency of a method is low
during the software initialization, the Just-In-Time engine will perform only the light
optimizations. The light compilation overhead, code growth, and memory footprint,
which can prevent memory swapping, will let the code start up efficiently [8].

The Just-In-Time compiler may profile the code, then optimize the code based
on an assumption, and later de-optimize the code if the future profiling indicates the
assumption is not valid any more. For example, the dynamic optimizer can assume
some variables never change, and consequently some code blocks are useless, so it
can eliminate the blocks. If the variables change later, the Just-In-Time compiler
can change the optimized code back to the original functionality [13] (refer to Section
1.1.7).

A Just-In-Time compiler can transparently make the code cross platform. The
host architecture can use a dynamic compiler to translate native code of a guest ar-
chitecture into its own specification and run the code parallel to the compilation. For
instance, the new 64bit Architecture Intel that is called Itanium is fundamentally in-
compatible with the Intel traditional 32bit architecture. However, the [tanium-based
operating systems, including Windows and Linux, can still run 32bit software. They
dynamically convert the traditional 32bit code into the 64bit instructions during the

code execution [12]. The Just-In-Time compiler can work without any 32-bit hard-



ware support. Even though some Itanium processors have an on-chip emulator of the
x86 architecture, this dynamic compiler achieves better performance and is a com-
petitive to the equivalently clocked processors that are based on the x86 architecture,
such as AMD64 [12].

Just-In-Time compilation can maintain the original security specification. For
example, JVM performs byte code verification, and then generates the native code
together with the security tests such as null pointers checks and array out of bound
exceptions. The native code execution is as safe as the byte code interpretation in

the Standard Edition [14].

1.1.2 Java HotSpot Compiler

HotSpot is the Just-In-Time compiler that is part of JVM, Standard Edition.
The JVM, SE. starts a Java application by interpreting the byte code and later
during the interpretation, the HotSpot engine compiles each method that is frequently
called or whose inside loops are frequently iterated. So, the JVM, by default, runs
a Java application using combination of Just-In-Time compilation and byte code
interpretation. If there is more than one method to compile at the same time, the
compilation order will be first-in-first-served (See Appendix A). The combination
of the interpretation and dynamic compilation is because of the policy of adaptive

optimizations and efficient start-up, as we already discussed.

Client Mode and Server Mode of HotSpot The JVM, the Standard Edi-

tion, by default, starts the HotSpot compiler in the client mode, which has a low
compilation threshold (refer to Table 1.2) and some light optimizations to have an
efficient startup and low memory consumption. The Java environment has an alterna-

tive server mode, which has a large amount of interpretation prior to the Just-In-Time



compilation and aggressive optimizations such as in-linings in order to gain perfor-
mance during a long run. The Java HotSpot compiler, in addition to counting the
frequencies of the method calls and loop iterations, profiles the values in the methods

for more advanced optimizations such as de-virtualization (refer to Section 1.1.7).

Tiered Mode Compilation in Java HotSpot HotSpot VM, JDK 6, al-

ready has a multi-tier mode that starts in the client mode, which has a good startup
and then cruises in the server mode, which has a good steady-state execution [7].
The benchmark results are already positive for both the start-up and long run per-
formance on all the supported platforms, but the future development is still under
progress. The Java HotSpot compiler, as a result, adapts with both the client mode

and the sever mode transparently.

Open JDK  Open source software, as a novel development methodology,
allows the users and third party companies contribute in removing the defects and
enhancing the features. Such participation may be numerous and free of the work
place restrictions. The administrators will not have to suffer from the overhead and
delay of reporting to and requesting from the developers. It can also reduce the
burden of the deadlines, budget shortage, and work stress from the main engineers
as well [2].

HotSpot together with JDK 1.7.0 is already free and open-source software,
which is mostly in C++. It, however, has an Assembly interpreter per each supported
platform, such Windows x86-32bit and Solaris SPARC 64bit in addition to a C++
interpreter for some other platforms such as Itanium. Even the Assembly interpreter

code often calls helper C+4 methods.



1.1.3 Previous Work

Azeem Jiva, who was a former graduate student at the Computer Science de-
partment, San Jose State University and was an engineer at Sun Microsystem, Inc.
claimed that the compilation of the methods that were already frequently called suf-
fered from the overhead of interpretation for a fixed number of times in addition to
the compilation overhead. He tries to predict the hot methods in order to trigger the
Just-In-Time compilation on them sooner , so they suffer less interpretation overhead
and run more natively[1].

Jiva claims that an ”extremely large” number of methods may become hot at
the same time, in the Java HotSpot Virtual Machine, and may need to wait for the
Just-In-Time compilation. JVM still will interpret such a waiting method upon its
method-calls until HotSpot completes Just-In-Time compilation of the other methods
that are ahead. So the more methods wait in line of compilation, the more overhead
of the method interpretation occur. Jiva claims scheduling the compilation of the
concurrently hot methods should be based on a method size, since, he claims, the

compilation duration of a larger method is longer [1].

1.1.4 Integrating Previous Work with Multi-Tier Compilation

Since the approaches of priority queue and the method grouping have some
performance flaw during the startup and some optimization gain in the steady state
execution, a multi-tier approach may adapt the Just-In-Time triggering. The JVM
can, using multiple tiers of optimizations, apply the normal compilation queuing and
interpretation frequency counting in the first tier and take advantage of sorting the

compilation tasks and predicting the frequently executed blocks in the higher tiers.



1.1.5 Our Two New Approaches

We designed the following two approached for the original version of JVM.
However, these approaches are still related to Jiva’s works since these approaches

indicate which methods to compile and when.

Relative Approach Many JVMs try to postpone Just-In-Time compilation

from application start-up time to the steady state execution in order to reduce delay of
application start-up that is due to overhead of Just-In-Time compilation. Most such
JVMs, including up-coming version of HotSpot, use a multi-tier approach and recom-
pile methods that get even significantly hotter than when they were first compiled.
However, many smaller Just-In-Time environments do not have such complicated
features and even the multi-tier compilation feature of HotSpot is not finished yet.

We decided to bring up an approach of postponing Just-In-Time compilation
from Application initialization that is easier than approach of multi-tier compila-
tion. We tried to detect the point of an Application execution, when the application
switches from initialization to a steady state execution. We tried to detect this point
based on the average interpretation frequency of all the running methods. So we tried
to reduce amount of compilation that HotSpot does before that point and increase
the amount after that point.

The approach computes the average of interpretation frequencies of running
methods. The approach assumes that when the average is getting bigger than an
amount, the application has already passed the initialization phase and has moved to
continuous run. So it adjusts the amount of JIT compilation relative to the average

of interpretation frequencies.

Blocksize Approach The Java HotSpot framework computes the sum of




the number of times a method is called and the number of times backward branches
(loop) take place in the method. Java HotSpot considers that sum as the hotness
of the method. We assume it does not precisely measure interpretation frequency
of a method since a huge method may be soldemly called but may contain a tiny
code block that is looped more than JIT threshold. Java HotSpot policy detects
such a method as hot even though the majority of instructions in the method are not
frequently interpreted at all. We tried to enhance measuring the hotness by taking

into account the size of a method and the sizes of the code blocks that are looped.

1.1.6 Our Evaluation Approaches

We used three variant, famous benchmark tools: SPECjvm2008, Ashes, and
Volano Mark. SPECjvm2008 is a very standard and industry-level benchmark suite
which used to be proprietary but became free in May 2008. SPECjvm2008, which
replaces SPECjvm98, measures the performance of a Java Runtime Environment. The
suite involves various general purpose applications and computations and evaluates
the performance on both client and server systems [29)].

Ashes is also a free collection of Java benchmarks that includes various Java
benchmarks and includes bash scripts that can run each benchmark application ten
times and can compute the average of the benchmark results. These benchmarks
are like ordinary Java applications so the lower the benchmark time, the better the
performance [30].

The VolanoMark 2.1.2 is a pure Java benchmark that can measure performance
of a Java server and can also measure scalability. We just used the raw performance
measurements since benchmarking scalability required sophisticated network environ-
ment which we did have access to. The benchmark creates numerous client and socket

connections and at the end computes the average number of the messages that were



transferred so the higher number means better performance [31].

1.1.7 Dynamic Optimizations

Just-In-Time compilation provides numerous dynamic optimizations, some of
which are not practical in traditional compilations. Dynamic optimizations still drive
from the traditional compiler designs, but they can apply current runtime statistics.
Here we mention some of them as a way to introduce Just-In-Time compilation and

its optimization techniques.

Specialization The compiler detects variables that have constant value for a

significant amount of the time by profiling the values. Then it generates a version of
the method based on such constant values of the variables in addition to the normal
version of the method. A specialized version of a method may have many optimization
potentials such as constant folding and unreachable code elimination. The compiler
adds some guard tests that allows the special code run only if it has the criteria,
otherwise, the unspecialized code will run.

Figure 1.1 is the control flow of an Assembly method that illustrates specializa-
tion. The value distribution of the register $18 comes in Figure 1.2 where the value 1
has about 70% probability. The method code is specialized based on $18 equals to 1
in Figure 1.3. First, a test and a branch guard the optimization. The specialization
provides the following optimizations. The branch in the code blocks B1 does not
happen, the block B6 is useless, and the blocks B1 and B2 combine. The branch in
block B2 does not need the comparison anymore and directly happens based on the
register $1. The branch in the block B7 never happens, and the block is useless. The
load in block B8 can go into block B2, which makes the equivalent load in the block

B3 redundant and useless.
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Figure 1.1: Control Flow of the Original Method Code that is to be Specialized based
on Register $18 [32]
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Figure 1.4: De-virtualization based on Class Hierarchy Analysis

De-virtualization A virtual call has the overhead of looking up the target

method at runtime. The overhead is heavy in the dynamically typed languages but it
is already low in statically typed programming including Java where the call resolution
is no more than a few loads and an indirect jump.

Analyzing the class hierarchy provides the set of the possible target methods
for the dynamic calls. Figure 1.4 and Listing 1.1 illustrates each method call in
the main function belongs to which target method. The Java dynamic class loader,
however, may change the class hierarchy of the objects. A Java class loader, which
extends ClassLoader, can load a class byte code through a file system.

Caching the method target addresses can also indicate the set of the recent
target methods for a virtual call in order to find the target addresses faster [18]. Type
predication [16] [17] and method test [18] can enhance this dynamic call resolution
by predicating the frequently called classes.

De-virtualization is the optimization of replacing a dynamic call with a static
call, which removes the overhead of looking up the dynamic call. It also provides
opportunity of the other optimizations particularly in-linings.

A dynamic compiler can de-virtualize the methods that have only one imple-
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Listing 1.1: Object Methods with and without Overriding

class A {
void ml()
void m2()

e

class B extends A
void ml()

-

class C extends A
void ml()
void main (

A
B

T O~ s A
T a

= ~=

c Iz

=l=}
2 Q
g

©
£
o
B8

i b.om2();

mentation (no other method override them) and if the dynamic class loader overrides
the de-virtualized method call, de-optimization can fix the problem [15]. The de-
virtualization can keep the original instructions in the code as backup and put in some
jumps that always skip the saved code. The de-optimization, if required, replaces the
de-virtualized calls with some direct jumps to the backed-up original instructions,
Figure 1.5. The optimization should be thread-safe, and only one instruction should
atomically changes.

Another approach of de-virtualization is to put the static call with a guard test
together with the original virtual call. If the test does not verify the de-virtualized
call, the original dynamic method will take place. A common kind of a guard test
is a class test, which compares the class of the called method with that of the de-

virtualized function [18]. The algorithm is as follow:

(1) Add the address of the receiving object to the offset of the class in the object

(2) If the computed address equals the class address of the de-virtualized method,

run the optimized method

(3) Otherwise, run the original dynamic method

If there is more than one class that is acceptable for the de-virtualized method,

the test guard can simply test for only one of them and not validate the others. A
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Befcre overriding ths method After ovarriding the mathod
call imm_ca —> jmp  dynamic_call // static method call
jmp atter_call jmp after_call

dynamic_call: dynamic _call:
load cp, fobj) load cp, Iiobj) // load class pointer
load mp, (cp;} load mp, icp) // load method pointer
load ca, (mp) load ca, Imp) // lead code address
call (ca) call (ca} // dynamic method call

after_call: atter_call:

Figure 1.5: Reverting a De-virtualized Method Call to the Original [19] page 122

more complex approach is to store all the acceptable address and make conjunction

comparisons.

In-linings Object-oriented programming often calls small methods such as
the object constructors, which have the overhead of branching and disrupting the
CPU pipelines. In-lining a method body in the place of a method call removes the

overhead and even allows the cross-functions optimizations.

Exception Tests Optimizations Compilers can safely eliminate test code

of an exception that never happens. For example, in Listing 1.2, the former array
bound exception tests can prove the array access of a[0] a[1] a[2] and some others
are already valid.

An exception test can become a simple trap instruction, which is called light
weight, on Power PC architecture. For each of the tests such as null-pointer, array

index bound, and division by zero tests, the Just-In-Time compiler can generate a

Listing 1.2: Array Bound Exception Check Elimination [19]

a[i]=0;

ali+2]=2

a[i++]=0;
ali+2]=ali]+ali+1];
alit1] =a[0] + al1] +a[2];
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Listing 1.3: Exception Checks with Light Weight Trap Instructions on a Power PC

[19]

; r4d : array index

; r5 : array base

; r6 : array size

; r7 @ divisor

twi EQ, r5, 0 ; Check null—pointer
tw GE, r4, r6 ; Check array—bounds

mulli r4, rd4, 2

lwzx r3, rd4(r5) ; Get array element
twi LLT, r7, 1 ; Check divisor
divi r3, r3, r7

// The handler
void TrapHandler (struct context * cp)

{
int sxiar = cp—>IAR; // Get the address at which
// the exzception occurs

if IS.TRAPI_LEQ(iar) { // is inst. twi EQ
process . NULLPOINTER_EXCEPTION ()

} else if IS.TRAP_.GE(iar) { //is inst. tw GE
process, ARRAYOUTBOUND_EXCEPTION ()

} else if IS.TRAP.LLT(iar) { is inst twi LLT
process. ARITHMATIC_EXCEPTION ()

}

trap instruction without any register allocation that will take only one cycle. The trap
tests whether the exception happens, if so, the trap handler will handle the exception.
The trap handler should then indicate which kind of exception has happened since
there is only one trap handler for all the trap checks. Listing 1.3 illustrates that the
trap instructions twi and tw do not require any register allocation for the test results
and the handler indicates the type of exception from the address of the instruction

that invoked the trap.

Type Inclusion Test  Just-In-Time compiler may optimize the exception

test of casting an object into a class type, which is expensive and requires the traversal
and analysis of the class hierarchy. Encoding the class hierarchy in a data structure
can optimize the test so that verifying the type inclusion takes a constant time. The
Just-In-Time compiler should update the data structure of a class hierarchy each
time the dynamic loader modifies the hierarchy. Making this structure consequently
requires space and time during the dynamic compilation.

Another approach is to test the exception cases from the simplest to the hardest.
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Peephole Optimization
2

a a*a
a*2 a-+a
ax 2" Ishift(a, n)
a/2" rshift(a, n)

Table 1.1: Peephole Optimizations

Testing some simple cases will not require more than a few clock cycles, Listing 1.4.
The first case is when the operand object is null. The second case is when the original
class type of the operand object is the same as the class cast type. The third case
is when the environment has already cast the operand class type to the target class
type, which requires caching the previous successful class cast. Experiments show the
first three simple cases account for 91% on average of the type cast exception tests
[19].

Listing 1.4: Optimized Type Inclusion Test

//Java code

Type to = (Type) from;

// Type cast

if (from == NULL) to = from;

else if (from.type == Type ) to = from;

else if (from.type.lastcast == Type) to = from;

else if (run C run—time class cast test, if succeeded) to = from; from.type.lastcast ==
Type;

else throw exception;

Peephole Peephole optimizations mean replacing an operation with an equiv-
alent but faster one, such as replacing a division by a power of two with a right shift.
The optimization specially may make the computations inside a loop less expensive.

Table 1.1 shows more ways of reducing the instructions strength.

Common Sub-expression Elimination The Just-In-Time optimizer can
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move an invariant computation of an instance access outside of the loop. The Just-
In-Time compiler can eliminate a repeated instance variable access on an execution
path by mapping the instance variable to a local variable or even a physical register.
Listing 1.5 uses the C notation of arrays and pointers to illustrate replacing the
instance variable of the class with a local variable.

A Just-In-Time optimizer can move an invariant computation of an array access
whose object and index do not change out of the loop. The dynamic compiler can
replace a similar array access with a local variable. In Listing 1.5, the local variables
vl and v2 obtain the value of the array access. In Listing 1.5 the interior pointers
index the array elements.

We cannot eliminate a pointer to an object while there are interior pointers
to the object. The reason is that garbage collector destroys an object without any
pointer pointing to it even though there are pointers pointing to the middle of the
object. For example, an pointer to top of an array should remain as long as there are
interior pointer to the arrays since garbage collector do not check these middle object
pointers. Reducing array access can reduce array-bound checks. In Listing 1.5 the
array-bound checks are reduced from 6 to 2.

Listing 1.5: Common Sub-expression Elimination for Instance Vriables and Arrays

// Original class

class Foo {

int [] a;
public void foo () {
a = new int [10];
for (int i =0; i < 8; i++) {
if (ali] < a[i +1]) {
int t = a[i];
ali] = al[i + 1]; a[i + 1] = t;

}

// Instance wvariable CSE
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class Foo {
int a [];

public void foo () {

a = new int [10];
int [] la = a;
for (int i =0; i < 8; i++) {
if (la[i] < la[i +1]) {
int t = laf[i];
la[i] = la[i 4+ 1]; la[i 4+ 1] = t;
}

// Array access CSE
class Foo {
int a [];

public void foo () {

a = new int [10];
int [] la = a;
for (int i =0; i < 8; i+4) {
int « v=1la[i]; vl = % v; v2 = x (vl 4+ 1);
if (vl < v2) {
int t = vl;
* vo=v2; ok (v + 1) =t
}
}
}
}
1.2 HotSpot Policies

To understand Jiva’s approaches and also our approaches, the following infor-

mation regarding Java HotSpot is useful.

1.2.1 Profiling in HotSpot

The algorithm is outlined below, in which native execution of a method takes
place upon the next method call after compilation (i.e. method re-activation). The
Java HotSpot compiler profiles a method only during a limited number of the method
calls prior to compilation using the thresholds of the Just-In-Time profiling and com-

piling, Equation (1.1) on page 19, and Equation (1.2) on page 19, and the constants
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in Table 1.2. The profile threshold should be less than the compile threshold and
non-negative.

The algorithm is as follows:
(1) Increment invocation_counter, the interpretation counter of the method
(2) sum « backedge_counter + invocation_counter
(3) If sum < InterpreterProfilelLimit, profile the method

(4) else if sum > InterpreterInvocationLimit, replace the method bytecode

with native code (refer to Listing 1.6).

Listing 1.6: HotSpot Source Code of Triggering Profiler

if (Profilelnterpreter) { // %%% Merge this into methodDataOop
_- incrementl (Address(rbx ,methodOopDesc:: interpreter_invocation_counter_offset ()));

}

// Update standard invocation counters

-~ movl(rax, backedge_counter); // load backedge counter

_- incrementl(rcx, InvocationCounter::count_increment);

-~ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
-- movl(invocation_counter , rcx); // save invocation count
-~ addl(rcx, rax); // add both counters

// profile_method is mon—null only for interpreted method so
// profile_method != NULL == !native_call

// Bytecodelnterpreter only calls for native so code is elided.

if (Profilelnterpreter && profile_method != NULL) {
// Test to see if we should create a method data oop
-~ cmp32(rcx,
ExternalAddress ((address)&InvocationCounter ::
InterpreterProfileLimit));

-- jcc(Assembler::less, xprofile_method_continue);

// if mo method data ezists, go to profile-method

__ test_method_-data_pointer(rax, xprofile_method);

}

-- cmp32(rex,

ExternalAddress ((address)&InvocationCounter :: InterpreterInvocationLimit));
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30 -- jcc(Assembler:: aboveEqual, *overflow);
31
32 }

CompileT hreshold x Interpreter ProfilePercentage
100

Interpreter ProfileLimit =

(1.1)

InterpreterInvocationLimit = CompileT hreshold (1.2)

1.2.2 Triggering during Loop Iterations

The Just-In-Time compilation and native execution of a method that contains
a frequently iterated loop takes place in the middle of the method interpretation (i.e.
without method re-entrance) using the mechanism of On-Stack-Replacement, Figure
1.6. This strategy is particularly beneficial for methods that contain long loops and
never gets re-entered. Equation (1.3) on page 19 indicates the relation between OSR
threshold and the ordinary compile threshold. The Just-In-Time triggering algorithm

1s:
(1) Increment backedge_counter of a method as an inside loop iterates
(2) sum < backedge_counter + invocation_counter

(3) if sum > InterprterBackwardBranchLimit, compile the method and start

the native execution in the middle of the loop.

OSRPercentage — ProfilePercentage

B hLimit = Threshold
ranchLimi reshold * 100

(1.3)



20

Just-In-Time Triggering Constants  Note

CompileThreshold The main threshold that triggers JIT compilation
of a method upon method calls
It is 1,500 in the client mode for the x86 platforms
It is 10,000 in the server mode (x86)
InterpreterProfilelLimit Threshold to stop profiling the method
InterpreterBackwardBranchLimit Threshold to compile a method during
a loop in middle of method execution

InterpreterInvocationLimt Threshold to compile a frequently called method
InterpreterProfilePercentage 33% for the x86 platforms
OnStackReplacePercentage 933% in the client mode and 140% in the server

mode (x86). These percentages make a threshold
during a loop bigger than during a method call

Table 1.2: Constant Values in the Formula of the Just-In-Time Compiling and Pro-
filing Thresholds

1 Stack Stack
before OSR after OSR
OSR
m1l
ﬁ compiled
frame
1 void m1() {
interpreted ‘e dead m1
frame while (i < n-1) { frame
I/ re
mo frame e mo frame
}
}

JavaOne

Figure 1.6: Just-In-Time Compilation and Native Code Execution with On Stack
Replacement within the Loop Iterations|7].



21

1.3 Method Grouping

We called Jiva’s approach of predicting methods (before they become really
hot) meMethod Grouping approach. Since this approach groups each method with

the other methods that are called just prior to it, as described below.

1.3.1 Jiva’s Analysis

In Jiva’s Just-In-Time triggering policy, the interpreter groups each method
with a given number of the preceding methods that run just prior to it. If a method
becomes hot, the Just-In-Time compiler predicts the group members (i.e. the preced-
ing methods) will become hot later and compiles the predicted methods upon their
next calls regardless of their interpretation frequencies [1]. Jiva uses a method’s sig-
nature, which is the method name, the method class name, and the method argument
types, to keep track of methods. In his Future Works section, Jiva suggests that such
computation with strings is too costly. To incorporate his suggestion, we assigned a
numerical id to each method and used those numbers instead of the string signatures.

The purpose of method grouping is to reduce the overhead of interpretation
prior to compilation. Jiva brings up a sample Java class to illustrate the benefits of
his policy, and mentions the ”locality of references” principle to justify his prediction
approach. He may have meant spatial locality [22] which states that data references in
a nearby location tend to be used together. The following is the prediction algorithm.

Upon a method call:

(1) If the method does not yet have an id, generate and assign a new, unique id

to the method.

(2) Associate the id of the method that just preceded the current method to the

current method as its previous one.
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(3) Store the id of the current method as a preceding method id for an upcoming

method.

(4) If the current method is hot, trigger compilation on it, store each of its pre-

vious ones as a predicted hot method.

(5) else if the id of the current method is already predicted to be hot, which
means it has been a previous one of a formerly hot method, JIT compile the

method.

1.3.2 Evaluation of Jiva’s Approaches

(1) The Just-In-Time profiling threshold is a function of the method’s Just-In-
Time compile threshold (Equation (1.1) on page 19), but Jiva’s approach
does not update a profiling threshold as he changes its corresponding compile
threshold. In our modification, we update all the thresholds while predicting
a hot method and while reducing its compile threshold. (Refer to Section

1.3.3)

(2) The method grouping approach may delay the application’s startup since
it increases the Just-In-Time compilation and overhead during the software
initialization. To prevent such overhead, we, besides implementing the ordi-
nary approach of method grouping, implemented another version of method
grouping in which the prediction process is postponed to the steady state

execution.

1.3.3 Updating Method Threshold

HotSpot profiles methods before compiling them. The number of times a

method gets profiled is proportional to compile threshold (Equation 1.1 on page
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19). For example, HotSpot profiles each method 33% of the number times it inter-
prets a method before compiling it in x86 architecture.

As already mentioned, we may compile a method sooner than the ordinary
CompileThreshold, in the grouping approach, for the methods that we predict to be
hot. That could violate the relation between compile threshold and profiling amount
(Equation 1.1 on page 19). In fact, Jiva, in his version, schedule a predicted method
for immediate compilation regardless of how much the method is already profiled.

In our version of the approach, we do not necessarily schedule predicted methods
for immediate compilation. We instead reduce the compile threshold of such methods
and also adjust their profiling limit so that we still keep the relation mentioned above.

So when we predict a method to be hot, we set the method profiling limit to the
current method invocation count, meaning that the method should not be profiled
any more. Then we compute the new CompileThrehsold which is supposed to be big-
ger than InterpreterProfilelimit, based on the new InterpreterProfilelLimit.
This is only in case that the original InterpreterProfileLimit is already above the
CompileThrehold otherwise we could not reduce InterpreterProfilelLimit and

CompileThreshold any more, Equation 1.4 on page 23.

ifInterpreter ProfileLimit > CurrentMethodInterpretationFrequency  (1.4)

Interpreter ProfileLimit < CurrentMethodInterpretationFrequency
Current M ethodInterpretationFrequency * 100

C leThreshold
ompuel Rreshoa < Interpreter ProfilePercentage

sectionPriority Approach We call Jiva’s approach of prioritizing Just-In-Time

compilation the priority approach, as described below.
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1.3.4 Shortest First

If the Java HotSpot framework has more than one hot method to compile at the
same time, it compiles them in the order of first-in-first-served. The interpretation
of a method continues until its compilation fully finishes. The delay of compilation,
while a method is being compiled, in the server mode, is significant since JVM uses
heavy optimizations such as graph coloring for register allocation and deep method
inlinings [1]. Also, Jiva claims the number of such waiting methods is high in a Java
application run, for instance "over 30 on _213_javac”, which is one of SPEC jvm98
benchmark suites, and ”over 60 on SpecJBB2000,” which is another SPEC benchmark.
But Jiva does not cite any reference and we could not verify this claim. Such SPEC
benchmarks are standard industry benchmarks to evaluate JVM and servers.

Jiva’s Just-In-Time triggering compiles the methods that are already hot in the
order of smallest method first. Since the prioritizing increases the rate of the native
method production, Jiva maintains, it significantly reduces the extra interpretation

overhead.

1.4 Our Two New Approaches

1.4.1 Relative Approach

This approach is to shift some of JIT compilation from application startup and
application initialization phase to later execution and to steady state execution. To
reduce the amount JIT of compilation at the beginning, the approach doubles the
CompileThreshold value at the beginning. Since CompileThreshold is higher than
normal, JVM interprets methods more before it compiles the methods so interpreta-
tion increases and compilation decreases.

JVM computes the average of a method’s interpretation frequencies each time it
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is called. This approach does not consider backward branches inside methods. We de-
cided not to develop this feature until we see the performance results in this basic ver-
sion. When the average reaches a certain amount, JVM divides the CompileThreshold
by two. This increases the amount of JIT compilation since methods become hot
sooner. In this way there will be less JIT compilation at stratup and more JIT

compilation furthur on.

1.4.2 Blocksize Approach

Figure 1.7 illustrates how we measure the hotness of a method contained inside
loops. Assume methodl in the figure is called 5 times and the loop repeates 2000
times (average 400 times per call). We computes the hotness of the methods as
W = 11, based on Equation (1.5) on page 27, which means each instruction
is interpreted in average 11 times, and we consider this average as the interpretation
frequency of this method. On the other hand, the Java HotSpot original policy
computes the hotness of the method in Figure 1.7 as 5+ 2000 = 2005 ! Since the
compile threshold (in Intel x86 architecture client mode) is 1500, this computation
detects this method as hot and compiles it but this method has 997 instructions that
are interpreted for only 5 times and it has only 3 instructions that are interpreted for
2005 times. So, HotSpot compiles the whole method while only 3 instructions out of
1000 instructions are hot and the others are not hot at all.

To make this implementation easier, we use the approximation that the number
of instructions in a loop is proportional to the size of the loop. Equation (1.5) on
page 27 estimates the average interpretation frequency of instructions in a method,
with respect to the assumption mentioned. Since this approach causes the hotness of

methods with loops, particularly methods with frequently tiny loops, to hit compile

threshold later, it can reduce the amount of JIT computation. So we reduce the
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compile threshold (divided by 2) so that JVM still does about the same amount of

JIT computation.

loopSize

methodSize (1.5)

hotness = invocation.ount Z BranchCount *

loops
This approach makes the JIT compilation more fair but it may miss some frequent
code blocks. For example, in Figure 1.7 this approach misses 3 instructions that are
really hot and are interpreted for 2005 times but it prevents JIT compilation of 997

instructions that are not hot at all.



CHAPTER 2

DESIGN

2.1 HotSpot Architecture

2.1.1 Integration with the Interpreter

JVM uses an interpreter that is in assembly language so that both the inter-
preted, compiled, and native method frames can use the same stack [4]. The HotSpot
VM generates and relocates the native code to the positions that execute the byte
code. JVM implements object references as direct pointers, thus providing C language

speed for instance accesses.

2.1.2 Just-In-Time Queuing

The Just-In-Time compiler makes a data structure, CompileTask, for each hot
method and puts the data structure in a queue, CompileQueue that has a First-In-
First-Served policy. Queue is a single linked list of the tasks with a pointer to the

head, _first, and a pointer to the tail, _last.

2.1.3 The Bit Mask of the Counter

JVM, for space reasons, encodes an interpretation frequency counter and its

states together in one word, as below. The state is in the least significant bits, and
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the counter is in the more significant bits. Because of the three non-count bits,
JVM shifts the word of a threshold three bits to left before comparing it with the
interpretation frequency counter, which will involve the state bits in the comparison

as well.

Bit no: [31...3] 2 | 10 |

Format: [count |carryl|state]

The state of a counter indicates the action when either the counter is initialized or
it hits its threshold. Even though each counter may have four states, in the current
version of HotSpot, there are two states defined. First state of wait_for_nothing
means do nothing when count () > 1imit () and second,state of wait_for_compile,

which means introduce nmethod (compile the method) when count() > limit ().

2.2 Method Grouping

This approach uses a counter for the method id generator, a variable for the
previous method id, and a fixed length hash structure for the list of the predicted hot
methods. We call the hash structure a method group, since it contains the list of the
methods that run just prior to the given method. The counter, the variable, and the
hash are static data members of a thread data structure. Since the interpreter runs
as a thread, it has access to the thread data structure, and to the counter, etc.

The Just-In-Time triggering could not keep track of the methods using their
method data structure addresses since the HotSpot environment moves the methods
data structures and changes the addresses as it performs garbage collection. The
interpreter might also keep track of a method by its handler, which the HotSpot

engine updates each time the garbage collection runs. However, using numerical
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method ids is easier for hashing and retrieving.

2.3 Evaluation of Jiva’s Design

Jiva’s thesis manipulates the method invocation counter of a predicted hot
method in order to trigger the Just-In-Time compilation of the method. It "flips the
fourth bit beyond the state and carry” in the invocation counter of a predicted hot
method, because he assumes the Just-In-Time compiler considers the setting of the
bit as an overflow of the counter and will compile the method [1]. Jiva uses this
approach in order to compile a predicted hot method sooner than when the method’s
invocation counter hits the Just-In-Time compilation threshold.

The fourth bit is nothing more than the least significant bit of the counter, which
can change the counter just by one (refer to Section 2.1.3). Setting this bit can only
increment the method call count by one, so the HotSpot compiler will continue the
interpretation of the method and will not compile the method any sooner than that
the method becomes actually hot. We believe Jiva’s bit manipulation cannot change

the Just-In-Time compilation policy of the HotSpot VM.



CHAPTER 3

IMPLEMENTATION

3.1 HotSpot Source Code

The Assembly interpreter uses a macro assembler, one for each platform, assembler_i486.hpp
for Intel x86. The macro is in C++ and has a method for each assembly function,
which emits the corresponding native code. One method is movl whose first argument
represents the destination and the second argument, the source. Another example,
for the 1486 instructions, is idiv, which is the signed division operation with one
operand, a divisor. It divides EAX by the 32bit operand register, stores the quotient

in EAX (refer to Table 3.1), and puts the remainder in EDX [6].

3.2 Just-In-Time Compilation Triggering

We re-implemented Jiva’s design, together with our own adjustments on JDK
1.7.0 for Linux Intel x86-32bit-platform using the Assembly interpreter, while Jiva
had done with JDK 1.4.2 for the Itanium using the C4++ interpreter. In the Assem-
bly interpreter, interpreter_i486.cpp, which triggered the dynamic compiling and
profiling, we used the Address class in the file assembler_i486.hpp, which is an ab-
straction for memory locations in any mode, in order to access the counter variables,
threshold variables, and the method group array of a method. We used the base

address of the C++ class that represents a method and the offset of the elements
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methodOopDesc

Attributes
- _constants : constantPoolOopDesct

- _constMethod : constMethodOopDesc*

z constMethodOopDesc
Cpemations
+ constants_offset( ) : ByteSize A
+ const_offset( ): ByteSize - _name_index : int
Cpemtions

Figure 3.1: Class Diagram of a Method in C Interpreter of Java HotSpot.

inside the C++ class in the addressing. The C++ class that represents a method is
methodOopDec and the class pointer is methodQOop, see Figure 3.1.

We modified the assembly interpreter to generate a method id using a static
counter inside the thread structure JavaThread in the file thread.hpp. Our imple-
mentation assigns the id, manipulats the counters, etc. in the interpreter function
InterpreterGenerator: :generate_counter_incr using the macro assembler. We
sort the compilation tasks inside the add function of the Just-In-Time compilation

queue, CompileQueue, which is in the file compileBroker.cpp,

3.3 Method Size

The size of a method already exists in the HotSpot data structures. Class
methodOopDesc, which is a derivation of class oopDesc, contains a two byte field

called _method_size.

3.4 Method Counters

The HotSpot source code contains a class InvocationCounter, which is used
for counting method calls and loops. A method data structure has two fields: One

is _invocation_counter, which is incremented before a method call, and the other
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EAX Accumulator Register
EBX Base Register

ECX Counter Register
EDX Data Register

ESI  Source Index

EDI  Destination Index
EBP Base Pointer

ESP  Stack Pointer

Table 3.1: Intel x86 registers

_backedge_counter, which is incremented before loop iteration inside the method.
However, the method structure has another field called _compiled_invocation_count
which is the number of invocations of a native method so far. This field is of type
int and is only for debugging purposes.

To compute the product of a method backward branch count by the quotient
loop size to the size of the method, in Blocksize approach, Equation 1.5 on page 27,
we added a variable _backward_branch_length to the data strucute of a method.
In each loop iteration, we add the loop size to this variable so this variable computes
the loop size multiplied by its repetition count. We increment the backward branch
counter of the loop when the variable is greater than the method size. Then we reduce
the size of the method from the variable. In this way, we compute the loop repetition

count multiplied by the loop size divided by the method size.

3.5 Tiered Compilation

When we implemented Jiva’s Method Group in tiered mode we needed to
detect when HotSpot is working in the first level (which is equivalent to client
mode) and when it is working in the second level (server mode). It takes the or-
dinary policy in the first level and the method grouping policy in the second level.

Java HotSpot source code already has a method comp_level() which gives the
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Listing 3.1: C++ Call in Assembly Interpreter

#define CASTFROMFN_PTR(new_-type, func_ptr) ((new_type)((address_word) (func_ptr
)))
typedef u_charx address;
typedef uintptr_t address_word; // unsigned integer which will hold a pointe
r
// except for some implementations of a C++
// linkage pointer to function. Should never
// meed one of those to be placed in this
_masm—>call_VM (noreg, CASTFROMFN_PTR(address, InterpreterRuntime::increase_hot
ness_average), rbx);

level at which Java HotSpot is running currently. It also has another method of
is_highest_tier_compile() which takes a number as input and indicates if it is
the number of highest level. Since in our approach the higher level is the same as
the second level, in which we use the method grouping policy, this works only when

is_highest_tier_compile(comp_level()) is true.

3.6 C++4 Code within Assembly

As already mentioned, the HotSpot VM generates an assembly interpreter and
then threads the interpreter to run a Java application. Since many programming
operations are very inconvenient in assembly, and the source code of HotSpot VM is
already in C++, the assembly interpreter frequently calls C+-+ code.

For instance, in Listing 3.1, the _masm object is the C++ macro assembly that
generates the assembly interpreter. The _masm object is generating the assembly code
that calls a C++ method of increase_hotness_average. The object is calling its
member function call_VM and is casting the function pointer of the C++ method
increase_hotness_average into an unsigned char pointer. So, the call_VM is the
C++ method that generates the assembly code that, in turn, calls the other C++
method of increase_hotness_average.

To switch from Assembly to C++, the assembly interpreter needs to save some

of the required registers, since the C++ methods may manipulate the registers ran-
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Listing 3.2: Accessing Thread in Assembly

void MacroAssembler:: get_thread (Register thread) {
movl(thread , rsp);
shrl (thread , PAGE_SHIFT) ;

ExternalAddress tls_base ((address)ThreadLocalStorage ::sp-map-addr());
Address index (noreg, thread, Address::times_4);
ArrayAddress tls(tls_base, index);

movptr (thread, tls);

domly. The interpreter stores the registers within the structure of the running thread.
In Listing 3.2, the first two lines of the method generate corresponding Assembly
mov and shr instructions. JVM has stack page to thread mapping table, which can
determine the thread address of the running thread from the page number of the
current stack. It gets the stack page number from the rsp stack pointer register.

Then it computes the address of the thread in to a thread register.



CHAPTER 4

EVALUATION

We performed the benchmarks, mentioned in the introduction, for each ap-
proach separately using the benchmarks scripts. For convenience, we also wrote some
additional bash scripts that automated the executions of the benchmarks. All the
benchmarking was done on a Linux Fedora 9 platform with an Intel Celeron M pro-

cessor running at 1.5 GHz.

4.1 HotSpot VM Options

HotSpot VM has some specific instance options, starting with -X or -XX, for
evaluation and customization purposes. These options are either Boolean, numeric, or
string. Boolean options are set off and on with -XX:-<option> and -XX:+<option>.
Numeric options are set with -XX: <option>=<number> where the number may include
k or K for kilobytes, m or M for megabytes, and g or G for gigabytes. String options
are set as -XX:<option>=<string>.

The SPECjvm2008 benchmarks also measure performance of hardware pro-
cessors and memory systems but have little reflection on I/O and no reflection on
networking subsystems.

We used the options that printed and logged the compilation tasks and times-

tamps, Table 4.1. We also modified JVM to print the method size, backward branch
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Option Description

-XX:-CITime Prints Just-In-Time compilation time
-XX:-PrintCompilation Prints the compiled methods
-XX:+UnlockDiagnosticVMOptions

-XX:+LogCompilation Shows the Just-In-Time queuing time

and the method time stamps.

It shows the method compilation

and installation time.
-XX:CompileThreshold Sets invocation threshold.

Table 4.1: Non-standard Options of JVM used for Testing.

count, and invocation count as well, so we could closely trace and verify the Just-In-
Time triggering policy. We also added some other options in order to evaluate the
implementation with some variant array sizes for the method group hashes and the

predication hash.

4.2 IBM Ashes Benchmark

IBM ashes, as mentioned in the paper introduction, is one of benchmark suites
that we used in measuring the performance. The benchmark itself includes different
suites and each suite includes numerious benchmarks. These benchmarks are devel-
oped by differing people as open-source software. Since the number of benchmarks
was too many we selected some of the benchmarks from variant suites of Ashes. The
explanation of our selection comes in Table 4.2.

We also made some changes to the source code of some of Ashes Benchmarks,
mentioned in Table 4.2. We wanted all the benchmarks to have the same number of
digits in the elapsed time result. Even though Ashes benchmarks are so many, most
of them are tiny benchmarks that last even less than a second and have two digits

accuracy, for example 0.23 seconds. So we increased the amount of computation in
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Benchmark Explanation of Benchmark Functionality

JavaSrc Javasrc creates a set of HT'ML pages out of some Java source code.
The format looks like javadoc.

Kawa C Kawa compiles some scheme code into bytecode.

factorial It computes factorial 15324 using Java BigDecimal class

sablecc-j This is a frozen version of the Sable Compiler. The given
run produces the sablecc files (parser, lexer, etc.) for an preliminary
version of the jimple grammar.

jpat-p This is a copy of the Java Protein Analysis Tools.

schroeder-m

testVirtualCall
javazoom

probe
FFT

This is a copy of Schroeder version 0.2, a sampled audio editing
application for the Java platform. It has been equipped with a benchmark
harness provided by the author. This run edits a medium-length sound file.
It contains lots of virtual method calls.

mp3 to wav converter.

It contains filing operations such as searching a file

It computes fast Fourier transform of complex double precision data.

Table 4.2: The Set of IBM Ashes Benchmarks used in Tests



39

such benchmarks as factorial, testvirtual, and fft. On the other hand, the jpat-p
benchmark was too long, above 10 seconds and it had a four-digit value, like 13.23

second. So we reduced the amount of computation in that.

4.3 Evaluation on Jiva’s Benchmark Results

(1) Jiva benchmarks the combination of his modifications, the method grouping
and priority queue. He does not compare the method grouping process alone

with the original version.

(2) Jiva tests the JVM- in the server mode — using SPECJVM98 benchmarks,
which include variant software packages such as a java compiler, an MP3 de-
compress, and a Java parser generator, and using SWINGMARK, which is
a benchmark for drawing the Swing components. These applications, partic-

ularly the GUI one, are mostly for the personal computing, and proper for

JVM in the client mode.

(3) Jiva does benchmark the sever mode using SPEJBB2000, which is the simu-
lator of a three tier commercial system, and he achieves no performance gain,

but he still insists on the significance of the speed-up.

4.4 Benchmark Results

4.4.1 Jiva’s Approaches
4.4.2 Priority Approach

Jiva’s approach of using a priority queue to order the hot methods that are
waiting for their compilation gained better performance in all the three benchmark

suites of IBM Ashes, Volano Mark, and SPECjvm2008. It improved the average
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Unmodified Priority Blocksize Relative NoFuncRelative Grouping

factorial 6.35 5.29 7.32 5.28 5.4 6.03
sablecc-j 2.73 2.72 2.72 3.05 3.07 5.45
jpat-p 5.48 5.46 5.17 5.03 5.02 5.78
schroeder-m 5.83 5.85 5.88 8.28 8.21 6.86
soot-c 4.69 4.66 4.68 5.29 5.27 6.74
testVirtual 3.47 3.54 3.41 3.55 3.52 4.1
probe 3.48 3.52 3.58 3.49 3.42 4.04
fft 5.26 4.61 5.13 5.18 5.2 6.2
Javasrc-p 6.5 6.64 6.64 6.65 6.65 7.8
Kawa-c 8.43 8.57 8.92 9.93 8.89 9.65
Sum 52.22 50.86 53.45 55.73 54.65 62.65
Speedup 0.037 -0.02 -0.07 -0.05 -0.2

Table 4.3: Time of Ashes Benchmark for the Approaches (in seconds, lower better).

performance of Ashes benchmark by 4% (Table 4.3), performance of Volano Mark
by 5% (Table 4.5), and performance of SPECjvm2008 by 4% (Table 4.4).

4.4.3 Blocksize

The Blocksize approach is again that JVM computes the average of interpreta-
tion frequency of the method instructions including looped and un-looped instructions
for measuring method hotness. It gave 3% speedup in Volano Mark and 3% speedup
in the composite result of SPECjvm2008 benchmarks. However, it had in average
performance reduction in the Ashes benchmarks. Since the SPEC benchmark is the
industry standard benchmark particularly for client applications and also Volan Mark
is a popular benchmark for server applications, we can announce that this approach
is an improvement to JVM. In fact, Ashes benchmarks are not standard benchmarks
they were mostly used when SPECjvm98 benchmark was not free and there were no
SPECjvm2008.

In fact, even the Ashes benchmarks produce average 1% speedup using Blocksize
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Unmodified Priority Relative NoFuncRelative Blocksize Grouping

compiler 13.67 13.79 12.43 12.98 13.73 13.87
compress 11.73 13.06 11.64 12.83 13.25 12.44
crypto 6.97 6.94 6.72 6.65 6.95 7.03
derby 5.39 5.39 4.92 5.19 5.52 5.6
mpegaudio 4.75 4.95 4.87 4.85 4.88 4.95
scimark.large 2.25 241 2.39 2.41 2.3 2.39
scimark.small 8.8 10.84 9.08 9.09 10.24 10.39
serial 6.74 6.93 5.67 5.65 7.02 6.93
startup 8.26 7.52 6.98 7.62 7.65 4.93
sunflow 4.98 5.05 4.6 5.02 5.08 5.15
xml 15.86 16.18 14.77 14.69 16.65 5.3
composite result 7.15 7.41 6.77 6.99 7.4 6.43
speed-up 0.04 -0.05 -0.02 0.03 -0.1

Table 4.4: Throughput of SPECjvm2008 Benchmark for the Approaches (operations
per minutes, higher better)
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Unmodified Relative NoFuncRelative Blocksize Priority Grouping

Average 10480.58 10371 10533.92  10745.33 10856.42 10322

Speedup -0.01 0.01 0.03 0.05 -0.02

Table 4.5: Throughput of Volano Mark Benchmark for the Approaches (messages per
second, higher better)

approach, if we use the same set of benchmarks excluding factorial benchmark. Fac-
torial benchmark is the only one that runs significantly slowly using the approach.
We can still announce this approach successful since it works well for most of the
benchmarks. This approach is not intended to be perfect as explained in the Analysis
section but the idea is to improve performance in average.

In this approach, we set InvocationLimit = 750 so threshold of method call
count was half the original. We left the threshold of loops to the original amount of
BackwardBranchLimit = 933. In this way, JVM can compile the methods sooner
and run them natively. However, reducing threshold of method call in the original
approach would cause too much early compilation since JVM adds both method call
count and inside loop counts and compare it with even InvocationLimit, and this

addition would reach a small method call threshold too soon.

4.4.4 Grouping Approach

For the grouping approach we did not gain any speedup in any benchmark. In
fact, we also had some speed reduction in the benchmarks. Since this approach is not
our suggestion and the purpose of these evaluations are just to see what results we
get by implementing the previous thesis on a different platform, we do not want to
comment these results too much.

To even further investigate this approach of grouping, we also set the approach
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Tiered Tiered-Grouping

Ashes 0.04 0.02
Volano Mark -0.03 0.05
SPEC 0.04 0.02

Table 4.6: Speedup of Unmodified Tiered Mode and Tiered Grouping Relative to
Unmodified Ordinary Mode (not Tiered)

works in Machine Tiered mode. Again, the compiler uses different set of optimizations
when it is working in either client mode or server mode. In the tiered mode, it compiles
methods for the first time using client mode and then it recompiles the methods that
get even hotter using server mode. So our implementation was that the JVM use
the ordinary approach in the client phase of the tiered mode and use the grouping
approach in the server phase.

Tiered Grouping approach gained some performance improvement compared to
ordinary tiered mode in Volano Mark benchmarks. It improved the performance of
original tiered mode by 8%, Table 4.6. This was in the condition that the tiered mode
was even 3% slower than ordinary mode so the tiered-grouping approach improved the
performance 5% better than original ordinary mode and in fact solved the problem
of performance flaw in tiered mode for Volano Mark benchmark.

Tiered grouping mode though could not improve the performance for the two
other SPECjvm2008 and Ashes benchmarks, Table 4.6. However, the performance
reduction was though lower than the grouping approach in ordinary modes. This
shows by postponing the approach from initiation phase of an application to its steady
state execution, the approach gives better results. Also the performance reduction
was not heavy either. So tiered-grouping approach can be useful since it significantly

improves sever applications and do not harm client applications too much.
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4.5 Relative Approach

The Relative approach did not have any speedup using any of benchmark suites.
It even reduced the performance of all the benchmarks. We modified the approach
so it runs with the same amount of computation but the bottom line is the same as
the unmodified approach. This modification even reduced the amount of performance
penalty in the benchmarks of Ashes and SPECjvm2008. Refer to Table 4.3 and Table
4.4, in which the columns named NoFuncRelative means the neutralized Relative
approach that still has the same amount of computation.

The reason of unsuccessfulness of this approach is that the JIT compilation
should spread-out throughout the whole execution so the overhead should not delay
any particular execution point too much. When the approach postpones the JIT
compilation, particularly at the point of transition, too much compilation may happen
together and that will interrupt with normal execution of the application.

Figure 4.1 summarizes all the evaluation results in the previous sections in
a graph. The graph shows speedup percentage of each approach compared to the

ordinary approach.
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Figure 4.1: Average Speed of the Approaches using the Benchmarks Suites.



CHAPTER 5

RELATED WORK

5.1 Mixed Mode Interpretation (MMI) in the IBM JVM

The IBM VM employs a combination of Java interpreter and Just-In-Time
compiler with three levels of optimizations [8]. The interpreter starts running Java
software. The first level of the Just-In-Time compiler detects and compiles the fre-
quently interpreted methods with limited optimizations. The second level re-compiles
the again frequently executed methods with all the optimizations, and the third level
performs optimization of specialization (refer to Appendix 1.1.7) on the most fre-
quently executed methods.

JVM counts the method calls and the loop iterations, but the interpreter, during
the first level compilation, may predict a loop iteration count by analyzing the byte
code. If the loop count is large enough, the Just-In-Time compilation of the code
block will happen immediately. After a method is compiled, its call count is reset
to zero [26]. So the call count will re-increment in the next calls until it reaches the
second level threshold and then it gets re-compiled.

The Just-In-Time engine constructs the call graphs of the compiled methods
that become hot again in order to prevent redundant compilation. It re-compiles only
the methods at the graph roots and inline the methods in the sub graphs in the root

methods. This approach prevents duplicate compilation of the subgraph methods
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Figure 5.1: Startup Performance of GUI-Based Applications for IBM Just-In-Time
in Variant Modes. The Bars Indicate the Execution Speed Relative to the Compile-
Only Mode without any Optimization (the higher bars, the better). The Initialization
Speed of the Multi-Level Just-In-Time Compilation is as fast as the Startup of the
Interpretation-Only [8]. The approaches in this graph are indicated in Table 5.1

Alias Approach

MMI-only  Interpretation-Only

noopt-only No optimization compilation with no MMI
quick-only  Quick optimization compilation with no MMI
full-only Full optimization compilation with no MMI

noopt-full  No optimization compilation with no MMI and recompilation using full optimizatio

MMI-quick Quick optimization compilation with MMI
MMI-full Full optimization compilation with MMI
MMI-all All levels of compilation with MMI for adaptive recompilation

Table 5.1: Alias Names of the Approaches that are Evaluated in Figure 5.1.
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that are already inlined in the root method and are already compiled within the root
method.

During the second-level re-compilation, the Just-In-Time compiler inserts, in
the beginning of an old method code, a branch to a compensation code that updates
the direct call to the deprecated code. The compensation code finds the address of
the direct call from the return address on the stack and then patches the call.

The chart in Figure 5.1 indicates the startup performance of the Just-In-
Time environment in the interpretation-only mode, interpretation-compilation-mixed
mode, and compile-only mode. The bars are the time from the execution command
until the first window of the application pops up relative to the compile-only mode
with no optimization. Table 5.1 lists and describes all the modes. The results indicate
the interpretation-only and the mixed mode approaches have significantly better ini-
tialization than the compile only approaches. The chart in Figure 5.2 indicates that
the Mixed Mode Interpretation (MMI) policies also generate code that is magnitudes
smaller than the compile-only approaches.

Other benchmarks, including SPECjvm98 and SPECjbb2000, show that both
the compile-only mode and the mixed mode behave similarly in steady-state execu-
tion, but interpretation-only mode performs far poorer, as expected. The code growth
results, in the long-run execution, are parallel to the start-up evaluation, n which the

compile-only approach has a large memory footprint.

5.2 Smart Just-In-Time

Plezbert et al. [21] introduces a Just-In-Time implementation that is based
on the C language and either only interprets the code or just compiles and executes

it natively. The framework takes a file of C methods and, based on the file size,
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estimates whether the compilation of the whole file is worth it. The Just-In-Time
engine predicts the duration of the file compilation from the file size using the formula
(5.1), which is the closest-fit quadratic of some application sampling data. The Just-
In-Time engine considers a file worth compilation if the compile time plus the native
execution time is less than the interpretation time, Formula (5.2), where I is the
interpretation time, T' the execution time, and C' the compilation time. Assuming
the ratio of the interpretation to the execution is constant P, Equation (5.3) on page

50, is the simplification of Equation (5.2) on page 50.

y = 0.00006622 + 1531 (5.1)

[=PxT>C+T (5.2)
PxC

P—1 53

Plezbert et al. implements two other Just-In-Time compilation approaches to
compare them with the above approach: first, a compile-only approach that translates
each method into native code before running it, second, a combination of interpreta-
tion and continuous Just-In-Time compilation, in which one processor just runs the
code and the other only compiles. The compiler processor continuously selects the file
of methods that has collectively taken the longest interpretation time so far. It takes
the statistics for a file as a whole, instead of considering a single routine, and then
translates all the methods in the file. So this approach compiles the most time con-
sumptive files, not necessarily the most time consumptive individual routines. The
executor processor does not get to the native code until the whole file compilation

finishes, and it starts the native execution of a method by jumping to the native code
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Figure 5.3: Mixed Mode Interpretation and Just-In-Time Environment with Two
Processors of Interpreter and Compiler [21].

at the method call. Figure 5.3 illustrates the continuous Just-In-Time compilation,
in which both the executor and the compiler processors communicate with each other
through the Monitor data structure.

The compilation time prediction approach outperformed the compile-only mode,
as expected, but could not gain better performance than the continuous compilation
policy. The advantage of the mixed mode policy may have been due to its multi-
processing architecture although the prediction approach had a more sophisticated

heuristic.

5.3 Compile-only Approaches

Just-In-Time compilation happens immediately, without any interpretation, in
the Intel JUDO system [20]. The compilation has two phases, first, fast code genera-
tion for the running bytecode, and second, optimizations for the frequently executed
code. Jalapeno is another research Java dynamic compiler, which is itself in Java,
with a compile-only approach [23] [24]. It has a baseline as the first compilation level

and three more level of optimizations.
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5.4 Compilation of Code Blocks

Toshio et. al. implements a Just-In-Time triggering that compiles only the
code blocks of the frequently iterated loops and not the whole methods that contain
the loops [11]. This approach may more precisely adapt the optimizations for the
frequently interpreted bytecode. Code block compilation allows more aggressive in-

linings and achieves average 5% speed-up [11].

5.5 JRuby

JRuby 1.1.2 has a Just-In-Time max that is the maximum number of methods
that it may compile. The current default of the Just-In-Time max is 2048. JRuby also
has a threshold for Just-In-Time compilation. The current default of the threshold is

20. There is debate to change these respectively to 4096 and 50 [25] .

5.6 Different Thresholds

Hickson [27] claims that in a ”"transactional environment” where the JVM re-
sponds to transactions from the client systems, a couple of methods and modules run
repeatedly, causing many methods to hit the compilation threshold together. Hickson
claims that this unduly increases the delay for software execution due to excessive
compilation.

The proposed system uses the Euqation (5.4) on page 53, to initialize the
invocation count of each method. Each method-call decreases the invocation count of
the method and the Just-In-Time compilation of the method starts when the counter
reaches zero Figure 5.4. The system initializes the invocation counter upon the first
call of the method and increments the offset using modular addition, which resets the

offset when it gets above the maximum offset.
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JustInTimeCount = Threhsold + Of fset (5.4)

The system adjusts the offsets so that large methods do not have the same
thresholds. The system calculates the average size of the methods as they are called
and stores it. An array keeps track of each offset and size of the last method that
used that offset Figure 5.5. If the size of a new method is above the average, the
system uses a given offset only if its previous corresponding method size, which is
already in the array, is less than the stored average. If the method size in front of
the current offset in the array is above the average, the system increments the offset,
using modular addition, and checks the next offset until it finds an offset whose size

in the array is below or equal to the average.

5.7 Future Work

The priority method we used did not completely sort the compilation queue
but only partially ordered it to avoid extra computation. HotSpot queues the hot
methods for Just-In-Time Compilation using a linked list. Instead of a linked list, an
array can be used to have the priority queue completely sort the list and have it still
work fast.

The blocksize approach finds the methods that are on average the most frequent,
but it still may miss some of the frequent inner loops. HotSpot can instead compile
only these loops and integrate the native loop within the byte code of the method.

In order to predict the most frequent methods, another approach is to cache the
analysis of Just-In-Time compilation in a file for later executions of the program. So
the next time the application runs, HotSpot can take advantage of its former analysis

and predict the methods that were already hot in the former execution to be hot
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methods in the current execution.

5.8 Conclusion

We recommend the two approaches Priority (of Jiva’s) and Blocksize (of ours)
and do not recommend the relative approach. We also recommend the Tiered Group-
ing approach for server applications. Definitely the policy of detecting the hot meth-
ods and scheduling their compilation affects the overall performance. But what is the

most important is that the policy be fast and light weight.
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APPENDIX A

SOURCE CODE

The followings are the diff files of our implementation on Java(TM) SE Run-time

Environment (build 1.7.0-ea-b38) for the Linux Fedora 9, Intel x86 32bit platform.

Al Priority

Only in /home/rgougol/cs298/build/priority —openjdk/hotspot/src: priority —.diff

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/compiler/compileBroker.cpp /home
/rgougol/cs298 /build/priority —openjdk/hotspot/src/share/vmm/compiler/compileBroker.cpp

—— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vm/compiler/compileBroker.cpp 2009—-06—-29
14:17:02.000000000 40430

+++ /home/rgougol/cs298/build/priority —openjdk/hotspot/src/share/vin/compiler/compileBroker.cpp
2009—-07—-13 21:39:41.000000000 40430

@a -181,6 +181,7 @@

_compile_id = compile_id;
_method = JNIHandles:: make_global (method) ;
+ _code_size = method—>code_size ();
_osr_bci = osr_bci;
-is_blocking = is_blocking;
_comp-level = comp-level;
@@ —435,8 +436,23 @@
} else {
// Append the task to the queue.
assert (-last —>next () == NULL, ”not._last”);
_last —>set_next (task);
_last = task;
if (task—>code_size () <= _first —>code_size ())

task—>set_next ( _first);
_first = task;

else if (task—>code_size () <= _first —>code_size () << 1)

task—>set_next ( _first —>next ());
_first —>set_next (task);
if (-last == _first)
_last = task;
}
else
{
_last —>set_next (task);
_last = task;

e

}
}

// Mark the method as being in the compile queue.
diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/compiler/compileBroker.hpp /home
/rgougol/cs298 /build/priority —openjdk/hotspot/src/share/vim/compiler/compileBroker .hpp
——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vmm/compiler/compileBroker.hpp 2009—-06—29
14:17:02.000000000 40430
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+++ /home/rgougol/cs298 /build/priority —openjdk/hotspot/src/share/vin/compiler/compileBroker.hpp

2009—-07—-13 16:59:30.000000000 40430
@@ -—-34,6 +34,7 @@

Monitor * _lock;
uint _compile_id;
jobject _method;
+ int _code_size;
int -osr_bci;
bool _is_complete;
bool _is_success;
@a —61,6 +62,7 @@
void free () ;
int compile_id () const { return _compile_id; }
+ int code_size () const { return _code_size; }
jobject method_handle () const { return _method; }
int osr_bci() const { return _osr_bci; }
bool is_complete () const { return _is_complete; }

A2 Blocksize

diff —r —u /home/rgougol/cs298 /build/openjdk/hotspot/src/cpu/x86/vm/cl_globals_x86 .hpp /home/

rgougol/cs298 /build /blocksize —openjdk/hotspot/src/cpu/x86/vin/cl_globals_x86 .hpp

——— /home/rgougol/cs298 /build /openjdk/hotspot/src/cpu/x86/vm/cl_globals_x86 .hpp 2009—06—29
14:16:58.000000000 40430

4+++ /home/rgougol/cs298/build/blocksize —openjdk/hotspot/src/cpu/x86/vm/cl_globals_x86 .hpp
2009—-06—29 14:42:35.000000000 +0430

@@ —36,7 +36,7 @@
define_pd_global (bool, ProfileTraps, false) ;
define_pd_global (bool, UseOnStackReplacement , true );
define_pd_global (bool, TieredCompilation , false);

—define_pd_global (intx, CompileThreshold, 1500 );

+define_pd_global (intx, CompileThreshold, 750) ;
define_pd_global (intx, Tier2CompileThreshold , 1500 );
define_pd_global (intx, Tier3CompileThreshold, 2500 );
define_pd_global (intx, Tier4CompileThreshold, 4500 );

60

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/cpu/x86/vm/interp-masm_x86_32.cpp /home/

rgougol/cs298 /build/blocksize —openjdk/hotspot/src/cpu/x86/vmm/interp-masm_x86_32.cpp
——— /home/rgougol/cs298 /build /openjdk/hotspot/src/cpu/x86/vm/interp-masm-_x86-32.cpp
14:16:58.000000000 40430

+++ /home/rgougol/cs298 /build/blocksize —openjdk/hotspot/src/cpu/x86/vm/interp-masm_x86_32.cpp

2009—-06—-29 14:42:35.000000000 +40430

@@ —1175,6 +1175,19 @@
//increment_-mdp_data_at (mdp, in_bytes (JumpData::taken_offset()));
Address data(mdp, in_bytes(JumpData:: taken_offset ()));
+ Label skip_count;
—+ push(rdi);
+ testl (rdx, rdx); // forward branch or backward branch?
+ jcc (Assembler:: positive , skip_count); // Count only if backward branch
+ // increment counter
+ subl (Address(rcx, methodOopDesc:: backward_branch_length_offset ()), rdx);
+ incrementl (Address (rcx, methodOopDesc:: backward_branch_length_offset()));
+ movl(rdi, Address(rcx, methodOopDesc:: const_offset ()));
+ movw(rdi, Address(rdi, constMethodOopDesc:: code_size_offset ())); // load method code size
+ andl(rdi, Ox0000FFFF);
+ cmp32(rdi, Address(rcx, methodOopDesc:: backward-branch_length_offset ()));
+ jcc (Assembler :: above, skip_count);
+
/) %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
movl(bumped_count ,data) ;
assert ( DataLayout:: counter_increment==1, ”"flow—free_idiom_only_works_with_1” );
@@ —1182,8 +1195,10 @@
sbbl (bumped_count, 0);
movl(data ,bumped_count) ; // Store back out
+ bind (skip-count);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_-by_offset (mdp, in_bytes (JumpData:: displacement_offset ()));
+ pop (rdi);
bind (profile_continue);
¥
}
@@ —1193,7 +1208,7 @@
if (ProfileInterpreter) {
Label profile_continue;
- // If mo method data exzists, go to profile_continue.
+ // share/vm/opto/parseHelper.cpplf no method data ezists, go to profile_continue.
test_method_data_pointer (mdp, profile_continue);
// We are taking a branch. Increment the mot taken count.

2009—-06—-29

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/cpu/x86/vm/templateTable_x86_32.cpp /home

/rgougol/cs298 /build /blocksize —openjdk/hotspot/src/cpu/x86/vin/templateTable_x86_32.cpp
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——— /home/rgougol/cs298 /build /openjdk/hotspot/src/cpu/x86/vm/templateTable_x86_-32.cpp 2009—-06—29
14:16:58.000000000 40430

44+ /home/rgougol/cs298/build/blocksize —openjdk/hotspot/src/cpu/x86/vin/templateTable_x86_32.cpp
2009—-06—29 14:42:35.000000000 +0430

@@ —1491,19 +1491,18 @@

void TemplateTable:: branch(bool is_jsr , bool is_wide) {
— -- get_method(rcx); // ECX holds method
— __ profile_taken_branch (rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count

— const ByteSize be_offset = methodOopDesc:: backedge_counter_offset () + InvocationCounter ::
counter_offset () ;

— const ByteSize inv_offset = methodOopDesc::invocation_counter_offset () + InvocationCounter::
counter_offset () ;

— const int method_-offset = frame::interpreter_-frame_-method_-offset * wordSize;

// Load wp EDX with the branch displacement
_- movl(rdx, at_bcp(1l));

_- bswapl(rdx);

if (lis_wide) __ sarl(rdx, 16);

LP64_.ONLY ( .- movslq(rdx, rdx));

+ __ get_method(rcx); // ECX holds method

+ _-_ profile_.taken_branch (rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count

+

+ const ByteSize be_offset = methodOopDesc:: backedge_counter_offset () + InvocationCounter ::
counter_offset () ;

+ const ByteSize inv_offset = methodOopDesc::invocation_counter_offset () 4+ InvocationCounter ::
counter_offset () ;

+ const int method_offset = frame::interpreter_frame_method_offset * wordSize;

// Handle all the JSR stuff here, then exzit.
// It’s much shorter and cleaner than intermingling with the
@@ —1544,11 +1543,21 @Q
testl (rdx, rdx); // check if forward or backward branch
jcc (Assembler:: positive , dispatch); // count only if backward branch

// increment counter

+ //load code size
+ -~ movl (rax, Address(rcx, methodOopDesc:: const_offset ()));
+ movw (rax, Address(rax, constMethodOopDesc:: code_size_offset ()));
+ andl (rax, Ox0000FFFF);
+ -- cmp32(rax, Address(rcx, methodOopDesc:: backward_branch_length_offset ()));
+ Label not_yet_increment_backedge;
+ jcc (Assembler :: above, not_yet_increment_backedge);
+ //-- call_.VM (noreg, CAST_-FROM_FN_PTR(address, InterpreterRuntime ::trace-method));
+ -- subl(Address(rcx, methodOopDesc:: backward_branch_length_offset ()), rax);
+
-- movl(rax, Address(rcx, be_offset)); // load backedge counter
_- incrementl(rax, InvocationCounter :: count_-increment); // increment counter
-- movl(Address(rcx, be_offset), rax); // store counter
+ _- bind(not_yet_increment_backedge) ;
_- movl(rax, Address(rcx, inv_offset)); // load invocation counter
.- andl(rax, InvocationCounter::count_mask_value); // and the status bits
_- addl(rax, Address(rcx, be_offset)); // add both counters

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vmm/compiler/compileBroker.cpp /home
/rgougol/cs298 /build /blocksize —openjdk/hotspot/src/share/vmm/compiler/compileBroker.cpp
——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vim/compiler/compileBroker.cpp 2009—-06—29
14:17:02.000000000 40430
+++ /home/rgougol/cs298 /build/blocksize —openjdk/hotspot/src/share/vm/compiler/compileBroker.cpp
2009—-06—29 14:42:35.000000000 +40430
@a —281,8 +281,8 @@
// print osr_bci if any
if (is_osr) st—>print (”.@%d”, osr_bci());

— // print method size

st—>print_cr (" -(%d-bytes)”, method—>code_size ());

// print method size, backward branch length

st—>print_cr (" _(%d_bytes_+.%d_bytes)”, method—>code_size (), method—>backward_branch_length());

o

//
@@ -319,7 +319,7 @@
if (is_osr) tty—>print(”-Q.%d”, osr_bci());

// print method size
— tty—>print_cr (”-(%d_bytes)”, method—>code_size ());
+ tty—>print_cr(”(%d_bytes_+_%d_bytes)”, method—>code_size (), method—>backward_branch_length ());
}

diff —r —u /home/rgougol/cs298 /build/openjdk/hotspot/src/share/vin/interpreter /interpreterRuntime.
cpp /home/rgougol/cs298 /build/blocksize —openjdk/hotspot/src/share/vin/interpreter/
interpreterRuntime.cpp
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——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vin/interpreter /interpreterRuntime.cpp
2009—-06—-29 14:17:06.000000000 40430
4+++ /home/rgougol/cs298/build/blocksize —openjdk/hotspot/src/share/vm/interpreter/
interpreterRuntime.cpp 2009—-06—29 14:42:35.000000000 +0430
@@ —505,6 +505,11 @@
ObjectSynchronizer:: trace_locking (h_-locking_obj, false, true, is_locking);

+HIRT_ENTRY (void, InterpreterRuntime::trace_method (JavaThread* thread))

+ ResourceMark rm;

+ methodOop method = thread—>last_frame ().interpreter_frame_method () ;

+ tty—>print_cr ("%s.size: %d_looped: %d_invocation#: %d_backedge#:-%d” , method—>
name_and_sig_as_C_string (), method—>code_size (), method—>backward_branch_length (), method—>
invocation_counter ()—>count (), method—>backedge_counter ()—>count ());

+IRT_END

//%note monitor_1
IRT_.ENTRY_NO_ASYNC(void, InterpreterRuntime :: monitorenter(JavaThread* thread, BasicObjectLockx
elem))
diff —r —u /home/rgougol/cs298 /build/openjdk/hotspot/src/share/vm/interpreter/interpreterRuntime.
hpp /home/rgougol/cs298/build/blocksize —openjdk/hotspot/src/share/vm/interpreter/
interpreterRuntime . hpp
——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vmm/interpreter/interpreterRuntime.hpp
2009—-06—29 14:17:06.000000000 40430
+++ /home/rgougol/cs298 /build/blocksize —openjdk/hotspot/src/share/vm/interpreter/
interpreterRuntime .hpp 2009—-06—29 14:42:35.000000000 40430
@@ -102,6 +102,9 @@
static void post_-method_exit (JavaThread xthread);
static int interpreter_contains (address pc);

+ //Blocksize—
+ static void trace_method (JavaThreadx);
+
// Native signature handlers
static void prepare_native_call(JavaThread* thread, methodOopDesc* method) ;
static address slow_signature_handler (JavaThread* thread,
Only in /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/interpreter: .invocationCounter.hpp

.Swp
diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/oops/constMethodOop.hpp /home/
rgougol/cs298/build /blocksize —openjdk/hotspot/src/share/vm/oops/constMethodOop.hpp
——— /home/rgougol/cs298/build /openjdk/hotspot/src/share/vm/oops/constMethodOop.hpp 2009—-06—-29
14:17:06.000000000 40430
+++ /home/rgougol/cs298/build/blocksize —openjdk/hotspot/src/share/vm/oops/constMethodOop.hpp
2009—-06—29 14:42:35.000000000 40430
@@ —264,6 +264,7 Q@
// Offset to bytecodes
static ByteSize codes_offset ()
return in_ByteSize(sizeof(constMethodOopDesc)); }
+ static ByteSize code_size_offset () { return byte_offset_of (constMethodOopDesc, _code_size); }

// interpreter support
static ByteSize exception_table_offset ()
diff —r —u /home/rgougol/cs298 /build/openjdk/hotspot/src/share/vmm/oops/methodKlass.cpp /home/
rgougol/cs298 /build/blocksize —openjdk/hotspot/src/share/vm/oops/methodKlass.cpp
—— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vm/oops/methodKlass.cpp 2009—06—29
14:17:06.000000000 40430
4+++ /home/rgougol/cs298/build/blocksize —openjdk/hotspot/src/share/vm/oops/methodKlass.cpp
2009—-06—29 14:42:35.000000000 +0430
@a —60,6 +60,7 Q@
m—>set_constMethod (xconst ());
m—>set_access_flags (access_flags);
m->set_method_size(size);
4+ m—>init_backward_branch_length ();
m—>set_name_index (0) ;
m->set_signature_index (0);
#ifdef CCINTERP
@@ —78,7 +79,6 @@
m—>set_highest_tier_compile (CompLevel_none) ;
m—>set_adapter_entry (NULL) ;
m—>clear_code (); // from_c/from_i get set to c2i/i2i

if (access_flags.is_native()) {
m—>clear_native_function ();
m—>set_signature_handler (NULL) ;
diff —r —u /home/rgougol/cs298/build /openjdk/hotspot/src/share/vmm/oops/methodOop.hpp /home/rgougol
/cs298 /build /blocksize —openjdk/hotspot/src/share/vm/oops/methodOop.hpp
——— /home/rgougol/cs298/build /openjdk/hotspot/src/share/vm/oops/methodOop.hpp 2009—-06—29
14:17:07.000000000 40430
+++ /home/rgougol/cs298 /build/blocksize —openjdk/hotspot/src/share/vm/oops/methodOop.hpp 2009—-06—29
14:42:35.000000000 40430
@@ —-110,6 +110,7 @@

u2 -number_of_breakpoints; // fullspeed debugging support

InvocationCounter _invocation_counter; // Incremented before each activation of the
method — used to trigger frequency—based optimizations

InvocationCounter _backedge-counter; // Incremented before each backedge taken — wused

to trigger frequencey—based optimizations
+ u4d -backward_-branch_length ; // Length of code iteration in backward branch
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#ifndef PRODUCT

int _compiled_invocation_count; // Number of nmethod invocations so far (for
perf. debugging)

#endif

@@ -—-278,6 4279,8 @Q

InvocationCounter* backedge_counter ()

int invocation_count () const

int backedge_count () const

u4 backward_-branch_length () const

void init_backward_branch_length ()

bool was_executed_more_than(int n) const;

bool was_never_executed () const

return &_backedge_counter; }

return _invocation_counter.count(); }
return _backedge_counter.count(); }
return _backward_branch_length; }
_backward_branch_length = 0;}

++
e e e e

return !was_executed_more_than (0); }

@@ —485,6 +488,7 @@

static ByteSize code_offset () { return byte_offset_of (methodOopDesc, _code); }

static ByteSize invocation_counter_offset () { return byte_offset_of (methodOopDesc,
_invocation_counter); }

static ByteSize backedge_counter_offset () { return byte_offset_of (methodOopDesc,

_backedge_counter); }
+ static ByteSize backward_branch_length_offset () { return byte_offset_of (methodOopDesc,
_backward_branch_length); }
static ByteSize method_data_offset ()
return byte_offset_of (methodOopDesc, _method_data);

}
A.3 Relative

diff —r —u /home/rgougol/cs298 /build/openjdk/hotspot/src/cpu/x86/vin/templatelnterpreter_x86_-32.cpp
/home/rgougol/cs298 /build/relative —openjdk/hotspot/src/cpu/x86/vm/templatelnterpreter_x86-32.
cpp
——— /home/rgougol/cs298 /build /openjdk/hotspot/src/cpu/x86/vm/templatelnterpreter_x86_32.cpp
2009—-06—29 14:16:58.000000000 +0430
4+++ /home/rgougol/cs298/build/relative —openjdk/hotspot/src/cpu/x86/vm/templatelnterpreter_x86_.32.
cpp 2009—-07—11 23:01:53.000000000 +0430
@a -327,6 +327,18 @a
// Update standard invocation counters
-~ movl(rax, backedge_counter); // load backedge counter

Label AlreadyCounted;
Label AverageEnd;
-- cmpl(rex, 1);
jcc (Assembler :: notEqual, AlreadyCounted) ;
-- incrementl (ExternalAddress ((address)&InterpreterRuntime :: method_count));
//-- call_.VM (noreg, CAST-FROM_FN_PTR(address, InterpreterRuntime :: count_-new_-method), rbz);
- jmp(AverageEnd) ;
-~ bind (AlreadyCounted) ;
- incrementl (ExternalAddress ((address)&InvocationCounter:: average));
__ call_.VM (noreg, CASTFROMFNPTR(address, InterpreterRuntime::increase_hotness_average), rbx)

;
__ bind (AverageEnd) ;

I o o o ok S SRS

- incrementl(rcx, InvocationCounter::count_increment);
-~ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits

Only in /home/rgougol/cs298/build/relative —openjdk/hotspot/src/cpu/x86/vm:
templatelnterpreter_x86_-32 .cpp.swp

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vmm/interpreter /interpreterRuntime.
cpp /home/rgougol/cs298 /build/relative —openjdk/hotspot/src/share/vin/interpreter/
interpreterRuntime.cpp

——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vin/interpreter/interpreterRuntime.cpp
2009—-06—-29 14:17:06.000000000 +40430

+++ /home/rgougol/cs298 /build/relative —openjdk/hotspot/src/share/vin/interpreter/interpreterRuntime
.cpp 2009-07—-11 22:58:36.000000000 40430

@@ —56,6 +56,7 @@

}
}

+
//

// Constants

@@ —703,6 +704,24 @@

}
}
#endif // !PRODUCT
+int InterpreterRuntime:: method_count = 0;
+static int hotness_average_counter = 0;

+HIRT_-ENTRY (void, InterpreterRuntime ::count_-new_method (JavaThread* thread, methodOopDesc * method))
+ method_-count —++;
+IRT_END

+
+IRT_ENTRY (void, InterpreterRuntime::increase_hotness_average(JavaThread* thread, methodOopDescx*
method) )
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hotness_average_counter —+4+;
if (hotness_average_counter >=method_count) {
hotness_average_counter —= method_count;
InvocationCounter :: decrease_threshold () ;
// ResourceMark rm;
InvocationCounter :: average -++;
//if ( average % 100 == 0)
// tty—>print_cr (” Average %d %s I %d B %d 11 %d 7, average, method—>name_and_sig_-as_-C_string
(), method—>invocation_counter ()—>count () >>3, method—>backedge_counter ()—>count() >>3, method
—>interpreter_invocation_count () >>8);

FHF

+ }
+ J/tty—>print_cr (77);
+IRT_END

IRT_ENTRY (nmethod * ,
InterpreterRuntime :: frequency_counter_overflow (JavaThread* thread, address branch_bcp))
Only in /home/rgougol/cs298/build/relative —openjdk/hotspot/src/share/vimm/interpreter:
interpreterRuntime.cpp.swp
diff —r —u /home/rgougol/cs298 /build/openjdk/hotspot/src/share/vm/interpreter/interpreterRuntime.
hpp /home/rgougol/cs298 /build/relative —openjdk/hotspot/src/share/vim/interpreter/
interpreterRuntime . hpp
—— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vmm/interpreter/interpreterRuntime.hpp
2009—-06—29 14:17:06.000000000 +0430
44+ /home/rgougol/cs298/build/relative —openjdk/hotspot/src/share/vm/interpreter/interpreterRuntime
.hpp 2009-07—-11 22:58:55.000000000 40430
@@ —47,6 +47,7 @@
static void note_trap (JavaThread sthread, int reason, TRAPS);

public:
+ static int method_count ;
// Constants
static void ldc (JavaThread* thread , bool wide);

@@ —126,6 +127,8 @@
#ifdef ASSERT

static void verify_mdp (methodOopDesc* method, address bcp, address mdp);
#endif // ASSERT
+ static void count_new_method (JavaThread* thread , methodOopDescx) ;
+ static wvoid increase_hotness_average (JavaThread* thread, methodOopDescx);

}s

Only in /home/rgougol/cs298/build/relative —openjdk/hotspot/src/share/vmm/interpreter:
interpreterRuntime . hpp.swp

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/interpreter/invocationCounter.
cpp /home/rgougol/cs298 /build/relative —openjdk/hotspot/src/share/vin/interpreter/
invocationCounter.cpp

——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vin/interpreter /invocationCounter.cpp
2009—-07-11 21:36:11.000000000 +40430

+++ /home/rgougol/cs298 /build/relative —openjdk/hotspot/src/share/vin/interpreter/invocationCounter.
cpp 2009—-07—-02 17:30:46.000000000 40430

@@ —-132,6 +132,8 @@

return NULL;

+static int unit = 1 << RelativeTresholdFactorPower;

+
void InvocationCounter:: reinitialize (bool delay_overflow) {
// define states
guarantee ((int)number_of_states <= (int)state_limit , "adjust_number_of_state_bits”);
Q@@ —141,9 +143,12 @Q
} else {

def(wait_for_compile, 0, dummy_invocation_counter_overflow);

4+ initialize (CompileThreshold << RelativeTresholdFactorPower);

— InterpreterInvocationLimit = CompileThreshold << number_of_noncount_bits;

— InterpreterProfileLimit = ((CompileThreshold * InterpreterProfilePercentage) / 100)<<
number_of_noncount_bits;

+void InvocationCounter:: initialize (int threshold) {

+ InterpreterInvocationLimit = threshold << number_of_noncount_bits;
+ InterpreterProfileLimit = ((threshold * InterpreterProfilePercentage) / 100)<<
number_of_noncount_bits;
TierlInvocationLimit = Tier2CompileThreshold << number_of_noncount_bits;
TierlBackEdgeLimit = Tier2BackEdgeThreshold << number_of_noncount_bits;

@@ —152,17 +157,63 @@
// don’t mneed the shift by number_of_-noncount_bits, but we do mneed to adjust
// the factor by which we scale the threshold.
if (Profilelnterpreter) {

— InterpreterBackwardBranchLimit = (CompileThreshold % (OnStackReplacePercentage —
InterpreterProfilePercentage)) / 100;
+ InterpreterBackwardBranchLimit = (threshold x* (OnStackReplacePercentage —

InterpreterProfilePercentage)) / 100;
} else {
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InterpreterBackwardBranchLimit = ((CompileThreshold * OnStackReplacePercentage) / 100) <<
number_of_noncount_bits;

+ InterpreterBackwardBranchLimit = ((threshold % OnStackReplacePercentage) / 100) <<
number_of_noncount_bits;
}
assert (0 <= InterpreterBackwardBranchLimit ,
- ”"OSR_threshold _should _be_non—negative”);
+ ”"OSR_threshold_should_be_non—negative”);
assert (0 <= InterpreterProfileLimit &&
— InterpreterProfileLimit <= InterpreterInvocationLimit ,
”profile_threshold _should_be_less_than_the_compilation_threshold.”
- ”and_non—negative”);
+ InterpreterProfileLimit <= InterpreterInvocationLimit ,
+ ”"profile_threshold_should_be_less_than_the_compilation_threshold_.”
+ ”and_non—negative” ) ;
+3
+
+int InvocationCounter:: average = 1;
+void InvocationCounter::increment_threshold () {

-

v
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diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/interpreter/invocationCounter.

InterpreterInvocationLimit += (unit << number_of_noncount_bits);
static int InterpreterProfileLimitCounter = InterpreterProfilePercentage —1;
InterpreterProfileLimitCounter +-;
if (InterpreterProfileLimitCounter >= 100) {
InterpreterProfileLimitCounter —= (100 —InterpreterProfilePercentage +1) ;
InterpreterProfileLimit 4= (unit << number_of_noncount_bits);

//TierllnvocationLimit = Tier2CompileThreshold << number_of_-noncount_bits;
//Tier1BackEdgeLimsit = Tier2BackEdgeThreshold << number_of_-noncount_bits ;
// When methodData is collected , the backward branch limit is compared against a
// methodData counter, rather than an InvocationCounter. In the former case, we

// don’t need the shift by number_of-noncount_bits, but we do mneed to adjust

// the factor by which we scale the threshold.

static int BackwardBranchPercentage = ProfileIlnterpreter 7
OnStackReplacePercentage — InterpreterProfilePercentage
OnStackReplacePercentage;

static int InterpreterBackwardBranchLimitCounter = BackwardBranchPercentage —1;
InterpreterBackwardBranchLimitCounter —++;
if (InterpreterBackwardBranchLimitCounter >= 100)
InterpreterBackwardBranchLimitCounter —= (100 —BackwardBranchPercentage +1);
if (ProfileInterpreter) {
InterpreterBackwardBranchLimit += unit;
} else {
InterpreterBackwardBranchLimit += (unit<< number_of_noncount_bits);

}
¥
oid InvocationCounter:: decrease_threshold () {
int shift;
shift = (average & AverageHit) ;

if (shift) {
InterpreterInvocationLimit >>= ThresholdShift;
InterpreterProfileLimit >>= ThresholdShift;
// TierlInvocationLimit = Tier2CompileThreshold << number_of-noncount_bits ;
//Tierl1BackEdgeLimit = Tier2BackEdgeThreshold << number_of_-noncount_bits ;
InterpreterBackwardBranchLimit >>= ThresholdShift;
AverageHit <<= MaskShift;

oid invocationCounter_init () {

hpp /home/rgougol/cs298 /build/relative —openjdk/hotspot/src/share/vin/interpreter/
invocationCounter . hpp

——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vin/interpreter /invocationCounter.hpp

2009—-07—-11 21:34:31.000000000 40430

65

+++ /home/rgougol/cs298 /build/relative —openjdk/hotspot/src/share/vimm/interpreter/invocationCounter.

@

o+ttt

hpp 2009—-07—-02 17:30:46.000000000 40430

—112,6 +112,12 @@

// Miscellaneous

static ByteSize counter_offset () { return byte_offset_of(InvocationCounter,
_counter); }

static void reinitialize (bool delay_overflow);

static void initialize (int threshold);

static void increment_threshold ();

static void decrease_threshold ();

public:

static int average ;

private:

static int _init [number_of_states]; // the counter limits
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Only in /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/interpreter: .invocationCounter.hpp
.sSwp

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/runtime/globals.hpp /home/
rgougol/cs298/build /relative —openjdk/hotspot/src/share/vm/runtime/globals.hpp

——— /home/rgougol/cs298/build /openjdk/hotspot/src/share/vm/runtime/globals.hpp 2009—06—29
14:17:02.000000000 +0430

+++ /home/rgougol/cs298/build/relative —openjdk/hotspot/src/share/vm/runtime/globals.hpp 2009—07—-02
17:30:47.000000000 40430

@@ -3221,7 +3221,26 QQ

product (bool, UseVMInterruptibleIO, true,
” (Unstable ,_.Solaris—specific)_Thread_interrupt_before_or_with.”
?EINTR_for_I/O_operations_results_in_OSINTRPT”)
"EINTR_for_.I/O_operations_results_in_OSINTRPT”)

product (intx , RelativeTresholdFactorPower, 1,

”This —number_to_power_of_2_.is_the_factor_that_multiply ~average”

invocation-_frequecy_-to_get_the_compile_treshold”

” _CompileThreshold _=_2_"RelativeTresholdFactor.”
”»_x_average_invocation._frequency”)

P g

»

—

product (intx , AverageHit, 1024,
”If_the_average_invocation._freuquency._of_the_methods_reach_here’
”_it_will_change_the_CompileThreshold”)

5

— =
—

product (intx , MaskShift, 10, \ ”The.
number_of_bits_that_the_average_hit_will_be_shift” \
”to_the_right _.when_the_average_invocation._frequency._reach.it” \
”_so_the_average_can_reach_this_new_average_hit_later.”)

—

product (intx, ThresholdShift, 1,
”the_number_of_bits_to_shift .the_CompileThreshold_to_right_to”
” .in_order_.to_decrease_it.”)

e i sk s 2 s e o
-

/*
A4 Method Grouping

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/cpu/x86/vmm/cpplnterpreter_x86.cpp /home/
rgougol/cs298 /build /grouping—openjdk/hotspot/src/cpu/x86/vim/cpplnterpreter_x86 .cpp
——— /home/rgougol/cs298/build /openjdk/hotspot/src/cpu/x86/vm/cpplnterpreter_x86 .cpp 2009—-06—29
14:16:58.000000000 +40430
+++ /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/cpu/x86/vin/cpplnterpreter_x86 .cpp
2009—-07—13 18:30:11.000000000 +0430
@@ —-562,8 +562,9 @
// profile_.method != NULL == !native_call
// Bytecodelnterpreter only calls for native so code is elided.

cmp32(rex ,
ExternalAddress ((address)&InvocationCounter :: InterpreterInvocationLimit));
ecmp32(rex,
ExzternalAddress ((address )é&InvocationCounter :: InterpreterInvocationLimit));
cmp32(rcx, Address(rbx, methodOopDesc:: interpreter_invocation_limit_offset ()));
-- jcc(Assembler :: aboveEqual, xoverflow);

// -
//

e+

¥

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/cpu/x86/vin/templatelnterpreter_x86_-32.cpp
/home/rgougol/cs298 /build /grouping—openjdk/hotspot/src/cpu/x86/vmm/templatelnterpreter_x86-32.
cpp

——— /home/rgougol/cs298 /build /openjdk/hotspot/src/cpu/x86/vmn/templatelnterpreter_-x86-32.cpp
2009—-06—-29 14:16:58.000000000 40430

+++ /home/rgougol/cs298 /build /grouping—openjdk/hotspot/src/cpu/x86/vin/templatelnterpreter_-x86.32.
cpp 2009—-07—-13 18:30:11.000000000 -+0430

@@ —7,7 +7,7 @@

published by the Free Software Foundation.

This code is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ANY WARRANTY; without etelnterpreter_x86_-32.cppven the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
version 2 for more details (a copy is included in the LICENSE file that
accompanied this code).
@@ —324,6 +324,46 @@
if (Profilelnterpreter) { // %%% Merge this into methodDataOop
_- incrementl (Address(rbx,methodOopDesc:: interpreter_invocation_counter_offset ()));
}

|
IE R

__ testl(rax, rax);
Label AlreadyHasId;

+

+ //Method Grouping

+ const Address id(rbx, methodOopDesc:: id_-offset ());

+ - get_thread (rdx); //rdz : thread address
+ __- movl(rax, id); // raz : method id

+

+
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-~ jcc(Assembler:: notZero, AlreadyHaslId);
const Address static_id (rdx, JavaThread::id_generator_offset ());
__ incrementl(static_id);
__ movl(rax, static_id);
__ movl(id, rax);
-~ bind (AlreadyHasId) ;
~- push(rex);
-~ movl (rcx, Address(rdx, JavaThread:: saved_-method_id_offset ()));
J//recx: id of previous method that was interpreted
Label NoPreviouslId;
testl (rex, rex);

-~ jcc(Assembler:: zero, NoPreviousld);
-- movl(rdx, rcx);
int sugar = (unsigned int) —1 >> (sizeof(int) x* 8 — PairQueueLengthPower);

-~ andl(rdx, sugar);
// rdz: remainder of dividing pervious method id by PairQueueLength
//(hash of id into PairQueue)

-- push(rax); /*raz : current method id */

__ movl(rax, Address(rbx, methodOopDesc:: pairs_offset ()));

__- movl(Address(rax , rdx, Address::times_4), rcx);

__ pop(rax); /*xeazx : id of current methodx/

-~ bind (NoPreviousId) ;

-- pop(rex);

_- get_thread (rdx);

-- movl(Address(rdx, JavaThread:: saved_method_id_offset()), rax);

-~ push(rcx);

-~ call_.VM (noreg, CASTFROM_FN_PTR(address, InterpreterRuntime::is_paired), rax);
// raz will indicate if the current method is paired

-- pop (recx);

-- movl(Address(rbx, methodOopDesc:: paired_offset()), rax); // save raz

ol e S S o S

// Update standard invocation counters
-- movl(rax, backedge_counter); // load backedge counter

@@ —339,16 +379,62 @a@

if (Profilelnterpreter && profile_method != NULL) {
// Test to see if we should create a method data oop
- -- cmp32(rcx,
- ExternalAddress ((address)&InvocationCounter :: InterpreterProfileLimit));
+ -~ cmp32(rcx, Address(rbx, methodOopDesc:: interpreter_profile_limit_offset ()));
_- jcc(Assembler::less, *xprofile_method_continue);

// if no method data exzists , go to profile-method
_- test_method_-data_pointer(rax, sprofile_method);

}
— _- cmp32(rex,
ExternalAddress ((address)&InvocationCounter :: InterpreterInvocationLimit));
-~ push(rex);
-- movl(rdx, Address(rbx, methodOopDesc:: paired_-offset())); // rdz: if method is predicted
be hot

Label NotPaired;
testl (rdx, rdx);

__ jcc(Assembler:: zero, NotPaired);
movl(rcx, invocation_counter);

if (! ProfileInterpreter) {

-~ movl(Address(rbx, methodOopDesc:: interpreter_invocation_limit_offset ()), rcx);
-- movl(Address(rbx, methodOopDesc:: interpreter_backedge_limit_offset ()), rax);
—- pop(rcx);

-- jmp(xoverflow);

—- shrl(rex, 3);
imull (rax, rcx, 100);
-- push(rbx);
-- movl(rbx, (int) InterpreterProfilePercentage);
-~ movl(rdx, 0);

Label NoNewCompileThreshold;

/- empl(rbs, 0);

//-- jecc(Assembler:: zero, NoNewCompileThreshold) ;

__ idivl(rbx);

-- pop(rbx);

-- cmpl(rax, CompileThreshold);

-~ jcc(Assembler:: aboveEqual, NoNewCompileThreshold) ;
_- shll(rax, 3);

—- shll(rex, 3);

-~ movl(Address(rbx, methodOopDesc:: interpreter_invocation_limit_offset()), rax);
-- movl(Address(rbx, methodOopDesc:: interpreter_profile_limit_offset ()), rcx);
-~ push(rbx);

-- shrl(rax, 3);

-- push(rax);

-- movl(rax, OnStackReplacePercentage);

-- subl(rax, InterpreterProfilePercentage);

e s e s o o e o S e e S e
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-- movl(rbx, 100);

__- movl(rdx, 0);

__ idivl(rbx);

-- pop(rbx);

__ imull(rax, rbx);

-- pop(rbx);

shll (rax, 3);

-~ movl(Address(rbx, methodOopDesc:: interpreter_backedge_limit_offset ()), rax);

-- bind (NoNewCompileThreshold) ;
-~ bind (NotPaired);
-- pop(rex);

o e e
1
I

-- cmp32(rcx, Address(rbx, methodOopDesc:: interpreter_invocation_limit_offset ()));
_- jcc(Assembler:: aboveEqual, *overflow);

—376,6 +462,8 @Q
// C4++ interpreter only
// Tsi — previous interpreter state pointer

__ call_.VM (noreg, CASTFROMFNUPTR(address, InterpreterRuntime::store_pairs));
// Predict all the methods in the group to be hot
const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset ());

++

// InterpreterRuntime :: frequency_-counter_overflow takes one argument
@@ —384,7 +472,6 @@
// if the compilation did not complete (either went background or bailed out).
_- movptr(rax, (int32_t)false);
-- call_.VM (noreg, CASTFROMFN_PTR(address, InterpreterRuntime ::frequency_counter_overflow),
rax) ;

-- movptr(rbx, Address(rbp, method_offset)); // restore methodOop

Preserve invariant that rsi/rdi contain bep/locals of sender frame

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/cpu/x86/vin/templateTable_-x86_32.cpp /home
/rgougol/cs298 /build /grouping—openjdk/hotspot/src/cpu/x86/vm/templateTable_x86_32.cpp

—— /home/rgougol/cs298 /build /openjdk/hotspot/src/cpu/x86/vmm/templateTable_x86_32.cpp 2009—-06—-29
14:16:58.000000000 +0430

+++ /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/cpu/x86/vm/templateTable_-x86_32.cpp
2009—-07—-13 18:30:11.000000000 -+40430

@a —1555,8 +1555,7 Q@

if (ProfileInterpreter) {
// Test to see if we should create a method data oop
- -~ cmp32(rax,
- ExternalAddress ((address) &InvocationCounter :: InterpreterProfileLimit));
+ -- cmp32(rax, Address(rcx, methodOopDesc:: interpreter_profile_limit_offset ()));
-~ jcc(Assembler::less , dispatch);

// if mo method data ezists, go to profile method
@@ —1564,8 +1563,7 @@

if (UseOnStackReplacement) {
// check for owverflow against rbz, which is the MDO taken count
— -- cmp32(rbx,
ExternalAddress ((address) &InvocationCounter::InterpreterBackwardBranchLimit));
cmp32(rbx, Address(rcx, methodOopDesc:: interpreter_backedge_limit_offset ()));
jcc (Assembler :: below, dispatch);

+ 1

// When Profilelnterpreter is on, the backedge_count comes from the

@@ —1581,8 +1579,7 @@
} else {
if (UseOnStackReplacement) {

// check for owerflow against raz, which is the sum of the counters
- -- cmp32(rax,
ExternalAddress ((address) &InvocationCounter :: InterpreterBackwardBranchLimit));
+ -~ cmp32(rax, Address(rcx, methodOopDesc:: interpreter_backedge_-limit_offset ()));

-- jcc(Assembler:: aboveEqual, backedge_-counter_overflow);

Only in /home/rgougol/cs298/build/grouping—openjdk/hotspot/src: grouping—.diff

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vmm/compiler/compileBroker.cpp /home
/rgougol/cs298 /build /grouping—openjdk/hotspot/src/share/vm/compiler/compileBroker.cpp

——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vmm/compiler/compileBroker.cpp 2009—-06—-29
14:17:02.000000000 40430

+++ /home/rgougol/cs298/build /grouping—openjdk/hotspot/src/share/vim/compiler/compileBroker.cpp
2009—-07—-13 18:30:11.000000000 40430

@@ —-317,11 +317,33 @@

// print osr_bci if any
if (is_osr) tty—>print(”-.@Q.%d”, osr_bci());

//print method id and group
tty —>print (" .ID %d-["”, method—>id ());
for (int i = 0; i < (1 << PairQueueLengthPower); i++)

o+t
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int a;
if ((a = method—>pair(i)) > 0)
tty—>print (7 _-%d”, a);

tty —>print (”]”);

FH+ At

tty—>print (" Counts_I1._%d_B_%d_IT_%d”, method—>invocation_counter ()—>count (), method—>
backedge_counter ()—>count () , method—>interpreter_invocation_count () /*, method—>
compiled_invocation_count ()x/);

tty—>print (” Limits %d_-%d._-%d” , method—>interpreter_invocation_limit (), method—>
interpreter_backedge_limit (), method—>interpreter_profile_limit ());

+

// print method size
tty—>print_cr (" o(%d_bytes)”, method—>code_size ());

|
-

//print Grouping Hash List
tty —>print (" [”);
for (int i = 0; i < (1 << PairHashLengthPower); i++)
int a;
if ((a = % (JavaThread:: hash_pair(i))) != 0)
tty—>print ("%d.", a);
}

tty—>print_cr(”]”);

e e e

-

//

// CompileTask::log_task

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vmm/interpreter/interpreterRuntime.
cpp /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/share/vin/interpreter/
interpreterRuntime.cpp

——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vin/interpreter/interpreterRuntime.cpp
2009—-06—-29 14:17:06.000000000 40430

+++ /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/share/vim/interpreter/interpreterRuntime
.cpp 2009-07—-13 18:30:11.000000000 40430

@@ —704,6 +704,40 @@

}
#endif // IPRODUCT

+HRT_ENTRY (nmethod*, InterpreterRuntime::store_pairs(JavaThread* thread, address bcp))

+ ResourceMark rm;

+ methodOop method = thread—>last_frame ().interpreter_frame_method () ;

+ for (int i = 0; i < (1 << PairQueueLengthPower); i++4) {

+ if (method—>pair (i) > 0) {

+ JavaThread:: store_pair (method—>pair (i));

+ }

+

+ /x tty—>print(”Stored pairs of method %d %s which were [”, method—>id () , method—>
name_and_sig-as-C_string ());

+ for (int i = 0; i < (1 << PairQueueLengthPower); i++)

+

+ if (method—>pair (i) != 0) tty—>print(” %d”, method—>pair(i));

+

+ tty—>print (7] into [7);

+ for (int i = 0; i < (1 <<PairHashLengthPower); i++)

+

+ if (x(JavaThread:: hash_pair(i)) != 0) tty—>print(” %d”, *x(JavaThread:: hash_pair(i)));

+

+ tty—>print_cr (7]7); x/

+ return NULL;

+IRT_END

+IRT_ENTRY (bool, InterpreterRuntime ::is_paired (JavaThread* thread, int method_id))

+ return JavaThread:: is_paired (method_id);

+IRT_END

+
+HIRT_-ENTRY (void, InterpreterRuntime ::trace_method (JavaThread* thread))

+ ResourceMark rm;

+ methodOop method = thread—>last_frame ().interpreter_frame_method () ;

+ tty—>print ("ID_%d_-Counts_I._%d_%d_%d” , method—>id (), method—>invocation_counter ()—>count (),
method—>invocation_counter ()—>state (), method—>invocation_counter ()—>carry ());

+ tty—>print (”?-B_%d_%d._%d._." , method—>backedge_counter ()—>count (), method—>backedge_counter ()—>
state (), method—>backedge_counter ()—>carry ());

+ tty—>print_cr(”Limits %d_-%d_-%d”, method—>interpreter_invocation_limit (), method—>
interpreter_backedge_limit (), method—>interpreter_profile_limit ());

+IRT_END

+

IRT_ENTRY (nmethod * ,
InterpreterRuntime :: frequency_counter_overflow (JavaThread* thread, address branch_bcp))
// wuse UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vmm/interpreter/interpreterRuntime.
hpp /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/share/vin/interpreter/
interpreterRuntime . hpp

——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vin/interpreter /interpreterRuntime.hpp
2009—-06—-29 14:17:06.000000000 40430
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+++ /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/share/vim/interpreter/interpreterRuntime
.hpp 2009-07—-13 18:30:11.000000000 40430
@@ —-118,6 +118,10 @@

// Interpreter’s frequency counter overflow
static nmethod* frequency_counter_overflow (JavaThread* thread, address branch_bcp);

static nmethod* store_pairs(JavaThread* thread, address bcp);
static bool is_paired (JavaThread* thread, int method_id);
static void trace_method (JavaThreadx);

++ 4+

// Interpreter profiling support
static jint becp-to_di(methodOopDesc* method, address cur_bcp);
diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/interpreter/invocationCounter.
cpp /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/share/vin/interpreter/
invocationCounter.cpp
——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vin/interpreter /invocationCounter.cpp
2009—-07—-11 21:36:11.000000000 40430
+++ /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/share/vm/interpreter/invocationCounter.
cpp 2009—-07—-13 18:30:11.000000000 40430
@@ —39,14 439,15 @Q
set_state (wait_for_compile);

—void InvocationCounter ::

+void InvocationCounter ::

+ ResourceMark rm;
_counter |= carry-mask;

set_carry () {
set_carry (int method_compile_threshold) {

// The carry bit now indicates that this counter had achieved a very

// large value. Now reduce the wvalue, so that the method can be
// executed many more times before re—entering the VM.
int old_count = count();

— int new_count = MIN2(old_-count, (int) (CompileThreshold / 2));
+ int new_count = MIN2(old-count, (int) (method_-compile_-threshold / 2));
if (old_count != new_count) set(state(), new_count);
}

@@ -107,7 +108,8 @@

static address do_nothing(methodHandle method, TRAPS) {
// dummy action for inactive invocation counters

— method—>invocation_counter ()—>set_carry () ;

+ ResourceMark rm;

+ method—>invocation_counter ()—>set_carry (method—>interpreter_invocation_limit ());
method—>invocation_counter ()—>set_state (InvocationCounter :: wait_for_nothing);
return NULL;

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/interpreter/invocationCounter.
hpp /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/share/vin/interpreter/
invocationCounter . hpp

——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vin/interpreter /invocationCounter.hpp
2009—-07—-11 21:34:31.000000000 40430

+++ /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/share/vmm/interpreter/invocationCounter.
hpp 2009—-07—-13 18:30:11.000000000 40430

@@ —-78,7 4+78,7 @@

void set_state(State state); // sets state and initializes counter
correspondingly
inline void set(State state, int count); // sets state and counter
inline void decay(); // decay counter (divide by two)
— wvoid set_carry (); // set the sticky carry bit
+ wvoid set_carry (int); // set the sticky carry bit

// Accessors
State state() const { return (State)(-counter & state_mask); }
diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vim/oops/methodKlass.cpp /home/
rgougol/cs298 /build /grouping—openjdk/hotspot/src/share/vin/oops/methodKlass.cpp
——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vin/oops/methodKlass.cpp 2009—06—29
14:17:06.000000000 40430
+++ /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/share/vin/oops/methodKlass.cpp
2009—-07—-13 18:30:11.000000000 40430
@@ —88,7 488,10 @a
m—>set_interpreter_invocation_count (0);
m—>invocation_counter ()—>init () ;
m->backedge_counter ()—>init () ;
m—>init_invocation_limit () ;
m—>clear_number_of_breakpoints () ;

+ m—>setup-pairs();

4+ m—>set_id (0);
assert (m>is_parsable (), "must_be_parsable_here.”);
assert (m—>size () == size, "wrong._size_for_object”);

// We should not publish an uprasable object’s reference

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vmm/oops/methodOop.cpp /home/rgougol
/cs298 /build /grouping—openjdk/hotspot/src/share/vin/oops/methodOop.cpp

——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vin/oops/methodOop.cpp 2009—-07—11
21:31:34.000000000 40430
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+++ /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/share/vin/oops/methodOop.cpp 2009—07-13
18:30:11.000000000 +40430
@@ —298,6 +298,12 @@
}

}
+void methodOopDesc:: init_invocation_limit () {
+ _interpreter_invocation_limit = InvocationCounter::InterpreterInvocationLimit;
+ _interpreter_profile_limit = InvocationCounter:: InterpreterProfileLimit;
+ _interpreter_backedge_limit = InvocationCounter :: InterpreterBackwardBranchLimit;
+}
+

void methodOopDesc:: cleanup-inline_caches () {
// The current system doesn’t wuse inline caches in the interpreter
// => nothing to do (keep this method around for future wuse)
diff —r —u /home/rgougol/cs298 /build/openjdk/hotspot/src/share/vim/oops/methodOop.hpp /home/rgougol
/cs298 /build /grouping—openjdk/hotspot/src/share/vin/oops/methodOop. hpp
——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vimm/oops/methodOop.hpp 2009—-06—29
14:17:07.000000000 40430
+++ /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/share/vin/oops/methodOop.hpp 2009—-07-13
18:30:11.000000000 +0430
@a -94,6 +94,10 @@

constantPoolOop -constants; // Constant pool
methodDataOop -method_data;
int _interpreter_invocation_count; // Count of times invoked
+ int _interpreter_invocation_limit;
+ int -interpreter_profile_limit;
+ int _interpreter_backedge_limit ;
+
AccessFlags _access_flags; // Access flags
int _vtable_index; // vtable index of this method (see
VtableIndexzFlag)

// mote: can have vtables with >2xx16 elements (
because of inheritance)
@@ —-110,6 +114,10 @@

u2 _number_of_breakpoints; // fullspeed debugging support
InvocationCounter _invocation_counter; // Incremented before each activation of the
method — wused to trigger frequency—based optimizations
InvocationCounter _backedge_counter; // Incremented before each backedge taken — wused
to trigger frequencey—based optimizations
+ int =x _pairs;
+ unsigned int _id; // method id for keeping track of methods
+ Dbool -paired;
+
#ifndef PRODUCT
int -compiled_invocation_count; // Number of mmethod invocations so far (for
perf. debugging)
#endif
@@ —206,6 +214,16 @@
_method_size = size;
+ void set-id (unsigned int id) { -id = id; }
+ unsigned int id () const { return _id;}
+ int pair(int index) {
+ return _pairs [index];
+
+ void setup-pairs () {
+ _pairs = (int x) calloc (1l << PairQueueLengthPower, sizeof(int));
+ _paired = false;
+
+
// constant pool for klassOop holding this method
constantPoolOop constants () const { return _constants;
void set_constants (constantPoolOop c¢) { oop-store_without_check ((oopx)&_constants , c);

}
@@ —284,8 +302,12 @@
static void build-interpreter_method_data (methodHandle method, TRAPS) ;

int interpreter_invocation_-count () const { return _interpreter_invocation_-count; }

+ int interpreter_invocation_limit () const { return _interpreter_invocation_limit >> 3; }
+ int interpreter_profile_limit () const { return _interpreter_profile_limit >> 3; }
4+ int interpreter_backedge_limit () const { return Profilelnterpreter 7
_interpreter_backedge_limit : _interpreter_backedge_limit >> 3; }
void set_interpreter_invocation_count (int count) { _interpreter_invocation_count = count; }

int increment_interpreter_invocation_count () { return ++_interpreter_invocation_count; }
+ wvoid init_invocation_limit ();

#ifndef PRODUCT
int compiled_invocation_count () const { return _compiled_invocation_count; }
@@ —485,10 +507,16 @Q
static ByteSize code_offset () { return byte_offset_of (methodOopDesc, _code); }
static ByteSize invocation_counter_offset () { return byte_offset_of (methodOopDesc,
_invocation_counter); }
static ByteSize backedge_counter_offset () {
_backedge_counter); }

return byte_offset_of (methodOopDesc,
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static ByteSize interpreter_invocation_-limit-offset () { return byte_offset_of (methodOopDesc,

_interpreter_invocation_limit); }

static ByteSize interpreter_profile_limit_offset () {return byte_offset_of(methodOopDesc,

_interpreter_profile_limit); }

static ByteSize interpreter_backedge_limit_offset () {return byte_offset_of (methodOopDesc,

_interpreter_backedge_limit); }
static ByteSize method_data_offset ()
return byte_offset_of (methodOopDesc, _method_-data);

72

static ByteSize interpreter_invocation_counter_offset () { return byte_offset_of (methodOopDesc,

_interpreter_invocation_count); }

static ByteSize id_offset () { return byte_offset_of(methodOopDesc, _id); }
static ByteSize pairs_offset () { return byte_offset_of (methodOopDesc, _pairs);
static ByteSize paired_offset () { return byte_offset_of (methodOopDesc, _paired)

i}
#ifndef PRODUCT
static ByteSize compiled_-invocation_counter_offset () { return byte_offset_-of (methodOopDesc,

_compiled_invocation_count); }

#endif // not PRODUCT
diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/runtime/compilationPolicy.cpp /
home/rgougol/cs298 /build /grouping—openjdk/hotspot/src/share/vm/runtime/compilationPolicy .cpp
——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vm/runtime/compilationPolicy .cpp

2009—-06—29 14:17:02.000000000 40430

+++ /home/rgougol/cs298/build/grouping—openjdk/hotspot/src/share/vm/runtime/compilationPolicy.cpp

2009—-07—-13 18:30:11.000000000 -+0430

@@ —-97,9 +97,10 @@
// as would be the case for mnative methods.
// BUT also make sure the method doesn’t look like it was never ezecuted.
— // Set carry bit and reduce counter’s wvalue to min(count, CompileThreshold/2).
— m—>invocation_counter ()—>set_carry ();
— m—>backedge_counter ()—>set_carry () ;
+ // Set carry bit and reduce counter’s value to min(count, m—>interpreter_invokation_limit() /
4+ ResourceMark rm;
+ m>invocation_counter ()—>set_carry (m>interpreter_invocation_limit ());
4+ m—>backedge_counter ()—>set_carry (m>interpreter_invocation_limit ());
assert (!m>was_never_executed (), "don’t_reset_to_O_——_could_be_mistaken_for_never—executed”);
}
@@ —113,15 +114,16 @@
// Don’t set invocation_counter’s wvalue too low otherwise the method will
// look like immature (ic < ~5300) which prevents the inlining based on
// the type profiling.
— i-—>set(i—>state (), CompileThreshold);
+ ResourceMark rm;
+ i—>set(i—>state (), m—>interpreter_invocation_limit ());
// Don’t reset counter too low — it is used to check if OSR method is ready.
— b—>set(b—>state (), CompileThreshold / 2);
+ b—>set(b—>state (), m>interpreter_invocation_limit () / 2);
}
// SimpleCompPolicy — compile current method
void SimpleCompPolicy :: method_invocation_event( methodHandle m, TRAPS) {
— assert (UseCompiler || CompileTheWorld, ”UseCompiler_should_be_set_by_now.”);
+ assert (UseCompiler || CompileTheWorld, ”UseCompiler.m—>interpreter_invocation_limit ()_should._be
_set_by_now.”);
int hot_count = m—>invocation_count () ;
reset_counter_for_invocation_event (m);
@@ —436,7 +438,7 @Q
if (m>code_size () <= MaxTrivialSize) return NULL;
if (Uselnterpreter) { // don’t wuse counts with —Xcomp
if ((m—>code() == NULL) && m—>was_never_executed ()) return (.msg = ”"never_executed”);
— if (!m>was_executed-more_-than (MIN2(MinInliningThreshold, CompileThreshold >> 1))) return (
_msg = "executed .<_-MinInliningThreshold ~times”);
+ if (!m>was_executed-more_than (MIN2(MinInliningThreshold , m>interpreter_invocation_limit ()

>> 1))) return (-msg = “executed _<_MinlInliningThreshold_times”);

if (methodOopDesc:: has_unloaded_classes_in_signature (m, JavaThread:: current()))

”unloaded_signature_classes”);

return (_msg

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/runtime/globals.hpp /home/

rgougol/cs298 /build /grouping—openjdk/hotspot/src/share/vm/runtime/globals.hpp
2009—-06-29

——— /home/rgougol/cs298 /build /openjdk/hotspot/src/share/vm/runtime/globals.hpp

14:17:02.000000000 40430

+++ /home/rgougol/cs298 /build /grouping—openjdk/hotspot/src/share/vmm/runtime/globals.hpp 2009—-07—-13

Qa

o

18:30:11.000000000 +0430
—3221,7 +3221,15 @@

product (bool, UseVMlInterruptibleIO , true,
” (Unstable ,_.Solaris—specific)_Thread_interrupt_before_or_with.”
"EINTR_for-.I1/O_operations._results_in_OSINTRPT”)
?EINTR_for.-I/O_operations._results_in_OSINTRPT”)

B g
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product (intx , PairHashLengthPower, 3, \
”Length_Power_of_Pair_Hash,_hash_size_=_2_"_PairHashLengthPower”) \
\

product (intx , PairQueueLengthPower, 3, \
”Length_Power_of_Pair_Queue, _length_=_2_"_n")

FH+ At

/*

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/runtime/thread.cpp /home/rgougol
/cs298/build/grouping—openjdk/hotspot/src/share/vm/runtime/thread . cpp

——— /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/runtime/thread.cpp 2009—06—29
14:17:01.000000000 +0430

+++ /home/rgougol/cs298/build/grouping—openjdk/hotspot/src/share/vm/runtime/thread.cpp 2009—07—13
18:30:11.000000000 +0430

@@ —1206,6 +1206,9 @@

-popframe_-preserved-args = NULL;

_popframe_preserved_args_size = 0;
-id_generator = 0;
_saved_-method_id = 0;

+++

pd_initialize () ;

diff —r —u /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/runtime/thread.hpp /home/rgougol
/cs298/build/grouping—openjdk/hotspot/src/share/vm/runtime/thread . hpp

——— /home/rgougol/cs298/build/openjdk/hotspot/src/share/vm/runtime/thread . hpp 2009—06—29
14:17:01.000000000 +0430

+++ /home/rgougol/cs298/build/grouping—openjdk/hotspot/src/share/vm/runtime/thread.hpp 2009—07—13
18:30:11.000000000 +0430

@@ —633,6 +633,8 @@

private :
JavaThreadx* _next; // The next thread in the Threads list
oop _threadObj; // The Java level thread object
+ int _id_generator; // id generator for methods
+ int -saved_method_id ; //id of method being interpreted to pair with

next method

#ifdef ASSERT

private :
@@ —1167,6 +1169,8 @@
static ByteSize suspend_flags_offset () { return byte_offset_of(JavaThread,
_suspend_flags )

static ByteSize do_not_unlock_if_-synchronized_offset () { return byte_offset_of(JavaThread,
_do_not_unlock_if_synchronized);

+ static ByteSize id_generator_offset () { return byte_offset_of(JavaThread,
_id_generator); }
+ static ByteSize saved_-method_id_offset () { return byte_offset_of(JavaThread,

_saved_-method_id); }

// Returns the jni environment for this thread

JNIEnv*x jni_environment () { return &_jni_environment; }
@@ —1445,6 +1449,15 @@

// clearing/querying jni attach status

bool is_attaching () const { return _is_attaching; }

void set_attached () { _is_attaching = false; OrderAccess::fence(); }
+
+ static int % hash_-pair(int pair_id)
+ static int x _pairs = (int %) calloc (1 << PairHashLengthPower, sizeof(int));
+ return & _pairs[pair_id % (1 << PairHashLengthPower)];
+
+ static bool is_paired(int pair_id) {
+ return pair_-id == % hash_pair(pair_id);
+
+ static wvoid store_pair(int pair-id) { x hash_pair(pair_-id) = pair_id;}
b

// Inline tmplementation of JavaThread:: current

A5 Tiered Grouping

diff —r —u /home/rgougol/cs298/build/grouping—openjdk/hotspot/src/cpu/x86/vm/
templatelnterpreter_x86_-32.cpp /home/rgougol/cs298/build/postpone—grouping—openjdk/hotspot/src
/cpu/x86/vin/templatelnterpreter_x86_32.cpp
——— /home/rgougol/cs298 /build /grouping—openjdk/hotspot/src/cpu/x86/vin/templatelnterpreter_x86.32.
cpp 2009-01-15 17:11:06.000000000 —0800
+++ /home/rgougol/cs298 /build /postpone—grouping—openjdk/hotspot/src/cpu/x86/vin/
templatelnterpreter-x86.-32.cpp 2008—-11—16 21:44:01.000000000 —0800
@ —7,7 +7,7 @@
* published by the Free Software Foundation.
*
% This code is distributed in the hope that it will be useful, but WITHOUT
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ANY WARRANTY; without etelnterpreter-x86-32.cppven the implied warranty of MERCHANTABILITY or

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
version 2 for more details (a copy is included in the LICENSE file that
accompanied this code).

—339,6 +339,14 @@

-- bind (AlreadyHasId) ;

-~ push(rcx);

-- movl (rcx, Address(rdx, JavaThread:: saved_-method_id_offset ()));

-- movl(Address(rdx, JavaThread:: saved_method_id_offset()), rax);

// Is the method in the highest compilation tier

-- movl(rdx, CompLevel_highest_tier);

-- cmp32(rdx, Address(rbx, methodOopDesc:: highest_tier_compile_offset ()));
Label Postpone;

-~ jcc(Assembler:: notEqual, Postpone);

//rcz: id of previous method that was interpreted
Label NoPreviousld;
__ testl (rex, rcx);
—348,21 +356,18 @@
__ andl(rdx, sugar);
// rdz: remainder of dividing pervious method id by PairQueueLength
//(hash of id into PairQueue)

-~ push(rax); /*rax : current method id x/

-~ movl(rax, Address(rbx, methodOopDesc:: pairs_offset ()));

-~ movl(Address(rax , rdx, Address::times_4), rcx);

-- pop(rax); /*eax : id of current methodx/

-- bind(NoPreviouslId) ;

-- pop(rex);

_- get_thread (rdx);

-- movl(Address(rdx, JavaThread:: saved_-method_id-offset()), rax);

-~ push(rex);

__ call_.VM (noreg, CASTFROMFNPTR(address, InterpreterRuntime::is_paired), rax);
// raz will indicate if the current method is paired

-- pop (rex);

-- movl(Address(rbx, methodOopDesc:: paired_offset()), rax); // save raz

__ bind(Postpone);

-- pop (rex);

// Update standard invocation counters
-~ movl(rax, backedge_counter); // load backedge counter
—387,18 +392,11 @@

-- push(recx);
movl(rdx, Address(rbx, methodOopDesc:: paired_offset())); // rdz: if method is predicted
be hot

-- movl(rax, Address(rbx, methodOopDesc:: paired-offset())); // restore raz

Label NotPaired;

-~ testl(rdx, rdx)

__ testl(rax, rax)
jcc (Assembler:: zero, NotPaired);
movl(recx, invocation_counter);

3
;

if (! ProfileInterpreter) {

-- movl(Address(rbx, methodOopDesc:: interpreter_invocation_limit_offset()), rcx);
-- movl(Address(rbx, methodOopDesc:: interpreter_backedge_limit_offset ()), rax);
-~ pop(rex);

-- jmp(*xoverflow);

}
-- shrl(rex, 3);
imull (rax, rcx, 100);
-~ push(rbx);
_462,8 +460,6 @a
// C4++ interpreter only
// rTsi — previous interpreter state pointer

call_VM (noreg, CASTFROMFNPTR(address, InterpreterRuntime::store_pairs));
// Predict all the methods in the group to be hot
const Address size_of_parameters (rbx, methodOopDesc:: size_of_parameters_offset ());

// InterpreterRuntime :: frequency_-counter_overflow takes one argument

—472,6 +468,7 @Q

// if the compilation did mnot complete (either went background or bailed out).

-- movptr(rax, (int32_t)false);

-- call_-VM (noreg, CAST_FROM.FN_PTR(address, InterpreterRuntime:: frequency_counter_overflow),

rax) ;
-~ call_.VM (noreg, CASTFROM_FN_PTR(address, InterpreterRuntime::store_pairs));
-- movptr(rbx, Address(rbp, method_offset)); // restore methodOop

Preserve invariant that rsi/rdi contain bep/locals of sender frame

to

diff —r —u /home/rgougol/cs298/build/grouping—openjdk/hotspot/src/share/vin/compiler/compileBroker.

cpp /home/rgougol/cs298 /build/postpone—grouping—openjdk/hotspot/src/share/vin/compiler/
compileBroker.cpp



91

92

93
94
95
96
97

98

99

100
101
102

103

104

105
106
107
108
109

110

111
112
113
114
115
116
117
118
119
120
121
122
123

124

125

126
127
128
129
130
131
132
133
134
135
136
137
138
139

140

141

142
143
144
145
146

147
148
149
150
151
152
153
154
155
156
157

——— /home/rgougol/cs298 /build /grouping—openjdk/hotspot/src/share/vim/compiler/compileBroker.cpp

2008—-11—-15 18:36:13.000000000 —0800

44+ /home/rgougol/cs298/build /postpone—grouping—openjdk/hotspot/src/share/vm/compiler/
compileBroker.cpp 2008—11—-15 10:38:09.000000000 —0800

@@ —328,7 +328,7 @@

tty—>print (”]”);
— tty—>print (”Counts_I.%d_B_%d_IT._%d”, method—>invocation_counter ()—>count(), method—>

backedge_counter ()—>count () , method—>interpreter_invocation_count () /¥, method—>
compiled_invocation_count ()*/);

+ tty—>print (”Counts_1.%d_B_%d_IT %d.”, method—>invocation_counter ()—>count (), method—>

backedge_counter ()—>count () , method—>interpreter_invocation_count () /*, method—>
compiled_invocation_count ()*/);
tty—>print (" Limits %d _%d.%d” , method—>interpreter_invocation_limit (), method—>
interpreter_backedge_limit (), method—>interpreter_profile_limit ());

// print method size
diff —r —u /home/rgougol/cs298 /build/grouping—openjdk/hotspot/src/share/vim/interpreter/

75

interpreterRuntime.cpp /home/rgougol/cs298/build/postpone—grouping—openjdk/hotspot/src/share/

vm/interpreter /interpreterRuntime.cpp

——— /home/rgougol/cs298/build /grouping—openjdk/hotspot/src/share/vm/interpreter/interpreterRuntime

.cpp 2008—11—18 20:13:51.000000000 —0800

4+++ /home/rgougol/cs298/build /postpone—grouping—openjdk/hotspot/src/share/vm/interpreter/
interpreterRuntime.cpp 2008—11—-18 20:15:01.000000000 —0800

@@ —712,7 4712,7 @Q

}

— /% tty—>print(”Stored pairs of method %d %s which were [7, method—>id () , method—>
name_and_sig-as_-C_string ());
+ /xtty—>print (” Stored pairs of method %d %s which were [”, method—>id () , method—>
name_and_sig-as_-C_string ());
for (int i = 0; i < (1 << PairQueueLengthPower); i++)

JavaThread:: store_pair (method—>pair(i));

if (method—>pair (i) != 0) tty—>print(” %d”, method—>pair(i));
@a —722,7 +722,7 @@

if (*x(JavaThread:: hash_pair(i)) != 0) tty—>print(” %d”, =(JavaThread:: hash_pair(i)))

— tty—>print_cr (7]7); */
+ tty—>print_cr(”]”);x/
return NULL;
IRT_END

diff —r —u /home/rgougol/cs298/build/grouping—openjdk/hotspot/src/share/vm/oops/methodOop.cpp /
home/rgougol/cs298 /build /postpone—grouping—openjdk/hotspot/src/share/vin/oops/methodOop.cpp

5

——— /home/rgougol/cs298 /build /grouping—openjdk/hotspot/src/share/vin/oops/methodOop.cpp 2009—-01-10

13:41:44.000000000 —0800

+++ /home/rgougol/cs298 /build /postpone—grouping—openjdk/hotspot/src/share/vm/oops/methodOop.cpp

2008—-11—-13 21:21:52.000000000 —0800
@@ —298,12 +298,6 @@

¥
}
—void methodOopDesc:: init_invocation_limit () {
- _interpreter_invocation_limit = InvocationCounter::InterpreterInvocationLimit ;
— -interpreter_profile_limit = InvocationCounter::InterpreterProfileLimit;
- —interpreter_backedge_limit = InvocationCounter ::InterpreterBackwardBranchLimit;
-}

void methodOopDesc:: cleanup-inline_caches () {
// The current system doesn’t wuse inline caches in the interpreter
/ => nothing to do (keep this method around for future wuse)

diff —r —u /home/rgougol/cs298/build/grouping—openjdk/hotspot/src/share/vm/oops/methodOop.hpp /
home/rgougol/cs298 /build /postpone—grouping—openjdk/hotspot/src/share/vin/oops/methodOop.hpp

——— /home/rgougol/cs298 /build /grouping—openjdk/hotspot/src/share/vin/oops/methodOop.hpp 2009—01-10

13:41:44.000000000 —0800

+++ /home/rgougol/cs298 /build /postpone—grouping—openjdk/hotspot/src/share/vmm/oops/methodOop.hpp

2008—11—16 21:58:34.000000000 —0800
@@ —304,10 +304,14 @@

int interpreter_invocation_count () const { return _interpreter_invocation_count; }
int interpreter_invocation_limit () const { return _interpreter_invocation_limit >> 3; }
int interpreter_profile_limit () const { return _interpreter_profile_limit >> 3; }

— int interpreter_backedge_limit () const { return Profilelnterpreter ?

_interpreter_backedge_limit : _interpreter_backedge_limit >> 3; }

+ int interpreter_backedge_limit () const { return _interpreter_backedge_limit >> 3; }
void set_interpreter_invocation_count (int count) { _interpreter_invocation_count = count;
int increment_interpreter_invocation_count () { return ++_interpreter_invocation_count; }

— wvoid init_invocation_limit ();

4+ wvoid init_invocation_limit () {

+ _interpreter_invocation_-limit = invocation_counter ()—>get_InvocationLimit () << 3;

+ _interpreter_profile_limit = invocation_counter ()—>get_-ProfileLimit () << 3;

+ _interpreter_backedge_limit = invocation_counter ()—>get_BackwardBranchLimit () << 3;

+ 1}

#ifndef PRODUCT

}



158
159
160
161
162
163

164
165

166

int compiled_-invocation_count () const
@@ —-517,6 +521,7 @Q

static ByteSize id_offset ()

static ByteSize pairs_offset ()

static ByteSize paired_offset ()
5
+ static ByteSize highest_tier_compile_offset ()

_highest_tier_compile); }
#ifndef PRODUCT

return

return
return

return

return

76

_compiled_invocation_count; }

byte_offset_of (methodOopDesc, _id); }
byte_offset_of (methodOopDesc, _pairs);

byte_offset_of (methodOopDesc, _paired)

byte_offset_of (methodOopDesc,

static ByteSize compiled_invocation_counter_offset () { return byte_offset_of(methodOopDesc,

_compiled_invocation_count); }
#endif // not PRODUCT
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