
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2010

Open Source Analysis of Biomedical Figures
David Shao
San Jose State University

Follow this and additional works at: http://scholarworks.sjsu.edu/etd_projects

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Shao, David, "Open Source Analysis of Biomedical Figures" (2010). Master's Projects. 62.
http://scholarworks.sjsu.edu/etd_projects/62

http://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd_projects/62?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Open Source Analysis of Biomedical Figures

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

David Shao

Spring 2010

Copyright c© 2010

David Shao

All Rights Reserved

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Sami Khuri Department of Computer Science

Dr. Robert Fowler Department of Biological Sciences

Dr. Mark Stamp Department of Computer Science

APPROVED FOR THE UNIVERSITY

Abstract

With a selection of biomedical literature available for open access, a natural
pairing seems to be the use of open source software to automatically analyze
content, in particular, the content of figures. Considering the large number of
possible tools and approaches, we choose to focus on the recognition of printed
characters. As the problem of optical character recognition (OCR) under rea-
sonable conditions is considered to be solved, and as open source software is
fully capable of isolating the location of characters and identifying most of them
accurately, we instead use OCR as an application area for the relatively recent
development of compressive sampling, and in particular a fast implementation
called compressive sensing matching pursuit (CoSaMP). Compressive sampling
enables recovery of a signal from noisy measurements if certain rigorous mathe-
matical conditions hold on previously measured samples, the mathematical con-
ditions stating that measured samples must be essentially nearly perpendicular,
orthogonal, to each other. For OCR, we investigate approximating such nearly
orthogonal samples by selecting random curves, then using CoSaMP to deter-
mine a sparse number of samples approximating character shapes. We compare
the accuracy of three different methods of applying CoSaMP to the problem of
matching a blurred character to one of a set of previously sampled characters.
We show numerically that selecting random curves does not satisfy the strict
mathematical conditions for compressive sampling theory to guarantee optimal
solutions. However, character matching strategies using CoSaMP transformed
characters can be developed whose accuracy is roughly comparable to a base-
line comparison of blurred characters with original characters, suggesting that
OCR is an example where the performance of compressive sampling methods
declines gracefully as conditions are weakened on the sampling matrix.

iv

Acknowledgements

I would like to thank first my project advisor Dr. Sami Khuri of San José State
University for the freedom to pursue a topic of interest, for the patience for guiding
me so many years, for conducting the bioinformatics seminar that has exposed me to
both a wide variety of machine learning algorithms and to their application, and for
the ever practical advice on when and how the work must be finished.

I would like to thank Dr. Robert Fowler for his continual encouragement and
education of computer science students in genetics. The random curve approach I
use for sampling is my vague analogy for certain methods using many fragments for
matching in biology. I would also like to thank Dr. Mark Stamp also of San José
State University for his continued interest in my many potential topics and for giving
me a perspective on networking that I applied for insight into compressive sampling
applicability.

Apart from those on my committee, I would also like to give special thanks to
Dr. Leslie Foster also of San José State University for giving me the fundamentals on
numerical analysis and applied linear algebra to analyze my topic mathematically.

Most of all I would like to thank my wonderful wife Amy Shao who has been my
constant companion for so long and who has continuously given me strength seeing
how she has been able to survive and overcome life-threatening illness and disability.

v

Contents

1 Introduction 1
1.1 From open access to OCR . 1
1.2 Quest for a simple algorithm . 2

2 Open source OCR 3
2.1 Existing OCR . 3
2.2 Leptonica for character region determination 4
2.3 TEX and LATEX . 4
2.4 Blurring used for testing data . 5
2.5 Image manipulation using ImageMagick 7
2.6 Tesseract-OCR . 7

3 Compressive Sampling using CoSaMP 8
3.1 Motivation for using compressive sampling 9
3.2 Motivation for using random curves 9

4 Mathematics of Compressive Sampling 11
4.1 Orthogonality and SVD . 11

4.1.1 Orthogonality and near-orthogonality 11
4.1.2 Singular value decomposition 11
4.1.3 SVD, stability, and least-squares 12
4.1.4 SVD and condition number 13

5 Methods: CoSaMP 13
5.1 Motivation for CoSaMP . 13
5.2 CoSaMP formal definition . 13
5.3 CoSaMP implementation . 14
5.4 Time bounds . 15
5.5 Reversion to SVD and Colt . 15

6 Methods 16
6.1 GUI illustrating CoSaMP visually . 16
6.2 Stroke width . 17
6.3 Choices for testing . 17
6.4 Characters tested . 20

7 Results 20
7.1 Comparison strategy results . 20

7.1.1 Comparison for vector vs. vector, no CoSaMP 20
7.1.2 Comparison least squares on CoSaMP determined subset . . . 23
7.1.3 Comparison for CoSaMP vs. CoSaMP 23

vi

7.1.4 Comparison for actual vs. CoSaMP 28
7.2 Time . 29

8 Conclusions 29

9 Further Research 29

A Source Code 31
A.1 CoSaMP implementation . 31
A.2 DSLib.java . 49
A.3 DSColt.java . 74
A.4 DSCharacter.java . 75
A.5 DSGui.java . 88
A.6 DSTest.java . 114
A.7 DSRunThin.java . 120

vii

List of Figures

1 Leptonica can distinguish character bounding boxes 4
2 LATEX source file . 5
3 Blurred letter a from sloppy conversion 6
4 Blurred letter B used for tests . 6
5 Greek letter beta β converted to 16× 16 7
6 Tesseract-OCR reading most English text correctly 8
7 Two random cubic Beziér curves in 16× 16 space 10
8 Visualization of CoSaMP applied to β 17
9 Visualization stroke width 2.5 applied to β 17

viii

List of Tables

1 CoSaMP applied to Greek letter β 16
2 CoSaMP applied stroke width 2.5 β 18
3 Mismatched, no CoSaMP, alphabetical characters 21
4 Mismatched, no CoSaMP, digits . 22
5 Mismatched, no CoSaMP, Greek and arrows 22
6 Comparison on least squares subspace, small Greek letters 24
7 Comparison on numerals of no transform vs. least squares 25
8 Comparison for least squares, capital letters 26
9 Comparison CoSaMP vs. CoSaMP, small Greek letters 27
10 Comparison actual blurred vs. CoSaMP, small Greek letters 28

ix

1 Introduction

As discussed in [20], the sheer number of articles contributed each year to the biomed-
ical literature makes it difficult for researchers to make links between separate sources
to for example realize that there is the potential for a new drug or to make a connec-
tion why a genetic factor may explain why a drug works better or worse for certain
classes of people. There is a need for automatic processing of biomedical literature to
unearth such relationships across separate sources, especially with the accumulation
of various biomedical literature databases. We now discuss how we continuously nar-
rowed our focus until we developed a specific problem solvable using freely available
open source software.

1.1 From open access to OCR

The approach taken in [20] is to use the Medline database [13], which has abstracts
that have been curated to use the MeSH controlled biomedical vocabulary to search
for such relationships, an effort that has continued as part of the Pharmacogenomics
Knowledge Base [17]. Given that useful information can be extracted alone from
abstracts, much more should be obtainable from full articles.

In addition to the Medline database, the United States National Institutes of
Health (NIH) offers a full article subset of the biomedical literature through PubMed
Central [18]. Such open access articles include text pre-parsed in an XML format
and journal quality resolution figures. The existence of open access article databases
has allowed for the development of systems that can use the quantity of figures for
statistical pattern recognition training such as described in [2].

However, with statistical training there is the disadvantage that at some point
someone quite knowledgable in biology must manually annotate a collection of sources
to determine ground truth so that methods can be compared. The need for such
knowledgable people is precisely the difficulty that automated tools are supposed to
help overcome. For our research, we decided to focus on what can be deduced without
having to consult a biologist; therefore, we reduce the problem of analyzing a figure
to what we can see for ourselves. At the very foundation is the ability to recognize
that a certain portion of a figure represents a character in some language and then to
deduce what that character is, a field of inquiry known as optical character recognition
(OCR).

The field of optical character recognition has been slowly and methodically been
developed for decades with concrete problem solution, often combining multiple tech-
niques, steadily advancing the field until problems such as OCR for English in a
known font at reasonable resolution is essentially considered a solved problem, see for
example books such as [14] or [4].

1

1.2 Quest for a simple algorithm

The references [14] or [4] show that machine learning algorithms such as neural nets,
hidden Markov models (HMMs), and support vector machines (SVMs) have already
been extensively investigated for OCR. But we have also observed that to code many
machine learning algorithms, at some point we have to accept on faith some software
package implementation whose theory would take months for us to fully understand.
We had initially intended to use a statistical learning method known as a support
vector machine (SVM), for which there is a rapidly maturing software package Shogun
supported on many platforms and interfacing with many languages [23]. For support
vector machines the geometry of the space for separating different classes is specified
by a kernel that calculates the dot product between two vectors; however, we have no
insight as to which kernel to use, nor could we see an easy way to experiment with
extending application such as the ability to search for Greek letters.

Fortunately we have discovered that just in the past few years, post-2004, a new
approach to processing signals, compressive sampling, has been developed that has a
ready interpretation for our analysis of figures. For many implementations of com-
pressive sampling there is also a need for something similar to solving complicated
optimization problems, but again we are fortunate that just within the past three
years, a much faster implementation of solving compressive sampling type problems
has been developed that only uses concepts in applied linear algebra we are familiar
with. And since this method called CoSaMP is by nature extremely fast, we are
able to obtain results in just a few minutes, training included, so that we can rapidly
develop intuition about how our OCR results can be explained through linear algebra.

From the start we have recognized that we are hardly likely to develop a new
OCR method that can surpass open source solutions let alone commercial ones that
evidently are quite suitable for their purposes. Neither are likely to discover that a
new algorithm is better than any before. Instead we paradoxically seek what will
in all likelihood be an analogous but suboptimal area of extension so that we can
gain insight into a relatively new algorithm, CoSaMP. Furthermore, to bring the
discussion back to our purported topic of open source, because CoSaMP is expressed
in fundamental operations of linear algebra, there are many open source projects
that provide suitable implementations. For our applied linear algebra needs, we
easily found a package developed at CERN that works with the Java programming
language.

In Chapter 2, we show that open source software, is capable of finding candidate
connected components for characters, of basic OCR for printed English text of suffi-
ciently high resolution, and of scripting character generation and conversion including
blurring for test images. In Chapter 3, we discuss the basic theory of compressive
sampling and how we plan to use random curves for our sampling matrix. In Chap-
ter 4, we explain basic linear algebra concepts of near orthogonality and the singular
value decomposition, in particular, showing how the singular value decomposition
can be used to solve the least squares problem at the heart of each CoSaMP iteration

2

and how the singular value decomposition’s diagonal entries enable us to find the
condition number, the number we use to show our random curve sampling matrix
does not satisfy the full theoretical conditions for compressive sampling solution op-
timality. In Chapter 5, we present a complete statement of the CoSaMP algorithm
and explain our use of the singular value decomposition to solve least squares instead
of using iterative methods. In Chapter 6, we provide initial examples of CoSaMP
applied to approximate character images using random curves, show the condition
numbers in CoSaMP iterations do not satisfy the strict conditions of compressive
sampling theory, and discuss our strategies for using CoSaMP to match a blurred
image of a character to previously sampled characters. In Chapter 7, we show the
results of comparing these three strategies using CoSaMP to the baseline strategy not
using CoSaMP, achieving our goal of character recognition rates roughly comparable
to that of the baseline strategy. In Chapter 8, we discuss our conclusions, and in
Chapter 9, we indicate further directions for research.

2 Open source OCR

Given a figure that has text composed of characters, we would like to know that open
source software is capable of

• Detecting regions whose characters can occur and isolating such areas for char-
acter identification,

• Given an area known to have characters, identify what these characters are.

2.1 Existing OCR

There is commercially available optical character recognition software for English
and other languages that is considered to be fairly comprehensive, although there
are still some gaps depending on one’s area of interest. A recent 2008 project [22]
for automatic optical character recognition of mathematical articles combined the
commercial product Fine Reader by Abbyy [1] to recognize English characters with
an open source project InftyReader [9] to recognize mathematical objects such as
square root signs and reported an accuracy rate of detection at around 99%. While
an error rate of 1 out of 100 characters may seem high, one can possibly use previously
acquired databases of likely occurring words or use surrounding context to improve
word and phrase recognition. The open access articles from PubMed Central offer
one such opportunity for using surrounding context as the articles come in a bundle
both with text in an XML parsed format and with high quality figures. In addition,
the Specialist Group offers a wide-ranging set of natural language processing open
source software written in the Java programming language including databases of
biomedical terms. We will not pursue this direction further; instead concentrating on
our specific implementations.

3

Figure 1: Leptonica can distinguish character bounding boxes

2.2 Leptonica for character region determination

As discussed in previously mentioned texts such as [14] or [4], to find parts of a figure
that might be text, simply look for connected components, where by a connected
component we mean a collection of points such that between any two points there
exists a path contained in that component. By path for figures, we mean a sequence of
points such that two adjacent points in the sequence really are neighbors. There are
two reasonable concepts of neighbors if one considers points, or pixels, in a figure to
be part of a rectangular gridlike array—either a point on one’s diagonal is a neighbor,
which leads to 8-connected components, or it is not necesarily a neighbor, which leads
to 4-connected components. Regardless of concept, to find connected components one
simply devises some sort of efficient scanning of a figure. In Figure 1, we show the
output of modifying one line in the test program conncomp reg.c from open source
project Leptonica [12], version 1.65, to accept an arbitrary image as a command-
line argument. Leptonica detects the individual characters as connected components,
determines a box including a particular component, and then the conncomp reg.c

program randomly chooses colors for each component to prove that the characters
are individually distinguished.

2.3 TEX and LATEX

Donald Knuth developed the TEX typesetting system, as described for example in a
collected series of his papers in [10]. The LATEX extension to TEX as documented in

4

\documentclass[12pt]{article}

\thispagestyle{empty}

\begin{document}

We will try β-sheet and α-helix \newline

detection of several columns\newline

of text to see what Tesseract\newline

can do or not do. \newline

Can it even detect f-folds or \textit{f}-folds or \newline

r-times or \textit{r}-times?

\end{document}

Figure 2: LATEX source file

[11] provides the text specification in which we write the message eventually displayed
in Figure 1. Figure 2 shows the source file that is used to generate the text Leptonica
reads. Observe that in LATEX one can specify a Greek letter such as beta β without
having to leave the ordinary English letters. And because these are simple text
files, we simply script the generation of individual files each containing one letter or
character as training data.

2.4 Blurring used for testing data

One may observe in Figure 1 that the image is not very clear. A common cause of
such blurring is incorrect use of software options. For example, if one were to take a
PostScript file generated from a LATEX file using a program such as dvips and then
convert the PostScript file to a .pdf file without special care, then Figure 3 shows
what can happen. Here the letter small a is badly converted, then afterwards it is
difficult to recover the original sharpness. This is especially unwarranted because in
TEX the font system is designed to allow fonts to remain sharp because fonts are
specified using certain piecewise smooth cubic curves known as Beziér curves. As it
happens these problems of conversion can be avoided by specifying certain resolution
parameters, say 300 dpi, dots per inch, that retains a high enough resolution for
comfortable OCR.

But we plan to use blurring to our advantage to generate test data. As a pre-
view consider Figure 4 that shows a blurred letter B on the left that is processed to
some intermediate form shown in the middle, then wrongly compared on the right to
another intermediate for that represents the Greek letter pi π. Our idea will be to
use TEX derived characters as training data, blur the same characters, then see if the
trained detector can still find the character closest to the blurred image.

5

Figure 3: Blurred letter a from sloppy conversion

Figure 4: Blurred letter B used for tests

6

Figure 5: Greek letter beta β converted to 16× 16

2.5 Image manipulation using ImageMagick

Suppose text in a figure starts out at 96 dpi, then if there are 6 lines per inch, there
are approximately 16 pixels in the vertical direction per line. However, a character
does not use all the vertical space. There is space between lines and differing heights
for characters so that for a letter such as small “a,” one may only have 5 pixels in
either the vertical or horizontal direction.

Partly inspired by reading [15], we somewhat arbitrarily choose 16× 16 pixels as
a reasonable size for which to normalize character images. For normalizing images,
converting between file formats, and for applying various transformations, we use the
open source ImageMagick [8] program convert. The program convert has among
other options one called -trim that can remove the white space doing nothing around
a character isolating a character. Figure 5, a part of images we will see later, is a
demonstration of our graphical user interface we programmed in Java to help us
visualize images and transformations. Here careful use of convert has enabled us to
scale the Greek letter beta β fairly reasonably to 16× 16.

2.6 Tesseract-OCR

We have shown that open source software can find character connected components,
can isolate them, and can convert them to various sizes and formats, and that we
can choose either to try and preserve resolution or to deliberately blur to generate
a testing set. The Tesseract-OCR [25] project, first developed at HP Labs in the
1990s then transferred to being maintained as open source by Google, has been used
successfully by projects such as Sikuli [27]. In Figure 6, we see that the command-

7

Figure 6: Tesseract-OCR reading most English text correctly

line version of Tesseract-OCR can read most of the English text we earlier fed to
Leptonica. Such accuracy is not unexpected since even in the mid-1990s in contests at
UNLV, Tesseract-OCR was performing at around 95% accuracy. The default English-
trained Tesseract-OCR program we compiled from Subversion revision 319 appears
to have some difficulty with reading the Greek letters alpha α and beta β; however,
we recognize that Tesseract-OCR has an established if complicated procedure for
retraining to recognize more characters, and that furthermore it has been ported to
read several other European-type scripts. Tesseract-OCR’s implementation appears
to be somewhat akin to a Hidden Markov Model, and it is able to use context of
surrounding characters and previously trained words to help decipher characters.

Open source therefore already has a software stack for OCR all the way from
reading individual characters to deciphering passages. The problem of recognizing
printed characters in a known font even using open source software alone is basically
solved.

Instead of devising an optimal algorithm for OCR, we propose to use OCR to
examine whether the techniques of compressive sampling can be extended to randomly
generated sample matrices that do not quite satisfy conditions required to guarantee
optimal solutions.

In the next chapter, we discuss the theory of compressive sampling and our pro-
posal to use random curves as components of the sampling matrix.

3 Compressive Sampling using CoSaMP

Given that open source solutions such as Leptonica enable one to obtain individual
printed characters and given that solutions such as Tesseract OCR enable one to
obtain a significent fraction of characters unless the resolution of the characters is
not sufficient, we change our focus from finding a better algorithm to do OCR to
instead applying our intuition about OCR to understand better a recent algorithm.
Our attention is drawn to a recent algorithm CoSaMP from [16] that uses matrix
manipulations also easily found in open source. We discuss an implementation of
CoSaMP that uses randomly chosen cubic Beziér curves in the plane and how the
efficacy of this approach can be understood by using the singular value decomposition
associated with the corresponding matrices.

8

3.1 Motivation for using compressive sampling

As an analogy, suppose one had the problem of trying to describe an acquaintance’s
face to a family member who had never met this acquaintance. Then one could
conceive of describing the acquaintance’s features using a combination of features from
people with whom the family member was familiar with. As part of this description,
it would probably be better for the family member to keep the number of template
people as small as possible—using a couple of faces might be good, using fifty might
become tiresome.

In a series of papers starting in 2004 such as [3], which extends results to the
case of measurements with error, Candes, Tao, and others have developed the theory
of compressive sampling to recover signals that express measurements as a sparse
linear combination of known test samples. Let m measurements be made, where by
measurement we mean for example taking the value of a pixel at a certain point
location (x, y) of each photograph being considered. Let there be N known training
objects where each training object j has m measurements, so that each training object
can be identified with a column vector of measurements Φ1,j

...
Φm,j

 .

If any set of m measurements y we might later see is hypothesized to be a linear
combination of the training objects, the signal is the set of linear coefficients x such
that

y = Φx

where Φ is the matrix whose columns are those of the training object measurements.
A vector x has sparsity s if x has no more than s nonzero components.

There is extensive theory for solving systems of a form similar to

min ‖x‖, subject to y = Φx.

Candes and Tao in their formulation of compressive sampling have developed a theory
where if one assumes that almost all selections of s columns from test object matrix Φ
are nearly orthogonal, that is, where columns are almost perpendicular to each other
in multi-dimensional space, then solving certain systems can produce known recovery
of signals up to some error level.

3.2 Motivation for using random curves

For analyzing figures we make an analogy between curves being nearly non-touching
and columns being almost perpendicular to each other. We visualize the opposite,
columns sharing a common direction, with curves touching many points.

9

Figure 7: Two random cubic Beziér curves in 16× 16 space

We chose to use a class of randomized plane curves from the class of cubic Beziér
curves because they were used by Donald Knuth for the design of fonts in his META-
FONT program that generates the Computer Modern TEX fonts [10] and because in
the Java API there are simple methods to generate such curves given the two end-
points (x1, y1) and (x2, y2) and two control points (c1, d1) and (c2, d2). We simply
randomly generate all eight coordinates at once as real numbers between 0 and either
the desired height or width of the rectangular box containing the image. Note that
the resulting cubic curve must lie in the convex hull of its four specified points. For
further details about the properties of Beziér and graphics see for example [6]. In
Figure 7, we show the intersection of two randomly generated cubic Beziér curves in
16 × 16 pixel space. Two curves would represent completely orthogonal columns if
they had no intersection at all. Actually the resulting image is blown up uniformly
by a factor of 16 in each dimension so that each pixel becomes a 16 × 16 square for
greater visibility. For this particular random choice the curves intersect only in one
place in seemingly a small percentage of their total points. Of course if the random
choice is unfortunate, the curves could intersect in a far greater number of points,
and furthermore, there is no guarantee that several curves intersecting together might
violate the assumption that as a collection they do not mutually intersect that often.

We know that choosing random curves cannot satisfy the hypothesis for compres-
sive sampling. For a 16× 16 grid there are only a small number of curves that can be
chosen until the area is simply mostly covered, that is, lots of non-orthogonality. But
that is exactly our contribution—we intend to show that even if the mathematical
conditions no longer strictly hold, some part of the idea still applies, especially if we
can use knowledge of linear algebra to repair problems.

In the next chapter, we discuss the applied linear algebra of orthogonality and the
singular value decomposition that provide an understanding of the least squares com-
putation iteratively used in CoSaMPand of the condition number that determines how
close a matrix is to satisfying compressive sampling near-orthogonality requirements.

10

4 Mathematics of Compressive Sampling

We now explain what we mean by orthogonality and an efficient matrix decomposition
used in the theory of CoSaMP and which will be used by us in our extension of
CoSaMP to optical character recognition.

4.1 Orthogonality and SVD

We begin with a review of elementary linear algebra that will form the foundation of
our mathematical analysis of CoSaMPś performance on classifying characters using
random Beziér curves. The background for the following discussion can be found in
[26].

4.1.1 Orthogonality and near-orthogonality

Let a and b be real-valued vectors of the same one-dimensionality, length m. Then
a and b are said to be orthogonal if their inner product is 0, that is,

a · b =
m∑
i=1

ai · bi = 0.

Correspondingly in the theory of compressive sampling and for CoSaMP a concept
of near orthogonality can be defined where the inner product of the two vectors is
bounded by some small value δ.

A dot product induces a distance function where one simply takes the dot product
of a vector by itself and then takes the square root. Such a distance is known as a
2-norm. The general theory of compressive sampling can use other norms than the
2-norm, fortunately, we do not have to worry about such things in the context of
CoSaMP.

The theory of compressive sampling uses two-dimensional matrices Φ of dimension
m×T where T < m. The columns of Φ are said to be orthogonal if the inner products
between columns of different indices is 0. But for the analogous concept of nearly
orthogonal columns, it is not enough to merely consider pairs of columns and their
dot products in pairs being relatively small. Collections of multiple columns must be
considered together, such a procedure enabled by the following concept of the singular
value decomposition.

4.1.2 Singular value decomposition

Let two-dimensional real-valued matrix A be m×T dimensioned where m ≤ T . Then
there exist an orthogonal m× T dimensioned matrix U , a T × T diagonal matrix Σ,
and an orthogonal T × T -dimensioned matrix V such that A has a singular value
decomposition into the product of these three matrices

A = UΣV ∗,

11

where for real-valued matrices the conjugate adjoint V ∗ is the same as the transpose
of V . (The transpose of a matrix is defined so that the element at row i and column
j of the transposed matrix is the same as the element at row j and column i of the
original matrix.) In addition the diagonal matrix Σ can be restricted to have its
diagonal elements non-negative and sorted in descending order

Σ1 ≥ Σ2 ≥ · · · ≥ ΣT ≥ 0.

A more intuitive picture is that for multiplying a vector x by A, for each scaling factor
Σi of the diagonal matrix, take the length of x in direction Vi, multiply that length
by scaling factor Σi, and then assign the result along direction Ui. We can express A
as a sum of so-called outer products as

A =
T∑
i=1

ΣiUiV
∗
i .

4.1.3 SVD, stability, and least-squares

Because of the assumption of orthogonality of columns of U and of columns of V ,
algebraic calculation using an SVD decomposition is relatively easy. The calculation
of the SVD is also relatively stable so that errors in calculations are minimized.

An example that will be of use later discussing CoSaMP is using the SVD to solve
the least squares problem of given matrix A and a target vector b, find a vector x
that minimizes the norm of the difference

Ax− b.

If the matrix A∗A is invertible, then the solution of this problem is often written as

A+b = x,

where A+ is called the pseudo-inverse of A with algebraic solution

A+ = (A∗A)−1A∗.

Using a matrix inverse (A∗A)−1 after explicitly multiplying out A and its transpose
A∗ is less stable because in effect such a multiplication is squaring the effect of A.
On the other hand it is well-known that if one has an SVD one can simply invert the
order and use the inverse of the diagonal matrix Σ to obtain an expression for the
pseudo-inverse that does not involve a square term

A+ = V Σ−1U∗ =
m∑
i=1

Σ−1
i ViU

∗
i ,

assuming none of the Σi = 0.

12

4.1.4 SVD and condition number

Suppose that all diagonal elements Σi > 0, recall they are assumed to all be non-
negative. Then a measure of how differently A distributes values in different directions
is given by the ratio, the condition number,

cond (A) =
Σ1

ΣT

is the ratio of the largest scaling in some direction to the smallest scaling in some
direction. Observe that if in some direction the corresponding scaling is 0, that is,
Σi = 0, then the condition number above is not well-defined.

Having discussed the SVD, in the next chapter we present the full CoSaMP algo-
rithm and our strategies for using the CoSaMP algorithm for matching characters.

5 Methods: CoSaMP

We explain CoSaMP and show how we apply it to perform OCR.

5.1 Motivation for CoSaMP

Suppose the columns of the training matrix Φ were exactly orthogonal to each other,
suppose we were given some vector u to be approximated in terms of the columns
of Φ, and suppose we wanted to use s or fewer columns to explain as much of u as
possible. Then the obvious approach would be to simply take the dot product of u
with each column Φi of Φ and take the columns corresponding to the largest s values
of

{u · Φi} .

But the columns are not exactly orthogonal to each other, only approximately so. If
we consider the problem of finding the optimal s columns of Φ to be a search problem,
we are hoping that finding something plausibly close will lead us to the answer close
by, that is, using many of the columns we previously found.

We also recall that given some T columns of Φ where T ≥ s, the most optimal
way of approximating u is precisely to solve the least squares problem using the T
columns.

5.2 CoSaMP formal definition

The algorithm described below is Algorithm 2.1 from [16]. We make the following
observations and definitions:

• Let function findLargest(x; j) for vector x and integer j represent the indices of
the j largest in absolute value components of x.

13

• Let function values(x; j) for vector x and integer j represent the values of the
j largest in absolute value components of x.

• Let function LS(A; b) for matrix A and vector b represent the least squares
solution x that minimizes the norm of Ax−b. Recall finding LS() can be done
using the pseudo-inverse of A.

• By definition of matrix transpose, the i-th row of Φ∗ is the transpose of the i-th
column of Φ.

• For any matrix-vector product Ay, the resulting i-th row of Ay represents the
dot product of the i-th row of A with y. To find all of the dot products of some
m vector v with the columns of Φ, first transpose Φ to Φ∗ and just take the
matrix-vector product Φ∗y.

• From now on let S represent the best guess for the s sparsity indices and let
T represent the next set of indices in which to search for the next S. T must
contain the previous S. Since we have no information at the start, S is initialized
to be the empty set .

• Let z represent the current guess for the s sparse signal values. Initially as we
know nothing, z is initialized to be the zero vector.

• Let ΦT represent the matrix formed from the T indexed columns of Φ.

• Let r represent the residual u− Φz, that is, what is left to be estimated.

• Let function toContinue() be somewhat arbitrarily defined to be true if the
number of iterations has not exceeded some limit maxIter or if the signal guess
z is still changing between iterations.

5.3 CoSaMP implementation

For finding a least-squares estimate, in the context of CoSaMP’s theoretical frame-
work where the columns of the sample matrix Φ are approximately orthogonal, [16]
suggests that iterative methods, either Richardson’s iteration method or conjugate
gradient, can be used to considerably speed up the computation relative to the more
stable but slower use of the SVD.

However these iterative methods for their rapid convergence depend on the ap-
proximately orthogonal assumption that in retrospect simply does not hold. Our
initial attempts to program CoSaMP with iterative methods failed badly. Even had
our code been bug-free, the lack of orthogonality would magnify errors so that after
a few iterations massive divergences would occur on the order of 107 or more.

14

Input: m×N matrix Φ, sparsity s, m× 1 vector u to be approximated
Result: s-sparse signal N × 1 vector z such that Φz approximates u
begin

S ← ∅ ;
z← 0 ;
r← u ;
while toContinue() do

T ← S ∪ findLargest(Φ∗r; 2s) ;
S ← findLargest(LS(ΦT ; u); s) ;
z← values(LS(ΦT ; u); s) ;
r← u− Φz ;

end
end

Algorithm 1: CoSaMP

5.4 Time bounds

Even if there is no other known structure, a matrix-vector multiply of a m×T dimen-
sioned matrix with a T × 1 dimensioned vector will in a brute force implementation
cost

O
(
m · T 2

)
operations. According to [26], this is also the theoretical cost of computing the SVD.
However, according to [16], there are situations where at least one of the following
holds that advantage iterative methods:

• matrix-vector multiplications are faster than the upper bound,

• operations are not strictly matrix-vector,

• additional storage of the m× T matrix U is inconvenient.

The breakthrough of [16] is not just an acceleration of compressive sampling, but
proven bounds on number of iterations, perhaps only five, if the near-orthogonality
assumptions hold.

5.5 Reversion to SVD and Colt

Given that the near-orthogonality bounds do not hold strongly enough for the the-
orems from [16] to apply, the safest and easiest way to implement CoSaMP is to
simply use the SVD to calculate the least squares solution despite that method being
disparaged. We use the Colt [5] linear algebra package developed at CERN for the
Java programming language that conveniently has its own SVD method.

In the next chapter, we show images from our graphical user interface illustrating
CoSaMP approximations to characters using random curves, we describe our baseline

15

Iteration |r| |∆z| rank —T— cond(ΦT)
0 628.55 508.94 20 20 5.10
1 599.00 340.83 30 30 4.91
2 602.83 190.47 30 30 5.26
3 601.94 20.48 30 30 4.82
4 601.32 5.89 30 30 4.72
5 601.32 0.00 30 30 4.72

Table 1: CoSaMP applied to Greek letter β

strategy for matching a blurred character to one of previously sampled characters,
and we describe our three strategies for comparison using CoSaMP for such blurred
character matching.

6 Methods

6.1 GUI illustrating CoSaMP visually

In Table 1, we show the first results we have for using CoSaMP on the image pixels
of the character beta β. Somewhat arbitrarily we choose the sparsity s to be 10 and
the number of random curves to be 1000. The first column is the number of iterations
of CoSaMP the second column is the norm of the residual, the third is the change
in the signal estimate, the fourth is the rank of the matrix ΦT , the fifth is the order
of T , and the sixth column is the condition number of the same matrix ΦT . If one
retrains using new random sample shapes, one can obtain different rates of running
CoSaMP on one character. In Table 1 we see a very short run where it takes only 6
iterations for the signal estimate to completely convert. Looking at the sixth column,
the condition numbers, we see that the matrices Φ cannot possibly fulfill the near-
orthogonality constraints, because then the condition numbers, the diagonal elements
Σi, would have to be all nearly 1, while these in column 6 have a ratio at least 4.

We also observe that the presence of both the rank of the matrix ΦT and the
expected dimension the number of indices in T is not redundant. We have observed
calculations where the matrix ΦT has deficient rank.

In Figure 8, we show from the “Comparison” panel of our Java platform graphical
user interface the letter beta β and its transformation using CoSaMP. The leftmost
image in Figure 8 is the original letter β converted to 16 × 16, the middle image
is the CoSaMP transform of β shown as an image, and the rightmost image is the
area spanned by the s = 10 CoSaMP-selected random curves. The middle image
represents an approximation by CoSaMP selecting a linear combination of s random
curves, and the rightmost image shows that our choice of s = 10 does not simply
induce a covering of all pixels of the image by the s curves.

16

Figure 8: Visualization of CoSaMP applied to β

Figure 9: Visualization stroke width 2.5 applied to β

6.2 Stroke width

Examining the Java API for cubic Beziér curves, we see that in addition to specifying
coordinates for points, we need to specify a stroke width. If we use a larger stroke
width more of the area is covered.

In Figure 8, we use a relatively modest stroke width of 1. Changing only the
stroke width to 2.5, we obtain in Figure 9 a seemingly better fit in appearance if we
are interested in including the interior of the shape as well. In Table 2 we show
the numerical results during the CoSaMP transform of β, which in this case involved
more iterations.

6.3 Choices for testing

We now explore more choices that can be made with testing sets.
We identify with CoSaMP the following choices for how to compare an unknown

character, blurred, with the previously trained set of characters including Greek let-

17

Iteration |r| |∆z| rank —T— cond(ΦT)
0 798.56 580.41 20 20 10.38
1 722.09 708.23 30 30 10.56
2 932.01 632.96 30 30 10.33
3 946.74 352.96 30 30 14.71
4 989.45 126.65 28 28 13.37
5 963.29 63.55 28 28 14.53
6 961.38 47.88 28 28 13.41
7 963.29 47.88 28 28 14.53
8 961.38 47.88 28 28 13.41
9 963.29 47.88 28 28 14.53

10 961.38 47.88 28 28 13.41
11 963.29 47.88 28 28 14.53
12 961.38 47.88 28 28 13.41
13 963.29 47.88 28 28 14.53
14 961.38 47.88 28 28 13.41
15 963.29 47.88 28 28 14.53
16 961.38 47.88 28 28 13.41
17 963.29 47.88 28 28 14.53
18 961.38 47.88 28 28 13.41
19 963.29 47.88 28 28 14.53

Table 2: CoSaMP applied stroke width 2.5 β

18

ters and some arrows. Observe the scaled dot product of two vectors a and b

(a, b) =
a · b
|a| · |b|

is a measure of how much the two vectors point in the same direction. We take the
absolute value of the scaled dot product. Consider CoSaMP when applied to a vector
x, given sparsity s, to be in effect a transform C(x) to its sparsity s approximation.

1. The obvious and best approach is to simply compare the new blurred character
with the original of each other character using the scaled dot product. For each
fixed new vector x, with every previously encountered character y, we find the
maximum over the y of

(x, y).

This choice corresponds to simply identifying each character with the part of the
two-dimensional rectangle it occupies, then the dot product essentially measures
well these areas overlap, fully in accordance with our intuition about how to
match characters.

2. Suppose we consider the CoSaMP approximation for a vector given the spar-
sity s to be a transform, then perhaps taking the dot products of two transforms,
both transforming the new character and using the previous transform of the
trained characters, will preserve something similar to have Fourier transforms
into the frequency domain preserve some notion of inner product. This approach
will be the slowest since a brand new CoSaMP approximation will be applied to
each new vector. The dot product of the two transforms then maximizes over y

(Cx,Cy) .

3. Suppose we take the dot product of the new vector x with the CoSaMP trans-
form Cy. If we write Cy as

Cy =
s∑

i=1

αiΦi

for some columns Φi of the sample matrix, then the dot product

x · Cy =
s∑

i=1

αi (x · Φi)

is almost pretending that the Φi are orthogonal and that we are taking a dot
product relative to those coordinates.

4. Suppose we try a hybrid approach of using our intuition that the selected
sparse s curves should somehow represent an important region on which two

19

characters should match, but that we should consider this sparse s region on its
own terms. That is, CoSaMP is used to determine the indices of the sampling
matrix columns Φ(s) = {Φ1, . . . ,Φs}, but for both the new and the currently
considered character y, instead of using CoSaMP again, we try to find the best
projection on the space of Φ(s). We propose taking the scaled dot product of
the least squares solution for both x and y on Φ(s).

6.4 Characters tested

In TEX or LATEX it is relatively easy to generate characters including Greek and
mathematical symbols and then to script these characters into image files. We used
the English version of the Latin alphabet, both upper and lower case, the numbers
from 0 through 9, the unique Greek lower and upper case symbols from TEX but not
the variant versions such as $ for π, and three arrow symbols ←, →, and 7→.

In the next chapter, we discuss the results of comparing the three strategies for
matching characters using CoSaMP with the baseline strategy.

7 Results

We show the results for an experiment comparing various strategies for using CoSaMP
for OCR of English printed characters and Greek / mathematical symbols.

7.1 Comparison strategy results

For each character x, we blur the character using a sloppy conversion from a PostScript
to a .pdf file, then try to find the best fit from the previously encountered characters
y using four different strategies. We might as well keep track for each x what place
the true character finished in the comparison, and the scaled dot products give us
some sort of measure of how closely pairs match. For the test run we use 16 × 16
images, sparsity s = 10, stroke width 2.5, number of random curves 2000, maximum
number of iterations for CoSaMP of 20, and dpi 300.

7.1.1 Comparison for vector vs. vector, no CoSaMP

We begin with the matching for the strategy of just using the (blurred) image and
taking its scaled dot product with other images, no CoSaMP. To explain the columns
of Table 3, the first column represents the actual character x, blurred, the second
column is the character y with the largest scaled dot product relative to x, the third
column is that largest scaled dot product, the fourth column is the place in which
the actual character x finished in the comparisons, the fifth column is if x finished
first the character that finished second, and the sixth column is either the score of
the second placed character if x finished first or otherwise x’s score.

20

Actual Best fitted Best score Place Alternative Actual score
C c 0.812 6 C 0.620
F P 0.817 6 F 0.655
G o 0.752 2 G 0.636
I t 0.816 13 I 0.412
L U 0.721 23 L 0.443
O o 0.854 3 O 0.576
Q Omega 0.786 5 Q 0.625
S s 0.868 2 S 0.770
T t 0.824 16 T 0.380
U H 0.728 18 U 0.491
V v 0.836 3 V 0.622
X x 0.736 3 X 0.626
Z z 0.875 2 Z 0.865
a sigma 0.605 4 a 0.530
f l 0.817 3 f 0.803
n u 0.822 2 n 0.794
p r 0.817 6 p 0.644
r T 0.774 8 r 0.606
t I 0.806 10 t 0.544

Table 3: Mismatched, no CoSaMP, alphabetical characters

21

Actual Best fitted Best score Place Alternative Actual score
0 n 0.742 4 0 0.700
1 l 0.895 2 1 0.883
3 s 0.701 3 3 0.681
4 d 0.736 8 4 0.526
5 s 0.676 2 5 0.656
6 epsilon 0.700 6 6 0.660
9 q 0.720 3 9 0.681

Table 4: Mismatched, no CoSaMP, digits

Actual Best fitted Best score Place Alternative Actual score
beta eta 0.549 18 beta 0.400

theta epsilon 0.683 2 theta 0.666
xi zeta 0.672 2 xi 0.640
pi w 0.635 3 pi 0.534

tau w 0.549 12 tau 0.368
upsilon b 0.530 2 upsilon 0.517

chi Y 0.658 3 chi 0.650
Gamma E 0.772 24 Gamma 0.463

Theta o 0.797 2 Theta 0.667
Omega o 0.623 2 Omega 0.614

leftarrow C 0.460 3 leftarrow 0.457
mapsto alpha 0.501 2 mapsto 0.456

rightarrow mapsto 0.408 4 rightarrow 0.394

Table 5: Mismatched, no CoSaMP, Greek and arrows

Table 3 shows the mismatched Latin alphabetic characters for the strategy of
simply comparing the blurred x with the previously stored images y, no CoSaMP
transformation to either and no restriction to a subset of pixels in the rectangle.
We see that blurring has what is to us a surprisingly big effect—we are after all
comparing characters using the same font, size, etc. to blurred versions of themselves
and still finding that for some many other characters appear to match better using
this strategy. It also appears to us from Table 3 that lower case letters match better
than upper case letters. In Table 4, we see the results for comparing characters
directly for digits. The digits are often mismatched; however, the number of places
of mismatch is relatively small so that at least the true digit is a close candidate.
So far the rate at which even in ideal conditions blurred characters are recognized
is rather low. But in Table 5, which show differences in matching for Greek letters
and for a few arrows, we see that the accurate recognition of Greek letters brings the

22

recognition rate up to an overall

60/99 ≈ 0.6

with average place around 3.05. For our tests the Greek symbols are typeset in
mathematics; furthermore, some Greek symbols are not specially made, particularly
for capital letters, so presumably the letters that have special versions are perhaps
more different from other Latin alphabet letters than usual.

7.1.2 Comparison least squares on CoSaMP determined subset

In Table 6, we see the results for small Greek letters of finding the least squares
approximation on the CoSaMP derived s-sparse subspace, presumably a set of curves
that somehow approximate the shape intended. We observe that the scaled dot
product scores are higher for the best matches, often above 0.9, presumably due to
the approximating shape tightening up where matches in pixels should occur. We
observe that scores even for correct matches can be somewhat close to the second
place score. And we note that for character tau τ matching is considerably worse
than for the case of no transform, the place of the correct match down to 62, worse
than chance. In Table 7, we show a comparison on all numeral characters from 0
through 9 of the case of no transforms versus the case of least squares projection
on the s-sparse subspace found by CoSaMP. We see that least squares never has the
numeral detected at a worse place than the case of no transform and that least squares
detects 5 out of 10 correctly versus 3 out of 10 for no transform. For the least squares
on all characters we obtain

49/99 ≈ 0.49

correctly identified with average place approximately 6.1. For one reason why the
average place rose, consider Table 8 showing the results for least squares projection
on capital letters. While the no transform capital letters analysis, refer to Table 3,
has four letters with double digit places, we see that the least squares approach has
seven with double digit places, and the case of tau τ has deteriorated to a place down
to 62, worse than just taking half the number of characters considered.

7.1.3 Comparison for CoSaMP vs. CoSaMP

Next, we consider comparing a new blurred character transformed by CoSaMP with
previously sampled unblurred characters also transformed by CoSaMP. In Table 9 we
show the results for small Greek letters. We observe that 15 out of 23 are correctly
recognized, as compared to the case of no transform where 16 out of 23 are correctly
recognized.

Over all characters not just small Greek ones the accuracy rate of matching is

52/99 ≈ 0.525

and average place of matching is approximately 4.4.

23

Actual Best fitted Best score Place Alternative Actual score
alpha alpha 0.955 2 A 0.866
beta Z 0.908 2 beta 0.882

gamma gamma 0.903 2 Xi 0.872
delta delta 0.955 2 8 0.914

epsilon epsilon 0.967 2 C 0.951
zeta zeta 0.941 2 6 0.884
eta eta 0.970 2 pi 0.891

theta 6 0.948 2 theta 0.936
iota epsilon 0.933 3 iota 0.898

kappa kappa 0.948 2 nu 0.933
lambda lambda 0.949 2 Lambda 0.948

mu mu 0.916 2 0 0.914
nu nu 0.956 2 0 0.952
xi zeta 0.911 2 xi 0.906
pi pi 0.873 2 p 0.870

rho rho 0.941 2 0 0.939
sigma sigma 0.959 2 alpha 0.930

tau chi 0.902 62 tau 0.539
upsilon psi 0.877 14 upsilon 0.791

phi phi 0.913 2 0 0.896
chi Upsilon 0.936 4 chi 0.907
psi r 0.872 2 psi 0.860

omega O 0.949 2 omega 0.939

Table 6: Comparison on least squares subspace, small Greek letters

24

Actual Best fitted Best score Place Alternative Actual score

No CoSaMP blurred vs no CoSaMP

0 n 0.742 4 0 0.700
1 l 0.895 2 1 0.883
2 2 0.851 2 R 0.600
3 s 0.701 3 3 0.681
4 d 0.736 8 4 0.526
5 s 0.676 2 5 0.656
6 epsilon 0.700 6 6 0.660
7 7 0.736 2 Z 0.614
8 8 0.819 2 s 0.779
9 q 0.720 3 9 0.681

Least squares blurred vs Least squares
0 0 0.981 2 d 0.958
1 l 0.953 2 1 0.952
2 2 0.984 2 S 0.893
3 3 0.965 2 x 0.958
4 J 0.898 6 4 0.841
5 Xi 0.909 2 5 0.908
6 3 0.943 3 6 0.934
7 7 0.884 2 f 0.869
8 8 0.974 2 s 0.936
9 q 0.966 2 9 0.935

Table 7: Comparison on numerals of no transform vs. least squares

25

Actual Best fitted Best score Place Alternative Actual score
A A 0.982 2 Lambda 0.945
B B 0.976 2 P 0.958
C G 0.938 14 C 0.850
D D 0.965 2 Omega 0.938
E v 0.961 6 E 0.933
F Z 0.961 23 F 0.821
G G 0.959 2 o 0.911
H n 0.986 4 H 0.968
I t 0.963 33 I 0.589
J J 0.950 2 4 0.943
K K 0.990 2 X 0.928
L U 0.923 44 L 0.644

M M 0.969 2 n 0.945
N N 0.961 2 X 0.951
O n 0.938 8 O 0.878
P P 0.980 2 e 0.960
Q n 0.967 7 Q 0.917
R e 0.979 3 R 0.974
S s 0.984 2 S 0.968
T t 0.980 31 T 0.663
U c 0.989 64 U 0.599
V Y 0.963 4 V 0.904

W w 0.975 2 W 0.969
X N 0.921 12 X 0.846
Y v 0.922 2 Y 0.882
Z Z 0.983 2 z 0.971

Table 8: Comparison for least squares, capital letters

26

Actual Best fitted Best score Place Alternative Actual score
alpha alpha 0.810 2 sigma 0.721
beta beta 0.696 2 eta 0.687

gamma gamma 0.855 2 7 0.716
delta delta 0.836 2 k 0.687

epsilon C 0.868 2 epsilon 0.840
zeta zeta 0.813 2 6 0.662
eta eta 0.865 2 0 0.763

theta 6 0.746 5 theta 0.661
iota iota 0.734 2 r 0.721

kappa kappa 0.768 2 sigma 0.675
lambda lambda 0.906 2 Lambda 0.816

mu mu 0.829 2 p 0.765
nu nu 0.730 2 M 0.715
xi zeta 0.808 2 xi 0.794
pi w 0.758 13 pi 0.561

rho rho 0.777 2 theta 0.765
sigma sigma 0.905 2 alpha 0.702

tau w 0.733 23 tau 0.446
upsilon psi 0.645 11 upsilon 0.552

phi 6 0.702 2 phi 0.679
chi Y 0.745 5 chi 0.671
psi psi 0.729 2 k 0.621

omega omega 0.750 2 Psi 0.619

Table 9: Comparison CoSaMP vs. CoSaMP, small Greek letters

27

Actual Best fitted Best score Place Alternative Actual score
alpha alpha 0.835 2 sigma 0.707
beta beta 0.626 2 eta 0.619

gamma gamma 0.806 2 Upsilon 0.635
delta delta 0.814 2 theta 0.660

epsilon C 0.843 2 epsilon 0.816
zeta zeta 0.810 2 xi 0.621
eta eta 0.851 2 0 0.672

theta 0 0.736 2 theta 0.734
iota r 0.733 2 iota 0.728

kappa kappa 0.774 2 x 0.683
lambda lambda 0.893 2 Lambda 0.795

mu mu 0.827 2 p 0.756
nu nu 0.769 2 upsilon 0.671
xi zeta 0.768 2 xi 0.730
pi w 0.734 5 pi 0.590

rho rho 0.782 2 theta 0.710
sigma sigma 0.859 2 alpha 0.755

tau w 0.690 20 tau 0.419
upsilon psi 0.614 3 upsilon 0.584

phi phi 0.670 2 6 0.642
chi Y 0.754 3 chi 0.699
psi psi 0.696 2 k 0.609

omega omega 0.709 2 Phi 0.470

Table 10: Comparison actual blurred vs. CoSaMP, small Greek letters

7.1.4 Comparison for actual vs. CoSaMP

For the strategy of comparing the actual blurred vs. CoSaMP previously trained
images, Table 10 shows the results for the lower case Greek letters. The recognition
rate is 15 out of 23, and the place of tau τ has dropped to 20. We also see that the
character beta β is correctly recognized with its best score 0.626 now better than the
eta η score of 0.619.

The overall recognition rate for all characters is

61/99 ≈ 0.616,

and the average place of the actual character’s score matching is approximately 3.9.
Our intuition is that CoSaMP by choosing a random shape is narrowing what

areas are used for analyzing a character, thus resulting in scores being bunched closer
together at an upper range.

28

7.2 Time

We observe that for training and testing CoSaMP using the SVD on 99 characters,
the elapsed times on an Apple Intel Macbook 2.1, Core 2 Duo, 2 GB memory, OS X
10.6.3, Apple bundled version of Java 1.6.0 17, is listed in various parts of our output
as:

21523 millis to obtain 2000 random curves

152638 millis to train 99 characters

...

144235 millis to test 99 characters

that is, 21.5 seconds for generating 2000 random curves, 152 seconds for training
99 characters, and 144.2 seconds for running CoSaMP on the blurred images then
comparing that transformed measurement to the previous CoSaMP transformed mea-
surements.

8 Conclusions

From a software engineering perspective, this report shows the value of having a field
of investigation that allows for visualization such as OCR and of using algorithms
that combine speed, simplicity, and stability. Using our graphical user interface we
are able to detect and correct bugs in our implementation that we would have missed
otherwise. Because of the speed of CoSaMP, we are able to shift to using the more
stable SVD method of solving least squares and still have our tests all finish within a
few minutes, both training and testing times. We never have to wait overnight for a
run to finish.

The simplicity of CoSaMP and its ready interpretation enables us to suggest
several plausible strategies for using CoSaMP for OCR. Numerical experiments testing
various strategies for matching blurred characters suggest that using CoSaMP can be
made competitive with an optimal strategy of matching a blurred character against
itself.

We find that compressive sampling for application to OCR does gracefully decline
in performance as the mathematical conditions for optimal signal recovery weaken,
at least for an implementation using CoSaMP.

9 Further Research

The recognition rate we have observed for CoSaMP compressive sampling in OCR
surprises us with how competitive it is with what we thought would have been an
optimal stategy of comparing a blurred image with the original. We can now extend
our investigations to see if compressive sampling can somehow generalize the portion

29

of a character that is important by using the sparsity to paradoxically focus on specific
areas identified with well-matching random curves. In particular we can compare how
well the CoSaMP strategies fare when trying to match italicized versions of characters.

We can also extend using compressive sampling to a wider range of mathematical
symbols. And if we can detect mathematical symbols, we anticipate we can generalize
to detecting more general shapes in biomedical literature figures.

If compressive sampling ideas can apply to more intuitive methods of generating
samples such as our generating random curves, we anticipate far easier and faster
means of training pattern recognizers.

30

A Source Code

We leave some comments including copyright boilerplate and also leave out trivial
functions and imports.

A.1 CoSaMP implementation

Our general approach is to simply implement as many concepts in CoSaMP as meth-
ods so that it is easier to check for errors.

import java.io.*;

import java.util.*;

/**

Class to implement the cosamp algorithm

*/

public class DSCosamp implements Serializable

{

/**

Finds s-sparse approximation, use getApprox() for value

@param u sample vector

@param s sparsity

*/

public void cosamp(double[] u, int s)

{

cosampInit(u, s);

boolean notDone = true;

while (notDone)

{

cosampIteration();

notDone = cosampStop();

kIter++;

}

}

/**

SVD least squares estimation

@param Tindex column indices needed from sample matrix Phi

@param b to be approximated

@param x preallocated T by 1 for pseudoInverse A applied to b

@param bApprox preallocated m by 1 for A applied to x

31

@param condNum first position will have condition number of Phi T

@return rank of Phi T to check for being nonsingular

*/

public int svdLS

(

int[] Tindex, double[] b, double[] x, double[] bApprox,

double[]condNum

)

{

// A <- Phi T

double[][] A = new double[m][Tindex.length];

DSLib.submatrix(Tindex, Phi, A);

double[][] U = new double[m][Tindex.length];

double[] sigma = new double[Tindex.length];

double[][] V = new double[Tindex.length][Tindex.length];

int rank = DSColt.svd(A, U, sigma, V);

double cond = sigma[0] / sigma[rank - 1];

DSLib.pseudoInverse(U, sigma, V, rank, b, x);

if (bApprox != null)

{

multPhiT(Tindex, x, bApprox);

}

condNum[0] = cond;

return rank;

}

/**

Choose which method to solve least squares

*/

public void setMethodLS(int methodLS)

{

this.methodLS = methodLS;

}

/**

Set the maximum number of iterations

@param maxIter maximum number

*/

public void setMaxIter(int maxIter)

{

this.maxIter = maxIter;

}

32

/**

Gets best approximation to noisy signal

@return copy of m by 1 approximation

*/

public double[] getApprox()

{

double[] approxCopy = new double[m];

DSLib.vecCopy(approxCache[indexMinDiffSample], approxCopy);

return approxCopy;

}

/**

Gets the indices of Phi for the previous best estimate

@return copy of s by 1 indices vector

*/

public int[] getASupp()

{

int[] aSuppCopy = new int[s];

for (int i = 0; i < s; i++)

{

aSuppCopy[i] = aSupp[i];

}

return aSuppCopy;

}

/**

Gets sparsity s of previous call

@return sparsity

*/

public int getS()

{

return s;

}

/**

Gets union of previous call to cosamp sets

@param vecUnion to store the union

*/

public double[] getUnion(double threshold)

{

double[] vecUnion = new double[m];

33

DSLib.unionSet(threshold, s, aSupp, m, Phi, scale, vecUnion);

return vecUnion;

}

/**

Get sampling matrix, actual not a copy

@return actual sampling matrix, can alter state

*/

public double[][] getPhi()

{

return Phi;

}

/**

Sets the sampling matrix

@param Phi sampling matrix, m by N

*/

public void setPhi(double[][] Phi)

{

this.Phi = Phi;

// m = number of rows, N = number of columns

this.m = Phi.length;

this.N = Phi[0].length;

this.scale = new double[N];

for (int j = 0; j < N; j++)

{

double norm2 = 0;

for (int i = 0; i < m; i++)

{

System.out.printf("Phi(%d, %d) = %6.2f\n", i, j, Phi[i][j]);

norm2 += (Phi[i][j] * Phi[i][j]);

}

norm2 = Math.sqrt(norm2);

scale[j] = norm2;

for (int i = 0; i < m; i++)

{

Phi[i][j] = Phi[i][j] / norm2;

}

}

}

/**

34

Sets the scaling factor to recover the original

@param scale

*/

public void setScale(double[] scale)

{

this.scale = scale;

}

/**

Sets whether to issue debugging output to the terminal

@param debug to true if want debugging output

*/

public void setDebug(boolean debug)

{

this.debug = debug;

}

/**

Sets whether to issue debugging output to the terminal

@param debug to true if want debugging output

*/

public void setPrintMatch(boolean printMatch)

{

this.printMatch = printMatch;

}

/**

Sets whether or not to keep computing after diff in signal min

@param cutShort true if can cut short computation

*/

public void setCutShort(boolean cutShort)

{

this.debug = debug;

}

/**

Clears log

*/

public void clearLog()

{

log.clear();

}

35

/**

Gets log

@return log

*/

public ArrayList<String> getLog()

{

return log;

}

public static void main(String[] args)

{

}

/**

Initialize CoSaMP run

@param u sample vector

@param s sparsity level

*/

private void cosampInit(double[] u, int s)

{

clearLog();

this.u = u;

this.s = s;

this.approxCache = new double[maxIter + 1][m];

this.aCache = new double[maxIter + 1][N];

this.diffSignal = new double[maxIter + 1];

this.diffSample = new double[maxIter + 1];

this.tolReached = false;

this.otherLine = "";

this.otherTitle = "";

// Pre-allocations

this.y = new double[N];

this.Omega = new int[2 * s];

this.yAbs = new double[N];

this.b = new double[0];

this.preSupp = new int[s];

this.approx = new double[m];

// a <- 0 and support(a) is empty

36

this.aPrev = new double[N];

DSLib.vecInit(aPrev, 0);

this.aCurr = new double[N];

DSLib.vecInit(aCurr, 0);

this.aLoc = new int[s];

this.aSupp = new int[0];

this.aSparse = new double[s];

// v <- u, v is the sample residual

v = new double[u.length];

DSLib.vecCopy(u, v);

// k <- 0

kIter = 0;

String message = "kIter = " + kIter;

if (debug)

{

log.add(message);

System.out.println("kIter = " + kIter);

if (kIter == 0) // initial v = u

{

for (int i = 0; i < m; i++)

{

System.out.println("v[" + i + "] = " + v[i]);

}

}

}

}

/**

Run one iteration of the CoSaMP Recovery Algorithm

*/

private void cosampIteration()

{

String message = "";

DSLib.vecCopy(aCurr, aPrev);

// Calculate signal proxy y <- Phi* v

multPhiStar(v, y);

37

if (debug)

{

if (kIter == 0)

{

for (int i = 0; i < N; i++)

{

System.out.println("y[" + i + "] = " + y[i]);

}

}

}

// Find 2 * s largest components of |y|

DSLib.vecAbs(y, yAbs);

DSLib.findLargest(yAbs, 2 * s, Omega);

// Merge the supports Omega and support of a.

// Note: resulting T might have less than 3s indices.

T = DSLib.mergeSupport(Omega, aSupp, aLoc);

if (debug)

{

if ((kIter == 0) || (kIter == 1))

{

for (int i = 0; i < T.length; i++)

{

System.out.println("T[" + i + "] = " + T[i]);

}

}

}

// zCurr <- pseudoInverse Phi T u

zCurr = new double[T.length];

// Solve least-squares to obtain zCurr = bT = Phi_T^+ u

if (methodLS == USE_SVD)

{

svdLS();

}

else if (methodLS == USE_CG)

{

conjugateGradientLS();

}

38

// Prune to the largest s elements of b_T.

// But b_T contains all non-zero elements of b.

// aSupp <- the s largest indices of b relative to columns of Phi.

// aSparse <- the s largest values of b relative to columns of Phi.

// aCurr <- N vector that has as nonzero elements values of aSparse

if (kIter == 0) // aSupp was empty originally

{

aSupp = new int[s];

}

prune();

multPhiT(aSupp, aSparse, approx);

// Update residual v

DSLib.vecDiff(u, approx, v);

}

/**

Stop either when maxIter iterations exceeded or

when no further difference in signal estimate

*/

private boolean cosampStop()

{

String message = "";

DSLib.vecCopy(approx, approxCache[kIter]);

DSLib.vecCopy(aCurr, aCache[kIter]);

diffSample[kIter] = DSLib.norm2(v);

diffSignal[kIter] = DSLib.norm2(aPrev, aCurr);

if (kIter == 0)

{

indexMinDiffSignal = 0;

minDiffSignal = diffSignal[0];

indexMinDiffSample = 0;

minDiffSample = diffSample[0];

tolReached = (minDiffSignal < SIGNAL_TOL);

}

else if (!tolReached)

{

if (diffSignal[kIter] < minDiffSignal)

{

indexMinDiffSignal = kIter;

minDiffSignal = diffSignal[kIter];

39

tolReached = (minDiffSignal < SIGNAL_TOL);

}

if (diffSample[kIter] < minDiffSample)

{

indexMinDiffSample = kIter;

minDiffSample = diffSample[kIter];

}

}

StringBuilder sb = new StringBuilder();

Formatter formatter = new Formatter(sb, Locale.US);

formatter.format("%4d %10.2f %10.2f %s",

kIter, diffSample[kIter], diffSignal[kIter], otherLine);

iterLine = sb.toString();

log.add(iterLine);

if (printMatch)

{

System.out.printf("%s\n", iterLine);

}

return ((kIter < (maxIter - 1)) && (!tolReached));

}

/**

Multiply m by N matrix Phi with N by 1 vector

@param vec vector

@param mult result, assumed N by 1

*/

private void multPhi(double[] vec, double[] mult)

{

for (int i = 0; i < m; i++)

{

mult[i] = 0;

for (int j = 0; j < N; j++)

{

mult[i] += Phi[i][j] * vec[j];

}

}

}

/**

Multiply N by m matrix PhiStar with m by 1 vector

@param vec vector

40

@param mult result, assumed N by 1

*/

private void multPhiStar(double[] vec, double[] mult)

{

for (int i = 0; i < N; i++)

{

mult[i] = 0;

for (int j = 0; j < m; j++)

{

// Phi^* [i][j] = Phi[j][i]

mult[i] += (Phi[j][i] * vec[j]);

}

}

}

/**

Multiply T.length by m matrix PhiTStar with m by 1 vector

@param T column indices in Phi

@param vec vector

@param mult result, assumed T.length by 1

*/

private void multPhiTStar

(

int[] T, double[] vec, double[] mult

)

{

int nT = T.length;

for (int i = 0; i < nT; i++)

{

mult[i] = 0;

int coli = T[i];

for (int j = 0; j < m; j++)

{

// Phi[j][coli] = Phi^*[coli][j]

mult[i] += Phi[j][coli] * vec[j];

}

}

}

/**

Multiply m by T.length m matrix PhiT with T.length by 1 vector

@param T indices

41

@param vec vector, assumed T.length by 1

@param mult result, assumed preallocated m by 1

*/

private void multPhiT

(

int[] T, double[] vec, double[] mult

)

{

int nT = T.length;

for (int i = 0; i < m; i++)

{

mult[i] = 0;

for (int j = 0; j < nT; j++)

{

mult[i] += Phi[i][T[j]] * vec[j];

}

}

}

/**

Richardson iteration least squares estimation

*/

private void richardsonLS()

{

richardsonInit();

while (!stopLS())

{

richardsonIteration();

}

}

/**

Make Phi_T* u the initial guess

*/

private void richardsonInit()

{

errorLSNormal.clear();

errorLSIter.clear();

iterLS = 0;

zLHS = new double[T.length];

vInter = new double[m];

// z0 = A^* u

42

z0 = new double[T.length];

DSLib.vecInit(z0, 0);

AStaru = new double[T.length];

multPhiTStar(T, u, AStaru);

if (kIter != 0)

{

for (int i = 0; i < s; i++)

{

z0[aLoc[i]] = aSparse[i];

}

}

// zPrev is z^l

zPrev = new double[T.length];

zCurr = new double[T.length];

DSLib.vecCopy(z0, zCurr);

}

/**

One Richardson’s iteration for least-squares

*/

private void richardsonIteration()

{

DSLib.vecCopy(aCurr, aPrev);

DSLib.vecCopy(zCurr, zPrev);

// vInter = Phi_T zPrev

multPhiT(T, zPrev, vInter);

// zLHS = Phi_T^* vInter = Phi_T^* Phi_T zPrev

multPhiTStar(T, vInter, zLHS);

// Normal equation solution requires

// | zLHS - z0 | to decrease to near 0.

double errorNormal = DSLib.norm2(zLHS, z0);

errorLSNormal.add(errorNormal);

log.add("norm2(A*A zPrev - A* u) = " + errorNormal);

// zLHS = zLHS - zPrev

// = (Phi_T^* Phi_T - I) zPrev

// = (M - I) zPrev

DSLib.vecDiff(zLHS, zPrev, zLHS);

// z = z0 - zLHS

DSLib.vecDiff(AStaru, zLHS, zCurr);

errorIter = DSLib.norm2(zCurr, zPrev);

43

errorLSIter.add(errorIter);

log.add("norm2(zCurr - zPrev) = " + errorIter);

iterLS++;

}

/**

Conjugate gradient least squares estimation

*/

private void conjugateGradientLS()

{

conjugateGradientInit();

while (!stopLS())

{

conjugateGradientIteration();

}

}

/**

*/

private void conjugateGradientInit()

{

errorLSNormal.clear();

errorLSIter.clear();

iterLS = 0;

zLHS = new double[T.length];

vInter = new double[m];

// z0 = A^* u

z0 = new double[T.length];

DSLib.vecInit(z0, 0);

AStaru = new double[T.length];

multPhiTStar(T, u, AStaru);

if (kIter != 0)

{

for (int i = 0; i < s; i++)

{

z0[aLoc[i]] = aSparse[i];

}

}

// zPrev is z^l

zPrev = new double[T.length];

zCurr = new double[T.length];

DSLib.vecCopy(z0, zCurr);

44

pvec = new double[T.length];

DSLib.vecCopy(AStaru, pvec);

qvec = new double[m];

svec = new double[T.length];

DSLib.vecCopy(AStaru, svec);

// gamma[0] = s[0]

gammaPrev = DSLib.norm2(svec);

gammaPrev = gammaPrev * gammaPrev;

gamma = gammaPrev;

}

private void conjugateGradientIteration()

{

DSLib.vecCopy(zCurr, zPrev);

DSLib.vecCopy(aCurr, aPrev);

multPhiT(T, pvec, qvec);

alpha = DSLib.norm2(qvec);

alpha = gammaPrev / (alpha * alpha);

double[] zCurrcorr = new double[pvec.length];

DSLib.vecCopy(zCurr, zPrev);

DSLib.vecScale(alpha, pvec, zCurrcorr);

DSLib.vecAdd(zCurr, zCurrcorr, zCurr);

double[] sveccorr = new double[svec.length];

multPhiTStar(T, qvec, sveccorr);

DSLib.vecScale(-alpha, sveccorr, sveccorr);

DSLib.vecAdd(svec, sveccorr, svec);

gammaPrev = gamma;

gamma = DSLib.norm2(svec);

gamma = gamma * gamma;

System.out.println("iterLS = " + iterLS + ", gamma = " + gamma);

beta = gamma / gammaPrev;

double[] pveccorr = new double[pvec.length];

DSLib.vecScale(beta, pvec, pveccorr);

DSLib.vecAdd(svec, pveccorr, pvec);

iterLS++;

}

// svd least squares

/**

SVD least squares estimation

45

*/

private void svdLS()

{

/*

double[][] A = new double[m][T.length];

DSLib.submatrix(T, Phi, A);

double[][] U = new double[m][T.length];

double[] sigma = new double[T.length];

double[][] V = new double[T.length][T.length];

int rank = DSColt.svd(A, U, sigma, V);

double cond = sigma[0] / sigma[rank - 1];

zCurr = new double[T.length];

DSLib.pseudoInverse(U, sigma, V, rank, u, zCurr);

*/

int rank = svdLS(T, u, zCurr, (double[])null, condStore);

double cond = condStore[0];

StringBuilder sb = new StringBuilder();

Formatter formatter = new Formatter(sb, Locale.US);

formatter.format("%5d %5d %10.2f", rank, T.length, cond);

otherLine = sb.toString();

}

/**

Stopping criterion for conjugate gradient least squares

@return true if should stop

*/

private boolean stopLS()

{

if ((iterLS > s) || (gamma < 0.01))

{

return true;

}

return false;

}

/**

Prunes for the s largest components of least-squares b_T = zCurr

*/

private void prune()

{

// Least-squares estimate in zCurr for column indices in T

46

// Find s largest values in zCurr

double[] zCurrAbs = new double[zCurr.length];

DSLib.vecAbs(zCurr, zCurrAbs);

DSLib.findLargest(zCurrAbs, s, preSupp);

DSLib.vecInit(aCurr, 0);

for (int i = 0; i < s; i++)

{

aSupp[i] = T[preSupp[i]];

aSparse[i] = zCurr[preSupp[i]];

aCurr[aSupp[i]] = aSparse[i];

}

}

public static final int USE_SVD = 0;

public static final int USE_CG = 1;

public static final int USE_RICHARDSON = 2;

public static final int MAX_ITERATION = 15;

public static final double SIGNAL_TOL = 0.01;

public static final long serialVersionUID = 1225393870755107024L;

// Private state for all cosamp variations

private int methodLS = USE_SVD;

private boolean debug = false;

private boolean printMatch = true;

private boolean cutShort = false;

// For monitoring how errors evolve

private double[][] approxCache;

private double[][] aCache;

private double[] diffSignal;

private double[] diffSample;

private int indexMinDiffSignal = 0;

private double minDiffSignal = 0;

private int indexMinDiffSample = 0;

private double minDiffSample = 0;

private boolean tolReached = false;

// For output

private String iterLine = "";

private String otherLine = "";

47

private String otherTitle = "";

private int m;

private int N;

private double[][] Phi;

private double[] scale;

private double[] y;

private double[] yAbs;

private int[] Omega;

private int[] T;

private int[] aSupp;

private int[] preSupp;

private double[] aSparse;

private int kIter;

private int s;

private double[] u;

private double[] v;

private double[] vInter;

private double[] aPrev;

private double[] aCurr;

private int[] aLoc;

private double[] approx;

private double[] AStaru;

private double[] z;

private double[] z0;

private double[] zPrev;

private double[] zCurr;

private double[] zLHS;

private double[] b;

private double errorZ;

private double errorIter;

private ArrayList<Double> errorLSNormal =

new ArrayList<Double>();

private ArrayList<Double> errorLSIter =

new ArrayList<Double>();

private ArrayList<Double> errorA = new ArrayList<Double>();

private ArrayList<Double> errorResidual = new ArrayList<Double>();

private int iterLS;

private ArrayList<String> log = new ArrayList<String>();

private int maxIter = MAX_ITERATION;

48

// Conjugate gradient

private double[] pvec;

private double[] qvec;

private double[] rvec;

private double[] svec;

private double[] xvec;

private double gammaPrev;

private double gamma;

private double alpha;

private double beta;

// Private state for SVD

private double[] condStore = new double[1];

}

A.2 DSLib.java

We implement most of our functionality as concepts as static functions. We even add
functions for simple vector operations such as copying to simplify the linguistic task
of translation.

import java.io.*;

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import java.awt.geom.*;

import java.awt.image.*;

import javax.swing.*;

import javax.swing.event.*;

import javax.swing.filechooser.*;

import javax.imageio.*;

import javax.imageio.stream.*;

public class DSLib

{

/**

Converts a double to the nearest integer from 0 to 255

for 8-bit grayscale

@param intensity number to be converted

@return nearest integer from 0 to 255

*/

49

public static int toGray(double intensity)

{

int gray = (int)Math.round(intensity);

if (gray < 0)

{

gray = 0;

}

else if (gray > 255)

{

gray = 255;

}

return gray;

}

/**

Converts an xBound by yBound array of doubles to

a grayscale image

@param xBound width

@param yBound height

@param pixels grayscale values as pixels

*/

public static void doubleToGrayImage

(

double[] values,

BufferedImage aBufferedImage

)

{

int width = aBufferedImage.getWidth();

int height = aBufferedImage.getHeight();

WritableRaster aWritableRaster = aBufferedImage.getRaster();

// getPixels() for TYPE_BYTE_INT seemed to indicate int array length 1

int[] toLoad = new int[1];

for (int i = 0; i < height; i++)

{

for (int j = 0; j < width; j++)

{

toLoad[0] = toGray(values[i * width + j]);

aWritableRaster.setPixel(i, j, toLoad);

}

}

}

50

/**

Converts a grayscale image to an array of doubles

@param aBufferedImage image

@param values grayscale values

*/

public static void grayImageToDouble

(

BufferedImage aBufferedImage, double[] values

)

{

int width = aBufferedImage.getWidth();

int height = aBufferedImage.getHeight();

WritableRaster aWritableRaster = aBufferedImage.getRaster();

int[] toLoad;

for (int i = 0; i < height; i++)

{

for (int j = 0; j < width; j++)

{

toLoad =

aWritableRaster.getPixel(i, j, (int[])null);

values[i * width + j] = (double)toLoad[0];

}

}

}

/**

Takes a subset of sampling matrix and

creates a black 255, white 0 vector

@param threshold for conversion

@param Tlength length of indices subset

@param T vector of indices subset

@param m number of measurements

@param Phi sample matrix

@param vecUnion m by 1 vector union

*/

public static void unionSet

(

double threshold,

int Tlength, int[] T, int m, double[][] Phi, double[] scale,

double[] vecUnion

)

{

51

for (int i = 0; i < m; i++)

{

double sum = 0;

for (int j = 0; j < Tlength; j++)

{

sum += (Phi[i][T[j]] * scale[T[j]]);

}

if (sum >= threshold)

{

vecUnion[i] = 255;

}

else

{

vecUnion[i] = 0;

}

}

}

/**

Creates an image resized by an integer factor

@param factor factor

@param aBufferedImage original image

@return new resized image

*/

public static BufferedImage resizeImage

(

int factor, BufferedImage aBufferedImage

)

{

int width = aBufferedImage.getWidth();

int height = aBufferedImage.getHeight();

int resizedWidth = factor * width;

int resizedHeight = factor * height;

WritableRaster aWritableRaster = aBufferedImage.getRaster();

BufferedImage resized = new BufferedImage(

resizedWidth, resizedHeight, BufferedImage.TYPE_BYTE_GRAY);

WritableRaster bWritableRaster = resized.getRaster();

for (int i = 0; i < resizedHeight; i++)

{

for (int j = 0; j < resizedWidth; j++)

{

int[] toLoad = aWritableRaster.getPixel(

52

i / factor, j / factor, (int[])null);

bWritableRaster.setPixel(i, j, toLoad);

}

}

return resized;

}

// findLargest and merge operations on indices

/**

Finds the toGet largest values of vec, and

records the corresponding indices.

@param vec vector

@param toGet how many of the largest values to find

@param indices indices of largest values in ascending order,

assumed to be preallocated of length toGet

*/

public static void findLargest

(

double[] vec, int toGet, int[] indices

)

{

// DSDoubleSort carries indices with values when sorted

int n = vec.length;

DSDoubleSort[] vecSorted = new DSDoubleSort[n];

for (int i = 0; i < n; i++)

{

vecSorted[i] = new DSDoubleSort(i, vec[i]);

}

// Takes time n log n, replaces vecSorted

java.util.Arrays.sort(vecSorted);

// toGet largest value of sorted

// (n - 1) - (n - toGet) + 1 == toGet

for (int i = 0; i < toGet; i++)

{

indices[i] = vecSorted[i + (n - toGet)].getIndex();

}

// Sort indices again so that they are in order

53

java.util.Arrays.sort(indices);

}

/**

Merge two lists of ints already in ascending order

@param vecone first list

@param vectwo second list

@param Tint already allocated result

@param twoloc already allocated, indices of vectwo in Tint

*/

public static int merge

(

int[] vecone, int[] vectwo, int[] Tint, int[] twoloc

)

{

int headone = 0;

int headtwo = 0;

int leftone = vecone.length - headone;

int lefttwo = vectwo.length - headtwo;

int filled = 0;

while ((leftone > 0) || (lefttwo > 0))

{

if (leftone == 0) // only from list two

{

Tint[filled] = vectwo[headtwo];

twoloc[headtwo] = filled;

filled++;

headtwo++;

lefttwo--;

}

else if (lefttwo == 0) // only from list one

{

Tint[filled] = vecone[headone];

filled++;

headone++;

leftone--;

}

else // both lists, compare values at heads

{

if (vecone[headone] > vectwo[headtwo])

{

Tint[filled] = vectwo[headtwo];

54

twoloc[headtwo] = filled;

filled++;

headtwo++;

lefttwo--;

}

else if (vecone[headone] < vectwo[headtwo])

{

Tint[filled] = vecone[headone];

filled++;

headone++;

leftone--;

}

else // special case values equal both removed

{

Tint[filled] = vectwo[headtwo];

twoloc[headtwo] = filled;

filled++;

headone++;

leftone--;

headtwo++;

lefttwo--;

}

}

}

return filled;

}

/**

Merge two sorted vectors of indices in ascending order

@param vecone first vector

@param vectwo second vector

@param twoloc preallocated where vectwo is in merged

@return sorted vector of unique indices in ascending order

*/

public static int[] mergeSupport

(

int[] vecone, int[] vectwo, int[] twoloc

)

{

int combined = vecone.length + vectwo.length;

int[] Tint = new int[combined];

55

int filled = DSLib.merge(vecone, vectwo, Tint, twoloc);

if (filled == combined)

{

return Tint;

}

int[] T = new int[filled];

for (int i = 0; i < filled; i++)

{

T[i] = Tint[i];

}

return T;

}

// Vector operations

/**

Find the absolute value of each entry of a vector

@param vec original vector

@param absVec result

*/

public static void vecAbs(double[] vec, double[] absVec)

{

int n = vec.length;

for (int i = 0; i < n; i++)

{

absVec[i] = Math.abs(vec[i]);

}

}

/**

Initialize a vector to some value

@param vec vector

@param value value

*/

public static void vecInit(double[] vec, double value)

{

int n = vec.length;

for (int i = 0; i < n; i++)

{

vec[i] = value;

}

56

}

/**

Finds the 2-norm of a vector

@param vec vector

@returns 2-norm

*/

public static double norm2(double[] vec)

{

double norm2 = 0;

int nVec = vec.length;

for (int i = 0; i < nVec; i++)

{

double diff = vec[i];

norm2 += (diff * diff);

}

return Math.sqrt(norm2);

}

/**

Finds the 2-norm of the difference between two vectors

@param a first vector

@param b second vector

@returns 2-norm

*/

public static double norm2(double[] a, double[] b)

{

double norm2 = 0;

for (int i = 0; i < a.length; i++)

{

double diff = a[i] - b[i];

norm2 += (diff * diff);

}

return Math.sqrt(norm2);

}

/**

Finds the scalar product between two vectors

@param a first vector

@param b second vector

@return scalar product

*/

57

public static double dotProduct(double[] a, double[] b)

{

double dot = 0;

for (int i = 0; i < a.length; i++)

{

dot += (a[i] * b[i]);

}

return dot;

}

public static void vecDiff(double[] a, double[] b, double[] c)

{

int n = a.length;

for (int i = 0; i < n; i++)

{

c[i] = a[i] - b[i];

}

}

public static void vecAdd(double[] a, double[] b, double[] c)

{

int n = a.length;

for (int i = 0; i < n; i++)

{

c[i] = a[i] + b[i];

}

}

public static void vecScale(double a, double[] b, double[] c)

{

int n = b.length;

for (int i = 0; i < n; i++)

{

c[i] = a * b[i];

}

}

public static void vecCopy(double[] from, double[] to)

{

int n = from.length;

for (int i = 0; i < n; i++)

{

58

to[i] = from[i];

}

}

public static void matrixCopy(double[][] A, double[][] B)

{

int m = A.length;

int n = A[0].length;

for (int i = 0; i < m; i++)

{

for (int j = 0; j < n; j++)

{

B[i][j] = A[i][j];

}

}

}

public static void multMatrixVec

(

double[][] A, double[] x, double[] b

)

{

int m = A.length;

int n = A[0].length;

for (int i = 0; i < m; i++)

{

b[i] = 0;

for (int j = 0; j < n; j++)

{

b[i] += (A[i][j] * x[j]);

}

}

}

public static void multMatrixTVec

(

double[][] A, double[] x, double[] b

)

{

int m = A.length;

int n = A[0].length;

for (int i = 0; i < n; i++)

59

{

b[i] = 0;

for (int j = 0; j < m; j++)

{

b[i] += (A[j][i] * x[j]);

}

}

}

/**

*/

public static void pseudoInverse

(

double[][] U, double[] sigma, double[][] V, int rank,

double[] b, double[] x

)

{

int m = U.length;

int n = V.length;

double[] xInter = new double[x.length];

// x = V * sigma-1 * UT b

multMatrixTVec(U, b, xInter);

for (int i = 0; i < rank; i++)

{

xInter[i] *= (1.0 / sigma[i]);

}

multMatrixVec(V, xInter, x);

}

public static void submatrix

(

int[] T, double[][] Phi, double[][] A

)

{

int m = Phi.length;

for (int i = 0; i < m; i++)

{

for (int j = 0; j < T.length; j++)

{

A[i][j] = Phi[i][T[j]];

}

}

60

}

// Utility code for manipulating images

public static void writeLatex

(

String filename, File parentDir, String letterString

)

throws IOException

{

PrintWriter toLatex = new PrintWriter(

new FileWriter(

new File(parentDir, filename + ".tex"), true));

toLatex.println("\\documentclass[12pt]{article}");

toLatex.println("\\thispagestyle{empty}");

toLatex.println("\\begin{document}");

toLatex.println(letterString);

toLatex.println("\\end{document}");

toLatex.close();

}

public static ArrayList<String> texAlphabetical

(

String pt,

String series, String shape, String family,

String charLine

)

{

ArrayList<String> texText = new ArrayList<String>();

texText.add("\\documentclass[" + pt + "]{article}");

texText.add("\\thispagestyle{empty}");

texText.add("\\begin{document}");

texText.add("\\" + series + "{" +

"\\" + shape + "{" +

"\\" + family + "{" +

charLine + "}}}");

texText.add("\\end{document}");

return texText;

}

public static void writeTextFile

(

61

String fullFilename, ArrayList<String> text

) throws IOException

{

PrintWriter aWriter = new PrintWriter(

new FileWriter(fullFilename, true)

);

for (String str: text)

{

aWriter.println(str);

}

aWriter.close();

}

/**

Create a new process and run a command

@param command command to run

@param directory working directory

*/

public static int execCommand

(

ArrayList<String> command,

File directory,

ArrayList<String> output

) throws IOException, InterruptedException

{

// for (String str : command)

// {

// System.out.print(str + " ");

// }

// System.out.println();

ProcessBuilder pb = new ProcessBuilder(command);

pb.directory(directory);

Process p = pb.start();

Scanner execOutput = new Scanner(p.getInputStream());

int n = p.waitFor();

if (output != null)

{

while (execOutput.hasNextLine())

{

output.add(execOutput.nextLine());

}

62

}

return n;

}

/**

LaTeX a file

@param filename file name without extension

*/

public static void latexFile(String filename, File parentDir)

{

ArrayList<String> command = new ArrayList<String>();

String program = "latex";

command.add(program);

command.add(filename + ".tex");

try

{

int n = DSLib.execCommand(command, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

ioe.printStackTrace();

}

}

/**

Create PostScript file from .dvi file

@param filename file name without extension

@param parentDir parent directory of .dvi file

@param dpi resolution

*/

public static void dvipsFile

(

String filename, File parentDir, int dpi

)

{

ArrayList<String> command = new ArrayList<String>();

String program = "dvips";

command.add("dvips");

command.add("-D" + dpi);

command.add(filename + ".dvi");

try

63

{

int n = DSLib.execCommand(command, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

ioe.printStackTrace();

}

}

/**

Command and args for converting PostScript to another image format

@param filename file name without extension

@param parentDir parent directory of file

@param dpi resolution

@param device device for GhostScript, image format

@param ext image format extension

*/

public static void psToImage

(

String filename, File parentDir,

int dpi, String device, String ext

)

{

ArrayList<String> command = new ArrayList<String>();

String program = "gs";

command.add(program);

command.add("-r" + dpi);

command.add("-DEPSCrop");

command.add("-DTextAlphaBits=4");

command.add("-sDEVICE=" + device);

command.add("-sOutputFile=" + filename + "." + ext);

command.add("-dBATCH");

command.add("-dNOPAUSE");

command.add(filename + ".ps");

try

{

int n = DSLib.execCommand(command, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

64

ioe.printStackTrace();

}

}

/**

Commands and args for converting PostScript to blurred image format

@param filename file name without extension

@param parentDir parent directory

@param ext image format extension

*/

public static void psToBlurredImage

(

String filename, File parentDir,

String ext

)

{

ArrayList<String> command = new ArrayList<String>();

// First convert from .ps to .pdf, causes blurring

String program = "convert";

command.add(program);

command.add(filename + ".ps");

command.add(filename + ".pdf");

try

{

int n = DSLib.execCommand(command, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

// Now convert from .pdf to image format

command.clear();

command.add(program);

command.add(filename + ".pdf");

command.add(filename + "." + ext);

n = DSLib.execCommand(command, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

ioe.printStackTrace();

}

}

65

/**

Command and args for trimming image to character outline

@param filename file name without extension

@param parentDir parent directory of file

@param width width of resulting image

@param height height of resulting image

@param extFrom image format extension of original

@param extTo image format for result

*/

public static void trimImage

(

String filename, File parentDir,

int width, int height,

String extFrom, String extTo

)

{

ArrayList<String> list = new ArrayList<String>();

String program = "convert";

list.add(program);

list.add(filename + "." + extFrom);

list.add("-trim");

list.add("-depth");

list.add("8");

list.add("-type");

list.add("Grayscale");

list.add("-adaptive-resize");

list.add(width + "x" + height);

list.add("-gravity");

list.add("center");

list.add("-extent");

list.add(width + "x" + height);

// list.add("-morphology");

// list.add("Erode");

// list.add("Diamond");

list.add(filename + "." + extTo);

try

{

int n = DSLib.execCommand(list, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

66

{

ioe.printStackTrace();

}

}

/**

Command and args for thickening lines of image

@param filename file name without extension

@param parentDir parent directory of file

@param width width of resulting image

@param height height of resulting image

@param extFrom image format extension of original

@param extTo image format for result

*/

public static void thickenImage

(

String filename, File parentDir,

int width, int height,

String extFrom, String extTo

)

{

ArrayList<String> list = new ArrayList<String>();

String program = "convert";

list.add(program);

list.add(filename + "." + extFrom);

list.add("-morphology");

list.add("Erode");

list.add("Diamond");

list.add(filename + "." + extTo);

try

{

int n = execCommand(list, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

ioe.printStackTrace();

}

}

/**

Loads an image file given its filename and extension

67

@param filename file name

@param ext extension

@return buffered image

*/

public static BufferedImage readImageFile

(

File parentDir, String filename, String ext

) throws IOException

{

File imageFile = new File(

parentDir.getPath() + File.separator + filename + "." + ext);

// System.out.printf("Reading %s\n", imageFile.getName());

BufferedImage aBufferedImage = ImageIO.read(imageFile);

return aBufferedImage;

}

/**

Remove file if it exists

@param filename file name with extension

@param parentDir parent directory

*/

public static void rmFile

(

String filename, File parentDir

)

{

ArrayList<String> command = new ArrayList<String>();

String program = "rm";

command.add(program);

command.add(filename);

try

{

int n = execCommand(command, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

ioe.printStackTrace();

}

}

/**

68

Creates gray image from character string in LaTeX.

@param letterString character string to produce character in LaTeX

@param dpi dpi

*/

public static BufferedImage charToImage

(

String letterString, int dpi, int xBound, int yBound

) throws IOException, InterruptedException

{

String filename = TLATEX;

File parentDir = new File(".");

String device = "pnggray";

String extFrom = "png";

String extTo = "png";

DSLib.rmFile(filename + ".tex", parentDir);

DSLib.writeLatex(filename, parentDir, letterString);

DSLib.latexFile(filename, parentDir);

DSLib.dvipsFile(filename, parentDir, dpi);

DSLib.psToImage(filename, parentDir, dpi, device, extFrom);

DSLib.trimImage(filename, parentDir, xBound, yBound, extFrom, extTo);

BufferedImage image = DSLib.readImageFile(

parentDir, filename, extTo);

return image;

}

/**

Creates thickened gray image from character string in LaTeX.

@param letterString character string to produce character in LaTeX

@param dpi dpi

*/

public static BufferedImage charToThickenedImage

(

String letterString, int dpi, int xBound, int yBound

) throws IOException, InterruptedException

{

String filename = TLATEX;

File parentDir = new File(".");

String device = "pnggray";

String extFrom = "png";

String extTo = "png";

DSLib.rmFile(filename + ".tex", parentDir);

DSLib.writeLatex(filename, parentDir, letterString);

69

DSLib.latexFile(filename, parentDir);

DSLib.dvipsFile(filename, parentDir, dpi);

DSLib.psToImage(filename, parentDir, dpi, device, extFrom);

DSLib.trimImage(filename, parentDir, xBound, yBound,

extFrom, extTo);

DSLib.thickenImage(filename, parentDir, xBound, yBound,

extTo, extTo);

BufferedImage image = DSLib.readImageFile(

parentDir, filename, extTo);

return image;

}

/**

Creates blurred gray image from character string in LaTeX.

@param letterString character string to produce character in LaTeX

@param dpi dpi

@param xBound width

@param yBound height

*/

public static BufferedImage charToBlurredImage

(

String letterString, int dpi, int xBound, int yBound

) throws IOException, InterruptedException

{

String filename = TLATEX;

File parentDir = new File(".");

String device = "pnggray";

String extFrom = "png";

String extTo = "png";

DSLib.rmFile(filename + ".tex", parentDir);

DSLib.writeLatex(filename, parentDir, letterString);

DSLib.latexFile(filename, parentDir);

DSLib.dvipsFile(filename, parentDir, dpi);

DSLib.psToBlurredImage(filename, parentDir, extFrom);

DSLib.trimImage(filename, parentDir, xBound, yBound, extFrom, extTo);

BufferedImage image = DSLib.readImageFile(

parentDir, filename, extTo);

return image;

}

// Generating random shapes in a rectangle

70

/**

Makes a random quadratic Bezier curve restricted to half the area

@param xBound x pixels numbered from 0 to xBound - 1

@param yBound y pixels numbered from 0 to yBound - 1

@param fracDistance maximum fraction of distance allowed

@param rand random number generator

@return random QuadCurve2D in bounds

*/

public static QuadCurve2D randQuad

(

int xBound, int yBound, double fracDistance, Random rand

)

{

double x1 = Math.floor(xBound * rand.nextDouble());

double y1 = Math.floor(yBound * rand.nextDouble());

double ctrlx = Math.floor(xBound * rand.nextDouble());

double ctrly = Math.floor(yBound * rand.nextDouble());

double x2 = Math.floor(yBound * rand.nextDouble());

double y2 = Math.floor(yBound * rand.nextDouble());

double hX = (double)xBound * fracDistance;

double hY = (double)yBound * fracDistance;

while

(

(Math.abs(x1 - x2) > hX) || (Math.abs(y1 - y2) > hY) ||

(Math.abs(x1 - ctrlx) > hX) || (Math.abs(y1 - ctrly) > hY) ||

(Math.abs(ctrlx - x2) > hX) || (Math.abs(ctrly - y2) > hY)

)

{

x1 = Math.floor(xBound * rand.nextDouble());

y1 = Math.floor(yBound * rand.nextDouble());

ctrlx = Math.floor(xBound * rand.nextDouble());

ctrly = Math.floor(yBound * rand.nextDouble());

x2 = Math.floor(yBound * rand.nextDouble());

y2 = Math.floor(yBound * rand.nextDouble());

}

return new QuadCurve2D.Double(x1, y1, ctrlx, ctrly, x2, y2);

}

/**

Makes a random cubic Bezier curve with two control points

@param xBound x pixels numbered from 0 to xBound - 1

@param yBound y pixels numbered from 0 to yBound - 1

71

@return random QuadCurve2D in bounds

*/

public static CubicCurve2D randCubic

(

int xBound, int yBound, double fracDistance, Random rand

)

{

double x1 = Math.floor(xBound * rand.nextDouble());

double y1 = Math.floor(yBound * rand.nextDouble());

double ctrlx1 = Math.floor(xBound * rand.nextDouble());

double ctrly1 = Math.floor(yBound * rand.nextDouble());

double ctrlx2 = Math.floor(xBound * rand.nextDouble());

double ctrly2 = Math.floor(yBound * rand.nextDouble());

double x2 = Math.floor(yBound * rand.nextDouble());

double y2 = Math.floor(yBound * rand.nextDouble());

double hX = (double)xBound * fracDistance;

double hY = (double)yBound * fracDistance;

while

(

(Math.abs(x1 - x2) > hX) || (Math.abs(y1 - y2) > hY) ||

(Math.abs(x1 - ctrlx1) > hX) || (Math.abs(y1 - ctrly1) > hY) ||

(Math.abs(x1 - ctrlx2) > hX) || (Math.abs(y1 - ctrly2) > hY) ||

(Math.abs(ctrlx1 - x2) > hX) || (Math.abs(ctrly1 - y2) > hY) ||

(Math.abs(ctrlx2 - x2) > hX) || (Math.abs(ctrly2 - y2) > hY)

)

{

x1 = Math.floor(xBound * rand.nextDouble());

y1 = Math.floor(yBound * rand.nextDouble());

ctrlx1 = Math.floor(xBound * rand.nextDouble());

ctrly1 = Math.floor(yBound * rand.nextDouble());

ctrlx2 = Math.floor(xBound * rand.nextDouble());

ctrly2 = Math.floor(yBound * rand.nextDouble());

x2 = Math.floor(yBound * rand.nextDouble());

y2 = Math.floor(yBound * rand.nextDouble());

}

return new CubicCurve2D.Double(

x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2);

}

/**

Makes one random cubic Bezier stroke

@param xBound x bound of image rectangle

72

@param yBound y bound of image rectangle

@param strokeWidth stroke width

@param fracDistance maximum distance control pt from end pt

@param rand random number generator

@return pixels enumerated top down and left to right from 0 to 255

*/

public static double[] randomCubicStroke

(

int xBound, int yBound, float strokeWidth,

double fracDistance, Random rand

)

{

BufferedImage image = new BufferedImage(xBound, yBound,

BufferedImage.TYPE_BYTE_GRAY);

Graphics2D graphics2D = image.createGraphics();

graphics2D.setStroke(new BasicStroke(strokeWidth));

graphics2D.draw(

DSLib.randCubic(xBound, yBound, fracDistance, rand));

double[] pixels = new double[xBound * yBound];

DSLib.grayImageToDouble(image, pixels);

return pixels;

}

/**

Makes random samples

@param xBound width

@param yBound height

@param strokeWidth stroke width

@param N number of samples to make

@param fracDistance fractional distance allowed

@param rand random number generator

@return Phi, sample matrix

*/

public static double[][] makeRandomCubicSample

(

int width, int height, float strokeWidth, int N,

double fracDistance, Random rand

)

{

int m = width * height;

double[][] Phi = new double[m][N];

for (int j = 0; j < N; j++)

73

{

double[] pixels = DSLib.randomCubicStroke(

width, height, strokeWidth, fracDistance, rand);

// DSLib.flipColor(pixels, pixels);

for (int i = 0; i < m; i++)

{

Phi[i][j] = pixels[i];

}

}

return Phi;

}

/**

For integer valued colors from 0 to 255, flip

@param orig original source

@param toFlip new picture with colors flipped

*/

public static void flipColor(double[] orig, double[] toFlip)

{

for (int i = 0; i < orig.length; i++)

{

toFlip[i] = 255 - orig[i];

}

}

// Public constants

/* Filename without extension for temporary latex file */

public static final String TLATEX = "templ";

} /* Class DSLib */

A.3 DSColt.java

This is basically a wrapper around calling Colt’s SVD methods.

import cern.colt.*;

import cern.colt.matrix.*;

import cern.colt.matrix.impl.*;

import cern.colt.matrix.linalg.*;

public class DSColt

{

74

/**

Least squares using SVD

@param A matrix with number of columns n less than number of rows m

@param U left orthogonal m by n matrix

@param sigma singular values of A

@param V right orthogonal n by n matrix such that A = U sigma VT

*/

public static int svd

(

double[][] A, double[][] U, double [] sigma, double[][] V

)

{

int m = A.length;

int n = A[0].length;

DoubleMatrix2D coltA = new DenseDoubleMatrix2D(A);

SingularValueDecomposition coltSVD =

new SingularValueDecomposition(coltA);

double[] coltSigma = coltSVD.getSingularValues();

DSLib.vecCopy(coltSigma, sigma);

double[][] coltU = coltSVD.getU().toArray();

DSLib.matrixCopy(coltU, U);

double[][] coltV = coltSVD.getV().toArray();

DSLib.matrixCopy(coltV, V);

return coltSVD.rank();

}

}

A.4 DSCharacter.java

Having defined our terms in DSLib.java, we can mass process as many LATEX char-
acters as we want.

import java.io.*;

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import java.awt.geom.*;

import java.awt.image.*;

import javax.swing.*;

import javax.swing.event.*;

import javax.swing.filechooser.*;

import javax.imageio.*;

75

import javax.imageio.stream.*;

/**

Class to classify patterns as characters

*/

public class DSCharacter implements Serializable

{

/**

Sets the implementation of CoSaMP, in particular, the

sampling matrix Phi

@param model used for analyzing patterns

*/

public void setCosamp(DSCosamp model)

{

this.model = model;

}

/**

Assumed cosamp implementation with Phi already set,

then simply use this on each character’s image

@param dpi dpi

@param xBound width in pixels

@param yBound height in pixels

*/

public void trainSimple

(

int dpi, int xBound, int yBound, int s

) throws IOException, InterruptedException

{

int nChar = baseChar.length;

int m = xBound * yBound;

V = new double[nChar][1][m];

origChar = new double[nChar][1][m];

double[] u = new double[m];

double[] uFlipped = new double[u.length];

double[] approx = new double[u.length];

for (int k = 0; k < nChar; k++)

{

String letterString = "";

if (baseChar[k][1].equals(GREEK))

{

76

letterString = "$\\" + baseChar[k][0] + "$";

}

else // default, simple alphabetical / numeric

{

letterString = baseChar[k][0];

}

System.out.println("\nTraining character " +

baseChar[k][0]);

BufferedImage image = DSLib.charToImage(

letterString, dpi, xBound, yBound);

DSLib.grayImageToDouble(image, u);

DSLib.flipColor(u, uFlipped);

DSLib.vecCopy(uFlipped, origChar[k][0]);

model.cosamp(uFlipped, s);

DSLib.vecCopy(model.getApprox(), V[k][0]);

aSuppChar[k][0] = model.getASupp();

}

}

/**

Gets LaTeX string to produce character

@param index index into character array

@return LaTeX string

*/

public String getLetterString(int k)

{

if (baseChar[k][1].equals(GREEK))

{

return "$\\" + baseChar[k][0] + "$";

}

else // default, simple alphabetical / numeric

{

return baseChar[k][0];

}

}

/**

Assuming cosamp implementation with Phi already set,

trains on thickened character’s image

@param dpi dpi

@param xBound width in pixels

@param yBound height in pixels

77

*/

public void trainThicken

(

int dpi, int xBound, int yBound, int s

) throws IOException, InterruptedException

{

int nChar = baseChar.length;

int m = xBound * yBound;

V = new double[nChar][1][m];

origChar = new double[nChar][1][m];

double[] u = new double[m];

double[] uFlipped = new double[u.length];

double[] approx = new double[u.length];

for (int k = 0; k < nChar; k++)

{

String letterString = "";

if (baseChar[k][1].equals(GREEK))

{

letterString = "$\\" + baseChar[k][0] + "$";

}

else // default, simple alphabetical / numeric

{

letterString = baseChar[k][0];

}

System.out.println("\nTraining character " +

baseChar[k][0]);

BufferedImage image = DSLib.charToThickenedImage(

letterString, dpi, xBound, yBound);

DSLib.grayImageToDouble(image, u);

DSLib.flipColor(u, uFlipped);

DSLib.vecCopy(uFlipped, origChar[k][0]);

model.cosamp(uFlipped, s);

DSLib.vecCopy(model.getApprox(), V[k][0]);

aSuppChar[k][0] = model.getASupp();

}

}

/**

Classify using simple dot product of test with original char

@param toTest m by 1 vector to test

@param forResult m by 1 character vector closest

@param score scores for all characters

78

@return character name of best match

*/

public String classifyOriginal

(

double[] toTest, double[] forResult, DSDoubleSort[] score

)

{

int nChar = baseChar.length;

int indexMax = 0;

double valueMax = 0;

int m = toTest.length;

double[] charOrig = new double[m];

double[] condNum = new double[1];

for (int k = 0; k < nChar; k++)

{

DSLib.vecCopy(origChar[k][0], charOrig);

double dotProd = DSLib.dotProduct(charOrig, toTest);

double scale1 = DSLib.norm2(charOrig);

double scale2 = DSLib.norm2(toTest);

// Find best projections on indices aSupp

double tested = Math.abs(dotProd / (scale1 * scale2));

if (tested > valueMax)

{

indexMax = k;

valueMax = tested;

}

if (score != null)

{

score[k] = new DSDoubleSort(k, tested);

}

if (debug)

{

System.out.printf("%8s %8.5f\n",

baseChar[k][0], tested);

}

}

DSLib.vecCopy(V[indexMax][0], forResult);

return baseChar[indexMax][0];

}

/**

79

Classify by taking test dot product with trained CoSaMP vector

@param toTest m by 1 vector to test

@param forResult m by 1 character vector closest

@param score scores for all characters

@return character name of best match

*/

public String classifySimple

(

double[] toTest, double[] forResult, DSDoubleSort[] score

)

{

int nChar = baseChar.length;

int indexMax = 0;

double valueMax = 0;

int m = toTest.length;

double[] charApprox = new double[m];

for (int k = 0; k < nChar; k++)

{

DSLib.vecCopy(V[k][0], charApprox);

double scale1 = DSLib.norm2(charApprox);

double scale2 = DSLib.norm2(toTest);

double dotProd = DSLib.dotProduct(toTest, charApprox);

double tested = Math.abs(dotProd / (scale1 * scale2));

if (tested > valueMax)

{

indexMax = k;

valueMax = tested;

}

if (score != null)

{

score[k] = new DSDoubleSort(k, tested);

}

if (debug)

{

System.out.printf("%8s %8.5f\n",

baseChar[k][0], tested);

}

}

DSLib.vecCopy(V[indexMax][0], forResult);

return baseChar[indexMax][0];

}

80

/**

Classify using least squares projection on s-sparse support

@param toTest m by 1 vector to test

@param forResult m by 1 character vector closest

@param score scores for all characters

@return character name of best match

*/

public String classifySupport

(

double[] toTest, double[] forResult, DSDoubleSort[] score

)

{

int s = aSuppChar[0][0].length;

int nChar = baseChar.length;

int indexMax = 0;

double valueMax = 0;

int m = toTest.length;

int[] aSupp = new int[s];

double[] charOrig = new double[m];

double[] testSignal = new double[s];

double[] charSignal = new double[s];

double[] testApprox = new double[m];

double[] charApprox = new double[m];

double[] condNum = new double[1];

for (int k = 0; k < nChar; k++)

{

DSLib.vecCopy(origChar[k][0], charOrig);

model.svdLS(aSuppChar[k][0], charOrig, charSignal,

charApprox, condNum);

model.svdLS(aSuppChar[k][0], toTest, testSignal,

testApprox, condNum);

double dotProd = DSLib.dotProduct(

charApprox, testApprox);

double scale1 = DSLib.norm2(charApprox);

double scale2 = DSLib.norm2(testApprox);

// Find best projections on indices aSupp

double tested = Math.abs(dotProd / (scale1 * scale2));

if (tested > valueMax)

{

indexMax = k;

valueMax = tested;

81

}

if (score != null)

{

score[k] = new DSDoubleSort(k, tested);

}

if (debug)

{

System.out.printf("%8s %8.5f\n",

baseChar[k][0], tested);

}

}

DSLib.vecCopy(V[indexMax][0], forResult);

return baseChar[indexMax][0];

}

/**

Classify by taking test CoSaMP dot trained CoSaMP vector

@param toTest m by 1 vector to test, assumed already CoSaMPed!

@param forResult m by 1 character vector closest

@param score scores for all characters

@return character name of best match

*/

public String classifyCosamp

(

double[] toTest, double[] forResult, DSDoubleSort[] score

)

{

model.setPrintMatch(false);

int nChar = baseChar.length;

int indexMax = 0;

double valueMax = 0;

int m = toTest.length;

double[] charApprox = new double[m];

for (int k = 0; k < nChar; k++)

{

DSLib.vecCopy(V[k][0], charApprox);

int s = model.getS();

double scale1 = DSLib.norm2(charApprox);

double scale2 = DSLib.norm2(toTest);

double dotProd = DSLib.dotProduct(toTest, charApprox);

double tested = Math.abs(dotProd / (scale1 * scale2));

if (tested > valueMax)

82

{

indexMax = k;

valueMax = tested;

}

if (score != null)

{

score[k] = new DSDoubleSort(k, tested);

}

if (debug)

{

System.out.printf("%8s %8.5f\n",

baseChar[k][0], tested);

}

}

DSLib.vecCopy(V[indexMax][0], forResult);

return baseChar[indexMax][0];

}

/**

Sets whether to have debugging output

@param debug true for output

*/

public void setDebug(boolean debug)

{

this.debug = debug;

}

/**

Gets number of characters

@return number of characters

*/

public int getNChar()

{

return baseChar.length;

}

/**

Gets character name given index

@param index index into character array

@return character name

*/

public String getChar(int index)

83

{

return baseChar[index][0];

}

/**

Gets character LaTeX string

@param index index into character array

@return LaTeX string

*/

public String getCharLatex(int index)

{

return baseChar[index][1];

}

/**

Prints out how well for index k character its score was

@param k index

@param score score from one of the classification algorithms

@return place

*/

public int printCompare(int k, DSDoubleSort[] score)

{

Arrays.sort(score);

int place = 1;

boolean notDone = true;

int toSearch = score.length - 1;

while (notDone)

{

if (score[toSearch].getIndex() == k)

{

notDone = false;

}

else

{

place++;

toSearch--;

}

}

System.out.printf("%12s & %12s & %5.3f & ", getChar(k),

getChar(score[score.length - 1].getIndex()),

score[score.length - 1].getValue());

if (place == 1)

84

{

System.out.printf(" 2 & %12s & % 5.3f",

getChar(score[score.length - 2].getIndex()),

score[score.length - 2].getValue());

}

else

{

System.out.printf("%4d & %12s & %5.3f",

place,

getChar(score[score.length - place].getIndex()),

score[score.length - place].getValue());

}

System.out.printf("\\\\\n");

return place;

}

/**

Run comparisons for blurred images of all characters

*/

// Public constants

public static final String ALPHABETICAL = "alphabetical";

public static final String NUMERIC = "numeric";

public static final String GREEK = "greek";

public static final String SYMBOL = "symbol";

public static final String[][] baseChar =

{

{"A", ALPHABETICAL},

{"B", ALPHABETICAL},

{"C", ALPHABETICAL},

{"D", ALPHABETICAL},

{"E", ALPHABETICAL},

{"F", ALPHABETICAL},

{"G", ALPHABETICAL},

{"H", ALPHABETICAL},

{"I", ALPHABETICAL},

{"J", ALPHABETICAL},

{"K", ALPHABETICAL},

{"L", ALPHABETICAL},

{"M", ALPHABETICAL},

{"N", ALPHABETICAL},

{"O", ALPHABETICAL},

85

{"P", ALPHABETICAL},

{"Q", ALPHABETICAL},

{"R", ALPHABETICAL},

{"S", ALPHABETICAL},

{"T", ALPHABETICAL},

{"U", ALPHABETICAL},

{"V", ALPHABETICAL},

{"W", ALPHABETICAL},

{"X", ALPHABETICAL},

{"Y", ALPHABETICAL},

{"Z", ALPHABETICAL},

{"a", ALPHABETICAL},

{"b", ALPHABETICAL},

{"c", ALPHABETICAL},

{"d", ALPHABETICAL},

{"e", ALPHABETICAL},

{"f", ALPHABETICAL},

{"g", ALPHABETICAL},

{"h", ALPHABETICAL},

{"i", ALPHABETICAL},

{"j", ALPHABETICAL},

{"k", ALPHABETICAL},

{"l", ALPHABETICAL},

{"m", ALPHABETICAL},

{"n", ALPHABETICAL},

{"o", ALPHABETICAL},

{"p", ALPHABETICAL},

{"q", ALPHABETICAL},

{"r", ALPHABETICAL},

{"s", ALPHABETICAL},

{"t", ALPHABETICAL},

{"u", ALPHABETICAL},

{"v", ALPHABETICAL},

{"w", ALPHABETICAL},

{"x", ALPHABETICAL},

{"y", ALPHABETICAL},

{"z", ALPHABETICAL},

{"0", NUMERIC},

{"1", NUMERIC},

{"2", NUMERIC},

{"3", NUMERIC},

{"4", NUMERIC},

86

{"5", NUMERIC},

{"6", NUMERIC},

{"7", NUMERIC},

{"8", NUMERIC},

{"9", NUMERIC},

{"alpha", GREEK},

{"beta", GREEK},

{"gamma", GREEK},

{"delta", GREEK},

{"epsilon", GREEK},

{"zeta", GREEK},

{"eta", GREEK},

{"theta", GREEK},

{"iota", GREEK},

{"kappa", GREEK},

{"lambda", GREEK},

{"mu", GREEK},

{"nu", GREEK},

{"xi", GREEK},

{"pi", GREEK},

{"rho", GREEK},

{"sigma", GREEK},

{"tau", GREEK},

{"upsilon", GREEK},

{"phi", GREEK},

{"chi", GREEK},

{"psi", GREEK},

{"omega", GREEK},

{"Gamma", GREEK},

{"Delta", GREEK},

{"Theta", GREEK},

{"Lambda", GREEK},

{"Xi", GREEK},

{"Pi", GREEK},

{"Sigma", GREEK},

{"Upsilon", GREEK},

{"Phi", GREEK},

{"Psi", GREEK},

{"Omega", GREEK},

{"leftarrow", GREEK},

{"mapsto", GREEK},

{"rightarrow", GREEK}

87

};

public static final long serialVersionUID = 4095369392171259835L;

/* Private state for characters */

private double[][][] origChar;

private int[][][] aSuppChar = new int[baseChar.length][1][];

private double[][][] V;

// Private state, trained

private DSCosamp model;

private boolean debug = false;

}

A.5 DSGui.java

Note: the code for the graphical user interface is adapted from Horstmann and Cor-
nell’s Core Java books as noted in the comments [7].

/**

COPYRIGHT (C) 2010 David Shao. All Rights Reserved.

Library functions.

Masters project

Note: Much of this code is adapted from

Cay S. Horstmann and Gary Cornell

Core Java, Volumes I and II, 8th Edition

Prentice Hall, Upper Saddle River, NJ: 2008.

We refer to this book later as Horstmann and Cornell.

@author David Shao

@version 2.02 2010/04/28

*/

import java.io.*;

import java.util.*;

88

import java.awt.*;

import java.awt.event.*;

import java.awt.geom.*;

import java.awt.image.*;

import javax.swing.*;

import javax.swing.event.*;

import javax.swing.filechooser.*;

import javax.imageio.*;

import javax.imageio.stream.*;

public class DSLib

{

/**

Converts a double to the nearest integer from 0 to 255

for 8-bit grayscale

@param intensity number to be converted

@return nearest integer from 0 to 255

*/

public static int toGray(double intensity)

{

int gray = (int)Math.round(intensity);

if (gray < 0)

{

gray = 0;

}

else if (gray > 255)

{

gray = 255;

}

return gray;

}

/**

Converts an xBound by yBound array of doubles to

a grayscale image

@param xBound width

@param yBound height

@param pixels grayscale values as pixels

*/

public static void doubleToGrayImage

(

89

double[] values,

BufferedImage aBufferedImage

)

{

int width = aBufferedImage.getWidth();

int height = aBufferedImage.getHeight();

WritableRaster aWritableRaster = aBufferedImage.getRaster();

// getPixels() for TYPE_BYTE_INT seemed to indicate int array length 1

int[] toLoad = new int[1];

for (int i = 0; i < height; i++)

{

for (int j = 0; j < width; j++)

{

toLoad[0] = toGray(values[i * width + j]);

aWritableRaster.setPixel(i, j, toLoad);

}

}

}

/**

Converts a grayscale image to an array of doubles

@param aBufferedImage image

@param values grayscale values

*/

public static void grayImageToDouble

(

BufferedImage aBufferedImage, double[] values

)

{

int width = aBufferedImage.getWidth();

int height = aBufferedImage.getHeight();

WritableRaster aWritableRaster = aBufferedImage.getRaster();

int[] toLoad;

for (int i = 0; i < height; i++)

{

for (int j = 0; j < width; j++)

{

toLoad =

aWritableRaster.getPixel(i, j, (int[])null);

values[i * width + j] = (double)toLoad[0];

}

}

90

}

/**

Takes a subset of sampling matrix and

creates a black 255, white 0 vector

@param threshold for conversion

@param Tlength length of indices subset

@param T vector of indices subset

@param m number of measurements

@param Phi sample matrix

@param vecUnion m by 1 vector union

*/

public static void unionSet

(

double threshold,

int Tlength, int[] T, int m, double[][] Phi, double[] scale,

double[] vecUnion

)

{

for (int i = 0; i < m; i++)

{

double sum = 0;

for (int j = 0; j < Tlength; j++)

{

sum += (Phi[i][T[j]] * scale[T[j]]);

}

if (sum >= threshold)

{

vecUnion[i] = 255;

}

else

{

vecUnion[i] = 0;

}

}

}

/**

Creates an image resized by an integer factor

@param factor factor

@param aBufferedImage original image

@return new resized image

91

*/

public static BufferedImage resizeImage

(

int factor, BufferedImage aBufferedImage

)

{

int width = aBufferedImage.getWidth();

int height = aBufferedImage.getHeight();

int resizedWidth = factor * width;

int resizedHeight = factor * height;

WritableRaster aWritableRaster = aBufferedImage.getRaster();

BufferedImage resized = new BufferedImage(

resizedWidth, resizedHeight, BufferedImage.TYPE_BYTE_GRAY);

WritableRaster bWritableRaster = resized.getRaster();

for (int i = 0; i < resizedHeight; i++)

{

for (int j = 0; j < resizedWidth; j++)

{

int[] toLoad = aWritableRaster.getPixel(

i / factor, j / factor, (int[])null);

bWritableRaster.setPixel(i, j, toLoad);

}

}

return resized;

}

// findLargest and merge operations on indices

/**

Finds the toGet largest values of vec, and

records the corresponding indices.

@param vec vector

@param toGet how many of the largest values to find

@param indices indices of largest values in ascending order,

assumed to be preallocated of length toGet

*/

public static void findLargest

(

double[] vec, int toGet, int[] indices

)

{

92

// DSDoubleSort carries indices with values when sorted

int n = vec.length;

DSDoubleSort[] vecSorted = new DSDoubleSort[n];

for (int i = 0; i < n; i++)

{

vecSorted[i] = new DSDoubleSort(i, vec[i]);

}

// Takes time n log n, replaces vecSorted

java.util.Arrays.sort(vecSorted);

// toGet largest value of sorted

// (n - 1) - (n - toGet) + 1 == toGet

for (int i = 0; i < toGet; i++)

{

indices[i] = vecSorted[i + (n - toGet)].getIndex();

}

// Sort indices again so that they are in order

java.util.Arrays.sort(indices);

}

/**

Merge two lists of ints already in ascending order

@param vecone first list

@param vectwo second list

@param Tint already allocated result

@param twoloc already allocated, indices of vectwo in Tint

*/

public static int merge

(

int[] vecone, int[] vectwo, int[] Tint, int[] twoloc

)

{

int headone = 0;

int headtwo = 0;

int leftone = vecone.length - headone;

int lefttwo = vectwo.length - headtwo;

int filled = 0;

while ((leftone > 0) || (lefttwo > 0))

{

if (leftone == 0) // only from list two

93

{

Tint[filled] = vectwo[headtwo];

twoloc[headtwo] = filled;

filled++;

headtwo++;

lefttwo--;

}

else if (lefttwo == 0) // only from list one

{

Tint[filled] = vecone[headone];

filled++;

headone++;

leftone--;

}

else // both lists, compare values at heads

{

if (vecone[headone] > vectwo[headtwo])

{

Tint[filled] = vectwo[headtwo];

twoloc[headtwo] = filled;

filled++;

headtwo++;

lefttwo--;

}

else if (vecone[headone] < vectwo[headtwo])

{

Tint[filled] = vecone[headone];

filled++;

headone++;

leftone--;

}

else // special case values equal both removed

{

Tint[filled] = vectwo[headtwo];

twoloc[headtwo] = filled;

filled++;

headone++;

leftone--;

headtwo++;

lefttwo--;

}

}

94

}

return filled;

}

/**

Merge two sorted vectors of indices in ascending order

@param vecone first vector

@param vectwo second vector

@param twoloc preallocated where vectwo is in merged

@return sorted vector of unique indices in ascending order

*/

public static int[] mergeSupport

(

int[] vecone, int[] vectwo, int[] twoloc

)

{

int combined = vecone.length + vectwo.length;

int[] Tint = new int[combined];

int filled = DSLib.merge(vecone, vectwo, Tint, twoloc);

if (filled == combined)

{

return Tint;

}

int[] T = new int[filled];

for (int i = 0; i < filled; i++)

{

T[i] = Tint[i];

}

return T;

}

// Vector operations

/**

Find the absolute value of each entry of a vector

@param vec original vector

@param absVec result

*/

public static void vecAbs(double[] vec, double[] absVec)

{

int n = vec.length;

95

for (int i = 0; i < n; i++)

{

absVec[i] = Math.abs(vec[i]);

}

}

/**

Initialize a vector to some value

@param vec vector

@param value value

*/

public static void vecInit(double[] vec, double value)

{

int n = vec.length;

for (int i = 0; i < n; i++)

{

vec[i] = value;

}

}

/**

Finds the 2-norm of a vector

@param vec vector

@returns 2-norm

*/

public static double norm2(double[] vec)

{

double norm2 = 0;

int nVec = vec.length;

for (int i = 0; i < nVec; i++)

{

double diff = vec[i];

norm2 += (diff * diff);

}

return Math.sqrt(norm2);

}

/**

Finds the 2-norm of the difference between two vectors

@param a first vector

@param b second vector

96

@returns 2-norm

*/

public static double norm2(double[] a, double[] b)

{

double norm2 = 0;

for (int i = 0; i < a.length; i++)

{

double diff = a[i] - b[i];

norm2 += (diff * diff);

}

return Math.sqrt(norm2);

}

/**

Finds the scalar product between two vectors

@param a first vector

@param b second vector

@return scalar product

*/

public static double dotProduct(double[] a, double[] b)

{

double dot = 0;

for (int i = 0; i < a.length; i++)

{

dot += (a[i] * b[i]);

}

return dot;

}

public static void vecDiff(double[] a, double[] b, double[] c)

{

int n = a.length;

for (int i = 0; i < n; i++)

{

c[i] = a[i] - b[i];

}

}

public static void vecAdd(double[] a, double[] b, double[] c)

{

int n = a.length;

for (int i = 0; i < n; i++)

97

{

c[i] = a[i] + b[i];

}

}

public static void vecScale(double a, double[] b, double[] c)

{

int n = b.length;

for (int i = 0; i < n; i++)

{

c[i] = a * b[i];

}

}

public static void vecCopy(double[] from, double[] to)

{

int n = from.length;

for (int i = 0; i < n; i++)

{

to[i] = from[i];

}

}

public static void matrixCopy(double[][] A, double[][] B)

{

int m = A.length;

int n = A[0].length;

for (int i = 0; i < m; i++)

{

for (int j = 0; j < n; j++)

{

B[i][j] = A[i][j];

}

}

}

public static void multMatrixVec

(

double[][] A, double[] x, double[] b

)

{

int m = A.length;

98

int n = A[0].length;

for (int i = 0; i < m; i++)

{

b[i] = 0;

for (int j = 0; j < n; j++)

{

b[i] += (A[i][j] * x[j]);

}

}

}

public static void multMatrixTVec

(

double[][] A, double[] x, double[] b

)

{

int m = A.length;

int n = A[0].length;

for (int i = 0; i < n; i++)

{

b[i] = 0;

for (int j = 0; j < m; j++)

{

b[i] += (A[j][i] * x[j]);

}

}

}

/**

*/

public static void pseudoInverse

(

double[][] U, double[] sigma, double[][] V, int rank,

double[] b, double[] x

)

{

int m = U.length;

int n = V.length;

double[] xInter = new double[x.length];

// x = V * sigma-1 * UT b

multMatrixTVec(U, b, xInter);

for (int i = 0; i < rank; i++)

99

{

xInter[i] *= (1.0 / sigma[i]);

}

multMatrixVec(V, xInter, x);

}

public static void submatrix

(

int[] T, double[][] Phi, double[][] A

)

{

int m = Phi.length;

for (int i = 0; i < m; i++)

{

for (int j = 0; j < T.length; j++)

{

A[i][j] = Phi[i][T[j]];

}

}

}

// Utility code for manipulating images

public static void writeLatex

(

String filename, File parentDir, String letterString

)

throws IOException

{

PrintWriter toLatex = new PrintWriter(

new FileWriter(

new File(parentDir, filename + ".tex"), true));

toLatex.println("\\documentclass[12pt]{article}");

toLatex.println("\\thispagestyle{empty}");

toLatex.println("\\begin{document}");

toLatex.println(letterString);

toLatex.println("\\end{document}");

toLatex.close();

}

public static ArrayList<String> texAlphabetical

(

100

String pt,

String series, String shape, String family,

String charLine

)

{

ArrayList<String> texText = new ArrayList<String>();

texText.add("\\documentclass[" + pt + "]{article}");

texText.add("\\thispagestyle{empty}");

texText.add("\\begin{document}");

texText.add("\\" + series + "{" +

"\\" + shape + "{" +

"\\" + family + "{" +

charLine + "}}}");

texText.add("\\end{document}");

return texText;

}

public static void writeTextFile

(

String fullFilename, ArrayList<String> text

) throws IOException

{

PrintWriter aWriter = new PrintWriter(

new FileWriter(fullFilename, true)

);

for (String str: text)

{

aWriter.println(str);

}

aWriter.close();

}

/**

Create a new process and run a command

@param command command to run

@param directory working directory

*/

public static int execCommand

(

ArrayList<String> command,

File directory,

ArrayList<String> output

101

) throws IOException, InterruptedException

{

// for (String str : command)

// {

// System.out.print(str + " ");

// }

// System.out.println();

ProcessBuilder pb = new ProcessBuilder(command);

pb.directory(directory);

Process p = pb.start();

Scanner execOutput = new Scanner(p.getInputStream());

int n = p.waitFor();

if (output != null)

{

while (execOutput.hasNextLine())

{

output.add(execOutput.nextLine());

}

}

return n;

}

/**

LaTeX a file

@param filename file name without extension

*/

public static void latexFile(String filename, File parentDir)

{

ArrayList<String> command = new ArrayList<String>();

String program = "latex";

command.add(program);

command.add(filename + ".tex");

try

{

int n = DSLib.execCommand(command, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

ioe.printStackTrace();

}

102

}

/**

Create PostScript file from .dvi file

@param filename file name without extension

@param parentDir parent directory of .dvi file

@param dpi resolution

*/

public static void dvipsFile

(

String filename, File parentDir, int dpi

)

{

ArrayList<String> command = new ArrayList<String>();

String program = "dvips";

command.add("dvips");

command.add("-D" + dpi);

command.add(filename + ".dvi");

try

{

int n = DSLib.execCommand(command, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

ioe.printStackTrace();

}

}

/**

Command and args for converting PostScript to another image format

@param filename file name without extension

@param parentDir parent directory of file

@param dpi resolution

@param device device for GhostScript, image format

@param ext image format extension

*/

public static void psToImage

(

String filename, File parentDir,

int dpi, String device, String ext

)

103

{

ArrayList<String> command = new ArrayList<String>();

String program = "gs";

command.add(program);

command.add("-r" + dpi);

command.add("-DEPSCrop");

command.add("-DTextAlphaBits=4");

command.add("-sDEVICE=" + device);

command.add("-sOutputFile=" + filename + "." + ext);

command.add("-dBATCH");

command.add("-dNOPAUSE");

command.add(filename + ".ps");

try

{

int n = DSLib.execCommand(command, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

ioe.printStackTrace();

}

}

/**

Commands and args for converting PostScript to blurred image format

@param filename file name without extension

@param parentDir parent directory

@param ext image format extension

*/

public static void psToBlurredImage

(

String filename, File parentDir,

String ext

)

{

ArrayList<String> command = new ArrayList<String>();

// First convert from .ps to .pdf, causes blurring

String program = "convert";

command.add(program);

command.add(filename + ".ps");

command.add(filename + ".pdf");

104

try

{

int n = DSLib.execCommand(command, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

// Now convert from .pdf to image format

command.clear();

command.add(program);

command.add(filename + ".pdf");

command.add(filename + "." + ext);

n = DSLib.execCommand(command, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

ioe.printStackTrace();

}

}

/**

Command and args for trimming image to character outline

@param filename file name without extension

@param parentDir parent directory of file

@param width width of resulting image

@param height height of resulting image

@param extFrom image format extension of original

@param extTo image format for result

*/

public static void trimImage

(

String filename, File parentDir,

int width, int height,

String extFrom, String extTo

)

{

ArrayList<String> list = new ArrayList<String>();

String program = "convert";

list.add(program);

list.add(filename + "." + extFrom);

list.add("-trim");

list.add("-depth");

105

list.add("8");

list.add("-type");

list.add("Grayscale");

list.add("-adaptive-resize");

list.add(width + "x" + height);

list.add("-gravity");

list.add("center");

list.add("-extent");

list.add(width + "x" + height);

// list.add("-morphology");

// list.add("Erode");

// list.add("Diamond");

list.add(filename + "." + extTo);

try

{

int n = DSLib.execCommand(list, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

ioe.printStackTrace();

}

}

/**

Command and args for thickening lines of image

@param filename file name without extension

@param parentDir parent directory of file

@param width width of resulting image

@param height height of resulting image

@param extFrom image format extension of original

@param extTo image format for result

*/

public static void thickenImage

(

String filename, File parentDir,

int width, int height,

String extFrom, String extTo

)

{

ArrayList<String> list = new ArrayList<String>();

String program = "convert";

106

list.add(program);

list.add(filename + "." + extFrom);

list.add("-morphology");

list.add("Erode");

list.add("Diamond");

list.add(filename + "." + extTo);

try

{

int n = execCommand(list, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

ioe.printStackTrace();

}

}

/**

Loads an image file given its filename and extension

@param filename file name

@param ext extension

@return buffered image

*/

public static BufferedImage readImageFile

(

File parentDir, String filename, String ext

) throws IOException

{

File imageFile = new File(

parentDir.getPath() + File.separator + filename + "." + ext);

// System.out.printf("Reading %s\n", imageFile.getName());

BufferedImage aBufferedImage = ImageIO.read(imageFile);

return aBufferedImage;

}

/**

Remove file if it exists

@param filename file name with extension

@param parentDir parent directory

*/

public static void rmFile

(

107

String filename, File parentDir

)

{

ArrayList<String> command = new ArrayList<String>();

String program = "rm";

command.add(program);

command.add(filename);

try

{

int n = execCommand(command, parentDir, null);

// System.out.printf("Return value %d for %s\n", n, program);

}

catch (Exception ioe)

{

ioe.printStackTrace();

}

}

/**

Creates gray image from character string in LaTeX.

@param letterString character string to produce character in LaTeX

@param dpi dpi

*/

public static BufferedImage charToImage

(

String letterString, int dpi, int xBound, int yBound

) throws IOException, InterruptedException

{

String filename = TLATEX;

File parentDir = new File(".");

String device = "pnggray";

String extFrom = "png";

String extTo = "png";

DSLib.rmFile(filename + ".tex", parentDir);

DSLib.writeLatex(filename, parentDir, letterString);

DSLib.latexFile(filename, parentDir);

DSLib.dvipsFile(filename, parentDir, dpi);

DSLib.psToImage(filename, parentDir, dpi, device, extFrom);

DSLib.trimImage(filename, parentDir, xBound, yBound, extFrom, extTo);

BufferedImage image = DSLib.readImageFile(

parentDir, filename, extTo);

return image;

108

}

/**

Creates thickened gray image from character string in LaTeX.

@param letterString character string to produce character in LaTeX

@param dpi dpi

*/

public static BufferedImage charToThickenedImage

(

String letterString, int dpi, int xBound, int yBound

) throws IOException, InterruptedException

{

String filename = TLATEX;

File parentDir = new File(".");

String device = "pnggray";

String extFrom = "png";

String extTo = "png";

DSLib.rmFile(filename + ".tex", parentDir);

DSLib.writeLatex(filename, parentDir, letterString);

DSLib.latexFile(filename, parentDir);

DSLib.dvipsFile(filename, parentDir, dpi);

DSLib.psToImage(filename, parentDir, dpi, device, extFrom);

DSLib.trimImage(filename, parentDir, xBound, yBound,

extFrom, extTo);

DSLib.thickenImage(filename, parentDir, xBound, yBound,

extTo, extTo);

BufferedImage image = DSLib.readImageFile(

parentDir, filename, extTo);

return image;

}

/**

Creates blurred gray image from character string in LaTeX.

@param letterString character string to produce character in LaTeX

@param dpi dpi

@param xBound width

@param yBound height

*/

public static BufferedImage charToBlurredImage

(

String letterString, int dpi, int xBound, int yBound

) throws IOException, InterruptedException

109

{

String filename = TLATEX;

File parentDir = new File(".");

String device = "pnggray";

String extFrom = "png";

String extTo = "png";

DSLib.rmFile(filename + ".tex", parentDir);

DSLib.writeLatex(filename, parentDir, letterString);

DSLib.latexFile(filename, parentDir);

DSLib.dvipsFile(filename, parentDir, dpi);

DSLib.psToBlurredImage(filename, parentDir, extFrom);

DSLib.trimImage(filename, parentDir, xBound, yBound, extFrom, extTo);

BufferedImage image = DSLib.readImageFile(

parentDir, filename, extTo);

return image;

}

// Generating random shapes in a rectangle

/**

Makes a random quadratic Bezier curve restricted to half the area

@param xBound x pixels numbered from 0 to xBound - 1

@param yBound y pixels numbered from 0 to yBound - 1

@param fracDistance maximum fraction of distance allowed

@param rand random number generator

@return random QuadCurve2D in bounds

*/

public static QuadCurve2D randQuad

(

int xBound, int yBound, double fracDistance, Random rand

)

{

double x1 = Math.floor(xBound * rand.nextDouble());

double y1 = Math.floor(yBound * rand.nextDouble());

double ctrlx = Math.floor(xBound * rand.nextDouble());

double ctrly = Math.floor(yBound * rand.nextDouble());

double x2 = Math.floor(yBound * rand.nextDouble());

double y2 = Math.floor(yBound * rand.nextDouble());

double hX = (double)xBound * fracDistance;

double hY = (double)yBound * fracDistance;

while

(

110

(Math.abs(x1 - x2) > hX) || (Math.abs(y1 - y2) > hY) ||

(Math.abs(x1 - ctrlx) > hX) || (Math.abs(y1 - ctrly) > hY) ||

(Math.abs(ctrlx - x2) > hX) || (Math.abs(ctrly - y2) > hY)

)

{

x1 = Math.floor(xBound * rand.nextDouble());

y1 = Math.floor(yBound * rand.nextDouble());

ctrlx = Math.floor(xBound * rand.nextDouble());

ctrly = Math.floor(yBound * rand.nextDouble());

x2 = Math.floor(yBound * rand.nextDouble());

y2 = Math.floor(yBound * rand.nextDouble());

}

return new QuadCurve2D.Double(x1, y1, ctrlx, ctrly, x2, y2);

}

/**

Makes a random cubic Bezier curve with two control points

@param xBound x pixels numbered from 0 to xBound - 1

@param yBound y pixels numbered from 0 to yBound - 1

@return random QuadCurve2D in bounds

*/

public static CubicCurve2D randCubic

(

int xBound, int yBound, double fracDistance, Random rand

)

{

double x1 = Math.floor(xBound * rand.nextDouble());

double y1 = Math.floor(yBound * rand.nextDouble());

double ctrlx1 = Math.floor(xBound * rand.nextDouble());

double ctrly1 = Math.floor(yBound * rand.nextDouble());

double ctrlx2 = Math.floor(xBound * rand.nextDouble());

double ctrly2 = Math.floor(yBound * rand.nextDouble());

double x2 = Math.floor(yBound * rand.nextDouble());

double y2 = Math.floor(yBound * rand.nextDouble());

double hX = (double)xBound * fracDistance;

double hY = (double)yBound * fracDistance;

while

(

(Math.abs(x1 - x2) > hX) || (Math.abs(y1 - y2) > hY) ||

(Math.abs(x1 - ctrlx1) > hX) || (Math.abs(y1 - ctrly1) > hY) ||

(Math.abs(x1 - ctrlx2) > hX) || (Math.abs(y1 - ctrly2) > hY) ||

(Math.abs(ctrlx1 - x2) > hX) || (Math.abs(ctrly1 - y2) > hY) ||

111

(Math.abs(ctrlx2 - x2) > hX) || (Math.abs(ctrly2 - y2) > hY)

)

{

x1 = Math.floor(xBound * rand.nextDouble());

y1 = Math.floor(yBound * rand.nextDouble());

ctrlx1 = Math.floor(xBound * rand.nextDouble());

ctrly1 = Math.floor(yBound * rand.nextDouble());

ctrlx2 = Math.floor(xBound * rand.nextDouble());

ctrly2 = Math.floor(yBound * rand.nextDouble());

x2 = Math.floor(yBound * rand.nextDouble());

y2 = Math.floor(yBound * rand.nextDouble());

}

return new CubicCurve2D.Double(

x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2);

}

/**

Makes one random cubic Bezier stroke

@param xBound x bound of image rectangle

@param yBound y bound of image rectangle

@param strokeWidth stroke width

@param fracDistance maximum distance control pt from end pt

@param rand random number generator

@return pixels enumerated top down and left to right from 0 to 255

*/

public static double[] randomCubicStroke

(

int xBound, int yBound, float strokeWidth,

double fracDistance, Random rand

)

{

BufferedImage image = new BufferedImage(xBound, yBound,

BufferedImage.TYPE_BYTE_GRAY);

Graphics2D graphics2D = image.createGraphics();

graphics2D.setStroke(new BasicStroke(strokeWidth));

graphics2D.draw(

DSLib.randCubic(xBound, yBound, fracDistance, rand));

double[] pixels = new double[xBound * yBound];

DSLib.grayImageToDouble(image, pixels);

return pixels;

}

112

/**

Makes random samples

@param xBound width

@param yBound height

@param strokeWidth stroke width

@param N number of samples to make

@param fracDistance fractional distance allowed

@param rand random number generator

@return Phi, sample matrix

*/

public static double[][] makeRandomCubicSample

(

int width, int height, float strokeWidth, int N,

double fracDistance, Random rand

)

{

int m = width * height;

double[][] Phi = new double[m][N];

for (int j = 0; j < N; j++)

{

double[] pixels = DSLib.randomCubicStroke(

width, height, strokeWidth, fracDistance, rand);

// DSLib.flipColor(pixels, pixels);

for (int i = 0; i < m; i++)

{

Phi[i][j] = pixels[i];

}

}

return Phi;

}

/**

For integer valued colors from 0 to 255, flip

@param orig original source

@param toFlip new picture with colors flipped

*/

public static void flipColor(double[] orig, double[] toFlip)

{

for (int i = 0; i < orig.length; i++)

{

toFlip[i] = 255 - orig[i];

}

113

}

// Public constants

/* Filename without extension for temporary latex file */

public static final String TLATEX = "templ";

} /* Class DSLib */

A.6 DSTest.java

The following code is what is used for the main test cases. Note: We do not use the
main() code for our tests.

import java.io.*;

import java.util.*;

import java.awt.image.*;

/**

Class for tests for project

*/

public class DSTest

{

/**

Tests projecting both onto s-space subspace

*/

public void makeRandom

(

int xBound, int yBound, float strokeWidth,

int N, double fracDistance, Random rand, int maxIter

)

{

model.setMaxIter(maxIter);

model.setPhi(

DSLib.makeRandomCubicSample(

xBound, yBound, strokeWidth, N, fracDistance, rand

));

}

/**

Sets the random number generator

114

@param rand random number generator

*/

public void setRandom(Random rand)

{

this.rand = rand;

}

/**

Trains using characters as given, maybe thin

@param dpi for gs

@param xBound width

@param yBound height

@param s sparsity

*/

public void trainSimple

(

int dpi, int xBound, int yBound, int s

) throws IOException, InterruptedException

{

classifier.setCosamp(model);

classifier.trainSimple(dpi, xBound, yBound, s);

}

/**

Trains using thickened characters

@param dpi for gs

@param xBound width

@param yBound height

@param s sparsity

*/

public void trainThicken

(

int dpi, int xBound, int yBound, int s

) throws IOException, InterruptedException

{

classifier.setCosamp(model);

classifier.trainThicken(dpi, xBound, yBound, s);

}

/**

Run tests both least squares mapped to cosamp s sparse subspace

@param dpi dpi for gs

115

@param xBound width

@param yBound height

*/

public void testSubspace

(

int dpi, int xBound, int yBound

) throws IOException, InterruptedException

{

int nChar = classifier.getNChar();

int m = xBound * yBound;

double[] u = new double[m];

double[] best = new double[m];

DSDoubleSort[] score = new DSDoubleSort[nChar];

int numRight = 0;

int totalPlace = 0;

for (int k = 0; k < nChar; k++)

{

String letterString = classifier.getLetterString(k);

BufferedImage blurredImage = DSLib.charToBlurredImage(

letterString, dpi, xBound, yBound);

DSLib.grayImageToDouble(blurredImage, u);

double[] uFlipped = new double[u.length];

DSLib.flipColor(u, uFlipped);

String closest = classifier.classifySupport(

uFlipped, best, score);

totalPlace += classifier.printCompare(k, score);

if (closest.equals(classifier.getChar(k)))

{

numRight++;

}

}

System.out.println(numRight + " correct out of " + nChar +

", percent " + (double)numRight / (double)nChar +

", avg place " + (double)totalPlace / (double)nChar);

}

/**

Run tests both simple original vectors

@param dpi dpi for gs

@param xBound width

@param yBound height

*/

116

public void testOriginal

(

int dpi, int xBound, int yBound

) throws IOException, InterruptedException

{

int nChar = classifier.getNChar();

int m = xBound * yBound;

double[] u = new double[m];

double[] best = new double[m];

DSDoubleSort[] score = new DSDoubleSort[nChar];

int numRight = 0;

int totalPlace = 0;

for (int k = 0; k < nChar; k++)

{

String letterString = classifier.getLetterString(k);

BufferedImage blurredImage = DSLib.charToBlurredImage(

letterString, dpi, xBound, yBound);

DSLib.grayImageToDouble(blurredImage, u);

double[] uFlipped = new double[u.length];

DSLib.flipColor(u, uFlipped);

String closest = classifier.classifyOriginal(

uFlipped, best, score);

totalPlace += classifier.printCompare(k, score);

if (closest.equals(classifier.getChar(k)))

{

numRight++;

}

}

System.out.println(numRight + " correct out of " + nChar +

", percent " + (double)numRight / (double)nChar +

", avg place " + (double)totalPlace / (double)nChar);

}

/**

Run tests where new is CoSaMPed maybe different support

@param dpi dpi for gs

@param xBound width

@param yBound height

*/

public void testCosamp

(

int dpi, int xBound, int yBound

117

) throws IOException, InterruptedException

{

int nChar = classifier.getNChar();

int m = xBound * yBound;

double[] u = new double[m];

double[] best = new double[m];

DSDoubleSort[] score = new DSDoubleSort[nChar];

int numRight = 0;

int totalPlace = 0;

double[] toTest = new double[m];

for (int k = 0; k < nChar; k++)

{

String letterString = classifier.getLetterString(k);

BufferedImage blurredImage = DSLib.charToBlurredImage(

letterString, dpi, xBound, yBound);

DSLib.grayImageToDouble(blurredImage, u);

double[] uFlipped = new double[u.length];

DSLib.flipColor(u, uFlipped);

// Special case compute cosamp of uFlipped now

int s = model.getS();

model.cosamp(uFlipped, s);

toTest = model.getApprox();

String closest = classifier.classifyCosamp(

toTest, best, score);

totalPlace += classifier.printCompare(k, score);

if (closest.equals(classifier.getChar(k)))

{

numRight++;

}

}

System.out.println(numRight + " correct out of " + nChar +

", percent " + (double)numRight / (double)nChar +

", avg place " + (double)totalPlace / (double)nChar);

}

/**

Run tests where new is CoSaMPed maybe different support

@param dpi dpi for gs

@param xBound width

@param yBound height

*/

public void testSimple

118

(

int dpi, int xBound, int yBound

) throws IOException, InterruptedException

{

int nChar = classifier.getNChar();

int m = xBound * yBound;

double[] u = new double[m];

double[] best = new double[m];

DSDoubleSort[] score = new DSDoubleSort[nChar];

int numRight = 0;

int totalPlace = 0;

for (int k = 0; k < nChar; k++)

{

String letterString = classifier.getLetterString(k);

BufferedImage blurredImage = DSLib.charToBlurredImage(

letterString, dpi, xBound, yBound);

DSLib.grayImageToDouble(blurredImage, u);

double[] uFlipped = new double[u.length];

DSLib.flipColor(u, uFlipped);

String closest = classifier.classifySimple(

uFlipped, best, score);

totalPlace += classifier.printCompare(k, score);

if (closest.equals(classifier.getChar(k)))

{

numRight++;

}

}

System.out.println(numRight + " correct out of " + nChar +

", percent " + (double)numRight / (double)nChar +

", avg place " + (double)totalPlace / (double)nChar);

}

/**

Run tests

*/

public static void main(String[] args)

throws IOException, InterruptedException

{

Random rand = new Random(139);

DSTest runit = new DSTest();

int xBound = 16;

int yBound = 16;

119

float strokeWidth = 2.5f;

int N = 2000;

double fracDistance = 1;

int s = 20;

int maxIter = 20;

int dpi = 300;

long before = System.currentTimeMillis();

runit.makeRandom(xBound, yBound, strokeWidth, N, fracDistance,

rand, maxIter);

long after = System.currentTimeMillis();

System.out.println((after - before) + " millis to obtain " +

N + " random curves");

before = System.currentTimeMillis();

runit.trainThicken(dpi, xBound, yBound, s);

after = System.currentTimeMillis();

System.out.println((after - before) + " millis to train " +

runit.classifier.getNChar() + " characters");

before = System.currentTimeMillis();

runit.testSubspace(dpi, xBound, yBound);

after = System.currentTimeMillis();

System.out.println((after - before) + " millis to test " +

runit.classifier.getNChar() + " characters");

}

// Private state

DSCosamp model = new DSCosamp();

DSCharacter classifier = new DSCharacter();

Random rand = new Random(139);

}

A.7 DSRunThin.java

The following program runs the main test cases we use for comparing the performance
of CoSaMP on blurred images after having initialized CoSaMP. The test cases are
simply run from main() so that compiling and executing

java DSRunThin

will run the tests and print the output onto the terminal. Note that the CLASSPATH

must contain the Colt .jar file.

import java.io.*;

120

import java.util.*;

import java.awt.image.*;

public class DSRunThin

{

/**

Run tests

*/

public static void main(String[] args)

throws IOException, InterruptedException

{

Random rand = new Random(237);

DSTest runit = new DSTest();

int xBound = 16;

int yBound = 16;

float strokeWidth = 2.5f;

int N = 2000;

double fracDistance = 1;

int s = 10;

int maxIter = 20;

int dpi = 300;

long before = System.currentTimeMillis();

runit.makeRandom(xBound, yBound, strokeWidth, N, fracDistance,

rand, maxIter);

long after = System.currentTimeMillis();

System.out.println((after - before) + " millis to obtain " +

N + " random curves");

before = System.currentTimeMillis();

runit.trainSimple(dpi, xBound, yBound, s);

after = System.currentTimeMillis();

System.out.println((after - before) + " millis to train " +

runit.classifier.getNChar() + " characters");

System.out.println("\nTest original vs training original\n");

before = System.currentTimeMillis();

runit.testOriginal(dpi, xBound, yBound);

after = System.currentTimeMillis();

System.out.println((after - before) + " millis to test " +

runit.classifier.getNChar() + " characters");

System.out.println("\nTest original vs training CoSaMPed\n");

121

before = System.currentTimeMillis();

runit.testSimple(dpi, xBound, yBound);

after = System.currentTimeMillis();

System.out.println((after - before) + " millis to test " +

runit.classifier.getNChar() + " characters");

System.out.println("\nTest LS s vs training LS s\n");

before = System.currentTimeMillis();

runit.testSubspace(dpi, xBound, yBound);

after = System.currentTimeMillis();

System.out.println((after - before) + " millis to test " +

runit.classifier.getNChar() + " characters");

System.out.println("\nTest CoSaMPed vs training CoSaMPed\n");

before = System.currentTimeMillis();

runit.testCosamp(dpi, xBound, yBound);

after = System.currentTimeMillis();

System.out.println((after - before) + " millis to test " +

runit.classifier.getNChar() + " characters");

}

}

References

[1] Abbyy. [Online.] http://www.abbyy.com/

[2] A. Ahmed et al., “Structured Correspondence Topic Models for Mining Cap-
tioned Figures in Biological Literature,” KDD-2009, June 28–July 1, 2009, Paris,
France. ACM, pp. 39–47.

[3] E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and
inaccurate measurements,” Comm. Pure Appl. Math, vol. 59, 2006, pp. 1206–
1223.

[4] M. Cheriet, N. Kharma, C.-L. Liu, and C. Y. Suen, Character Recognition Sys-
tems, Hoboken, NJ: John Wiley, 2007.

[5] Colt Project. [Online.] http://acs.lbl.gov/software/colt/

[6] J. F. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics:
Principles and Practice, 2nd ed, Reading, MA: Addison Wesley, 1996.

122

http://www.abbyy.com/
http://acs.lbl.gov/software/colt/

[7] C. S. Horstmann and G. Cornell, “Core Java, Volumes I and II, 8th Ed.”, Upper
Saddle River, NJ: Prentice Hall, 2008.

[8] ImageMagick Studio LLC, “ImageMagick.” [Online]. Available: http://www.

imagemagick.org/script/index.php

[9] Infty Project. [Online.] Available: http://www.inftyproject.org/en/index.

html.

[10] D. Knuth, The METAFONTbook, Reading, MA: Addison Wesley, 1986.

[11] L. Lamport, LATEX: A Document Preparation System, 2nd Ed., Boston, MA:
Addison Wesley, 1994.

[12] D. Bloomberg, “Leptonica,” April 5, 2010, [Software]. Available: http://www.

leptonica.com/source/leptonlib-1.65.tar.gz.

[13] Medline. http://www.ncbi.nlm.nih.gov/pubmed

[14] S. Mori, H. Nishida, and H. Yamada, Optical Character Recognition, New York:
John Wiley, 1999.

[15] A. Majumdar and R. K. Ward, “Nearest subspace clas-
sifier: application to character recognition,” [Online.]
http://ubc.academia.edu/documents/0009/0488/NSC.pdf

[16] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete
and inaccurate samples,” Appl. Comput. Harmon. Anal., vol. 26, 2009, pp. 301–
321.

[17] Pharmacogenomics Knowledge Base [Online]. http://www.pharmgkb.org/

[18] PubMed Central [Online]. Available: http://www.pubmedcentral.nih.gov.

[19] R. Rodriguez-Esteban and I. Iossifov, “Figure Mining for Biomedical Research,”
Bioinformatics, vol. 25, no. 16, 2009, pp. 2082–2084.

[20] D. L. Rubin, C. F. Thorn, T. E. Klein, and R. B. Altman, “A statistical approach
to scanning the biomedical literature for pharmacogenetics knowledge,” Journal
of the American Medical Informatics Association, vol. 12, no. 2, 2005, pp. 121–
129.

[21] H. Shatkay, N. Chen, and D. Blostein, “Integrating Image Data into Biomedical
Text Categorization,” Bioinformatics, vol. 22, no. 14, 2006, pp. e446–e453.

123

http://www.imagemagick.org/script/index.php
http://www.imagemagick.org/script/index.php
http://www.inftyproject.org/en/index.html
http://www.inftyproject.org/en/index.html
http://www.leptonica.com/source/leptonlib-1.65.tar.gz
http://www.leptonica.com/source/leptonlib-1.65.tar.gz
http://www.ncbi.nlm.nih.gov/pubmed
http://ubc.academia.edu/documents/0009/0488/NSC.pdf
http://www.pharmgkb.org/
http://www.pubmedcentral.nih.gov
http://bioinformatics.oxfordjournals.org/cgi/reprint/22/14/e446.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/22/14/e446.pdf

[22] P.Sojka, R. Panák, and T. Mudrák, “Optical character recognition of
mathematical texts in the DML-CZ project,” Presentation dated Octo-
ber 14, 2008, [Online]. Available: http://www.fi.muni.cz/usr/sojka/

presentations/abbyy-dml-cz-pres.pdf

[23] S. Sonnenburg et al., “Large Scale Multiple Kernel Learning,” Journal of Ma-
chine Learning Research, vol. 7, July 2006, pp. 1531–1565.

[24] The Lexical Systems Group of The Lister Hill National Cen-
ter for Biomedical Communications, SPECIALIST NLP Tools
http://lexsrv3.nlm.nih.gov/SPECIALIST/

[25] tesseract-ocr: An OCR Engine that was developed at HP Labs between 1985
and 1995 . . . and now at Google, “Project home.” [Online]. Available: http:

//code.google.com/p/tesseract-ocr/

[26] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, Philadelphia: SIAM,
1997.

[27] T. Yeh, T.-H. Chang, and R.C. Miller, “Sikuli: Using GUI Screenshots for Search
and Automation,” UIST 2009, ACM, 2009, pp. 183–192.

[28] M. Yousef, S. Jung, L. C. Showe, and M. K. Showe “Recursive Cluster Elimina-
tion (RCE) for classification and feature selection from gene expression data”,
BMC Bioinformatics, Vol. 8: 144, 2007. [Online]. Available: ftp://ftp.ncbi.
nlm.nih.gov/pub/pmc/bd/33/BMC_Bioinformatics-8-_-1877816.tar.gz.

124

http://www.fi.muni.cz/usr/sojka/presentations/abbyy-dml-cz-pres.pdf
http://www.fi.muni.cz/usr/sojka/presentations/abbyy-dml-cz-pres.pdf
http://lexsrv3.nlm.nih.gov/SPECIALIST/
http://code.google.com/p/tesseract-ocr/
http://code.google.com/p/tesseract-ocr/
ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/bd/33/BMC_Bioinformatics-8-_-1877816.tar.gz
ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/bd/33/BMC_Bioinformatics-8-_-1877816.tar.gz

	San Jose State University
	SJSU ScholarWorks
	2010

	Open Source Analysis of Biomedical Figures
	David Shao
	Recommended Citation

	Introduction
	From open access to OCR
	Quest for a simple algorithm

	Open source OCR
	Existing OCR
	Leptonica for character region determination
	TeX and LaTeX
	Blurring used for testing data
	Image manipulation using ImageMagick
	Tesseract-OCR

	Compressive Sampling using CoSaMP
	Motivation for using compressive sampling
	Motivation for using random curves

	Mathematics of Compressive Sampling
	Orthogonality and SVD
	Orthogonality and near-orthogonality
	Singular value decomposition
	SVD, stability, and least-squares
	SVD and condition number

	Methods: CoSaMP
	Motivation for CoSaMP
	CoSaMP formal definition
	CoSaMP implementation
	Time bounds
	Reversion to SVD and Colt

	Methods
	GUI illustrating CoSaMP visually
	Stroke width
	Choices for testing
	Characters tested

	Results
	Comparison strategy results
	Comparison for vector vs. vector, no CoSaMP
	Comparison least squares on CoSaMP determined subset
	Comparison for CoSaMP vs. CoSaMP
	Comparison for actual vs. CoSaMP

	Time

	Conclusions
	Further Research
	Source Code
	CoSaMP implementation
	DSLib.java
	DSColt.java
	DSCharacter.java
	DSGui.java
	DSTest.java
	DSRunThin.java

