
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

1-1-2009

An Automata Based Text Analysis System
Yue Lu
San Jose State University

Follow this and additional works at: http://scholarworks.sjsu.edu/etd_projects

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact Library-
scholarworks-group@sjsu.edu.

Recommended Citation
Lu, Yue, "An Automata Based Text Analysis System" (2009). Master's Projects. Paper 70.

http://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd_projects/70?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Library-scholarworks-group@sjsu.edu
mailto:Library-scholarworks-group@sjsu.edu

 AN AUTOMATA BASED TEXT ANALYSIS SYSTEM

 A Writing Report

 Presented to

 The Faculty of the Department of Computer Science

 San Jose State University

 In Partial Fulfillment

 Of the Requirements for the Degree

 Master of Science

 By

 Yue Lu

 December 2009

 © 2009

 Yue Lu

 ALL RIGHTS RESERVED

Dedicated to

My parents Hong Lu and Leanne Wang
And my Grandma Shaojie

i

Acknowledgments

I would like to thank my advisor Tsau Young Lin for his guidance and

insight, without which I would never complete my project. He helped
me for understanding and working on the project.

Moreover, I would give appreciation to Dr. Robert Chun and Dr. Sin-

Min Lee for participating in my committee members.

My special thanks go to Dr. Cay Horstmann. Without his email, I would

not know what is needed to do for graduating.

I would like to thank Shangxuan Zhang for her advising on my project.

Finally, I would like to thank Mingfang, Qun, Dongyi, Jindou, Kevin and
all other friends and family members who have supported me. I thank

my parents, Hong Lu and Leanne Wang, for giving me support to
explore my interests.

Thank you all!

ii

Abstract

This report describes and implements an automata based text analysis
system. We have collected some of the writing samples. Each sample

establishes a tree, and uses the ALERGIA algorithm to merge all
compatible nodes in order to get a merged stochastic finite automaton.

We store these automatons which demonstrate writing style of the
sample texts in the hard drive. For a new testing piece, we can test if

it has similar writing style compared to those sample texts.

Keywords: Automaton, ALERGIA Algorithm, PTA

iii

Table of Contents

1. INTRODUCTION ... 1

2. STOCHASTIC FINITE AUTOMATON ... 2

3. ALERGIA ALGORITHM .. 3

4. AUTOMATA BASED TEXT ANALYSIS MODEL ... 5

4.1 FIRST EXAMPLE OF AUTOMATA BASED MODELING ... 5
4.2 SECOND EXAMPLE OF AUTOMATA BASED MODELING .. 6

5. IMPLEMENTATION OF METHOD ... 9

5.1 MAIN CLASSES OF IMPLEMENTATION ... 9
5.2 MAIN FUNCTIONS OF IMPLEMENTATION .. 11

6. SOFTWARE APPLICATION INSTRUCTION .. 15

6.1 MAIN INTERFACE OF SOFTWARE .. 15
6.2 SETTING PARAMETER ... 16
6.3 ADD SAMPLE TEXT AND ANALYZE IT .. 17
6.4 ADD TEST PIECE AND TEST IT ... 20

7. TEST RESULTS.. 25

7.1 TESTING SAME AUTHOR ... 25
7.2 TESTING DIFFERENT AUTHOR .. 26
7.3 TWILIGHT VS. PARTIAL TWILIGHT .. 27
7.4 TWILIGHT VS. STARWAR EPISODE4 .. 28
7.5 AUTOMATON AND MATCH SEQUENCE ... 29

8. CONCLUSION .. 31

9. FUTURE WORK.. 32

10. REFERENCES .. 33

11. APPENDIX A .. 35

12. APPENDIX B .. 37

iv

List of Tables

TABLE 1. ALERGIA ALGORITHM RESULTS ... 7
TABLE 2. TESTING SAME AUTHOR ... 26
TABLE 3. TESTING DIFFERENT AUTHOR ... 27

List of Figures

FIGURE 1. EXAMPLE OF DFA ... 2
FIGURE 2. FIRST EXAMPLE OF PTA .. 6
FIGURE 3. SECOND EXAMPLE OF PTA .. 7
FIGURE 4. EXAMPLE OF SFA .. 8
FIGURE 5. CLASSES IN THE PROGRAM .. 10
FIGURE 6. FUNCTION WORDS SEQUENCES ... 13
FIGURE 7. THE MAIN INTERFACE ... 16
FIGURE 8. SETTING WINDOW ... 17
FIGURE 9. ADD ANALYSIS FILE1 .. 18
FIGURE 10. ADD ANALYSIS FILE2 .. 18
FIGURE 11. ANALYZE FILE COMPLETE ... 19
FIGURE 12. ANALYZE RESULT1 ... 19
FIGURE 13. ANALYZE RESULT2 ... 20
FIGURE 14. ADD TEST FILE .. 21
FIGURE 15. CHOOSE SAMPLE FILE ... 22
FIGURE 16. TEST RESULT FOR SAMPLE1 .. 23
FIGURE 17. TEST RESULT FOR SAMPLE2 .. 24
FIGURE 18. TEST RESULT FOR SAMPLE3 .. 24
FIGURE 19. TEST RESULT FOR TWILIGHT ... 28
FIGURE 20. TEST RESULT FOR TWILIGHT & STARWARS4 ... 29
FIGURE 21. SAMPLE5 ... 30
FIGURE 22. AUTOMATON FOR SAMPLE5 .. 30
FIGURE 23. TEST3 .. 31
FIGURE 24. MATCHING SEQUENCES ... 31

1

1. Introduction

Previously, Tsau Young Lin, Shangxuan Zhang: An Automata Based
Authorship Identification System. PAKDD Workshops 2008: 134-142

has illustrated a new method to analyze text base on the automata
theory. It has implemented the method to test if an anonymous

writing piece has the similar writing style with one sample text from an

author in order to verify Authorship Authorization.

Everyone has their own writing characters, depending on his or her
gender, age, experience, knowledge, etc. It is been demonstrated

through several statistic writing characters, such as word frequency,
word length, and sentence length, etc. [10] Given an anonymous

writing piece, compared to the sample texts which already learned, we
can obtain those writing characters and analyze the texts [1].

The goal of this paper is to continuously study the text analysis

method based on the theory of automaton. [10] More precisely, we
collect several writing samples. We first get the stop words sequences

for each sample text. We then use the ALERGIA algorithm to build a
stochastic finite automaton which represents certain writing pattern of

the text. Then we analyze those automatons to do future research.

Our program stores patterns for several sample texts. For the

anonymous testing piece, we get the sequences of stop words and
compare to the stored automatons one by one. We then get the

percentages of sentences which accepted by those automatons. The
result would be high if the testing piece has the similar writing style

compared to the sample text. However, the result might not be such
accurate when running multiple testing. We recommend not using this

method itself to be only reference.

This paper is structured in seven major sections. In section 2, we first
give a description on deterministic finite automata and stochastic finite

automaton. In section 3, we describe the ALERGIA algorithm which is
used to build an approximated automaton from original sample texts.

In section 4, we describe the method which is applied in our program.

In section 5, we introduce the implementation and main functions of
the software application. In section 6, we give an instruction on how to

2

use the software. In section 7, we show several results and

corresponding automaton of the texts. Finally in section 8 and 9, we
conclude the method and explore for possible future work.

2. Stochastic Finite Automaton

In this section, we describe the notion of both deterministic finite

automata and stochastic finite automata [2, 3]. Stochastic finite
automaton is c.

2.1 Deterministic Finite Automaton

A deterministic finite automaton (DFA) is a 5-tuple

 (Q, A, δ, q0, F), where [3]

Q is a finite set of states
A is a finite set of input symbols called alphabet
δ: Q ×A → Q is the transition function

q0∈ Q is a start state

F ⊆ Q is a set of accepting states

One simplest DFA is an open/close door sensor which shows in figure
1[3]. The sensor records whether the door is in the “opened” state or

the “closed” state.

 Figure 1. Example of DFA

2.2 Stochastic Finite Automaton

3

A stochastic finite automaton (SFA) is a 4-tuple
 (Q, A, q0, P), where

Q is a finite set of states

A is a finite set of input symbols called alphabet
q0∈ Q is a initial state

P is a set of probability matrices pij(a) giving the probability of a

transition from state qi to qj led by the symbol a∈A. [2]

If we call pif the probability that the string ends at node qi, then we
have the following constraint [2]:

This means for each state qi, the probabilities which starts at qi plus
the probabilities which ends at qi equals 1.

3. ALERGIA Algorithm

In this section, we describe the ALERGIA algorithm which is used to
build an approximated SFA from given set of strings. The original idea

comes from R.C.Carraso and J.Oncina: Learning stochastic regular
grammars by means of a state merging method. Proceedings of the

2nd International Colloquium on Grammatical Inference. Lecture Notes
in Artificial Intelligence (1994) 139-152.

The ALERGIA algorithm first builds a prefix tree automaton (PTA)

based on the given sample strings. The PTA is a stochastic finite
automaton representing all prefixes found in the sample, where each

transition is given a probability according to the number of times it is
traversed during construction of the PTA [2]. Through merging all

equivalent and compatible states in the PTA, the algorithm regenerates
a SFA. This SFA is an approximation of the original SFA.

4

Suppose we have set of strings S = {s1, s2… sn}. For each string

si=a1a2…ai, first, we put a start node q0. Following the transition ai, we
move to next node qi and continue this process until it reaches a node

that accepts this string. [10] While running through all strings, we
record some statistic data for future usage [2].

Two nodes are said to be equivalent if they have same outgoing

transition probabilities for every symbol a ∈ A and the destination

nodes must be equivalent also [2]. In symbols, we have

However, we hardly have exactly same frequencies in experimental
results. Nodes are accepted to be equivalence within a confidence

range. [2]

A confidence range for a Bernoulli variable with probability p and
frequency f out of n tries is given by the Hoeffding bound as follows

[2]:

If two estimated probabilities are different in an amount more than the
sum of confidence ranges, the ALERGIA algorithm will reject

equivalence. [2]

We use above constraint to merge compatible nodes in order to get a
SFA which is an approximation of the original one. [10]

5

4. Automata Based Text Analysis Model

In this section, we describe the text analysis modeling based on
automata theory.

4.1 First Example of Automata Based Modeling

We use automata modeling based on stop words. The stop words are

predetermined. First, we collect several writing samples. For example,
we demonstrate the idea using following paragraph as writing sample.

These sentences are cited from Breaking Dawn by Stephanie Meyer.

“Childhood is not from birth to a certain age and at a certain age.
The child is grown, and puts away childish things.
Childhood is the kingdom where nobody dies.”

In above example, we have three sentences. We use one sentence as
a sequence unit. Therefore, we have three sequences. For each

sequence, we keep the stop words and take out all other words. [10]
Following the rule described, we get:

is not from to a and at a
the is and away
is the where nobody

We notice that the size of unit was chose would be effect to the result.
The bigger the unit is, the nicer result would have and also the longer

running time would cost. [10]

We classify the stop words to five groups and use number 0, 1, 2, 3, 4
to represent adverb, auxiliary verb, preposition/conjunction, pronoun

and number respectively. [10] Following the rule described, we have:

1 0 2 2 3 2 2 3
3 1 2 0

1 3 0 3

Now we start to build the PTA. The PTA shows in figure 2.

6

Figure 2. First Example of PTA

Let us take a look at this example. We have three strings in the PTA

starting with the node q0. Two strings pass node q1. By previous
notation, we have n1=2. Node q1 has two children which are q2 and

q13. There is one string from node q1 to q2 follow the transition

symbol 0, so f1(0)=1. There is one string from node q1 to q13 follow
the transition 3, so f1(3)=1. There is no string ending at node q1, so

f1(#)=0.

In this example, we don’t have sufficient data. Therefore, the
approximation is not accurate. When going through a large set of

sample strings, the approximation would be very well after merging all
compatible nodes. Finally, we can get a merged SFA which represents

certain style of the text. And it is used to do the text analysis. [10]

4.2 Second Example of Automata Based Modeling

In order to illustrate merging method of the ALERGIA algorithm, we
shall look at the following sample. Suppose we have 12 strings:

{a, b, ab, ba, aba, abab, abab, abab, abab, abab, ababab, ababab},

We can build PTA as figure 3 shows:

7

 Figure 3. Second Example of PTA

From above PTA, we compute the values of ni, fi(#) and fi(A) for A=a,b
(0≤i≤8) in following table.

Node i q0 q1 q2 q3 q4 q5 q6 q7 q8

ni 12 10 2 9 1 8 7 2 2

fi(#) 0 1 1 2 1 1 5 0 2

fi(a) 10 0 1 8 0 0 2 0 0

fi(b) 2 9 0 0 0 7 0 2 0

 Table 1. ALERGIA Algorithm results

Where

ni is the number of strings arriving at node qi [2].
fi(A) is the number of strings following transition δi(A) [2].

fi(#) is the number of strings ending at node qi [2].

The quotients fi(a)/ni and fi(#)/ni gives estimate the probabilities pi(a)
and pif respectively [2].

Through the notation in previous section,

8

ALERGIA algorithm will reject equivalence.

If we let α =0.7, then we have

|f6(#)/n6 – f8(#)/n8|= 0.29 <

(1/2 * log(2/α))0.5 * ((1/(n6)
 0.5) + (1/(n8)

 0.5)) ≈ 0.86

|f6(a)/n6 – f8(a)/n8|= 0.29 <

(1/2 * log(2/α))0.5 * ((1/(n6)
 0.5) + (1/(n8)

 0.5)) ≈ 0.86

|f6(b)/n6 – f8(b)/n8|= 0 <

(1/2 * log(2/α))0.5 * ((1/(n6)
 0.5) + (1/(n8)

 0.5)) ≈ 0.86

It shows that node 6 and node 8 are compatible. No other nodes are
qualified to be merged. Therefore, we can merge nodes 6 and node 8

to get the following merged SFA in figure 4.

 Figure 4. Example of SFA

Now for another set of strings, we test each string if it can be accepted
by this merged SFA. Then we compute the accepting probability for

the strings.

For example, we have these 10 strings as our testing data:

{aaab, aaba, ababa, ababab, aaaa, bbba, bb, bab, bbaa, baba},
where only one of the strings is same from sample strings. After

performing the test, the string “ababab” has been accepted by this
SFA. Therefore, the accepting probability equals 1/10 (10%).

9

Let us take a look at another example. We have following 10 strings:

{ aaab, aaba, ababa, ababababab, aaaa, bbba, bb, bab, bbaa, baba },
where none of them are same from sample strings. However, after

performing the test, the string “ababababab” has been accepted by
this SFA. The accepting probability also equals 1/10 (10%), too.

We have realized that the accepting probability depends on the

parameter α in our method. [10] If we set α too small (0≤ α ≤ 1), it is

possible to merge nodes which are not compatible at all. If we set the

parameter too large, few states are qualified to merge, the percentage

results would be getting low. Usually, we think α = 0.7 is a reasonable

value to set.

5. Implementation of Method

In this section, we describe major structure of implementation and
main functions of the software.

5.1 Main Classes of Implementation

Our program is written in C++. We compile the source code on

Windows XP, using Microsoft Visual Studio 2008 as our development
environment. Figure 5 shows the class view of the program.

10

Figure 5. Classes in the program

The definition for class node:

class node
{

public:
 node(void);

 ~node(void);
 long index;

 long parent;

 long num_pass;
 long num_accept;

 bool end;
 bool merge;

 long merge_to;
 long child[5]; // 5 is StopWordType

 long num_appear[5]; // 5 is StopWordType

 friend istream & operator >>(istream &in, node &obj);
 friend ostream & operator <<(ostream &out, node &obj);

11

};

We implement class node to store data of the nodes in SFA.

index indicates the index of nodes in SFA.

parent indicates the parent of the node.

num_pass indicates the number of strings which pass through the

node.

num_accept indicates the number of strings which are ended at this
node. The value would be zero if the node is not a final state.

end indicates if the node is a final state. If it is a final state, the value

is set to true, otherwise the value is false.

merge indicates which node need to be merged when applying the

ALERGIA Algorithm.

merge_to indicates which node it would merge to when applying the
ALERGIA Algorithm

child[5] indicates the children of one string, it must have 5 or less

different children since we only have 5 types of function words.

num_appear[5] represents the number of strings which pass through
by the string for each type of function words.

5.2 Main Functions of Implementation

The definition for class Analyze:

class Analyze :

 public CObject
{

public:
 Analyze(void);

 ~Analyze(void);

12

 static const long StateLimit=1000000;//number of state

 static const int WordType=5;//number of stop words
 static const int M=1;//sentence num

 static const int WordLength=100;
 static const int WordNumber=100;

 static const int Exception1=10;
 static const int Exception2=20;

 static const int Exception3=30;

 enum {Adv,Aux,Prep,Pron,Number};

public:
 long max_state,trCounter;

 node state[StateLimit];
 long temp[StateLimit];

 long treeEnd[StateLimit];

 long count;
 double progress;

 double a;

public:
 long GetStopWord(CString dir,CString in,CString out_dir,CString

out);
 int BuildPTA(CString dir,CString in);

 int Compatible(long node_i, long node_j);
 int Differ(double n_1,double n_2,double f_1,double f_2);

 long Delta(long i, int t);
 int Combine(void);

 int Merge(CString dir);
 int TextAnalysis(CString dir,CString name);

 void Output(CString strFile);

 void Input(CString strFile);
};

We implement class Analyze to apply the main method which

described in previous sections.

The major functions in class Analyze are illustrated as following:

 long GetStopWord(CString dir,CString in,CString out_dir,CString
out);

13

This function is used to get all function words sequences from the

sample text. It reads input file word by word, and only keeps those
predetermined function words. We define -1 to represent the end of

one sentence and 0, 1, 2, 3, 4 to represent five types of stop words
respectively. [10] We can obtain sequence as following:

Figure 6. Function Words Sequences

As meantime, we record some statistic data, such as total number of

words and number of function words, etc.

 int BuildPTA(CString dir,CString in);

This function is used to construct PTA which looks like the figure 2
shows previously. As we get the sequence of numbers from last

14

function, we start to construct the states of PTA one by one. The result

was written in a file named pta.txt. Array state[StateLimit] stores the
nodes of the PTA.

 int Compatible(long node_i, long node_j);

 int Differ(double n_1,double n_2,double f_1,double f_2);

 long Delta(long i, int t);

These three functions are used to calculate the statistic data of the
PTA. The results are prepared for merging equivalent states in next

step.

 int Combine(void);

 int Merge(CString dir);

These two functions are used to merge all equivalent states in PTA.
The function Combine(void) determines what nodes are needed to be

merged, and the function Merge(CString dir) does the merging process
which updates the children and parents of the nodes. The results are

written to a file named automaton.txt. This is the final SFA we get
which approximate the original SFA to represent certain writing style

of the sample text.

 int TextAnalysis(CString dir,CString name);

This function is used to compare a new writing piece to the sample
texts. We get the sequence of number from the testing piece and test

each sequence whether it can be accepted by the SFA. [18] Then we
compute the accepting probability for the strings.

The definition for class AnalysisResult:

class AnalysisResult : public CObject
{

public:

15

 AnalysisResult(void);

 ~AnalysisResult(void);
 CString strAnalysisResultDir;

 CString strAnalysisResultTxt;
 CString strAnalysisResultTitle;

 friend istream & operator >>(istream &in, AnalysisResult &obj);

 friend ostream & operator <<(ostream &out, AnalysisResult
&obj);

};

We implement class AnalysisResult to manage the results of
processing sample data. It creates a folder AnalysisResult. In this

folder, it creates a file called AnalysisResult.txt to store the directory of
the sample data. For each sample data, it also creates a folder which is

named as the sample title and store the related information about the

corresponding sample.

The main idea of class AnalysisResult is to save analysis results of
each sample for later use. For example, we store three pieces of

writing samples, we can test an anonymous writing piece with these
three results to see how similar with each of the three samples.

6. Software Application Instruction

In this section we represent how to use the software and the functions

of the software application TM. The program can be run in Windows XP
operating system.

6.1 Main Interface of Software

After open TM, we shall see a dialog-based window as figure 6 shows:

16

 Figure 7. The Main Interface

In order to run the program, first we need to set the confidence level
which is used in the program as a parameter. To do this, we simply

click Setting button on the right hand side of the window.

6.2 Setting Parameter

After clicking Setting button, a pop-up window will show up as
following figure:

17

Figure 8. Setting Window

The confidence level has a default value which set to be 0.7. It
controls the accuracy of merging nodes. The value should be a number

between 0 and 1. If it has been set too small, it is possible to merge
nodes which are not equivalent at all. If the value has been set close

to 1, very few states can be merged. Usually, we think α = 0.7 is an

appropriate value.

After setting the confidence level, click OK to go back to the main
interface. Now we need to add one sample text and analyze it.

6.3 Add Sample Text and Analyze it

After clicking Add Analysis button, a pop-up window will show up as

following figure:

18

Figure 9. Add Analysis File1

From this window, we need to browse to select a sample text file. The
results showing as following figure:

Figure 10. Add Analysis File2

Now it is ready for analyzing the data, click Analysis File button on the

left corner, and wait until the label shows Analyzing Complete! as
below:

19

Figure 11. Analyze File Complete

When analyzing complete, a SFA represented the certain writing style
of the sample text has been generated. Click OK to go back to main

interface. Now we shall see the sample text name already in the
analysis result list as below:

Figure 12. Analyze Result1

Following same steps, we can add several sample texts and analyze

them. The results will be show up in the main interface. Following

figure shows 3 sample texts have been analyzed:

20

Figure 13. Analyze Result2

6.4 Add Test Piece and Test it

Now we can test an anonymous writing piece with the sample data in

the result list. First of all, we need to add a file which is going to be
tested. Simply click Add Test button and select a file. Then the test file

name will show up at the right corner below the label Test File: and
the information bar will show similar message said add test file OK

which is showing as below:

21

Figure 14. Add Test File

Now we start to test the file. There are three sample texts which have
been stored in the system. We need to select one to be tested. Simply

click a place which is in same line as the sample text and text color
would be changed which shows as below:

22

Figure 15. Choose Sample File

Last step, simply click Testing button on the right hand side to let
program run. It might take several seconds to process. After it is done,

we will see the probability result shown on the information bar as
following:

23

Figure 16. Test Result for Sample1

This result means that the test file Test1.txt has 32 percent similar

writing style as Sample1.txt.

You can test it with Sample2 and Sample3 using same steps. Select

one and click Testing button, the results will show:

24

Figure 17. Test Result for Sample2

Figure 18. Test Result for Sample3

25

The two results show that the test file has 14 percent similar writing

style when compared to Sample2, and 69 percent similar writing style
when compared to Sample3.

From these three different test results, we can say that Test1.txt has

more writing style which is more similar to Sample3.txt. Actually they
are from same author.

We can add several sample texts, and test each of them with the test

file. Or we can change the test file also. Through running our program,
we can analyze texts based on function words and automata modeling.

The higher the percentage is, the more likely the testing piece has a
similar writing style with this sample text.

7. Test Results

In this section we show couple of results, the merged SFA and

accepting sequences by running our program. Notice that all

confidence value are set to be the same (α =0.7) for these testing.

7.1 Testing Same Author

Sample file and Test file are both from the author Stephanie Meyer (α

=0.7)

Sample Test Proba

bility

Breaking Dawn by Stephanie Meyer
(full version)

Eclipse by Stephanie Meyer
(full version)

69%

Breaking Dawn by Stephanie Meyer
(full version)

Eclipse by Stephanie Meyer
(half version)

68%

Breaking Dawn by Stephanie Meyer

(full version)

Eclipse by Stephanie Meyer

(quarter version)

68%

Breaking Dawn by Stephanie Meyer

(full version)

Eclipse by Stephanie Meyer

(1/8 version)

67%

Breaking Dawn by Stephanie Meyer
(half version)

Eclipse by Stephanie Meyer
(full version)

66%

Breaking Dawn by Stephanie Meyer
(half version)

Eclipse by Stephanie Meyer
(half version)

64%

26

Breaking Dawn by Stephanie Meyer

(half version)

Eclipse by Stephanie Meyer

(quarter version)

64%

Breaking Dawn by Stephanie Meyer

(half version)

Eclipse by Stephanie Meyer

(1/8 version)

64%

Breaking Dawn by Stephanie Meyer
(quarter version)

Eclipse by Stephanie Meyer
(full version)

61%

Breaking Dawn by Stephanie Meyer
(quarter version)

Eclipse by Stephanie Meyer
(half version)

59%

Breaking Dawn by Stephanie Meyer

(quarter version)

Eclipse by Stephanie Meyer

(quarter version)

59%

Breaking Dawn by Stephanie Meyer

(quarter version)

Eclipse by Stephanie Meyer

(1/8 version)

58%

Breaking Dawn by Stephanie Meyer
(1/8 version)

Eclipse by Stephanie Meyer
(full version)

55%

Breaking Dawn by Stephanie Meyer
(1/8 version)

Eclipse by Stephanie Meyer
(half version)

53%

Breaking Dawn by Stephanie Meyer

(1/8 version)

Eclipse by Stephanie Meyer

(quarter version)

53%

Breaking Dawn by Stephanie Meyer

(1/8 version)

Eclipse by Stephanie Meyer

(1/8 version)

52%

 Table 2. Testing Same Author

The percentage is getting low when the sample file and test file cut

small. However, the result shows test file still has more than half of
the sequences have been accepted by the generated SFA from sample

file.

7.2 Testing Different Author

Sample file and Test file are from different author (α =0.7)

Sample Test Probabil

ity

Term paper from Yue Lu (full

version)

Eclipse by Stephanie Meyer (full

version)

14%

Term paper from Yue Lu (full
version)

Eclipse by Stephanie Meyer
(half version)

14%

Term paper from Yue Lu (full
version)

Eclipse by Stephanie Meyer
(quarter version)

14%

Term paper from Yue Lu (full

version)

Eclipse by Stephanie Meyer (1/8

version)

12%

27

Term paper from Yue Lu (half

version)

Eclipse by Stephanie Meyer (full

version)

14%

Term paper from Yue Lu (half

version)

Eclipse by Stephanie Meyer

(half version)

14%

Term paper from Yue Lu (half
version)

Eclipse by Stephanie Meyer
(quarter version)

14%

Term paper from Yue Lu (half
version)

Eclipse by Stephanie Meyer (1/8
version)

12%

Term paper from Yue Lu

(quarter version)

Eclipse by Stephanie Meyer (full

version)

14%

Term paper from Yue Lu

(quarter version)

Eclipse by Stephanie Meyer

(half version)

14%

Term paper from Yue Lu
(quarter version)

Eclipse by Stephanie Meyer
(quarter version)

14%

Term paper from Yue Lu
(quarter version)

Eclipse by Stephanie Meyer (1/8
version)

12%

Term paper from Yue Lu (1/8

version)

Eclipse by Stephanie Meyer (full

version)

14%

Term paper from Yue Lu (1/8

version)

Eclipse by Stephanie Meyer

(half version)

14%

Term paper from Yue Lu (1/8

version)

Eclipse by Stephanie Meyer

(quarter version)

14%

Term paper from Yue Lu (1/8
version)

Eclipse by Stephanie Meyer (1/8
version)

12%

 Table 3. Testing Different Author

The percentage is getting low when the sample file and test file cut

small. The result is getting nicer to verify different author.

7.3 Twilight vs. Partial Twilight

The following section analyzes text from the book Twilight by
Stephanie Meyer:

Sample text: Twilight from Stephanie Meyer

Test file: First Twelve Chapters of Twilight from Stephanie Meyer

28

Figure 19. Test Result for Twilight

From this example, First Twelve Chapters of Twilight has 99 percent

similar writing style compared to the Full version Twilight. It means
almost all of sequences of patterns have been accepted by the SFA

which is generated in analyzing file step. Since they are same book,
just cut some text from full version, they should have same writing

style, the result convinces it.

7.4 Twilight vs. StarWar Episode4

We choose two different author’s book to test:

Sample text: Twilight by Stephanie Meyer

Test file:Starwars Episode 4 A New Hope by Alan Dean Foster

29

Figure 20. Test Result for Twilight & Starwars4

From this example, Starwars Episode 4 A New Hope has 54 percent
similar writing style compared to Twilight. This means only half of

sequences of patterns have been accepted by the SFA which is
generated in analyzing file step.

We notice that if the parameter α is relatively small, then it would

merge a lot of non-equivalent states. The percentage results would be
getting high. However, if the parameter is relatively large, few states

are qualified to merge, the percentage results would be getting low. It

is important to pick up the proper value for the parameter in order to
get a better result. [10]

7.5 Automaton and Match Sequence

We provide a small case to show the generated automaton and the
matching sequence.

Suppose we have Sample5.txt :

30

Figure 21. Sample5

We generate the SFA as following:

Figure 22. Automaton for Sample5

Index means the nodes in the SFA. Since we have 5 types of function

words, each node has maximum 5 children. “-” means there is no
children from this transaction. For example, node 5 has one child node

31

6 led by 2(which is one function word type). And node 6 has no child

at all. Therefore, node 6 is a final state.

We have a Text3.txt:

Figure 23. Test3

After testing, we got following accepting probability:

Figure 24. Matching Sequences

From the above figure, we can see that node 6, 11, and 17 has been
accepted by the SFA. When we look at the automaton for Sample5.txt,

we can see that node 6, 11, and 17 are final state. That means there
is no child of these nodes. The three sequences which end at node 6,

11, and 17 are accepted by the SFA. The accepting probability is 0.3.

8. Conclusion

We have shown the text analysis method which use automata

modeling and the ALERGIA Algorithm. We then showed how it is
implemented in our program. Based on the previous result, we have

32

improved the implementation so that we can store a lot of sample

patterns of sample texts. And we let one testing piece to test the
probability of similar writing style compared to each of the sample text.

It would be better to combine the result with other methods or tools
instead of itself [10].

9. Future Work

It will be very interesting and challenging to work on the program

following the algorithm. One can use different set of function words, or
one can use one paragraph to be a sequence instead of one sentence

to refine the result.

Improvements may be achieved with taking out those common

sequences that might appear in many texts. Based on our result, some
texts from different author still have high similar writing style. This

might happen because we didn’t take out those common sequences
which are used by anyone. If we could find those common sequences

and remove them from the merged SFA, we may get an even sharp
accepting probability. The result would be much nicer.

For future thinking, the same method can also be applied to Microarray

in bioinformatics to deal with DNA sequence or sequences on Turning
Machine. It is an interesting topic to work on and generalize this

method combined with other tools.

33

10. References

[1] J.Grieve: Quantitative Authorship Attribution: An evaluation of
Techniques. Literary and Linguistic Computing, Vol. 22, No. 3, (2007)
251-270

[2] R.C.Carraso and J.Oncina: Learning stochastic regular grammars
by means of a state merging method. Proceedings of the 2nd
International Colloquium on Grammatical Inference. Lecture Notes in

Artificial Intelligence (1994) 139-152.

[3] J.E.Hopcroft, R.Motwani and J.D.Ullman: Introduction to Automata
Theory, Language, and Computation. Addison Wesley (2001).

[4] P.Baliga and T.Y.Lin: Kolmogorov Complexity Based Automata
Modeling for Intrusion Detection. Proceeding of the 2005 IEEE
International Conference on Granular Computing, " July 25-27, Beijing,

China (2005) 387-392

[5] T. Y. Lin, “Rough Patterns in Data-Rough Sets and Foundation of
Intrusion Detection Systems,” Journal of Foundation of
Computer Science and Decision Support, Vol.18, No. 3-4, 1993. 225-

241.

[6] T. Y. Lin: Patterns in Numerical Data: Practical Approximations to
Kolmogorov Complexity. RSFDGrC 1999: 509-513

[7] Tsau Young Lin, “Neighborhood Systems and Approximation in
Database and Knowledge Base Systems”, Proceedings of the Fourth
International Symposium on Methodologies of Intelligent Systems,

Poster Session, October 12-15, 1989, pp. 75-86

[8] T. Y. Lin, “Granular Computing on Binary Relations I: Data Mining
and Neighborhood Systems” In: Rough Sets In Knowledge Discovery, ,
A. Skowron and L. Polkowski (eds), Physica-Verlag, 1998, 107-121

[9] T. Y. Lin, “Granular Computing on Binary Relations II: Rough Set
Representations and Belief Functions” In: Rough Sets In Knowledge

34

Discovery, A. Skowron and L. Polkowski (eds), Physica-Verlag, 1998,

121-140

[10] Tsau Young Lin, Shangxuan Zhang: An Automata Based
Authorship Identification System. PAKDD Workshops 2008: 134-142

[11] Tsau Young Lin, "An Overview of Rough Set Theory from the Point
of View of Relational Databases" Bulletin of International Rough Set
Society, Vol I, No1, March , 1997, 30-34

[12] M.Young-Lai and F.Tompa: Stochastic Grammatical Inference of
Text Database Structure. Machine Learning (2000) 111-137.

35

11. Appendix A

The function words are predetermined. We got the lists from internet

and Tsau Young Lin, Shangxuan Zhang: An Automata Based
Authorship Identification System. PAKDD Workshops 2008: 134-142.

To store the data into our program, we define the following array

 static const char

funword[WordType][WordNumber][WordLength]={
{"absolutely","again","ago","almost","alone","already","also","always",

"anywhere","away","back","barely","carefully","downtown","else","eve
n","ever","everywhere","far","fast","frequently","hard","hardly","hence

","here","hither","home","how","however","immediately","lately","later

","mostly","near","nearby","nearly","never","not","now","nowhere","oc
casionally","often","only","out","pretty","quickly","quite","rarely","rath

er","really","recently","seldom","slowly","sometimes","somewhere","so
on","still","then","thence","there","therefore","thither","thus","today","

together","tomorrow","tonight","too","underneath","susally","very","w
ell","when","whence","where","whither","why","yes","yesterday","yet"

},
{"'d","'ll","'s","am","ain't","are","aren't","be","been","being","can","can

't","could","couldn't","did","didn't","do","does","doesn't","doing","done
","don't","get","gets","getting","got","had","hadn't","has","hasn't","hav

e","haven't","having","he'd","he'll","he's","i'd","i'll","i'm","is","i've","isn'
t","it's","may","mayn't","might","must","mustn't","ought","oughtn't","'

re","shall","shan't","she'd","she'll","she's","should","shouldn't","that's",
"they'd","they'll","they're","was","wasn't","we'd","we'll","were","we're"

,"weren't","we've","will","won't","would","wouldn't","you'd","you'll","yo

u're","you've"
},

{"aboard","about","above","across","after","against","along","alongsid
e","although","amid","amidst","among","amongst","and","around","as"

,"aside","astride","at","before","behind","below","beneath","beside","b
esides","between","beyond","but","by","concerning","despite","down","

during","except","excluding","following","for","from","given","if","in","i
ncluding","inside","into","like","minus","near","next","nor","of","off","o

n","onto","or","out","outside","over","past","per","regarding","round","
since","so","than","that","though","through","till","to","toward","towar

36

ds","under","underneath","unless","unlike","until","up","upon","versus"

,"via","whereas","while","with","within","without"
},

{"a","all","an","and","another","any","anybody","anyone","anything","
because","both","but","each","either","enough","every","everybody","e

veryone","everything","few","fewer","he","her","hers","herself","him","
himself","his","i","it","its","itself","less","little","many","me","mine","m

ore","most","much","my","myself","neither","no","nobody","none","nor
","nothing","one","or","other","others","our","ours","ourselves","provid

ed","several","she","so","some","somebody","someone","something","
such","that","the","their","theirs","them","themselves","these","they","

this","those","us","we","what","whatever","whenever","whether","whic
h","whichever","while","who","whoever","whom","whose","yet","you","

your","yours","yourself","yourselves"
},

{"billion","billionth","eight","eighteen","eighteenth","eighth","eightieth"

,"eighty","eleven","eleventh","fifteen","fifteenth","fifth","fiftieth","fifty",
"first","five","fortieth","forty","four","fourteen","fourteenth","fourth","h

undred","hundredth","last","million","millionth","next","nine","nineteen
","nineteenth","ninetieth","ninety","ninth","once","one","second","seve

n","seventeen","seventeenth","seventh","seventieth","seventy","six","s
ixteen","sixteenth","sixth","sixtieth","sixty","ten","tenth","third","thirte

en","thirteenth","thirtieth","thirty","thousand","thousandth","three","th
rice","twelfth","twelve","twentieth","twenty","twice","two","zero"

}};

The enumerate type is

 enum {Adv,Aux,Prep,Pron,Number};

stores the function words we are interested in.

37

12. Appendix B

--

The results are obtained by running program on:
Microsoft Window XP Professional Version 2002 Service Pack 3

DELL INSPIRON E1405

Intel CPU CORE DUO T2300 @ 1.66 GHZ
2GB of RAM

--

Sample1.txt: Study information from internet
Sample2.txt: Term paper from Yue Lu

Sample3.txt: Breaking Dawn by Stephanie Meyer

Test1.txt: Eclipse from Stephanie Meyer

All confidence value are set to be the same (α =0.7) for testing.

The running time is proportional to the number of function words, not
proportional to the number of sentences. Usually the longer the text is,

the more function words are.

I got different running time for each analyzing and testing process.

Mostly it takes less than 15 seconds when the computer doesn’t run
other programs at the same time.

	San Jose State University
	SJSU ScholarWorks
	1-1-2009

	An Automata Based Text Analysis System
	Yue Lu
	Recommended Citation

