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ALGORITHM REFINEMENT FOR FLUCTUATING
 
HYDRODYNAMICS∗
 

SARAH A. WILLIAMS† , JOHN B. BELL‡ , AND ALEJANDRO L. GARCIA§ 

Abstract. This paper introduces an adaptive mesh and algorithm refinement method for fluc­
tuating hydrodynamics. This particle-continuum hybrid simulates the dynamics of a compressible 
fluid with thermal fluctuations. The particle algorithm is direct simulation Monte Carlo (DSMC), 
a molecular-level scheme based on the Boltzmann equation. The continuum algorithm is based on 
the Landau–Lifshitz Navier–Stokes (LLNS) equations, which incorporate thermal fluctuations into 
macroscopic hydrodynamics by using stochastic fluxes. It uses a recently developed solver for the 
LLNS equations based on third-order Runge–Kutta. We present numerical tests of systems in and 
out of equilibrium, including time-dependent systems, and demonstrate dynamic adaptive refinement 
by the computation of a moving shock wave. Mean system behavior and second moment statistics 
of our simulations match theoretical values and benchmarks well. We find that particular attention 
should be paid to the spectrum of the flux at the interface between the particle and continuum 
methods, specifically for the nonhydrodynamic (kinetic) time scales. 

Key words. stochastic Navier–Stokes equations, multiscale hybrid algorithm, computational 
fluid dynamics, direct simulation Monte Carlo, adaptive mesh refinement 

AMS sub ject classifications. 65C30, 60H35, 76M12, 76M28 
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1. Introduction. Adaptive mesh refinement (AMR) is often employed in com­
putational fluid dynamics (CFD) simulations to improve efficiency and/or accuracy: 
a fine mesh is applied in regions where high resolution is required for accuracy, and 
a coarser mesh is applied elsewhere to moderate computational cost. For dynamic 
problems, the area that is a candidate for mesh refinement may change over time, 
so methods have been developed to adaptively identify the refinement target area at 
each time step (e.g., [9, 8, 5]). 

However, at the smallest scales, on the order of a molecular mean free path, 
continuum assumptions may not hold, so CFD approaches do not accurately model 
the relevant physics. In such a regime, adaptive mesh and algorithm refinement 
(AMAR) improves on AMR by introducing a more physically accurate particle method 
to replace the continuum solver on the finest mesh. An improved simulation does 
not result from continued refinement of the mesh but rather from “refinement” of 
the algorithm, i.e., switching from the continuum model to a particle simulation. 
Introduced in [26], AMAR has proved to be a useful paradigm for multiscale fluid 
modeling. In this paper, we describe AMAR for fluctuating hydrodynamics. 

Random thermal fluctuations occur in fluids at microscopic scales (consider 
Brownian motion), and these microscopic fluctuations can lead to macroscopic sys­
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tem effects. The correct treatment of fluctuations is especially important for sto­
chastic nonlinear systems, such as those undergoing phase transitions, nucleation, 
noise-driven instabilities, and combustive ignition. In these and related applications, 
nonlinearities can exponentially amplify the influence of the fluctuations. As an ex­
ample, consider the classical Rayleigh–Taylor problem and the related Richtmyer– 
Meshkov instability that are prototypical problems for the study of turbulent mixing. 
A heavy fluid sits above a light fluid, and spontaneous microscopic fluctuation at the 
interface between the fluids leads to turbulent mixing throughout the domain. Kadau 
and coworkers have recently studied the development of this turbulence at the atomic 
scale [35, 36]. That group’s atomistic simulations indicate that thermal fluctuations 
are an important driver of the behavior of complex flows, certainly at the smallest 
scales and perhaps at all scales. For example, in stochastic atomistic simulations of 
Rayleigh–Taylor, and in laboratory experiments, spikes of the heavy fluid that project 
into the light fluid can break off to form isolated droplets; this phenomenon cannot be 
reproduced accurately by deterministic continuum models. However, the physical and 
temporal domain on which this type of atomistic simulation is computationally feasible 
is extremely limited (less than a billion atoms per nanosecond) given current algo­
rithms and near-term computational power. Other examples in which spontaneous 
fluctuations play a key role include the breakup of droplets in nano jets [47, 20, 37], 
Brownian molecular motors [33, 50, 18, 45], exothermic reactions [49, 41], such as in 
combustion and explosive detonation, and reaction fronts [46]. The goal of AMAR 
for fluctuating hydrodynamics is to effectively enhance the computing power available 
for investigations of these types of phenomena. 

Hadjiconstantinou reviewed theoretical and numerical approaches to challenges 
arising from the breakdown of the Navier–Stokes description at small scale and (with 
Wijesinghe) described a variety of particle-continuum methods for multiscale hydro­
dynamics [55, 32]. The work presented here is the latest effort in a line of work that has 
focused on building AMAR hybrids for flows of increasing sophistication. A hybrid 
coupling Navier–Stokes and direct simulation Monte Carlo (DSMC) was developed 
in [26], with several of the technical issues necessary for implementation extended in 
[56]. Stochastic hybrid methods were developed in [2] (mass diffusion), [3] (the “train 
model” for momentum diffusion), and [6] (Burgers’s equation). Other recent work 
on coupling particle and continuum methods includes [53] (DSMC and Navier–Stokes 
for aerospace applications), [30, 17] (molecular dynamics and isothermal fluctuating 
hydrodynamics for polymer simulations), and [39] (an adaptive refinement approach 
based on a direct numerical solution of the Boltzmann transport equation and kinetic 
continuum schemes). 

The AMAR approach is characterized by several design principles. In contrast 
to other algorithm refinement approaches (see, e.g., [16]), in AMAR (as in AMR) the 
solution of the macroscopic model is maintained over the entire domain. A refinement 
criterion is used to estimate where the improved representation of the particle method 
is required. That region, which can change dynamically, is then “covered” with a 
particle patch. In this hierarchical representation, upon synchronization the particle 
solution replaces the continuum solution in the regions covered by the molecular 
patches. 

Given their complexity, the implementations of hybrid codes benefit greatly from 
modularization (e.g., see [53]). Another fundamental tenet of the AMAR approach to 
particle-continuum hybridization is that the coupling of the two algorithms is com­
pletely encapsulated in several “hand-shaking” routines. Taken as a unit, the particle 
method plus these modular routines perform exactly the same function as any fine 
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grid in a single-algorithm AMR method. The encapsulated coupling routines perform 
the following functions: continuum data is used to generate particles that flow into the 
particle region; flux across the boundaries of the particle region is recorded and used 
to correct neighboring continuum values; cell-averaged data from the particle grid 
replaces data on the underlying continuum grid; continuum data is used to generate 
particles to initialize new particle regions identified by the refinement criterion. 

Implementation details are given in the next two sections of the paper. Our con­
tinuum approach for fluctuating hydrodynamics is an explicit finite volume method for 
solving the Landau–Lifshitz Navier–Stokes (LLNS) equations for compressible fluid 
flow (see section 2.1) and, as noted above, the particle method is DSMC (see sec­
tion 2.2). Hybrid coupling details are discussed in section 3. Numerical results 
for problems with a static refinement region are presented in section 4 for a va­
riety of steady-state and time-dependent problems with the flow restricted to one 
spatial dimension. (Forthcoming work will illustrate this construction extended to 
two- and three-dimensional systems.) Details of adaptive refinement are discussed 
in section 4.5, including numerical results for an adaptive refinement shock-tracking 
problem. We conclude, in section 5, with a discussion of future work. 

2. Components of the hybrid. 

2.1. Continuum approach. The continuum model and solver discussed in this 
section was introduced in [7], and the reader is referred to that paper for further 
details of the method and measurements of its performance. 

To incorporate thermal fluctuations into macroscopic hydrodynamics, Landau 
and Lifshitz introduced an extended form of the Navier–Stokes equations by adding 
stochastic flux terms [40]. The LLNS equations have been derived by a variety of 
approaches (see [40, 12, 21, 38, 13]), and while they were originally developed for 
equilibrium fluctuations, validity of the LLNS equations for nonequilibrium systems 
has been derived [48] and verified in molecular simulations [29, 42, 44]. 

The LLNS equations may be written as 

(1) ∂U/∂t + ∇ · F = ∇ ·D + ∇ · S, 
where ⎛ ⎞ 

ρ ⎝ ⎠U = J 
E 

is the vector of conserved quantities (density of mass, momentum, and energy). 
The hyperbolic flux is given by ⎛ ⎞ 

ρv 
F = ρvv + P I ,⎝ ⎠ 

(E + P )v 

and the diffusive flux is given by ⎛ ⎞ 
0 

D = τ ,⎝ ⎠ 

τ · v + κ∇T 

where v is the fluid velocity, P is the pressure, T is the temperature, and τ = 
T − 2η(∇v + ∇v I∇ · v) is the stress tensor. Here η and κ are coefficients of vis­3 

cosity and thermal conductivity, respectively, where we have assumed that the bulk 
viscosity is zero. 
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The mass flux is microscopically exact, but the other two flux components are not; 
for example, at molecular scales heat may spontaneously flow from cold to hot, in vi­
olation of the macroscopic Fourier law. To account for such spontaneous fluctuations, 
the LLNS equations include a stochastic flux ⎛ ⎞ 

0 
S = S ,⎝ ⎠ 

Q + v · S  

where the stochastic stress tensor S and heat flux Q have zero mean and covariances 
given by (', t')) = 2kB ηT δK 

jc + δK jk − 2 δK 
kc

) 
δ(r − r')δ(t − t'),(Sij (r, t)Skc(r ik δ

K
ic δ

K 
3 ij δ

K

(Qi(r, t)Qj (r
', t')) = 2kB κT

2δK ')δ(t − t'),ij δ(r − r

and 

(Sij (r, t)Qk(r
', t')) = 0, 

where kB is Boltzmann’s constant. 
For simplification, in this work we restrict our attention to flow in one dimension. 

That is, we take the fluid velocity v = (u, v, w) to be three-dimensional, but we 
consider spatial derivatives only in the x-direction. Then (1) simplifies to ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 

ρ ρu 0 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ρu ρu2 + P τ11∂ ⎜ ⎟ ∂ ⎜ ⎟ ⎜ ⎟∂ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ρv = − ρuv + τ12 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂t ∂x ∂x ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ρw ρuw τ13 

E (E + P )u τ11u + τ12v + τ13w + κ∂xT ⎛ ⎞ 
0 ⎜ ⎟s11∂ ⎜ ⎟ ⎜ ⎟(2) + s12 , ⎜ ⎟∂x ⎝ ⎠s13 

q + us11 + vs12 + ws13 

where s11, s12, s13, and q are independent random variables with zero mean and 
variances 

8kB ηT'(s11(x, t)s11(x , t')) = δ(x − x')δ(t − t'),
3σ 

2kB ηT'(s12(x, t)s12(x , t')) = δ(x − x')δ(t − t'),
σ
 

2kB ηT
'(s13(x, t)s13(x , t')) = δ(x − x')δ(t − t'),
σ 

and 

2kB κT
2 

'(q(x, t)q(x , t')) = δ(x − x')δ(t − t'),
σ 

with σ being the surface area of the system in the yz-plane. 
For the calculations described in this paper we take the fluid to be a dilute gas 

with equation of state P = ρRT (ideal gas law) and energy density E = cvρT + 
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1 2 2ρ(u + v + w2). The transport coefficients are only functions of temperature; specif­2 √ √ 
ically we take them as η = η0 T and κ = κ0 T , where the constants η0 and κ0 are 
chosen to match the viscosity and thermal conductivity of a hard sphere gas. We also 

Rhave gas constant R = kB /m and cv = γ−1 , where m is the mass of a particle and 
5the ratio of specific heats is taken to be γ = , that is, a monatomic gas. Note that 3 

generalizations of fluid parameters are straightforward, and the choice of a monatomic 
hard sphere gas is for convenience in matching parameters in the PDE with those of 
DSMC simulations (see section 2.2). 

The principal difficulty in solving (2) arises because there is no stochastic forcing 
term in the mass conservation equation. Accurately capturing density fluctuations 
requires that the fluctuations be preserved in computing the mass flux. Another key 
observation is that the representation of fluctuations in CFD schemes is also sensi­
tive to the time step, with extremely small time steps leading to improved results. 
This suggests that temporal accuracy also plays a significant role in capturing fluctu­
ations. Based on these observations, a discretization aimed specifically at capturing 
fluctuations in the LLNS equations has been developed [7]. The method is based on 
a third-order, total variation diminishing (TVD) Runge–Kutta temporal integrator 
(RK3) [31, 51] combined with a centered discretization of hyperbolic and diffusive 
fluxes. 

The RK3 discretization can be written in the following three-stage form: 

Δtn+1/3 
= Un (FnUj j − j+1/2 −Fj 

n 
−1/2),Δx ( )

n+2/3 3 1 n+1/3 1 Δt 
(Fn+1/3

U = Un + U − −Fn+1/3
),j j j j+1/2 j−1/24 4 4 Δx ( )

1 2 2 Δt 
Un+1 n+2/3 n+2/3 n+2/3

Un = + U − (F − F ),j j j j+1/2 j−1/23 3 3 Δx 

√ 
where Fm = F(Um) − D(Um) − S̃(Um) and S̃ = 2S. The diffusive terms D 
are discretized with standard second-order finite difference approximations. In the 
approximation to the stochastic stress tensor, S̃j+1/2, the terms are computed as 

 ( )kB 
= 1 +  1 δKsmn 3 mn (ηj+1Tj+1 + ηj Tj )  j+1/2,

ΔtVc 

where Vc = σΔx is the volume of a cell and the  ’s are independent Gaussian dis­
tributed random values with zero mean and unit variance. Similarly, the discretized 
stochastic heat flux is evaluated as  

kB 
q = (κj+1(Tj+1)2 + κj (Tj )2)  j+1/2. 

ΔtVc 

Combining the three stages, we can write 

Δt 
Un+1 = Un 

j − FΣ −FΣ ,j j+1/2 j−1/2Δx 

where 

1 1 2n+1/3 n+2/3Fj
Σ 
±1/2 = Fj

n 
±1/2 + Fj±1/2 + Fj±1/2 . 6 6 3 
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The variance in the stochastic flux at j + 1/2 is given by 

( )2
1 1 2n+1/3 n+2/3((SΣ )2) = (S̃n ) +  (S̃ ) +  (S̃ )j+1/2 j+1/2 j+1/2 j+1/26 6 3 ( )2 ( )2 ( )2

1 1 2n+1/3 n+2/3 
= ((S̃n )2)+ ((S̃ )2)+ ((S̃ )2).j+1/2 j+1/2 j+1/26 6 3 

Neglecting the multiplicity in the noise, we obtain the desired result that ((SΣ)2) = √ 
1 ((S̃)2) = ((S)2); that is, taking S̃ = 2S corrects for the reduction of the stochastic 2 
flux variance due to the three-stage averaging of the fluxes. However, this treatment 
does not directly affect the fluctuations in density, since the component of S in the 
continuity equation is zero. The density fluctuations are controlled by the spatial 
discretization. To compensate for the suppression of density fluctuations due to the 
temporal averaging, we interpolate the momentum J = ρu (and the other conserved 
quantities) from cell-centered values: 

(3) Jj+1/2 = α1(Jj + Jj+1) − α2(Jj−1 + Jj+2), 

where 
√ √ 

α1 = (  7 + 1)/4 and α2 = (  7 − 1)/4. 

Then in the case in which J is statistically stationary and constant in space we have 
exactly Jj+1/2 = J and (δJ2 ) = 2(δJ2), as desired; the interpolation is consis­j+1/2 
tent and compensates for the variance-reducing effect of the multistage Runge–Kutta 
algorithm. 

The stochastic flux in our numerical schemes for the LLNS equations is a multi­
plicative noise since we take variance to be a function of instantaneous temperature. 
In [7] we tested the importance of the multiplicity of the noise by repeating the equilib­
rium runs taking the temperature fixed in the stochastic fluxes and found no difference 
in the results. While this might not be the case for extreme conditions, at that point 
the hydrodynamic assumptions implicit in the construction of LLNS PDEs would 
likely also break down; this is yet another reason for using algorithm refinement. 

2.2. Particle approach. The particle method used here is the direct simulation 
Monte Carlo (DSMC) algorithm, a well-known method for computing gas dynamics 
at the molecular scale; see [1, 23] for pedagogical expositions on DSMC, [11] for a 
complete reference, and [54] for a proof of the method’s equivalence to the Boltzmann 
equation (in the limit that N → ∞ while ρ is constant). As in molecular dynamics, 
the state of the system in DSMC is given by the positions and velocities of particles. 
In each time step, the particles are first moved as if they did not interact with each 
other. After moving the particles and imposing any boundary conditions, collisions 
are evaluated by a stochastic process, conserving momentum and energy and selecting 
the postcollision angles from their kinetic theory distributions. 

While DSMC is a stochastic algorithm, the statistical variation of the physical 
quantities has nothing to do with the “Monte Carlo” portion of the method. Equilib­
rium fluctuations are correctly simulated by DSMC in the same fashion as in molec­
ular dynamics simulations, specifically by the fact that both algorithms produce the 
correct density of states for the appropriate equilibrium ensembles. For example, for 
a dilute gas the velocity distribution of the particles is the Maxwell–Boltzmann dis­
tribution, and the positions are uniformly distributed. For finite particle number the 
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DSMC method is closely related to the Kac master equation [34] and the Boltzmann– 
Langevin equation [12]. For both equilibrium and nonequilibrium problems DSMC 
yields the physical spectra of spontaneous thermal fluctuations, as confirmed by ex­
cellent agreement with fluctuating hydrodynamic theory [27, 42, 29] and molecular 
dynamics simulations [43, 44]. 

In this work the simulated physical system is a dilute monatomic hard-sphere 
gas. For engineering applications more realistic molecular models are regularly used 
in DSMC; for such a case the construction presented here would be modified only 
by adjusting the functional form of the transport coefficients and including internal 
degrees of freedom in the total energy. Our simulation geometry is a rectangular vol­
ume with periodic boundary conditions in the y- and z-directions. In the x-direction, 
Dirichlet (or “particle reservoir”) boundary conditions are used to couple the DSMC 
domain to the continuum domain of our hybrid method. These interface conditions 
are described in the next section. 

3. Hybrid implementation. The fundamental goal of the algorithm refine­
ment hybrid is to represent the fluid dynamics with the low-cost continuum model 
everywhere except in a localized region where higher-fidelity particle representation 
is required. In this section, we assume that a fixed refinement region is identified 
a priori. Additional considerations necessary for dynamic refinement are discussed in 
section 4.5. 

The coupling between the particle and continuum regions uses the analogue of 
constructs used in developing hierarchical mesh refinement algorithms. The contin­
uum method is applied to the entire computational domain, and a particle region, 
or patch, is overlaid in refinement regions. For simplicity, in this discussion we will 
assume that there is a single refined patch. Generalization of the approach to include 
multiple patches (e.g., [56]) is fairly straightforward. 

2a 

  
   

 
 
 

 
 

 
 

 
 

Fig. 1. Schematic representation of the coupling mechanisms of the hybrid algorithm. 1. 
Advance continuum solution. 2. Advance DSMC solution (2a), using continuum data in reservoir 
boundaries (2b). 3. Reflux (3a) to correct continuum solution near interface (3b). 

Integration on the hierarchy is a three-step process, as depicted in Figure 1. First, 
we integrate the continuum algorithm from tn to tn+1, i.e., for a continuum step Δt. 
Next, the particle simulation is advanced to time tn+1 . Continuum data at the edge of 
the particle patch provides reservoir boundary conditions for the particle method. The 
implementation of reservoir boundary conditions for DSMC is described in [26]. As in 
that paper, particles that enter the particle patch have velocities drawn from the either 
the Maxwell–Boltzmann distribution or the Chapman–Enskog distribution. While the 
Chapman–Enskog distribution is preferred in deterministic hybrids (see [26]), we find 
that in the stochastic hybrid the Maxwell–Boltzmann distribution sometimes yields 
better results for the second moment statistics (see sections 4.1 and 4.3). While 
Chapman–Enskog yields slightly more accurate results for time-dependent problems, 
where we focus on the mean behavior of the system (see sections 4.4 and 4.5), one must 
recall that the derivation of the LLNS equations is based on the assumption of local 
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equilibrium (e.g., gradients do not appear in the amplitudes of the stochastic fluxes). 
When particle velocities in the reservoir cells are generated from the Chapman– 

Enskog distribution, the gradients of fluid velocity and temperature must be estimated 
in those cells. Furthermore, we also account for density gradients and generate the 
particle positions in the reservoir cells accordingly (see the appendix). However, since 
the fluctuating continuum model generates steep local gradients, even at equilibrium, 
we use a regional gradient estimate to represent underlying gradient trends. The 
regional gradient D(ξ) is implemented as   

S Ss s1 1 1 
(4) D(ξ)j = ξj+i − ξj−(i−1) ,

SΔx S S 
i=1 i=1 

where ξ is one of the conserved quantities and S indicates the width of the gradient 
stencil (we use S = 6). Because the Chapman–Enksog distribution is derived from a 
perturbation expansion in dimensionless gradient, we use slope-limiting to bound the 
breakdown parameter (see [25] for details). 

In general, DSMC uses smaller space and time increments than the continuum 
method. Spatial refinement is accomplished by dividing the DSMC patch into any 
number of smaller cells at the collision stage of the algorithm. For simplicity, we 
assume that an integer number of time steps elapse on the particle patch for every 
continuum time step. The old and new continuum states, Uj 

n and Uj 
n+1, are retained 

until all the intermediate particle time steps are complete, and the continuum data 
is interpolated in time to provide appropriate boundary data at each particle method 
time step. An alternative version of the DSMC algorithm allows the time steps to be 
event-driven [19], but here we use time increments of fixed size. 

Finally, step 3 corrects the macroscopic solution to reflect the effect of the micro­
scopic model as though the integration were tightly coupled. On the region covered 
by the particle representation we replace the continuum solution by the more accurate 
particle representation. That is, for each cell covered by the particle patch we set 

ρn+1 Nj m 
= ,j σΔx 

vm 
Jn+1 Nj(5) = ,j σΔx 

1 2 2 2u + v + w m 
En+1 = 

Nj 2 
,j σΔx 

where Nj is the number of particles in cell j, m is the mass of a particle, and σΔx is 
the volume of a computational cell. In the calculation of each momentum component, 
the product of the particle mass with the velocity is summed over all particles in the 
cell. In the calculation of energy we sum the squares of the three velocity components 
over all the particles in the cell. 

Moreover, we must correct (“reflux”) the continuum solution in the cells imme­
diately adjacent to the particle region to account for the gas that entered or exited 
the particle patch during step 2. Specifically, suppose the leftmost cell of the particle 
patch is cell j + 1. The value in continuum cell j was already updated with the contin­
uum stochastic RK3 scheme, using the total flux, F , computed from the continuum 
values. However, this value is not consistent with the microscopic flux given by the 
net number of particles moving across edge j +1/2. The reflux step corrects the value 
in cell j so that it is consistent with the microscopic flux at j + 1/2. 
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To perform the refluxing correction we monitor the number of particles, N→ 
j+1/2 

and N← , that move into and out of the particle region, respectively, across the j+1/2 

continuum/particle interface at edge j + 1/2. We then correct the continuum solu­
tion as 

U 'n+1 
= Un+1 Δt 

(6) j j + (Fj 
Σ 
+1/2 −Fj

P 
+1/2),Δx 

where the prime indicates the value after the refluxing update. The net particle flux is ⎛ ⎞ 
N→ −N← 

j+1/2 j+1/2m → ←(7) FP = ⎝ vi − vi 
⎠ ,j+1/2 i iσΔt 1 → 2 − 1 ← 2|vi| |vi|2 i 2 i 

where → 
and ← 

are sums over particles crossing the interface from left to right i i 
and right to left, respectively. 

This update effectively replaces the continuum flux component of the update to 
Un+1 on edge j +1/2 by the flux of particles with their associated momentum through j 
the edge. An analogous refluxing step occurs in the cell adjacent to the right-hand 
boundary of the particle region. Finally, note that this synchronization procedure 
guarantees conservation. The technical details of refluxing in higher dimensions (e.g., 
the treatment of corners) are discussed in Garcia et al. [26]. 

4. Numerical results. This section presents a series of computational exam­
ples, of progressively increasing sophistication, that demonstrate the accuracy and 
effectiveness of the algorithm refinement hybrid. First we examine an equilibrium 
system, then several nonequilibrium examples, concluding with a demonstration of 
adaptive refinement. 

In our testing we compare three numerical schemes: the stochastic scheme based 
on three-stage Runge–Kutta for the LLNS equations discussed in section 2.1 (stoch. 
PDE only ) and two algorithm refinement hybrids as described in section 3. The 
first hybrid couples DSMC and stochastic RK3 (stoch. hybrid ). The second hybrid 
is similar but without a stochastic flux in the LLNS equations; that is, it uses a 
deterministic version of RK3 (deter. hybrid ). In some of the tests the results from 
these schemes are compared with data from a pure DSMC calculation. 

The parameters used in the various numerical tests were selected, when possible, 
to be the same as in [7] to allow for comparison. In that paper it was established 
that the stochastic RK3 method had a linear convergence of variances in both Δx 
and Δt and was accurate to within a few percentage points for parameters used here. 
Furthermore, simulation parameters were chosen to be typical for a DSMC simulation. 
For example, the time step and cell size truncation errors in DSMC dictate that an 
accurate simulation requires these to be a fraction of a mean collision time and a mean 
free path, respectively [11]. The cell volume was selected such that the amplitude of 
the fluctuations was significant (with a standard deviation of about 10% of the mean) 
while remaining within the range of validity of fluctuating hydrodynamics. 

In principle, the continuum grid of an AMAR hybrid may have as many hier­
archical levels as necessary, and there may be many disjoint and/or linked DSMC 
patches. For simplicity, here we will consider a single DSMC region embedded within 
a single-level continuum grid. Furthermore, in the following numerical examples we 
use equal mesh spacing, Δx, and time step size, Δt, in both the continuum and par­
ticle methods. The straightforward adjustments necessary for implementing a DSMC 
grid with smaller Δx and Δt are presented in section 3. 
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Table 1 
System parameters (in cgs units) for simulations of a dilute gas at equilibrium in a periodic 

domain. 

Molecular diameter (argon) 3.66 × 10−8 

Molecular mass (argon) 6.63 × 10−23 

Reference mass density 1.78 × 10−3 

Reference temperature 273 
Specific heat (cv ) 3.12 × 106 

Sound speed (c) 30781 
Reference mean free path (λ) 6.26 × 10−6 

Reference mean free time (tm) 1.64 × 10−10 

System length 1.25 × 10−4 

System volume 1.96 × 10−16 

Number of computational cells 40 
Cell length (Δx) 3.13 × 10−6 

Time step (Δt) 1.0 × 10−12 

4.1. Equilibrium system: State variables. First, we consider a system in 
a periodic domain with zero bulk flow and uniform mean energy and mass density. 
Parameters for this equilibrium system are given in Table 1. Results from this first 
test problem are depicted in Figures 2–5. For both algorithm refinement hybrids, the 
particle patch is fixed at the center of the domain, covering cells 15–24, indicated in 
the figures by vertical dotted black lines. For this equilibrium problem the particles in 
the patches used to provide boundary reservoirs for DSMC have velocities generated 
from the Maxwell–Boltzmann distribution. In each simulation the system is initialized 
near the final state and is allowed to relax for 5 × 106 time steps. Statistics are then 
gathered over 107 time steps. Note that in these first tests we confirmed that all three 
schemes conserve total density, momentum, and energy; recall that the hybrids are 
conservative due to the “refluxing” step.1 

First, we examine mass density; results from the various numerical schemes are 
shown in Figure 2. The first panel shows the mean of mass density at each spatial 
location, (ρi), and the second panel shows the variance, (δρ2) = ((ρi − (ρi))2). Thei 
third panel shows the center-point correlation, (δρiδρj=20), that is, the covariance of 
δρi with the value at the center of the domain (j = 20). These three quantities are 
estimated from samples as 

Ns s1 
ρn(ρi) = i ,Ns n=1 

Ns s1 2(δρ2 
i ) = (ρn 

i )
2 − (ρi) ,

Ns n=1 

Ns s1 
ρn(δρiδρ20) = i ρ

n − (ρi)(ρ20),
Ns 

20 
n=1 

1When the grids move dynamically, this exact conservation is lost because of quantization effects 
associated with initialization of a particle distribution from continuum data. 
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Fig. 2. Mean, variance, and center-point correlation of mass density versus spatial location for 
a system at equilibrium. Vertical dotted lines depict the boundaries of the particle region for both 
hybrids. Note that, for clarity, the correlation value at i = j = 20  is omitted from the plot. 

where Ns = 107 is the number of samples and i = 1, . . . , 40. Similar statistics for x-
momentum, y-momentum, and energy are displayed in Figures 3 and 5; the statistics 
for z-momentum are similar to those for y-momentum and are omitted here. We 
consider only these conserved mechanical variables because the continuum scheme 
is based on them, they are easily measured in molecular simulations, and hydrody­
namic variables, such as pressure and temperature, are directly obtained from these 
mechanical variables [24]. 

We obtain the correct mean values for all three schemes, with the continuum 
method exhibiting some numerical oscillations, most notably in the x-momentum. 
For the most part, the correct variance values are also obtained by the two stochastic 
schemes. In fact, the stochastic continuum method used here was developed in [7] 
with the particular goal of correctly reproducing the variances of conserved quantities. 
Nevertheless, some localized errors in variance introduced by the stochastic hybrid 
algorithm are evident in these figures. At the left and right boundaries of the particle 
patch, there is a peak error in the variance of about 23% for mass density and 14% for 
energy. These discrepancies are discussed in detail in section 4.2. 

Figures 2–5 also illustrate the effect on fluctuations when the hybrid’s continuum 
PDE scheme does not include a stochastic flux. Clearly, the variances drop to near zero 
inside the deterministic continuum regions, left and right of the particle patch. More 
significantly, the variances within the patch are also damped. Even more interesting 
is the appearance of a large correlation of fluctuations in the particle region of the 
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Fig. 3. Mean, variance, and center-point correlation of x-momentum versus spatial location for 
a system at equilibrium. Vertical dotted lines depict the boundaries of the particle region for both 
hybrids. Note that, for clarity, the correlation value at i = j = 20  is omitted from the plot. 

deterministic hybrid. It is well known that correlations such as those appearing in the 
deterministic hybrid are present when a fluid is out of thermodynamic equilibrium (see 
section 4.3). The results shown here for the center-point correlation in the determin­
istic hybrid emphasize that the absence of fluctuations in the PDE causes the particle 
region to be in a nonequilibrium state; similar results were observed in [3, 6]. This 
result underscores the importance of including fluctuations in the continuum model 
for problems in which the correct fluctuation structure is needed in the particle region. 

4.2. Equilibrium system: Fluxes. Ideally, a hybrid method should produce a 
seamless integration at the interface between two algorithms. However, in section 4.1 
we saw that an error arises in the variance of mass density and the variance of energy 
at algorithm refinement interfaces where the particle method and continuum method 
interact (see Figures 2 and 5). Furthermore, the spatial correlations, such as (δJiδJj )
in Figure 3, exhibit some correlations within the particle region, an effect reminiscent 
of what is observed in nonequilibrium systems (see section 4.3). 

Fluxes are fundamental to the coupling mechanism in AMAR: continuum cells 
adjacent to a refinement interface are updated with particle flux (see (6)). Therefore, 
to investigate these errors in the variance, in this section we focus on statistical prop­
erties of the flux. We restrict our attention to mass flux, since it is determined by a 
single factor: x-momentum in the continuum formulation, as in (2), and number of 
particle crossings in the discrete formulation, as in (7). 
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Fig. 4. Mean, variance, and center-point correlation of y-momentum versus spatial location for 
a system at equilibrium. Vertical dotted lines depict the boundaries of the particle region for both 
hybrids. Note that, for clarity, the correlation value at i = j = 20  is omitted from the plot. 

In [7] we demonstrated that the stochastic RK3 method and DSMC both obtain 
 

the correct means, variances, and correlations, both spatial and temporal, of conserved  
quantities at equilibrium. Nevertheless, the nature of the fluxes differs markedly  
between the two methods. To illustrate this point, w e consider a pure fluctuating 
continuum calculation and compare it to a pure DSMC  calculation for the same 

 equilibrium test problem discussed in section 4.1. 
 As shown in Table 2, the variance of x-momentum, (δJ2), as obtained by the 
 

continuum method and by DSMC, are each in agreement with thermodynamic theory.  
(Derivation of the theoretically exact variance is discussed  in [24].) Hydrodynamic 
theory directly relates the mass flux to the momentum,  and for the stochastic RK3 
scheme the variance of mass flux is given by  

 
    � )   

 

� (
Δt 2  �  

2
 (

t 2
(1)

�2 Δ ρk T 
(8) δF = 2  δJ = 2   . 

Δx  Δx σΔx 
 

)
B 

(See also the discussion of (3).) On the other hand, kinetic  theory predicts that the 
number of particles crossing a cell interface is Poisson  distributed, with 

 
   

(N→) = 
� 1 
(δN→ 2 

)
�

= √ 
2 π 

� ρ 2k  T 
σ Δt B

. 
m 

�
 m 
 

 

(Derivation is discussed in [11], for example.) From this  we have the variance of the 
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Fig. 5. Mean, variance, and center-point correlation of energy versus spatial location for a 
system at equilibrium. Vertical dotted lines depict the boundaries of the particle region for both 
hybrids. Note that, for clarity, the correlation value at i = j = 20  is omitted from the plot. 

Table 2 
Variance of x-momentum and of mass flux at equilibrium. 

(δJ2) (δF (1)2 ) 
Stoch. PDE DSMC Stoch. PDE DSMC 
only only 

Computed value 13.62 13.21 2.84E-12 1.44E-10 
Thermodynamic theory 13.34 13.34 
Hydrodynamic theory 2.72E-12 
Kinetic theory 1.46E-10 
Percentage error 2.1% -1.0% 4.3% -1.8% 

mass flux given by 

2 22 
δF (1) 2 2 

= 
m

δ (N→ − N←) =
2m

(δN→)
(σΔx)2 (σΔx)2 

mρ Δt 2kB T 
(9) = √ . 

π σ  Δx 2 m 

Comparing (8) and (9), one finds that the hydrodynamic and kinetic theory expres­
sions match when the Courant number, C = cΔt/Δx, is order one, yet for the runs 
presented here C ≈ 10−2 (see Table 1). 

From Table 2, we see that the variance of the mass flux for the continuum method 
is in good agreement with the hydrodynamic theory (see (8)), and the corresponding 
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Fig. 6. Time correlations of mass flux for the particle method (DSMC) and the PDE method. 

DSMC result is in good agreement with kinetic theory (see (9)). Yet, the two variances 
of mass flux differ by over two orders of magnitude. To understand the nature of this 
discrepancy, we investigate the time correlation of the mass flux. 

To estimate the time correlation of mass flux for a timeshift of t'  , we calcu­
late (δF (1)(t)δF (1)(t + t ' )) in each of the 40 computational cells from approximately 
105 data samples. The average value of each time correlation over the 40 computa­
tional cells is displayed in Figure 6 for stochastic RK3 and for DSMC. Time correlation 
data is displayed in units of mean free collision time (tm). 

In Figure 6 we see that the mass flux for DSMC decorrelates immediately, whereas 
the continuum mass flux decorrelates after approximately one half of one mean free 
collision time. Note that for all the simulation results presented here, the stochastic 
PDE and the DSMC use the same time step, and that time step is over two orders 
of magnitude smaller than tm. The origin of the discrepancy in Table 2 is now 
clear. The hydrodynamic formulation is accurate only at hydrodynamic time scales, 
that is, at time scales that are large compared to tm. Further investigations (not 
presented here) indicate that when the two methods are run using a significantly 
larger time step, the variance and time correlations of the mass flux are in general 
agreement between the two methods. However, at large time step, the truncation 
error for the PDE scheme negatively affects the results for other quantities, e.g., the 
variance in conserved quantities. Given that the statistical properties of the fluxes 
differ between hydrodynamic scales and molecular (kinetic) scales, it is not surprising 
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Fig. 7. Center-point correlation of mass density and x-momentum for a system under a steep 
temperature gradient. 

that v   the ariances of conserved quantities are not seamless at the interface of the two 
 

methods and a spatial correlation of these quantities is observed. Why the former  
effect is most prominent for density and energy variances is still under investigation.  
This issue is discussed further in the concluding section.  

 
4.3. Nonequilibrium system: Temperature gradient. In the early 1980’s, 

a variety of statistical mechanics calculations predicted that a fluid under a non-
equilibrium constraint, such as a temperature gradient, would exhibit long-range 
correlations of fluctuations [52, 15]. Due to the asymmetry of sound waves mov­
ing parallel versus antiparallel to the temperature gradient, quantities that are in­
dependent at equilibrium, such as density and momentum fluctuations, also have 
long-range correlations. These predictions were qualitatively confirmed by light scat­
tering experiments [10], yet the effects are subtle and difficult to measure accurately 
in the laboratory. Molecular simulations confirm the predicted correlations of non-
equilibrium fluctuations for a fluid sub jected to a temperature gradient [22, 42] and 
to a shear [28]; they are also observed in simple random walk models of fluids [3]. 
With these predictions in mind, we consider a system with a temperature gradient. 
Specifically, the boundary conditions are thermal walls at 273K and 819K; the other 
system parameters are as shown in Table 1. This nonequilibrium state is extreme, 
with a temperature gradient of millions of degrees per centimeter, yet it is accurately 
modeled by DSMC, which was originally developed to simulate strong shock waves. 

The system is initialized near the final state and is allowed to relax for 106 time 
steps before samples are taken at each computational cell over 108 time steps. The 
measure shown here (Figures 7–9) is the spatial correlation between mass density and 
momentum, specifically (δρiδJ20). A pure DSMC simulation is used as the benchmark. 

Although the stochastic RK3 method gives a good match to the DSMC bench­
mark away from the correlation point, the results deteriorate near the correlation point 
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Fig. 8. Center-point correlation of mass density and x-momentum for a system under a steep 
temperature gradient. Vertical dotted lines depict the boundaries of the particle region for the hybrid 
method. 
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Fig. 9. Center-point correlation of mass density and x-momentum for a system under a steep 
temperature gradient. Vertical dotted lines depict the boundaries of the particle region for the hybrid 
method. 

(Figure 7). In the stochastic hybrid method, a particle patch is placed around the 
region of difficulty, and the results are significantly improved in that region (Figure 8). 
Given that theoretical results often make predictions for the near–center-point 
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Table 3 
System parameters (in cgs units) for simulations of a traveling shock. 

Mach number 2.0 
LHS RHS 

Mass density 4.07 × 10−3 1.78 × 10−3 

Velocity (x-direction) 34629 0 
Temperature 567 273 
Sound speed 44373 30781 
Mean free path 2.74 × 10−6 6.26 × 10−6 

Cell length (Δx) 3.13 × 10−6 

Time step (Δt) 1.0 × 10−12 

correlations (e.g., (δρiδJj ) ∝ ∇T for i ≈ j), making it the region of interest, the 
stochastic hybrid method outperforms the pure continuum method in this nonequi­
librium test case. Finally, in Figure 9 we consider the hybrid that couples deterministic 
RK3 with DSMC. Again, DSMC is employed in a single patch at the center of the 
domain. However, with fluctuations suppressed in the remainder of the domain, the 
overall results suffer. Strikingly, the results suffer not only in the continuum region 
but also within the particle region. 

4.4. Nonequilibrium system: Strong moving shock. In this time-depen­
dent problem, we consider a Mach 2 shock traveling through a domain that includes a 
static refinement region. The objective of this example is to test how well the hybrid 
performs when a strong nonlinear wave crosses the interface between continuum and 
particle regions. Dirichlet boundary conditions are used at the domain boundaries; 
values for the left-hand state (LHS) and right-hand state (RHS) are given in Table 3. 

The mass density profile depicted by the dark line is an average profile from an 
ensemble of 2000 stochastic hybrid runs. Results from an ensemble of 2000 pure 
stochastic PDE simulations of the traveling wave, without a particle patch, are shown 
for comparison. The first panel of Figure 10 also includes the mass density profile 
from a single stochastic hybrid simulation, illustrating the relative magnitude of the 
thermal fluctuations. At time t0, before the shock enters the particle region, the 
ensemble-averaged data is smooth. At time t1, a spurious reflected wave is formed at 
the interface on the left-hand side of the particle patch. This spurious acoustic wave 
is damped as it propagates leftward, vanishing by time t4. Another small error effect 
is seen as the shock exits the particle patch, at time t5, but it is barely discernible by 
time t7. In summary, we observe a relatively local and short-lived error that indicates 
an impedance mismatch between the continuum and particle regions, as shown in 
Figure 10. This mismatch is likely due to the linear approximation of the shear stress 
and heat flux in the Navier–Stokes equations, which is not accurate for the steep 
gradients of a strong shock. More complicated expressions for the dissipative fluxes 
have been derived (e.g., Burnett equations [14]), but for a variety of reasons, such as 
difficulties in treating boundary conditions, they are not in common use in CFD. 

A well-known feature of CFD solvers is the artificial steepening of viscous shock 
profiles; it is also well established that DSMC predicts shock profiles accurately [11, 4]. 
At times t2 through t6, we see a steepness discrepancy between the ensemble hybrid 
profile and the ensemble PDE-only profile. Within the particle patch, the DSMC 
algorithm correctly resolves a more shallow profile. This example demonstrates the 
robustness and stability of the treatment of the interface between the particle region 
and the continuum solver. 
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Fig. 10. Mass density profiles for a viscous shock wave traveling through a fixed refinement 
region (indicated by vertical dotted lines). The time elapsed between each panel is 300Δt; see Table 3
 
for system parameters.
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Fig. 11. Mass density profiles for a viscous shock wave, demonstrating AMR: The refinement 
region, indicated by vertical dotted lines, is determined dynamical ly at runtime. The time elapsed 
between each panel is 1200Δt; see Table 3 for system parameters. 

  

Finally, in this example, the Chapman–Enskog distribution was used to initialize 
velocities of particles that enter the refinement region from the continuum region. This 
approach was found to result in a somewhat reduced impedance mismatch compared 
to the Maxwell–Boltzmann distribution. 

4.5. Adaptive refinement. The final numerical test demonstrates the adaptive 
refinement capability of our hybrid algorithm. As in section 4.4, a strong traveling 
shock (Mach 2) moves through a domain with Dirichlet boundary conditions; system 
parameters are given in Table 3. Here, though, the location of a particle patch is 
determined dynamically by identifying cells in which the gradient of pressure exceeds 
a given tolerance; the particle patch is shown in Figure 11 by vertical dotted lines. 

Large scale gradients in pressure provide an effective criterion for identifying the 
presence of a shock wave. Since the fluctuations produce steep localized gradients 
nearly everywhere, a regional gradient measure, D(P ), is employed to detect these 
strong gradients. This is implemented as 

D(P )j = 
1 

SΔx 
1 
S 

S s 

i=1 

Pj+i − 
1 
S 

S s 

i=1 

Pj−(i−1) , 

where S indicates the width of the gradient stencil (we use S = 6). For an equilibrium 
system, the expected variance of D(P ) is estimated by 
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where ρ0, T0, and P0 are the reference mass density, temperature, and pressure for 
the system and Nc is the number of particles in a cell at reference conditions. (This 
variance can be found using the ideal gas law and expressions derived in [24].) Note 
that using a wide stencil limits the variation even when Nc is small (and, consequently, 
fluctuations are large). We select cells j for refinement where D(P )j exceeds the 
equilibrium value, namely zero, by three standard deviations. The resulting particle 
patch is extended by a buffer of four cells on each side. 

In this implementation, we re-evaluate the location of the particle patch every 
100 time steps. When the extent of the refinement region changes, some continuum 
cells may be added to the DSMC patch, some DSMC cells may become continuum 
cells, and some DSMC cells may remain in the refinement patch. For continuum 
cells that are added to the DSMC patch, particles are initialized from the underlying 
continuum data, as in the case of a static patch. For DSMC cells that should no longer 
be included in the refinement patch, particle data is averaged onto the continuum grid, 
as in (5), then discarded. For those DSMC cells that remain in the particle patch, 
the particle data is retained. 

The mass density profile depicted by the dark line is an average profile from an 
ensemble of 2000 stochastic hybrid runs. The first panel of Figure 11 also includes 
the mass density profile from a single stochastic hybrid simulation, illustrating the 
relative magnitude of the thermal fluctuations. Results from an ensemble of 2000 
pure stochastic PDE simulations of the traveling wave, without a particle patch, are 
also shown for comparison. As in Figure 10, we show that a more shallow profile is 
captured by the DSMC representation of the viscous shock (i.e., by the hybrid that 
uses DSMC in the vicinity of the shock) versus the artificially steep profile produced 
by the PDE-only system. 

5. Conclusions and further work. We have constructed a hybrid algorithm 
that couples a DSMC molecular simulation with a new numerical solver for the LLNS 
equations for fluctuating compressible flow. The algorithm allows the particle method 
to be used locally to approximate the solution while modeling the system using the 
mean field equations in the remainder of the domain. In tests of the method we have 
demonstrated that it is necessary to include the effect of fluctuations, represented as 
a stochastic flux, in the mean field equations to ensure that the hybrid preserved key 
properties of the system. As expected, not representing fluctuations in the continuum 
regime leads to a decay in the variance of the solution that penetrates into the particle 
region. Somewhat more surprising is that the failure to include fluctuations was shown 
to introduce spurious correlations of fluctuations in equilibrium simulations. 

The coupling of the particle and continuum algorithms presented here is not 
entirely seamless for the variance and correlations of conserved quantities. The mis­
match appears to be primarily caused by the inability of the continuum stochastic 
PDE to reproduce the temporal spectrum of the particle fluxes at kinetic time scales. 
This is not so much a failure of the methodology as much as a fundamental difference 
between molecular and hydrodynamic scales. With this caveat, one still finds that 
using a stochastic PDE in an AMAR hybrid yields significantly better fidelity in the 
fluctuation variances and correlations, making it useful for applications such as those 
described in the introduction. 

There are several directions that we plan to pursue in future work. As a first step, 
we plan to extend the methodology to two- and three-dimensional hybrids. The key 
algorithmic steps developed here extend naturally to multiple dimensions. For more 
general applications, an overall approach needs to be implemented to support particle 
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regions defined by a union of nonoverlapping patches. Another area of development is 
to include additional physical effects in both the continuum and particle models. As 
a first step in this direction, it is straightforward to include the capability to model 
different species. This provides the necessary functionality needed to study Rayleigh– 
Taylor instabilities and other mixing phenomena. A longer term goal along these 
lines would be to include chemical reactions within the model to enable the study 
of ignition phenomena. Finally, we note that the results presented here suggest a 
number of potential improvements to the core methodology. Of particular interest 
in this area would be approaches to the fluctuating continuum equations that can 
accurately capture fluctuations while taking a larger time step. This would not only 
improve the efficiency of the methodology, it would also enable the continuum solver 
to take time steps at hydrodynamic time scales which should serve to improve the 
quality of coupling between continuum and particle regions. 

Appendix. Random placement of particles with a density gradient. 
Consider the problem of selecting a random position for a particle within a rectangular 
cell. The density in the cell varies linearly with ρ0 being the density at the center 
(which is also the mean density). For a cell with dimensions Δx, Δy, and Δz, taking 
the origin at the corner of the cell we have 

ρ(x, y, z) =  ρ0 + ax(x − Δx/2) + ay (y − Δy/2) + az (z − Δz/2), 

where ax = ∂ρ/∂x. The probability that a particle has position component x is 

fΔy fΔz
dy dz ρ(x, y, z) 1 +  γx(x/Δx − 1 )0 0 2P (x) =  = ,
ρ0ΔxΔyΔz Δx 

where γx ≡ Δxax/ρ0. It will be more convenient to work in the dimensionless variable 
X = x/Δx. Since P (x) dx = P (X) dX, ( )

1 
P (X) = 1  +  γx X − . 

2 

By the method of inversion [23] one may generate random values from this distribu­
tion by 

� �1/2 
X = γ−1 (γx/2 − 1) + (γx/2 − 1)2 + 2γxR ,x 

where R is a random value uniformly distributed in [0, 1]. The reader is cautioned 
that the above is susceptible to round-off error for γx ≈ 0 (i.e., small gradient case). 
Note that in that limit, 

R 
X ≈ ,

1 − γx/2 

from which we recover the expected result that X = R when γx = 0.  
The selection of the y component of the position is complicated by the fact that 

it is not independent of the x component. The conditional probability of the y com­
ponent of position is  ( ) 

P (x, y) 1 Δyay /ρ0 y 1 
P (y|x) =  = 1 +  − . 

P (x) Δy 1 + (Δxax/ρ0)(x/Δx − 1 ) Δy 2
2 
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Define γy ≡ Δyay/ρ0 and Y ≡ y/Δy; then (	 )
P (Y |X) = 1  +  

γy 
Y − 

1 
. 

P (X) 2 

Fortunately, after selecting X the selection of Y is simple; Y is generated in the same 
way as X but with γy/P (X) in place of γx. 

Finally, to select the z component of the position the procedure is similar to (	 )
γz 1 

P (Z|X, Y ) = 1  +  Z − ,
P (X, Y ) 2 

where P (X, Y ) =  P (X|Y )P (Y ) = 1  +  γx(X − 1 ) +  γy(Y − 1 ). Again, the z com­2 2 
ponent can be generated in the same way as the x component but with γz /P (X, Y ) 
replacing γx. 
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