
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2009

MRCRAIG: MapReduce and Ensemble Classifiers
for Parallelizing Data Classification Problems
Glenn Jahnke
San Jose State University

Follow this and additional works at: http://scholarworks.sjsu.edu/etd_projects

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Jahnke, Glenn, "MRCRAIG: MapReduce and Ensemble Classifiers for Parallelizing Data Classification Problems" (2009). Master's
Projects. 143.
http://scholarworks.sjsu.edu/etd_projects/143

http://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd_projects/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


MRCRAIG: MAPREDUCE AND ENSEMBLE CLASSIFIERS FOR

PARALLELIZING DATA CLASSIFICATION PROBLEMS

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Glenn Jahnke

May 2009



c© 2009

Glenn Jahnke

ALL RIGHTS RESERVED



APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Prof. Robert Chun

Prof. Cay Horstmann

Prof. Sami Khuri

APPROVED FOR THE UNIVERSITY



ABSTRACT

MRCRAIG: MAPREDUCE AND ENSEMBLE CLASSIFIERS FOR

PARALLELIZING DATA CLASSIFICATION PROBLEMS

by Glenn Jahnke

In this paper, a novel technique for parallelizing data-classification problems is

applied to finding genes in sequences of DNA. The technique involves various ensem-

ble classification methods such as Bagging and Select Best. It then distributes the

classifier training and prediction using MapReduce. A novel sequence classification

voting algorithm is evaluated in the Bagging method, as well as compared against

the Select Best method.



DEDICATION

To my mother and father for carrying me through school in so many ways, and

to Randy whose friendship and mentoring for countless years will never be forgotten.

v



ACKNOWLEDGEMENTS

I would like to acknowledge many people who helped me in the process of

making this thesis. My advisors Professor Chun, Professor Khuri, and Professor

Horstmann deserve large credit for their excellence in teaching and inspiration. I

would also especially like to acknowledge Tina for her kindness and hard work editing

this document. Lastly, I would like to extend acknowledgement to all the other

unmentioned friends and family who aided me on my academic journey, you all kept

me on track in the times that I needed it the most. Thank you.

vi



TABLE OF CONTENTS

CHAPTER

1 INTRODUCTION 1

2 MOTIVATION 3

3 BACKGROUND 6

3.1 Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Genomes and Chromosomes . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Transcription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.5 Anatomy of a Gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.6 Gene Prediction Problem . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 RESEARCH 11

4.1 Parallelization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Ensemble Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Select Best Ensemble Classifier . . . . . . . . . . . . . . . . . . . . . 18

4.5 Bagging Ensemble Classifier . . . . . . . . . . . . . . . . . . . . . . . 19

4.6 Boosting Ensemble Classifier . . . . . . . . . . . . . . . . . . . . . . . 19

vii



4.7 Stacking Ensemble Classifier . . . . . . . . . . . . . . . . . . . . . . . 19

4.8 Gene Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.9 Introduction to CRAIG . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.10 The CRAIG Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.11 Running CRAIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.12 NBLAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 ARCHITECTURE 29

5.1 Data Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Building the Ensemble: The Training Map Phase . . . . . . . . . . . 31

5.3 Generating Predictions: The Prediction Map Phase . . . . . . . . . . 33

5.4 Combining Votes: The Prediction Reduce Phase . . . . . . . . . . . . 34

5.5 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 Software Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 EXPERIMENTS 39

6.1 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 FUTURE WORK 48

8 CONCLUSION 50

BIBLIOGRAPHY 51

viii



LIST OF FIGURES

Figure

3.1 Central Dogma of Molecular Biology . . . . . . . . . . . . . . . . . . 6

3.2 Genetic Code - source: http://plato.stanford.edu/entries/information-

biological/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 DNA to Protein - source: http://ida.first.fraunhofer.de/ida.gen/ . . . 9

4.1 MapReduce Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Input Split Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Map Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4 Reduce Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.5 Combine Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.6 Splitting the Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.7 Inverting the Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.8 CRAIG’s use of Dynamic Programming . . . . . . . . . . . . . . . . . 23

4.9 Dynamic Programming Recurrence Relation for CRAIG . . . . . . . 24

4.10 CRAIG Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.11 Sequence Alignment Tool . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 MrCRAIG Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Data Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



5.3 Building the Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 GTF File Showing Three Predictions . . . . . . . . . . . . . . . . . . 34

5.5 GTF Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 MapReduce Cluster Photo . . . . . . . . . . . . . . . . . . . . . . . . 37

5.7 MapReduce Cluster Diagram . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 Results Graph for TIGR using N=4 . . . . . . . . . . . . . . . . . . . 41

6.2 Bar Graph for TIGR using N=4 . . . . . . . . . . . . . . . . . . . . . 42

6.3 Results Graph for TIGR using N=6 . . . . . . . . . . . . . . . . . . . 43

6.4 Bar Graph for TIGR using N=6 . . . . . . . . . . . . . . . . . . . . . 44

6.5 Results Graph for TIGR using N=8 . . . . . . . . . . . . . . . . . . . 45

6.6 Bar Graph for TIGR using N=8 . . . . . . . . . . . . . . . . . . . . . 46

x



CHAPTER 1

INTRODUCTION

In an age of plateauing single-threaded CPU performance, there is a grow-

ing importance of utilizing parallelization. Finding parallelism in algorithms can be

challenging, but implementing it can be even more challenging. There are many

hurdles attempting to parallelize code, from preventing deadlocks to ensuring a cor-

rect implementation. MapReduce, a recently-revived idea, makes parallelizing code

much simpler if an algorithm can be formulated in terms of MapReduce’s constituent

functions.

Gene prediction is another challenging and current problem. Millions of

base-pairs of DNA are uncovered at an astonishing pace creating a backlog of data

to analyze. For instance, the Human Genome Project finished sequencing approx-

imately 3 billion base-pairs and will require years to fully understand all the data

revealed[6]. Yet determining what every portion of DNA does exactly in terms of

protein production is a mediocre-at-best process; identifying gene sequences hovers

just above 50 percent for even the state-of-the-art predictors[4]. This is also only

including the genes which actually code for proteins. The function of the non-coding

regions also has many mysteries to uncover. However, for the purposes of this paper,

we will only consider protein-coding genes.

MrCRAIG’s goal is to approach the gene-prediction problem in a manner that



2

can be easily expanded to cover other sequence classification problems, and poten-

tially data-classification in general. This is accomplished using generally-applicable

techniques without modifying the existing classifier, only the manner in which it

is used. MrCRAIG starts with a highly-accurate, but slow, gene predictor named

CRAIG. It then sees how far general parallelization techniques like MapReduce can

be taken to increase the accuracy. It does this by utilizing properties of ensembles

of classifiers. This increase in accuracy is done while attempting to keep the training

and prediction time manageable.



3

CHAPTER 2

MOTIVATION

For years, the various CPU manufacturers enjoyed relatively easy success

by simply increasing the frequency of the CPU to achieve higher performance. This

continued for decades, but recent times have shown that this will not be the case in the

future. CPU frequencies have plateaued, or in some cases declined, as manufacturers

have reached hard physical limits on size of silicon transistors in their processors.

Manufacturers have been forced to switch to a new method for increased performance:

increasing the number of cores per processor while maintaining their frequencies. This

has many paradigm-shifting effects.

One of the biggest effects of this new multicore era is that the majority

of programming languages have been built around mostly single-threaded use-cases.

Asking any programmer to write something using multiple threads in their favorite

language will result in anywhere from discomfort to refusal. Further, many languages

and techniques focused around parallelism that sat on the back burner for the past

couple of decades have gained new support. Look at the new interest in functional

languages like Erlang which has existed since the 1980’s. Erlang’s strengths are in

its vast scalability across processors and networks, making parallel and distributed

computing easier. Yet even those who use these languages built with parallelism in

mind, state that the parallelism can be the most challenging part[1].



4

As greater performance is demanded in the coming years, matched with the

growing number of processors, methods to use the many processors easily will become

increasingly important. MapReduce is one such technique that allows vastly scalable

processing with the guarantee of no synchronization issues. Modern implementations

like Hadoop also provide other useful features like high fault tolerance, distributed

logging, job queuing, and a distributed file-system. There still exists the burden of

defining their problem in terms of the map and reduce functions. However, this can

be a simpler task than manually managing synchronization issues and guaranteeing

correctness.

A current problem in Bioinformatics is difficulty of determining where the

coding regions of DNA are amongst the billions of base-pairs in human DNA. Finding

the genes is important for biologists to understand the nature of how organisms

function. Once an organism has been sequenced, the first step to understanding

that organism is to locate all of its genes. While this will not give biologists any

information about the actual function of the gene, it will tell them where to begin

laboratory analysis, thus saving a great deal of expensive and time.

More precisely, gene prediction is the task of predicting the role of each nu-

cleotide in a DNA sequence in the gene transcription/translation process. A protein-

encoding gene is a segment of DNA that is ultimately used as a template for the

production of a protein. Not all of an organism’s DNA is composed of genes; there

are large regions of unused sequences which are mostly ignored. This means genes

must first be located. Next, there are many parts that make up genes, and those parts

must be labeled. A gene predictor takes a DNA sequence as input and, as output,

creates an annotation describing what role the different parts of the sequence play in

protein production.

Biological processes can be messy and imprecise, following loose and often



5

broken rules. Mutations have allowed organisms to adapt and evolve over millions

of years and arise solely from the fact that biological systems are not perfect. This

makes searching DNA sequences difficult as the path is laden with oddities such as

pseudo-genes and millennia of dormant genetic history stored within our genome.

The math behind gene prediction is also troublesome. Organisms have very

large genomes with many billions of base-pairs. The percentage of genes that code for

proteins can be as little as 0.5 percent which makes the problem of gene prediction

even more challenging. This problem grows daily as more organisms are sequenced.



6

CHAPTER 3

BACKGROUND

3.1 Genetics

A gene is a sequence of DNA bases that carries information necessary to

create a protein. The central dogma of molecular biology is a description of the

process by which DNA is used to create proteins and is shown in Figure 3.1. Genes are

extracted from DNA strands and transcribed into RNA strands which are translated

into proteins.

Figure 3.1: Central Dogma of Molecular Biology

3.2 Genomes and Chromosomes

Most living organisms on Earth have genomes that contain many chromo-

somes which are sets of DNA wound together in the form of a double helix. The



7

chromosomes are located within the nucleus of cells (for higher order species) and

contain all the DNA for the given species. There are anywhere from a few to a few

tens of chromosomes (23 in Homo sapiens) and they are quite long. A chromosome

can contain thousands of genes, up to 30,000 in Homo sapiens and amazingly this

represents only a tiny fraction of the whole sequence. The coding sequences in Homo

sapiens only takes up 1.5% of the entire sequence while the other 98% is almost

completely ignored. This poses challenging problems when trying to find the genes

amongst all of the non-coding regions.

3.3 Transcription

Transcription is the process in which a gene is copied from a DNA strand

and an RNA molecule is produced. Each chromosome consists of two strands of

DNA which are complementary to each other. When a gene is transcribed, the two

complementary strands of DNA are separated and one strand is used as a template

to copy the other. This copying process is called transcription, and the result is an

RNA molecule which is a copy of a gene.

3.4 Translation

After transcription, there is an RNA molecule which usually is used as a

template for the creation of a protein. As mentioned earlier, we will only consider

genes that are used for creating proteins. The next step that must occur is translation

which is the process that directly uses an RNA to build a protein.

A ribosome is the director of translation. A ribosome reads an RNA sequence

one codon at a time, which is three consecutive bases, and each of these codons is

associated with either an amino acid or a stop signal. The set of associations between



8

Figure 3.2: Genetic Code - source: http://plato.stanford.edu/entries/information-
biological/

codons and amino acids is called the genetic code as seen in Figure3.2. The stop codon

tells the ribosome when to stop translation and allows the newly created sequence of

amino acids to separate and begin folding itself into the correct shape of the protein.

The whole process begins with DNA from the chromosomes from which the

genes are extracted, then transcription and translation occur. This finally produces

the protein that is a functional entity and can do work in the biological system. If

it is possible to find the genes, it is possible to see how the proteins that make up

species are made, which gives biologists a great deal of information.



9

3.5 Anatomy of a Gene

Genes are comprised of many parts that are all important in turning the

string of nucleotides into protein. All genes consist of at least one exon followed by

an alternation of introns and exons that must end in an exon. The exons in the gene

contain the information about what amino acids should be generated. Introns do not

explicitly contain information about the end result, but contain other information

and are linked to how much of the protein should be created. This process, as seen

in Figure3.3, begins with splicing which removes introns from the gene to prepare it

for translation. Then, post processing occurs, followed by translation of codons into

amino acids. Finally, the amino acid chain is released and constitutes the protein.

Figure 3.3: DNA to Protein - source: http://ida.first.fraunhofer.de/ida.gen/

3.6 Gene Prediction Problem

Nature has this strange way of hiding all the pertinent information amongst

non-informative regions. Because of this, the best way to find genes is by identifying



10

attributes of the sequence that make them stand out. This is difficult because muta-

tions may have turned what were genes into non-coding sequences called pseudo-genes,

and otherwise wreak havoc on the whole process. It becomes a process of separating

the noise from the signal.

Luckily, there are many hints within genes to help identify them. These are

signals for which to look, many of which are used by our program to find the genes.

For example, nearly all coding sequences start with the codon which is translated into

the amino acid methionine, and all genes end with one of three codons that represent

the stop signal. These are obvious signals that indicate the presence of genes. Other

signals include the donor and acceptor splice sites which are the borders in between

exons and introns and exhibit unique properties. One thing is for certain: if the

process of transcription can determine where to cut up the DNA sequences, then

there must be some way to predict where it will happen programmatically.



11

CHAPTER 4

RESEARCH

4.1 Parallelization Methods

Algorithms are primarily written in a sequential fashion because the task of

parallelizing algorithms is difficult and prone to error[7]. Race conditions are difficult

to detect as seemingly functioning code may break years later due to oddities in

timing. There are many libraries being built to make these tasks easier, however

the last mile of assuring correctness still lies in the hands of programmers. The

problem worsens when jobs require more resources than a single computer can readily

complete. Peak performance in clusters of computers is often difficult to achieve

as heterogeneity across hardware, operating systems, and software make algorithms

perform irregularly[2].

Parallelization has not severely hindered program development though, due

mostly to the fact that processors have steadily been increasing in speed for decades

because of Moore’s Law. However, because of physical limitations of current proces-

sor design like heat dissipation, power consumption, and transistor geometry, many

paradigms are changing. Improvements from Moore’s Law are turning from higher

clock-rate processors to an increased number of cores per processors. Simply waiting

18 months to get a significant performance boost will no longer work if code is not

capable of being spread across multiple cores. This means programmers will have to



12

faced parallelizing their code if they desire faster execution of their programs.

4.2 MapReduce

MapReduce is an attempt to make parallelizing programs significantly sim-

pler and more robust. It restricts the programming architecture, and by doing so

alleviates the programmer of most parallelization issues like concurrency, error detec-

tion, and inter-computer communication[7]. Its map and reduce functions are founded

in the Function Programming paradigm which has a history of enabling more readily

parallelizable code because of the reduction in shared state.

The architecture of MapReduce works on many records which are key/value

pairs that are all user-defined. The input data is split into a set of N key/value pairs,

denoted by Kin and Vin, and are distributed to various machines. The records are

processed by a user-defined map function where each of the N records pass through

the map function. The output of the map function is an intermediate set of key/value

pairs denoted Kim and Vim for a total of M output records. All of these M inter-

mediate records are sorted by their key value, Kim, and redistributed amongst the

machines in the cluster where all the records with key Kim go to the same machine.

Each of the M records then passes through a reduce function, also a user-defined func-

tion, then emits a final key/value pair, Kout and Vout (usually either 0 or 1 records).

Finally, an optional combine phase occurs that aggregates the results of the reduce

phase output, and the algorithm is completed.[7]

A simple example of an implementation of MapReduce should clarify some

details. Matrices are easy candidates for parallelization in general, and manipulating

them with MapReduce is no exception. For example, matrix transposition can be

parallelized in more than one way where transposition, DT is defined by swapping



13

InputSplit : (data)⇒ (Kin, Vin)

Map : (Kin, Vin)⇒ (Kim, Vim)

Reduce : (Kim, Vim)⇒ (Kout, Vout)

Combine : (Kout, Vout)⇒ (output)

Figure 4.1: MapReduce Functions

every element Di,j in a matrix D with the element at Dj,i. This can be done by

breaking up the input matrix D into a set of row vectors where the input key is

defined as the row index, Kin = i, and the input value is defined as the vector of data

in the row, Vin = Di. This can be seen in Figure 4.2. The first step of the MapReduce

process is to split the matrix into rows during the input split phase. As the rows are

now separate and will be moved to different computers, the row index, Kin, must be

stored with the row data to keep track of its position in the original matrix.

D =

 1 2 3
4 5 6
7 8 9

 = inputsplit⇒

(
Kin = 1, Vin =

[
1 2 3

])
(
Kin = 2, Vin =

[
4 5 6

])
(
Kin = 3, Vin =

[
7 8 9

])

Figure 4.2: Input Split Phase

We define the map function to take in i and Di and produce intermediate keys

and values for each element in the row vector such that Kim = j and Vim = (i, (Di)j),

meaning the column index is used as the key, and the value is the pair P where P1

is the row index i and P2 is the matrix element (Di)j so P = (i, (Di)j). Plainly, each

input row is broken up into individual elements and enough information is stored



14

to track each cell’s original position. This can be seen in Figure 4.3. All of the

input splits are sent out to different mappers where they are each mapped from the

input splits into the intermediate records. In this case, each mapper maps each input

record to 3 output records, but this is not necessarily the case in general because map

functions can produce any number of outputs, independent of each other.

(
Kin = 1, Vin =

[
1 2 3

])
= map⇒

(Kim = 1, Vim = (1, [1]))
(Kim = 2, Vim = (1, [2]))
(Kim = 3, Vim = (1, [3]))

(
Kin = 2, Vin =

[
4 5 6

])
= map⇒

(Kim = 1, Vim = (2, [4]))
(Kim = 2, Vim = (2, [5]))
(Kim = 3, Vim = (2, [6]))

(
Kin = 3, Vin =

[
7 8 9

])
= map⇒

(Kim = 1, Vim = (3, [7]))
(Kim = 2, Vim = (3, [8]))
(Kim = 3, Vim = (3, [9]))

Figure 4.3: Map Phase

There are now an equal number of intermediate key/value pairs as the number

of elements in the original matrix. These key/value pairs are sorted by key, and all of

the key/value pairs with the same key Kim are sent to the same machine for reducing

as a list. The reduce function is defined as taking the key Kim which is the column

index and building a column vector E from the list of aggregated values V = P such

that E1,P1=i = (P2 = (Di)j). This means the column vector is constructed by taking

the list of values and putting each element in the index specified from the value pair.

Now all the column vectors are output where Kout = j and Vout = Dj. This is seen

in Figure 4.4.

The Reduce Phase takes all the results of the Map Phase, sorts them by

Kim, and sends all the results to individual reducers where it is guaranteed that all



15

of the records with the same Kim will be sent to the same reducer. This occurs in all

MapReduce algorithms. For the matrix transposition, every reducer will get all the

information to rebuild a column.

(Kim = 1, Vim = (1, [1]))
(Kim = 1, Vim = (2, [4]))
(Kim = 1, Vim = (3, [7]))

= reduce⇒
(
Kout = 1, Vout =

[
1 4 7

])

(Kim = 2, Vim = (1, [2]))
(Kim = 2, Vim = (2, [5]))
(Kim = 2, Vim = (3, [8]))

= reduce⇒
(
Kout = 2, Vout =

[
2 5 8

])

(Kim = 3, Vim = (1, [3]))
(Kim = 3, Vim = (2, [6]))
(Kim = 3, Vim = (3, [9]))

= reduce⇒
(
Kout = 3, Vout =

[
3 6 9

])

Figure 4.4: Reduce Phase

Finally, a combine function will take all output key/value pairs and arrange

them by their key Kout, the column index which joins the columns back into a matrix

of the correct, dimension-swapped size and the transposed matrix DT is completed.

This is seen in Figure 4.5. All the rows are merged back into one contiguous, trans-

posed matrix, DT . The Kout is used to insure correct ordering of the rows Vout.

The combine phase is only required if the results must be aggregated back to

a single computer. For small matrices, this is easy. However, the use of MapReduce is

usually indicative of massive data sets in which it is not practical to actually recombine

the data. Usually the data is left in a distributed state for further processing or use.

Another thing to note about the matrix inversion algorithm is its usefulness

is limited as the actually processing in the map and reduce phases is incredible small.

The overhead of distributing the work and recombining the results is not justifiable

if it is greater than the actual processing time spent on the processors. A simple



16

(
Kout = 1, Vout =

[
1 4 7

])
(
Kout = 2, Vout =

[
2 5 8

])
(
Kout = 3, Vout =

[
3 6 9

])
= combine⇒

 1 4 7
2 5 8
3 6 9

 = DT

Figure 4.5: Combine Phase

modification can be made to increase the processing time per processor and reduce

the overhead. Consider a larger input matrix Z. Now, instead of simple breaking

Z up into individual elements and inverting the coordinates of each element, Z will

be broken up into square sub-matrices which will be individually inverted, and have

those sub-matrices positions inverted. This works because matrix inversion can be

done recursively.

For example, the larger matrix could be of size 9 by 9 instead of 3 by 3.

The matrix is subdivided into a 3 by 3 matrix where each element contains a 3 by 3

matrix like in Figure 4.6.

One of the original tasks involved receiving the element at (1,2) which is

the upper-middle element. In the new method, the task would receive the 3 by 3

sub-matrix in the upper-middle position of the divided matrix which is labeled B.

The task would now invert B and pass on its inverted sub-matrix coordinates, (2,1),

to be inverted in the larger matrix context, Z ′, just as before. The sub-matrix and

matrix inversions as well as their recombination into ZT are shown in Figure 4.7.

MapReduce’s setup is very abstract which allows it to be flexible, but re-

strictive enough that it can scale well across a very large number of computers. It has

been applied to many hundreds of problems where the data sets and computational

requirements are far larger than a single computer is capable of processing.[7]



17

Z =



01 02 03 04 05 06 07 08 09
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81


⇒ Z ′ =

 A B C
D E F
G H I



where

A =

 01 02 03
10 11 12
19 20 21



D =

 28 29 30
37 38 39
46 47 48



G =

 55 56 57
64 65 66
73 74 75



B =

 04 05 06
13 14 15
22 23 24



E =

 31 32 33
40 41 42
49 50 51



H =

 58 59 60
67 68 69
76 77 78



C =

 07 08 09
10 11 12
19 20 21



F =

 34 35 36
43 44 45
52 53 54



I =

 61 62 63
70 71 72
79 80 81



Figure 4.6: Splitting the Matrix

4.3 Ensemble Classifiers

Ensemble classification is the process of combining multiple classifiers to in-

crease the overall accuracy of the classifications. They are effective for many problems

like named entity recognition in Linguistics and gene prediction in Bioinformatics, as

well as many others. It is a simple idea which leads to many variations, some of which

are described as follows.



18

AT =

 01 10 19
02 11 20
03 12 21

 BT =

 04 13 22
05 14 23
06 15 24

 CT =

 07 10 19
08 11 20
09 12 21



DT =

 28 37 46
29 38 47
30 39 48

 ET =

 31 40 49
32 41 50
33 42 51

 F T =

 34 43 52
35 44 53
36 45 54



GT =

 55 64 73
56 65 74
57 66 75

 HT =

 58 67 76
59 68 77
60 69 78

 IT =

 61 70 79
62 71 80
63 72 81



Z ′T =

 A D G
B E H
C F I



ZT =

 AT DT GT

BT ET HT

CT F T IT

 =



01 10 19 28 37 46 55 64 73
02 11 20 29 38 47 56 65 74
03 12 21 30 39 48 57 66 75
04 13 22 31 40 49 58 67 76
05 14 23 32 41 50 59 68 77
06 15 24 33 42 51 60 69 78
07 16 25 34 43 52 61 70 79
08 17 26 35 44 53 62 71 80
09 18 27 36 45 54 63 72 81


Figure 4.7: Inverting the Matrices

4.4 Select Best Ensemble Classifier

A simple method to make an ensemble is called Cross-Validation Selection

or Select Best. The data is partitioned randomly into two sets, one for training and

one for validation. The classifier is trained on the training set, then rated based

on the validation set. This is repeated multiple times. After some fixed number of

repetitions, simply pick the classifier that scores the highest. Despite its simplicity,

Select Best works well.[10]



19

4.5 Bagging Ensemble Classifier

Another method of ensemble creation called Bootstrap Aggregating, or Bag-

ging, partitions the data into random subsets of the training data. The classifiers

then vote with equal weight and the decision is the result with the highest plurality.

It has been found that the more varied the classifiers, the higher the accuracy of

the ensemble, so adding randomness can increase the ensemble’s performance. How-

ever, classifiers trained on more data work better than a larger number of classifiers

trained on less data with randomness added. Also, weighted voting can be imple-

mented by evaluating the performance of each classifier and giving it weight equal to

its performance.[11]

4.6 Boosting Ensemble Classifier

Boosting is an ensemble technique where incremental phases train classifiers

emphasizing the training data that the classifier from the previous phase misclassi-

fied. Boosting can have the problem of over fitting where the classifier models begin to

reflect the training data too much, making the classifier perform poorly on new prob-

lems. This problem can be mitigated by utilizing results from the previous classifiers

trained on the less emphasized data.[14]

4.7 Stacking Ensemble Classifier

Stacking involves combining the results of the individual classifiers using a

meta classifier. A simple plurality of classifiers is used as a baseline to train the

meta classifier. It works best with strong, heterogeneous classifiers, and the data

may or may not be partitioned. However, even using Stacking with sophisticated

meta classifiers has been shown to perform only slightly better than the Select Best



20

method[10].

4.8 Gene Prediction

There are several types of gene predictors. A main classification of the types

puts them into two groups: those based only on genetic sequences, and those that

use external information about the genes to help find it. An extrinsic gene predictor

describes a gene prediction program that relies on information from outside, such as

information derived from studying protein structure or related organisms. The terms

ab initio, or from the beginning, and de novo, meaning starting anew, refer to the

former of the types where gene prediction is based solely on the input sequence.

Generative methods, such as Hidden Markov Models (HMM), have been

successfully used for gene prediction since the 1970s when they were used for speech

recognition and later for object identification within images. More recently they

have been used for gene prediction. Generative models learn the joint probability

distributions between the predicted variables and the observed variables and use those

distributions to find the most likely prediction. In sequence prediction, there are many

observation and prediction variables, and the number of joint distribution parameters

needed to be learned can quickly become intractable. In order to get around this

limitation, independence assumptions need to be made which reduce the amount of

joint distributions needed.[13]

A first order Hidden Markov Model uses the assumption that each observed

variable is independent of all variables except one prediction variable and that each

prediction variable is independent of all other variables except for the prediction vari-

able preceding it in the sequence. These types of independence assumptions can

create models that are an inaccurate representation of the underlying forces that reg-



21

ulate gene production. However, the number of dependencies allowed exponentially

increases the number of probability parameters that need to be learned. This is the

motivation for using discriminative learning for sequence prediction[13, 8]. A discrim-

inative learning method would directly learn the conditional probabilities, which is

information that is actually needed.

4.9 Introduction to CRAIG

CRAIG, the Conditional Random field Ab Initio Gene predictor, is an al-

gorithm with substantially higher prediction capabilities than most of its ab initio,

primarily HMM-based competition. It benefits from Conditional Random Fields or

CRFs. These allow more dynamic probabilistic models and global optimization of

predictive features using discriminative learning models. This makes CRAIG capable

of better balancing gene signals than its HMM brethren.[4]

4.10 The CRAIG Algorithm

DNA sequences are represented in CRAIG as a string of many As, C s,

Gs, and T s which represent any of the nucleotides adenine, cytosine, guanine, and

thymine respectively. A segmentation of any given sequence is just a labeling of each

nucleotide as either an intergenic region, an exon, or an intron. These are denoted

with N s, E s, and I s. Segmentations are then just a string of these three characters,

one for each nucleotide in the DNA sequence, and are effectively a marking of where

the genes are in a sequence. Segmentations can also be represented as a list of elements

containing a label, start position, and length.

Segments are consecutive portions of segmentations that share the same label.

This allows for a compact form of segmentation storage because all that is needed



22

to represent a segmentation is a list of segments. These segments only need to keep

track of the label of the segment, the start position relative to the DNA sequence,

and the length of the segment. A useful attribute of segment classification is that

whole segments can be classified at a time in contrast to how Hidden Markov Models

classify only typically between 1 and 5 nucleotides at any given step [4].

The ability to pull out relevant classification data is necessary for both effi-

ciency and accuracy. Feature vectors are vectors of attributes about a given segment

from a sequence where each feature can vary widely. A feature can be something as

simple as whether the segment starts with a codon representing methionine; a useful

test because all genes start with methionine. They can also include things like the

length of the segment; the frequency of the various nucleotides, as in the number

of T s; or the frequency of sub-sequences of nucleotides like the number of CGs or

CGCGs.

Now that criteria has been laid out to describe the various features of a

segment, these features must be weighted so that the more relevant descriptors of

genes count for more than the less relevant features. For instance, the dinucleotide

frequency for AA may not be that informative because AA may have a similar distri-

bution compared with other dinucleotides. Therefore, it should not be counted highly

as indicating a gene. However, CGs are known to be rare except right before genes

in Homo sapiens, making it particularly indicative of an intergenic region.

Thus a weighting vector is used to describe how important each feature is.

It is a vector of numbers equal in length to the feature vector where each index of

the weight vector tells the relevance of the same indexed feature vector. This will

allow easy overall scoring by simply taking the inner-product of the weight vector and

feature vector to give a final score of a candidate segment.

The dynamic programming portion of the algorithm is what drives the us-



23

age of the segmentations, feature vectors, and weight vector. It uses a table with

one dimension representing the number of states a segment can be labeled as (e.g.

intergenic, intron, or exon), and the other dimension represents the sequence being

searched where each cell of the table is one nucleotide. A Dynamic Programming

table to label the (very short) sequence CATG can be seen in Figure 4.8.

Figure 4.8: CRAIG’s use of Dynamic Programming

The recurrence relation for this dynamic programming problem fills the table

by picking indexes over which to cut up the sequence. It iterates over the sequence

by picking an end point to cut, and a candidate state which will be the label for that

segment, then iterating over all possible start points and previous labels. Next, it

takes the segment marked with the given start and end positions as well as the labels,

and extracts the feature vector representing the various features of that segment.

It then scores this segment by taking the inner product with the weight vector as

described earlier.

Figure 4.9 shows the recurrence relation for the dynamic programming por-

tion of the algorithm. M is the score table, i is the end index, l is the start index, y

is the current state, y′ is the previous state, w is the weight vector, f is the feature

vector, and x is the sequence. [4]

After each candidate start position and label has been chosen, the highest

score from all the candidates is taken and filled into the table with indexes at the end

position and current label. Given that there are many possible start positions and



24

Figure 4.9: Dynamic Programming Recurrence Relation for CRAIG

previous labels, it is best to keep back pointers to avoid many recomputations when

back-tracking.

Now to pull out the best segmentation, start by taking the greatest score

from the last column of the table, which represents the score of the whole sequence.

Next, follow the back-pointers. Every time a back-pointer is followed, prepend the

state and position to our final segmentation. Finding the length is found by taking

the difference between successive states.

During training, a labeling is found for a given training sequence. Then

a function is used to compare the predicted gene-segmentation to the actual gene-

segmentation for that sequence, and return a score for how well the gene was labeled.

A minimization algorithm is used to find the smallest change to the weight vector

such that it scores this example correctly and hopefully does not break any existing

training instance outcomes. The training instances are all fed through the system in

this manner, and the whole operation is repeated until all the training instances are

scored correctly, or until some threshold is reached.

After the many iterations of training all the instances, the weight vector is

now precisely tuned given the assumption that the data is linearly separable. Now,

running the dynamic programming portion of the algorithm with the tuned weight

vector should give the best results possible for the chosen feature vectors and input

training data.



25

The pseudo-code for the CRAIG algorithm is shown in Figure 4.10.

w=0 (initial discriminant line a.k.a. parameters we are training)

for i=1 to Tth

x=i sequence in training set

find most likely annotation of x using Dynamic Programming

calculate diff between prediction and actual annotation

adjust w to reflect difference with minimal change to w

Figure 4.10: CRAIG Algorithm

4.11 Running CRAIG

While CRAIG is a high performing gene predictor both in terms of accuracy

and speed, training a model can takes a serious amount of time. An upper bound for

the complexity of CRAIG is O(T ∗L∗A2∗F ∗S) where T is the number of iterations, L

is the number of possible labels, A is the average length of a sequence, F is the number

of features to compute, and S is the number of sequences. This very high order is due

to CRAIG using Conditional Random Fields which makes the Dynamic Programming

portion of CRAIG significantly slower. This is because CRAIG attempts to find

the optimal starting position for a given label and the current stop position, so the

sequence length is squared instead of just linear. The time complexity of the number

of iterations is very imprecise as well. The author of CRAIG recommends running

it until it appears to have converged based on monitoring the verbose output. This

made automating the process and comparing results significantly more challenging.

The data set provided with CRAIG consists of over 3,000 genes. Training

a model using the whole set takes a minimum of several days on modern hardware.

CRAIG is heavily bounded by CPU speed as shown by consistent 100% CPU usage.

Using only 120 randomly selected genes, CRAIG completed training in roughly 1.5



26

hours, and 375 genes took roughly 6.5 hours.

Not only does CRAIG scale poorly because of its time complexity, it has

limited opportunity for parallelization. This is even in spite of the large number

of variables affecting its runtime. Because CRAIG’s very high order of complexity

is based mainly on the number of training sequences, reducing those does has a

large effect on time though. The only other controllable parameter is the number of

iterations that CRAIG runs. However, since one iteration is sequentially tied to the

previous, parallelization is not possible without modifying the source code.

4.12 NBLAST

Another important tool for biologists is BLAST, which stands for Basic Local

Alignment Search Tool. It is an algorithm in Bioinformatics which performs sequence

alignments of DNA to compare different species. Even though species diverged in their

evolutionary path, many large portions of their DNA are conserved. For example,

Hemoglobin is a protein found in blood that allows blood cells to bind to oxygen to

transport it throughout the body. As the majority of animals thrive off of oxygen,

this is an extremely important and well-conserved part of DNA. BLAST searches

for these types of conservations and performs an alignment, allowing biologists to

see how species have evolved comparatively, providing important insights into species

evolution and ancestry.

An important feature of BLAST is that it emphasizes speed over accuracy.

This is necessary because of the massive amount of data typically being considered.

BLAST can achieve a 50 times speedup over standard dynamic programming ap-

proaches, but does have some accuracy penalties as a result[9]. The dynamic pro-

gramming algorithm guarantees the highest scoring alignment, but does spend large



27

amounts of time on scoring alignments that are unlikely. BLAST takes advantage by

pruning these unlikely alignments, which is an acceptable trade-off in most scenarios.

Even using BLAST instead of the dynamic programming algorithm, perform-

ing alignment on sequences of DNA and proteins can be a computationally intensive

task. Furthermore, the number of sequences continues growing, so distributing the

computation quickly becomes necessary. Therefore, the NBLAST algorithm was de-

veloped to calculate all N2 combinations of N sequences in only N2/2 time. It does

this by only completing the upper triangle of the N by N matrix. It also distributes

this work across many computers in potentially massive clusters to create a large

single database of alignments.[9]

An online tool is shown in 4.11 which is used to show the sequence align-

ments from Neanderthal mitochondria. Many of the sequences have large amounts of

conserved base-pairs, indicating a strong evolutionary relationship.

Sequence alignment relates in many ways to gene prediction. The amount

of data to analyze can quickly overwhelm single computers. Both of the algorithms

must deal with the mystifying nature of biological systems, making fuzzy calculations

to approximate the systems. And finally, because of the fuzzy nature of the problems,

there are many trade-offs between performance and speed, allowing a broad range of

available solutions.



28

Figure 4.11: Sequence Alignment Tool



29

CHAPTER 5

ARCHITECTURE

A general framework for parallelizing classification problems will be described

with a side-by-side overview of MrCRAIG’s algorithm in light of the general frame-

work. MrCRAIG follows the general layout of any MapReduce algorithm in terms of

several phases. These phases include a setup phase where the data is partitioned, a

first map phase that runs CRAIG’s training program, a second map phase that evalu-

ates the predictors and assigns them scores, and finally a reduce phase that accounts

for the votes of all the predictors or selects the best one. They are further described

in the following sections.

5.1 Data Setup

A main assumption of the general framework is that the majority of the

time spent by the predictor is iterating over training and validation data. Therefore,

cutting the data into fractional parts should radically reduce the time it takes to

train the predictor. This has a high probability of decreasing the accuracy of the

classifiers[5], but that should be made up for by the combination of the classifiers in

the ensemble.

The training data is broken down into chunks that should be equal in number

to the number of processors, denoted N . Any more chunks than N and there will be



30

Classifier 1

Classifier 2

Classifier 3

Classifier 4

DNA Sequences

New DNA Sequence

Prediction

Gene Locations

Combine
Votes

CPU1

CPU1

CPU1

CPU1

CPU4

CPU3

CPU2

CPU1

CPU4

CPU3

CPU2

CPU1

Figure 5.1: MrCRAIG Overview

at least double the amount of time spent in the otherwise fully parallel training phase.

This is because at least one processor has to train on multiple chunks due to the Pigeon

Hole Principle. Another downside is that the classifiers would be weakened with no

gain in parallelization. Using fewer data chunks than processors is also undesirable

because some processors would be left idle during the training phase.

In the gene prediction problem, the training input is both the sets of DNA

sequences and the locations of the genes in those sequences. These come in the form

of two input files, one in FASTA format, and the other in GTF format. The FASTA

file consists of DNA region names and the actual sequences. The GTF file contains

the actual gene locations matched by DNA region name. MrCRAIG splits these files

into individual file pairs representing a single gene and region as in Figure 5.2. They

are then distributed amongst N groups where N is the number of classifiers in the



31

ensemble.

GTF File

HSU24685
D13752

HUMPRCA

Fasta File

HSU24685
D13752

HUMPRCA

HUMPRCA.fa

HSU24685.gtf

D13752.gtf

HUMPRCA.gtf

D13752.fa

HSU24685.fa

Figure 5.2: Data Setup

5.2 Building the Ensemble: The Training Map Phase

As mentioned previously, there are many methods for making an ensemble.

The only exclusions from all the various methods are the ones that cannot be par-

allelized. Boosting, for example, cannot be parallelized in a course-grained manner

because each iteration depends on the previous iteration’s output[3]. However the

Bagging method trains on independent subsets of the data and then votes, making it

easily fit the MapReduce framework. Stacking works as long as the meta-classifier has

a reasonable performance. Select Best is also easily suitable because of its training

independence.



32

With MrCRAIG, when the Bagging method is used, multiple CRAIG in-

stances are trained. They use a discrete subset of the data split evenly among the

CPUs, and the data is reused as validation data on separate processors as in Figure

5.3. The data is never used twice by the same CPU. This is run in the training map

phase. CRAIG also requires an ad hoc file format and some additional configuration

files which are generated. After all the preparation work, the predictors are trained

which generates many CRAIG models in the form of params files.

HUMPRCA.fa

HSU24685.gtf

D13752.gtf

HUMPRCA.gtf

D13752.fa

HSU24685.fa

CPU1

CPU2

CPU3

Training

Training

Training

Validation

Validation

Validation

(to CPU1)

Figure 5.3: Building the Ensemble

After the predictors have been trained, a program called Eval[12] is run that

provides detailed statistics on the performance of the classifier. This will allow for



33

both the weighted voting in the Bagging ensemble and to judge which classifier is

used in the Select Best ensemble. Eval provides a plethora of useful statistics.

5.3 Generating Predictions: The Prediction Map Phase

Now that many predictors have been trained and scored, MrCRAIG can

move on to predicting new genes. At this point, the Select Best method can select

the highest performing predictor, and any predictions will be derived solely from

that predictor. MrCRAIG will also generate predictions for the rest of the predictors

and combine for use in the Voting ensemble. New test data is distributed to the

classifiers on each processor and run. Each generates classifications for the various

input sequences and outputs prediction and the sequence from which it came. This

will allow all predictions for same input sequence to be reduced on the same processor

in the coming reduce phase.

MrCRAIG generates predictions by taking the testing DNA sequences in

FASTA file format, and producing a GTF file containing gene information. Each line

in the GTF file represents either a gene start sequence, an exon sequence, or a gene

stop sequence as in Figure 5.4. There are typically many exon sequences within the

range of the start and stop signals with gaps in between exons indicating non-coding

regions, or introns. The GTF format specifies many additional fields besides the start

and stop locations. One such field represents the evaluation score that the predictor

received.

As CRAIG outputs the lines from the GTF file, MrCRAIG’s Prediction Map

Phase uses the DNA sequence identifier as the map output key, and the rest of the line

as the map value. Since there are many classifiers predicting over the same regions,

there will be many overlapping predictions. There is a scoring field in the GTF format



34

Region Predictor     Type    Start Stop Score Dir Offset     (other info)

HUMPCI  MrCRAIG1  start_codon  100  102  10  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";
HUMPCI  MrCRAIG1  CDS          100  200  10  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";
HUMPCI  MrCRAIG1  stop_codon   201  203  10  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";

HUMPCI  MrCRAIG2  start_codon  150  152  20  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";
HUMPCI  MrCRAIG2  CDS          150  300  20  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";
HUMPCI  MrCRAIG2  stop_codon   301  303  20  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";

HUMPCI  MrCRAIG3  start_codon  250  252  30  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";
HUMPCI  MrCRAIG3  CDS          250  350  30  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";
HUMPCI  MrCRAIG3  stop_codon   351  353  30  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";

Figure 5.4: GTF File Showing Three Predictions

which is not utilized by CRAIG. This can be seen in Figure 5.4 as indicated by a “.”

in the 6th field. The score field is filled in with the gene predictor’s evaluation score

and will be used when combining predictions.

5.4 Combining Votes: The Prediction Reduce Phase

The MapReduce framework receives the output key-value pairs from the

Prediction Map Phase, partitions the results into groups by the key, and distributes

the groups to reducers. Since the sequence identifier is used as the key, all predictions

from the same sequence are sent to the same reduce task. Now each reducer can

combine the various predictions and associated evaluation scores into a single unified

prediction for each sequence. Overlapping sequences with low scores are removed

using a dynamic programming algorithm.

As plurality voting has been shown to perform poorly, MrCRAIG uses a

unique algorithm to combine votes. This requires a scalar score which necessitates the

combination of the various statistics that the Eval program returns. There are several



35

hundred values describing the sensitivities and specificities of the genes, as well as sub-

regions like exons and base pairs. Identifying bases and exons as coding is useful as a

stepping stone to finding whole genes, but finding the genes is of much greater rele-

vance to Biologists and provides greater challenges to classification algorithms. There-

fore, the overall score of a classifier used in MrCRAIG is the sum of the squares of

the sensitivity and specificity of gene prediction, Score = specificity2 + sensitivity2.

This gives the highest scores to predictors that achieve both high sensitivity and

specificity, as both are required for good predictions.

Each reduce task will receive multiple, potentially overlapping predictions for

a given input sequence as in Figure 5.4. MrCRAIG combines predictions by removing

low-scoring regions that overlap with other higher-scoring ones as in Figure 5.5. This

maximizes the overall prediction score and eliminates gene overlaps. Note that the

2nd prediction from the Map Prediction Phase overlaps the 1st and 3rd predictions.

There are two options to resolve the overlap: removing the 2nd prediction, or both

the 1st and 3rd. MrCRAIG removes the 2nd because it results in a higher overall score

including the scores 10 and 30 instead of just 20.

The Dynamic Programming algorithm that removes overlaps works by maxi-

mizing a global score. At each step, it attempts to add a prediction to the result, and

chooses to either add that prediction and update a score array, S, or keep the existing

score as in Si = max (Si, SPstart + Pscore). The score array is equal in length to the

total sequence length. Each value in the score array indicates the maximum score

achievable by including only predictions with end indexes, i, less than the current

index. So the value at the ith index in the score array will only include predictions,

P , that stop before i in the sequence. Backtracking is used to recover the predictions

that were used to achieve the maximum score.



36

Prediction 1 100­200 score:10

150­300 score:20

250­350 score:30

Result

Prediction 3

Prediction 2

100­200 score:10 250­350 score:30

Result in GTF format:

HUMPCI  MrCRAIG1  start_codon  100  102  10  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";
HUMPCI  MrCRAIG1  CDS          100  200  10  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";
HUMPCI  MrCRAIG1  stop_codon   201  203  10  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";

HUMPCI  MrCRAIG3  start_codon  250  252  30  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";
HUMPCI  MrCRAIG3  CDS          250  350  30  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";
HUMPCI  MrCRAIG3  stop_codon   351  353  30  +  0  gene_id "HUMPCI"; transcript_id "HUMPCI.0";

Figure 5.5: GTF Result

5.5 Hardware Setup

A cluster of computers was assembled to run MrCRAIG. The cluster was

configured with one master for task and distributed file system management running

on a AMD Athlon 3500+ CPU at 2.4 GHz with 1 gigabyte of RAM. Four computers

are used as slave nodes to both run the tasks and store the distributed file system data,

which is the standard configuration. Three of the slaves are laptops with Intel Core2

Duo T9300 CPU running at 2.5 GHz with 3 gigabytes of RAM each. The fourth slave

has a AMD Athlon X2 4600+ CPU running at 2.4 GHz with 3.5 gigabytes of RAM. All



37

computers are interconnected with a common 100 MB/s Ethernet connection using

a fast rack-mount switch. As CRAIG requires significant CPU and RAM resources,

many additional computers shown in the cluster in Figure 5.6 were not capable of

completing any of the MrCRAIG tasks in any reasonable amount of time, or would

simply crash due to overheating. The result is a 5 computer cluster with 1 master

and 4 slaves shown in Figure 5.7.

Figure 5.6: MapReduce Cluster Photo

5.6 Software Setup

The cluster runs MapReduce programs using the Hadoop MapReduce im-

plementation. This requires greater-than-usual SSH configuration. The setup of the

distributed file system and Hadoop site configuration were very standard. All the

computers in the cluster run Ubuntu Linux at version 8.04 or higher. Sun’s version

of Java 6 was used as recommended. CRAIG was compiled and installed individually



38

Server
Master Node

100 MB/s switch

DFS

CPU

CPU

Slave Node

DFS

CPU

CPU

Slave Node

DFS

CPU

CPU

Slave Node

DFS

CPU

CPU

Slave Node

CPU

Figure 5.7: MapReduce Cluster Diagram

on each computer using GCC 4. Eval 2.2.8 is used both by MrCRAIG for scoring

predictors and at the end to analyze predictions.



39

CHAPTER 6

EXPERIMENTS

6.1 Tests

MrCRAIG is tested changing several factors to analyze performance. The

tests vary the number of processors available, N , as well as the ensemble method

used, Select Best or Voting. The sensitivity and specificity of the gene predictions

are measured.

The N predictors in MrCRAIG are each trained using 375 randomly selected

genes from the CRAIG training set and scored based on the CRAIG development set

containing 65 genes. The sizes were chosen as any smaller and the randomness of

the genes would cause large variances in predictive results from predictors despite

being trained on the same number of genes. Choosing the smallest reasonable size

was necessary as more training genes increased the likelihood of task failure which

already takes significant time: 6 hours and 28 minutes +/- 12 minutes per predictor

on the AMD Athlon slave.

6.2 Results

After MrCRAIG is run, statistics for the Select Best method and Voting

method were compiled. For comparison, the other classifiers from the Voting method

were used as individual classifiers, not within an ensemble. Three major tests were



40

run where N is 4, 6, and 8, shown in Figures 6.1, 6.3, and 6.5 respectively. Also,

the average, minimum, and maximum sensitivities and specificities are provided for

each test in Figures 6.2, 6.4, and 6.6. It is important to note that the bar charts with

aggregate statistics do not reflect actual predictors. For instance, the Best Case in

6.2 shows the highest sensitivity, and highest specificity, but they were not derived

from the same predictor.



41

19.5 20 20.5 21 21.5 22 22.5 23

0

2

4

6

8

10

12

14

16

18

20

MrCRAIG Results

Circle = Select Best, Diamond = Voting, Square = Normal
N=4, TIGR dataset

Specificity

S
e

ns
iti

vi
ty

Figure 6.1: Results Graph for TIGR using N=4



42

Voting Worst Case Average Case Select Best Best Case

0

5

10

15

20

25

MrCRAIG Results

TIGR dataset using N=4

Specificity
Sensitivity

Figure 6.2: Bar Graph for TIGR using N=4



43

16 17 18 19 20 21 22 23 24

0

2

4

6

8

10

12

14

16

18

MrCRAIG Results

Circle = Select Best, Diamond = Voting, Square = Normal
N=6, TIGR dataset

Specificity

S
e

ns
iti

vi
ty

Figure 6.3: Results Graph for TIGR using N=6



44

Voting Worst Case Average Case Select Best Best Case

0

5

10

15

20

25

MrCRAIG Results

TIGR dataset using N=6

Specificity
Sensitivity

Figure 6.4: Bar Graph for TIGR using N=6



45

15 16 17 18 19 20 21 22 23

0

2

4

6

8

10

12

14

16

18

20

MrCRAIG Results

Circle = Select Best, Diamond = Voting, Square = Normal
N=8, TIGR dataset

Sensitivity

Specificity

S
e

ns
iti

vi
ty

Figure 6.5: Results Graph for TIGR using N=8



46

Voting Worst Case Select Best Average Case Best Case

0

5

10

15

20

25

MRCRAIG Results

TIGR dataset using N=8

Specificity
Sensitivity

Figure 6.6: Bar Graph for TIGR using N=8



47

6.3 Analysis

While the results are not overwhelming using the ensemble predictors, there

are some promising things to note. The Select Best method tended to stay within the

top echelons of the predictors, and for N = 6 picked the predictor with the highest

sensitivity of 16.39% and a very competitive specificity of 20.32%. Select Best also

stayed notable above average for N = 4 and N = 6 indicating that its use pull up

minimum prediction accuracy would be a good use.

The novel Voting technique did not fair as well. Despite the large modification

to the simple voting, the novel Voting algorithm achieved very poor sensitivities and

specificities. Looking into the evaluation data, there were 251 actual genes in the

TIGR data set, but the voting algorithm predicted 377, 425, and 453 genes when

N is 4, 6, and 8 respectively. This is likely due to a number of poor predictors that

predict many genes in unlikely places. Since these unlikely “genes” are not overlapped

by any other predictions, they remain, resulting in a large number of additional genes

found. This significantly impacted the sensitivity. This also affected the specificity

as well, where multiple poor predictions could achieve larger combined scores than

single high scoring predictions and overriding them.



48

CHAPTER 7

FUTURE WORK

There are many opportunities for future work in the MrCRAIG project. For

instance, experimenting with different scoring rules could improve voting. Utilizing

different gene predictors instead of just CRAIG also has interesting possibilities. Also,

analyzing more time versus accuracy trade-offs and other gene prediction variables

would provide valuable insight to the Bioinformatics community. Finally, studying

the distributed ensemble classification techniques employed by MrCRAIG in other

contexts such as Natural Language Processing could be a useful endeavor.

Voting improvement has many potential directions. Changing voting so that

it emphasizes fewer good predictions as opposed to many poor predictions would be

one clear direction. Not incorporating predictors that score below some threshold

could easily eliminate many bad predictions. Giving predictions that align closely a

higher score may also increase performance, so they together could out-weigh outliers

with overlapping predictions.

Incorporating different types of predictors like Augustus, Genezilla, and Gen-

scan++ could provide an excellent direction for further work if incorporated with the

stacking ensemble method as shown by Dzeroski et al[10]. This is especially true since

gene predictors are typically biased towards certain types of problems. For instance,

CRAIG is particularly good at identifying excessively long introns. Other predictors



49

would have other unique strengths that might be used to enhance the predictions for

the whole system as it would benefit from better diversity than the Bagging method

alone can provide.

As earlier stated, the goal of MrCRAIG was not only to find performance

improvements in gene prediction, but also to find uses for the technique in general

problems. There are many fields in need of performance boosts and parallelization,

especially when faced with declining CPU frequencies. Pursuing other applications

of the MrCRAIG data classification technique could reap many interesting results.

Prediction problems that are troubled by low numbers of positives could clearly gain

from MrCRAIG’s tendencies.



50

CHAPTER 8

CONCLUSION

The future of parallel and distributed computing is imminent. Finding ways

to utilize this breadth of hardware will prove a challenging task for many generations

of programmers to come. The relatively new field of Bioinformatics also has many

challenges to overcome. Gene prediction is still under research, and utilizing this

newly gathered gene data will provide many new problems. Looking to the past for

parallelization techniques as well as designing new methods will hopefully make the

coming paradigm shift in software development more tolerable for the industry, and

ease the difficult task of gene prediction.



51

BIBLIOGRAPHY

[1] Armstrong, J. Making reliable distributed systems in the presence of software
errors. ACM Queue September (2008).

[2] Arpaci-dusseau, R. H., Anderson, E., Treuhaft, N., Culler, D. E.,
Hellerstein, J. M., Patterson, D., and Yelick, K. Cluster i/o with
river: making the fast case common. In Proceedings of the Sixth Workshop on
Input/Output in Parallel and Distributed Systems (1999), ACM Press, pp. 10–22.

[3] Bauer, E., and Kohavi, R. An empirical comparison of voting classification,
algorithms: Bagging, boosting, and variants. Machine Learning 36 (1999), 105–
139.

[4] Bernal, A., Crammer, K., Hatzigeorgiou, A., and Pereira, F. Global
discriminative learning for higher accuracy computational gene prediction. PLoS
Computational Biology 3 (2007), 488–497.

[5] Chan, P., and Stolfo, S. A comparative evaluation of voting and meta-
learning on partitioned data. Machine Learning-International Workshop (1995).

[6] Collins, F. Medical and societal consequences of the human genome project.
The New England Journal of Medicine 341 (1999), 28–37.

[7] Dean, J., and Ghemawat, S. Mapreduce: Simplified data processing on large
clusters. Operating Systems Design and Implementation 2004 (2004), 137–150.

[8] Decaprio, D., Vinson, J. P., Pearson, M. D., Montgomery, P., Do-
herty, M., and Galagan, J. E. Conrad: Gene prediction using conditional
random fields. Genome Research 17 (2007), 1389–1398.

[9] Dumontier, M., and Hogue, C. Nblast: a cluster variant of blast for nxn
comparisons. BMC Bioinformatics 3, 1 (2002), 13.

[10] Dzeroski, S., and Zenko, B. . Is combining classifiers better than selecting
the best one? In Machine Learning (2004), pp. 255–273.



52

[11] Hu, Z.-H., Li, Y.-G., Cai, Y.-Z., and Xu, X.-M. An empirical comparison
of ensemble classification algorithms with support vector machines. Machine
Learning and Cybernetics 6 (2004), 3520–3523.

[12] Keibler, E., and Brent, M. R. Eval: A software package for analysis of
genome annotations. BMC Bioinformatics 4:50 (2003).

[13] Lafferty, J., McCallum, A., and Pereira, F. Conditional random fields
- probabilistic models for segmenting and labeling sequence data. In Proceedings
of the Eighteenth International Conference on Machine Learning (2001).

[14] Shapire, R. E. The boosting approach to machine learning, an overview. MSRI
Workshop on Nonlinear Estimation and Classification (2001).


	San Jose State University
	SJSU ScholarWorks
	2009

	MRCRAIG: MapReduce and Ensemble Classifiers for Parallelizing Data Classification Problems
	Glenn Jahnke
	Recommended Citation


	tmp.1295901364.pdf.dxtIp

