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1. INTRODUCTION

“A computer virus is a program that recursively and explicitly copies a possibly evolved
version of itself” [16]. A virus copies itself to a host file or system area. Once it gets
control, it multiplies itself to form newer generations. A virus may carry out damaging
activities on the host machine like corrupting or erasing files, overwriting the whole hard
disk, or crashing the computer. Some viruses may print text on the screen or simply do
nothing. These viruses remain harmless but keep reproducing themselves. In any case,

they take up system resource and are undesirable to computer users.

Over the past two decades, the number of viruses has been increasing very rapidly. We
have seen several attacks that caused great disruption to the Internet and brought huge
damage to organizations and individuals. In 1999, the infamous Melissa virus infected
thousands of computers and caused damage close to $80 million; the Code Red worm
outbreak in 2001 affected systems running Windows NT and Windows 2000 server and
caused damage in excess of $2 billion [20]. Computer virus attacks will continue to pose

serious security threats to every computer user.

To simplify the virus creation process, virus writers make virus construction kits readily
available on the Internet [19]. This allows a lot more people who may not have the
expertise in assembly coding to generate their own viruses. These virus writers also
recognize that for their viruses to have a chance to escape detection, the viruses created

have to look substantially different from one another. Some kits come equipped with the



ability to generate automatically morphed variants even from a single configuration file.
Precisely how effective are these code morphing generators? How different do the
morphed variants look? We generated variants of a few metamorphic viruses using some

of these tools and measured the similarity between some morphed variants.

Detecting metamorphic viruses is challenging. The problem with simple signature-based
scanning is that even small changes in the viral code may cause a scanner to fail and the
signature database requires constant updates to signify newly morphed variants. We
experimented using a single hidden Markov model (HMM) to represent the behavior of a
whole virus family. The HMM is then used to determine whether a given program
belongs to the virus family that the HMM represents. This approach can be used to

distinguish member viruses from non-member programs.

The challenges with the HMM approach include finding the right balance between
sensitivity and specificity, and conforming to time and space constraints of the computers
performing the detection. We evaluate the effectiveness of this approach by its detection
rate, the amount of false positives and false negatives, and the overall accuracy of the

classification.

This paper is organized as follows. In Section 2, we provide some background
information on computer viruses and discuss some possible defenses. Section 3 describes

our virus similarity test and shows our results. Section 4 details the design and



implementation of our HMM approach and presents our experimental results. Section 5 is
our conclusion. And finally possible extension to the project and future work is discussed

in Section 6.

2. EVOLUTION OF VIRUSES AND ANTIVIRUS DEFENSE TECHNIQUES

2.1 Virus Obfuscation Techniques

Virus-like programs first appeared on microcomputers in the 1980s [16]. Since then, the
battle between virus writers and anti-virus (AV) researchers has never ceased. To
challenge virus scanning products, virus writers constantly develop new obfuscation
techniques to make virus code more difficult to detect [16]. To escape generic scanning, a
virus can modify its code and alters its appearance on each infection. The techniques that
have been employed to achieve this end range from encryption to polymorphic

techniques, to modern metamorphic techniques [17].

2.1.1 Encrypted Viruses

The simplest way to change the appearance of a virus is to use encryption. An encrypted
virus consists of a small decrypting module (a decryptor) and an encrypted virus body. If
a different encryption key is used for each infection, the encrypted virus body will look
different. Typically, the encryption method is rather simple, such as xor of the key with
each byte of the virus body. Simple xor is very practical because xoring the encrypted
code with the key again will give the original code and so a virus can use the same

routine for both encryption and decryption.



With encryption, the decryptor remains constant from generation to generation. As a
result, detection is possible based on the code pattern of the decryptor. A scanner that
cannot decrypt or detect the virus body directly can recognize the decryptor in most

cases.

2.1.2 Polymorphic Viruses

To overcome the problem of encryption, namely the fact that the decryptor code is long
and unique enough for detection, virus writers started implementing techniques to create
mutated decryptors. Polymorphic viruses can change their decryptors in newer
generations. They can generate a large number of unique decryptors which use different
encryption method to encrypt the virus body. A polymorphic virus thus has no parts that

stay constant on each infection.

To detect polymorphic viruses, anti-virus software incorporates a code emulator which
dynamically decrypts the encrypted virus body. Because all polymorphic viruses carry a

constant virus body, detection is still possible based on the decrypted virus code.

2.1.3 Metamorphic Viruses
To make viruses more robust to emulation, virus writers developed numerous advanced
metamorphic techniques. According to Muttik [11], “Metamorphics are body-

polymorphics”. A metamorphic virus not only changes it decryptor on each infection but



also its virus body. New virus generations look different from one another and they do
not decrypt to a constant virus body. A metamorphic virus changes its “shape” but not its

behavior. This is illustrated diagrammatically by Szor in [17], and is shown in Figure 1.
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Figure 1 The multiple shapes of a metamorphic virus body, reproduced from [17].

Different techniques have been implemented by virus writers to create mutated virus
bodies. One of the simplest techniques employs register usage exchange; an example is
the W95/Regswap virus [16]. With this technique, a virus uses the same code but

different registers in a new generation. Such viruses can usually be detected by a

wildcard string [16].



A stronger technique employs permutation to reorder a virus’s subroutines, as seen in the
W32/Ghost virus [16]. With n different subroutines, a virus can generate n! different
virus generations. W32/Ghost has 10 subroutines and so it has 10! = 3,628,800 variations.
Even with the high number of subroutine combinations, the virus may still be detected

with search strings [16].

More complex metamorphic viruses insert garbage instructions between core
instructions. Garbage instructions are instructions that are either not executed or have no
effect on program outcomes [10]. An example of the former is the nop instruction while
“add eax, 0” and “‘sub ebx, 0” are sample instructions that do not affect program results.
Alternatively, metamorphic viruses insert jump instructions into their code to point to the
next instruction of the virus code. The Win95/Zperm family of viruses creates new
mutations by removal and insertion of jump and garbage instructions as illustrated in

Figure 2 [16].
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Figure 2 The Zperm virus, reproduced from [16].

Another common metamorphic technique is substitution, which is the replacement of an
instruction or group of instructions with an equivalent instruction or group. For example,
a conditional jump (Jcc) can be replaced by JNcc with inverted test condition and
swapped branch labels [21]. A “push ebp; mov ebp, esp” sequence can be replaced by
“push ebp; push esp; pop ebp” [16]. Sometimes, viruses implement instruction opcode
changes. For example, to zero out the register eax, we can either xor its content with itself
or use sub to achieve the same result. In other words, “xor eax, eax” can be replaced by

“sub eax, eax” [16].

Transposition, or rearrangement of instruction order, is another technique used by
metamorphic viruses. Instruction reordering is possible if no dependency exists between
instructions. Consider the following example from [21]:

opt [r1][, r2]

op2 [r3] [, r4] ; here r1 and/or r3 are to be modified



Swapping of the two instructions is allowed if
1) r1 not equal to r4; and
2) r2 not equal to r3; and

3) r1 not equal to r3.

Depending on the implemented techniques, a metamorphic virus can be very complex
and very hard to detect even with present day detection techniques. Unlike polymorphic
viruses, which decrypt themselves to a constant virus body in memory and provide a
complete snapshot of the decrypted virus body during its execution, metamorphic viruses
do not become constant anytime anywhere. The detection of metamorphic viruses has

been and will likely to continue to be an active research area.

2.1.4 Virus Construction Kits

Viruses are mostly written in assembly language, and not too many people can manage to
write complicated and functional assembly code. Some virus-writing groups try to make
the virus creation process quick and easy. They make available many virus construction
kits which can generate all kinds of malicious programs like viruses, worms, Trojan
horses and logic bombs. Virtually any type of virus can be created —- DOS COM / EXE
viruses, 16-bit / 32-bit Windows viruses, script viruses, macro viruses, PE viruses, etc
[16]. These toolkits are designed to be simple to use and some even come with
commercial-grade interactive graphical interfaces. The tools allow anybody, novice or

expert, to generate malicious code quickly and easily.



User-friendly as they are, some of these tools are also built with very sophisticated
features such as anti-disassembly, anti-debugging, anti-emulation, and anti-behavior
blocking. Some kits come equipped with code morphing ability which allows them to
produce different-looking viruses. In this sense, the viruses they produce are
metamorphic, not just polymorphic. The more popular ones among the 150+ generators

available at the VX Heavens [19] include:

= PS-MPC (Phalcon/Skism Mass-Produced Code generator)
= (G2 (Second Generation virus generator)

= MPCGEN (Mass Code Generator)

= NGVCK (Next Generation Virus Creation Kit)

=  VCL32 (Virus Creation Lab for Win32)

2.2 Antivirus Defense Techniques
As computer viruses evolve and become more complex, antivirus software must become
more sophisticated to defend against virus attacks. This section discusses the virus

detection techniques that have been deployed over the years. These techniques include:
1) pattern-based scanning in first-generation scanners;
2) nearly exact and exact identification in second-generation scanners;
3) code emulation;

4) heuristic analysis to detect new and unknown viruses [16].



2.2.1 First Generation Scanners

The simplest approach to virus detection is string scanning. First generation scanners
look for “virus signatures” which are sequences of bytes (strings) extracted from viruses
in files or in memory. A good signature for a virus consists of sequences of text strings or
byte codes found commonly in the virus but infrequently in benign programs. Usually, a
human expert converts the virus binary code into assembly code, looks for sections that
signify viral activities and picks the corresponding bytes in the machine code to be the
virus signature. More efficient methods use statistical techniques to extract good

signatures automatically [5].

Virus signatures are organized into databases. To identify virus infection, virus scanners
check specific areas in files or system areas and match them against known signatures in
databases. Some simple scanners also support wildcard search strings, such as “??02
33C9 8BD1 419C” where the wildcard is indicated by ‘?’. Wildcard strings allow
skipped bytes and regular expressions and can sometimes be used to detect encrypted or
even polymorphic viruses [16]. Using a search string from the common code areas of all
known variants of a virus to scan for the virus family is known as generic detection [16].

A generic string typically contains wildcards.

To speed up detection, some scanners search only the start and the end of a file instead of

the entire file as early computer viruses are mostly prepending (i.e., attached to the front



of the host programs) or appending (i.e., attached to the end of the hosts). Faster scanners
look for entry-points, which are common targets of computer viruses, in the headers of

executable files.

2.2.2 Second Generation Scanners

Second-generation scanners refine the detection process to detect viruses that evolve to
mutate their body. Smart scanning ignores junk instructions like nop and excludes them
in virus signatures. Nearly exact identification uses double strings, cryptographic
checksums, or hash functions to achieve higher speed and greater accuracy. Exact
identification uses all (as opposed to one in nearly exact identification) constant ranges of
the virus bytes to calculate a checksum. Exact identification scanners are usually slower

than simple scanners but a well-written one can differentiate virus variants precisely.

2.2.3 Code Emulation

With code emulation, anti-virus software implements a virtual machine to simulate CPU
and memory activities. Scanners execute the virus code on the virtual machine rather than
on the real processor. Depending on how well the virtual machine mimics system
functionalities, few viruses are able to recognize that they are confined and examined in a

virtual environment.

Code emulation is a very powerful technique, particularly in dealing with encrypted and

polymorphic viruses. Encrypted and polymorphic viruses decrypt themselves in memory.



If an emulator is run long enough, the decrypted virus body will eventually present itself
to a scanner for detection. The scanner can check its virtual machine’s memory when a
maximum number of iterations or other stop conditions are met. Alternatively, string
scanning can be done periodically every predefined number of iterations. In this way,
complete decryption of the virus body is not necessary as long as the decrypted part is
long enough for identification. Code emulation can also be applied to metamorphic

viruses that use single or multiple encryptions.

Code emulation can become too slow to be useful if the decryption loop is very long,
particularly when a virus inserts garbage instructions in its polymorphic decryptor. A new
decryption technique uses code optimization to reduce the polymorphic decryptor to its
core instruction set. As the emulator iterates through the decryption loop, it removes junk
and other instructions that do not change program state. Code optimization speeds up

emulation and provides a profile of the decryptor for detection [16].

2.2.4 Heuristic Analysis

Heuristic analysis is used to detect new or unknown viruses. Often times, it is used to
detect variants of an existing virus family. Heuristic methods can be static or dynamic.
Static heuristics base the analysis on file format and the code structure of virus fragments.
Dynamic heuristics use code emulation to simulate the processor and operating system

and detect suspicious operations while the virus code is executed on a virtual machine.



Heuristic analysis is prone to false positives. A false positive occurs when a heuristic
analyzer incorrectly tags a benign program as viral. These false alarms are not cost-
effective. Too many false positives destroy users’ trust and make a system more

vulnerable as users may mistakenly assume a false alarm when it is a real attack.

2.3 Use of Machine Learning Techniques
Various researchers have attempted to use machine learning techniques to perform
heuristic analysis on metamorphic viruses. This section covers the result and potential of
some of the techniques, which include:

1) data mining methods;

2) use of neural networks;

3) use of hidden Markov models.

2.3.1 Data Mining Approach

Data mining methods are often used to detect patterns in a large set of data. These
patterns are then used to identify future instances in a similar type of data. Schultz et al.
experimented with a number of data mining techniques to identify new malicious binaries
[14]. They used three learning algorithms to train a set of classifiers on some publicly-
available malicious and benign executables. They compared their algorithms to a
traditional signature-based method and reported a higher detection rate for each of their
algorithms. However, their algorithms also resulted in higher false positive rates when

compared to signature-based method.



The key to any data mining framework is the extraction of features, which are properties
extracted from examples in the dataset. Schultz et al. extracted some static properties of
the binaries as features. These include system resource information (the list of DLLs, the
list of DLL function calls, and the number of different function calls within each DLL)
obtained from the program header, and consecutive printable characters found in the files.
The most informative feature they used was byte sequences, which were short sequences

of machine code instructions generated by the hexdump tool.

The features were used in three different training algorithms. There was an inductive
rule-based learner that generated Boolean rules to learn what a malicious executable was;
a probabilistic method that applied Bayes rule to compute the likelihood of a particular
program being malicious, given its set of features; and a multi-classifier system that

combined the output of other classifiers to give the most likely prediction.

2.3.2 Using Neural Networks

Researchers at IBM implemented a neural network for heuristic detection of boot sector
viruses [18]. The features they used were short byte strings, called trigrams, which appear
frequently in viral boot sectors but not in clean boot sectors. They extracted about 50
features from a corpus of training data, which consisted of both viral and legitimate boot
sectors. Each sample in the dataset was then represented by a Boolean vector indicating

the presence or absence of these features.



The network was single-layered with no hidden units. It was trained using classic
backpropagation technique. One common problem with neural network is overfitting,
which occurs when a network is trained to identify the training set but fails to generalize
to unseen instances. To eliminate this problem, multiple networks were trained using

different features and a voting scheme was used to determine the final prediction.

The neural network was able to identify 80-85% of viral boot sectors in the validation set
with a false positive rate of less than 1%. The neural network classifier has been
incorporated into the IBM AntiVirus software which has identified about 75% of new
boot sector viruses since it was released [18]. A similar technique was later applied by
Arnold and Tesauro to successfully detect Win32 viruses [1]. From [18], we can
conclude that neural networks are very effective in detecting viruses closely related to
those in the training set. They can also identify new families of viruses containing similar

features as the training samples.

2.3.3 Using Hidden Markov Models
Hidden Markov models (HMMs) are well suited for statistical pattern analysis. Since
their initial application to speech recognition problems in the early 1970’s [12], HMMs

have been applied to many other areas including biological sequence analysis [7].



An HMM is a state machine where the transitions between states have fixed probabilities.
Each state in an HMM is associated with a probability distribution for observing a set of
observation symbols. We can “train” an HMM to represent a set of data, which is usually
in the form of observation sequences. The states in the trained HMM then represent the
features of the input data, while the transition and the observation probabilities represent
the statistical properties of these features. Given any observation sequence, we can match
it against a trained HMM to determine the probability of seeing such a sequence. The

probability will be high if the sequence is “similar” to the training sequences.

In protein modeling, HMMs are used to model a given family of proteins [8]. The states
correspond to the sequence of positions in space while the observations correspond to the
probability distribution of the 20 amino acids that can occur in each position. A model for
a protein family assigns high probabilities to sequences belonging to that family. A

trained HMM can then be used to discriminate family members from non-members.

Metamorphic viruses form families of viruses. Even though members in the same family
mutate and change their appearances, some similarities must exist for the variants to
maintain the same functionality. Detecting virus variants thus reduces to finding ways to
detect these similarities. Hidden Markov models provide a means to describe sequence
variations statistically. We propose to use HMMs similar to those used in protein
sequence analysis to model virus families. In virus modeling, the states correspond to the

features of the virus code, while the observations are instructions or opcodes making up



the program. A trained model should then be able to assign high probabilities to and thus

identify viruses belonging to the same family as the viruses in the training set.

3. SIMILARITIES BETWEEN VARIANTS OF METAMORPHIC VIRUSES

It has generally been agreed that for a virus to escape detection, metamorphism is the best
approach. Different generations of a virus must look different to avoid detection by
signature-based scanning. Some of the virus creation toolkits that we mentioned in
Section 2.1.4, including G2 (Second Generation virus generator) and NGVCK (Next
Generation Virus Creation Kit), come with the ability to generate morphed versions of
the same virus, even from identical configurations. In this section, we take a look at how
“effective” these generators are, or how “different” are the variants generated by the same
engine. We use a similarity index and also a graphically representation to display the

similarity between two assembly programs.

3.1 Method to Compare Two Pieces of Code
To compare two pieces of code, we employed the method developed by Mishra in [9].
His method compares two assembly programs and assigns a quantitative score to

represent the percentage of similarity between the two programs.

Mishra’s method is outlined below and is illustrated graphically in Figure 3.



1)

2)

3)

4)

Given two assembly programs X, and Y for which we want to measure their
similarity, we extract the sequence of opcodes for each of the programs, excluding
comments, blank lines, labels, and other directives. The result is two opcode
sequences of length n, and m, where n and m are the numbers of opcodes in programs
X and Y, respectively.

We compare the two opcode sequences by considering all subsequences of three
consecutive opcodes from each sequence. We count as a match any case where all
three opcodes are the same in any order, and we mark on a graph the coordinate (x, y)
of the match where x is the opcode number of the first opcode of the three-opcode
subsequence in program X and y is the opcode number of the opcode subsequence in
program Y.

After comparing the entire opcode sequences and marking all the match coordinates,
we obtain a graph plotted on a grid of dimension n x m. Opcode numbers of program
X are represented on the x-axis and those of program Y are represented on the y-axis.
To remove noise and random matches, we only graph those line segments of length
greater than the threshold value five.

Since we are performing a sequential match between the two opcode sequences,
identical segments of opcodes will form line segments of 45 degrees to either axis
(i.e., having a slope of 1) on the graph. If a line falls right on the diagonal, the
matching opcodes are at identical locations on the two opcode sequences. A line off
the diagonal indicates that the matching opcodes appear at different locations in the

two files.



5) For each axis, we count the number of opcodes that are covered by one or more of the
45 degree “match” line segments. This number is divided by the respective total
number of opcodes (n for program X and m for program Y) to give the percentage of
opcodes that match some opcodes in the other program. The similarity score for the

two programs is the average of these two percentages.

Assembly programs —» Opcode sequences —» Graph of matches =~ — Graph of real matches —» Score
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Figure 3 The process of finding the similarity between two assembly programs.

3.2 Test Data
We analyzed 45 viruses generated by four virus generators that we downloaded from VX
Heavens [19]. We also compared some randomly chosen utility programs from the

Cygwin DLL [2] to see how viruses differ from “normal” executable files. The programs

that we analyzed include:



= 20 viruses generated by NGVCK (Next Generation Virus Creation Kit) version
0.30 released in June 2001;

= 10 viruses generated by G2 (Second Generation virus generator) version 0.70a
released in January 1993;

= 10 viruses generated by VCL32 (Virus Creation Lab for Win32) released in
February 2004;

= 5 viruses generated by MPCGEN (Mass Code Generator) version 1.0 released in
1993;

= 20 randomly chosen utility executables from the Cygwin DLL version 1.5.19.

The virus variants were named after their generators as follows:
= the 20 viruses generated by NGVCK were named NGVCKO to NGVCK19;
= the 10 generated by G2 were named GO to G9;
= the 10 generated by VCL32 were named VCLO to VCLO9;
= the 5 generated by MPCGEN were named MPCO to MPC4.

The 20 random utilities files were named RO to R19.

The viruses created by the virus generators were in assembly source code. To make virus
executable files, we assembled them with the Borland Turbo Assembler TASM 5.0. The
generated executables were then disassembled by the IDA Pro Disassembler [3] version
4.6.0. All the disassembling used the same default settings. The cygwin utilities were also

disassembled by IDA Pro. The sequence of process is summarized as:



TASM, TLINK IDA Pro
Virus Assembly Source ——— Virus Executables ————— Disassembled Virus ASM Files
Random Cygwin Executables——— Diassembled Random ASM Files

We added the prefix “IDA_” to the respective file names to denote that the files were
disassembled ASM files created by IDA Pro and to distinguish them from the original

ASM files. For example, the file disassembled from RO.EXE was named IDA_RO.ASM.

We compared the disassembled assembly (ASM) files instead of the original assembly
codes generated by the virus generators. We believed by assembling and disassembling
with the same tools using the same settings, we can eliminate some differences due to
different coding style of the different virus writers. The standardized disassembling
process makes for more accurate comparison when we compare the viruses generated by
different generators, or when we compare viruses with random “normal” programs. It
makes the similarity measure better reflect the effectiveness of the metamorphism
employed. The process also simulates a more realistic scenario because when detecting
viruses in real environment, what we have available are virus executables. That is,
disassembling and analyzing the resultant assembly files is what we need to do in

practice.

3.3 Test Result
For each of the virus generator, we compared each of the viruses it generated to all the

other viruses generated by the same generator, to see how “effective” the generator is in



terms of generating different-looking virus variants. For each pair of virus variants under
comparison, we computed their similarity score using the method described above in
Section 3.1. Comparisons were also made between the random normal files. The raw
similarity scores of all the comparisons are given in Table A-1 to Table A-5 in Appendix
A. Figure 4 below is a scatter plot showing the similarity scores of the 190 comparisons
among the 20 NGVCK viruses and the 190 comparisons among the 20 random files.
Clearly, similarities between NGVCK virus variants are lower than those between

random files.

¢ NGVCK viruses
= Normal files

Similarity score

0 50 100 150 200

Comparison humber

Figure 4 Scatter plot showing similarity scores between NGVCK virus variants and those between

random “normal’ files.



The minimum, maximum, and average scores of each generator and the normal files are

summarized below in Table 1.

Minimum, maximum, and average similarity scores
NGVCK G2 VCL32 |MPCGEN|| Normal
min 0.01493| 0.62845| 0.34376| 0.44964| 0.13603
max 0.21018| 0.84864| 0.92907| 0.96568| 0.93395
average 0.10087| 0.74491| 0.60631| 0.62704| 0.34689

Table 1 Minimum, maximum, and average similarity scores between virus variants generated by the

generators and between random ''normal'’ files.

Comparing the four generators, NGVCK generates viruses of the lowest similarities,
which range from 1.5% to 21.0% with an average of about 10.0%. The other generators
are not as effective at generating different-looking viruses. The similarities between two
variants of the same virus range from 34.4% to 96.6%, and the average scores of G2,
VCL32, and MPCGEN are 74.5%, 60.6%, and 62.7%, respectively. Compare to random
normal files, which have an average similarity of 34.7%, we can see that the viruses that
NGVCK generates are substantially different from one another, while the virus variants

generated by the other generators are more similar to one another than random files.

These comparison results are represented graphically by the bubble graph in Figure 5.
Here the minimum score is shown along the x-axis; the maximum score is shown along
the y-axis; and the size of the bubble represents the average similarity. Under this

representation, an effective generator would have a bubble that is very close to the origin



and also has a very small size, since effectively morphed variants of a virus should have

low minimum, low maximum and low average similarities.

Size of bubble = average similarity
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Figure 5 Bubble graph showing the minimum, maximum, and average similarity between virus

variants generated by each of the generators and between random “normal” files.

As is shown in the graph, NGVCK clearly outperforms the other generators in terms of
generating different-looking viruses. VCL32 and MPCGEN have similar morphing
ability as their variants have comparable minimum, maximum, and average similarities.
G2-viruses have a higher average similarity, as is represented by the bigger bubble size,
although the maximum similarity of the variants is lower than that of VCL32- and
MPCGEN:-viruses. Random files have similarities higher than NGVCK-viruses but lower

than virus variants produced by generators G2, VCL32, and MPCGEN.



The following table shows the similarity graphs of some of the virus pairs. For each
generator, we chose a representative pair which has a similarity score close to the average
similarity score, to illustrate how a typical virus pair differ from each other. The first
column gives the virus names with their similarity score in parenthesis. The second
column shows the graphs of all matches, as defined in Section 3.1 above. The third
column shows the graphs of real matches after noise and random matches have been

removed. The pairs selected and their scores are:

IDA_NGVCKO against IDA_NGVCKS, similarity = 11.9%
= IDA_G4 against IDA_G7, similarity = 75.2%

= IDA_VCLO against IDA_VCLDY, similarity = 60.2%

= IDA_MPCI against IDA_MPC3, similarity = 58.0%

= random files IDA_RO and IDA_RI1, similarity = 35.7%.

Virus Pair Graph of all matches Graph of real matches
(Similarity | (matching 3 consecutive opcodes in (match of length > 5)

score) any order)
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Table 2 Similarity graphs of 4 selected virus pairs and one random file pair.

If we take a closer look at the graphs for the pair of G2-viruses and the pair of VCL32-

viruses, we can see that the real matches are almost all along the diagonal. This indicates

that virus variants of the same virus have identical opcodes at identical positions. This is

obviously not very effective metamorphism. On the other hand, the matches between the

MPCGEN:-virus pair are off the diagonal, which shows that identical opcodes appear in

different positions of the two virus variants. From this evidence, we can say that




MPCGEN has a greater morphing ability than the other two generators. NGVCK is the
most effective in the sense that the match segments are very short and that they are way
off the diagonal. Even if we look at the pair that has the highest similarity
(IDA_NGVCKT7 and IDA_NGVCK14, similarity = 21.0%), the match segments are still

short and off the diagonal. The two similarity graphs of this pair are shown below.
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Table 3 Similarity graphs of the NGV CK-virus pair that has the highest similarity.

4. HIDDEN MARKOV MODELS TO DETECT VIRUSES IN SAME FAMILY

In this project, we developed a system to train multiple hidden Markov models (HMMs)
on a set of metamorphic virus variants. The trained models were tested for their ability to
detect morphed variants of the same virus. The effectiveness of the HMM approach is
determined by the detection rate, the number of false positives and false negatives, and

the overall accuracy.




4.1 Theory and Algorithms for Hidden Markov Models

A hidden Markov model is a statistical model that describes a series of observations
generated by a stochastic process, or Markov process. A Markov process is a sequence of
states, where the progression to the next state depends solely on the present state but not
on the past states. The Markov process in an HMM is “hidden”; what we can see is the
sequence of observations associated with the states. Our goal is to make use of the
observable information to gain insight into various aspects of the underlying Markov

process [15].

We illustrate these concepts by an example taken from [15]. Suppose we want to know

the average annual temperature of a particular location over a preceding period of several
consecutive years and suppose that there is no recording of past temperature of any form
for this location. Since there is no way to know the year-to-year temperature directly, we

look for evidence to predict the temperature indirectly.

For simplicity, we consider only two possible annual temperatures: “hot” (H) or “cold”

(O). Suppose we know that the probability of a hot year followed by another hot year is
0.7 and that of a cold year followed by another cold year is 0.6. This information can be
represented by the matrix:

H C

H|0.7 03].
Cc|04 0.6



Now assume research result tells us that the tree ring size of a certain kind of tree,
whether it is small (S), medium (M), or large (L), is related to the annual temperature as:

S M L

H|{0.1 04 05
c|0.7 02 0.1

meaning that in a hot year, the probability of a tree having a small, medium, or a large
tree ring is 0.1, 0.4 and 0.5 respectively. If we observe the tree ring sizes for such a tree,
we can use this information to deduce the possible annual temperatures over the years of

interest.

In this example, the temperatures (H and C) are the states and the transition of
temperature from year to year defines the Markov process. Tree ring sizes (S, M, L) are
the observable outcomes and the probabilities of seeing the different tree ring sizes at
each temperature represent the probability distribution of the observation symbols at each
state. The actual states are “hidden” since we cannot directly observe the temperatures.
What we can see are the observations (tree ring sizes) and these are related to the states

statistically.

Suppose we represent the observation symbols S, M, L by 0, 1, 2 respectively and
suppose that a particular four-year series of observed tree ring sizes is given by the
observation sequence O = (0, 1, 0, 2). We might want to find the most likely state

sequence of the Markov process that generates the observation sequence. In other words,



we may want to determine the most likely annual temperatures (H or C) over this series

of four years from our observation of the tree ring sizes.

4.1.1 Notation

Let

T = the length of the observed sequence

N = the number of states in the model

M = the number of distinct observation symbols

O = the observation sequence = {Oy, O, ..., Or.1}

Q = the set of states of the Markov process = {qo, g1, ..., gn-1}
V = the set of observation symbols = {0, 1, ... M — 1}

A = the state transition probability distributions

B = the observation probability distributions

7 = the initial state distribution

A= (A, B, m) = the HMM defined by its parameter A, B, and 7.

Figure 6 shows a generic HMM. The state and observation at time ¢ are represented by X;
and O; respectively. The Markov process, which is hidden behind the dashed line, is
determined by the initial state X, and the A matrix. What we can observe are the

observations O,, which are related to the states of the Markov process by the B matrix.



Markov process: Xaq X - X, - b X o

Observations: & s == Or_4

Figure 6 A generic hidden Markov model, reproduced from [15].

For our temperature example, the state transition matrix A is defined by the probabilities
of temperature transitions from year to year; the observation matrix B is defined by the

probabilities of observing the tree ring sizes. That is,
0.7 03
A= , and
04 0.6
0.1 04 05
B=
0.7 02 0.1

which are the same matrices given previously.

The matrix A = {a;} is N x N with
aj = P(qj att+1 1 g;atr)
representing the probability of making a transition from state g; at time 7 to state g; at time

+1.

The matrix B = {bj(k)} is N x M with

bj(k) = P(observation k at ¢ | state g; at 1)



representing the probability of observing symbol k at time ¢ given we are in state g; at

time ¢.

The matrix 7 = {7;} is 1 x M with
mi=P(g;att=0)
representing the probability of being initially in state g; at time 0. We assume for the

temperature example that 7 = [0.6 0.4].

The matrices A, B, and 7 make up the parameters of an HMM. Note that A, B, & are row
stochastic, i.e., each row of these matrices represents a probability distribution and

therefore must sum to 1 [15].

For a generic state sequence X = (xo, X1, X2, x3) of length four, with corresponding

observations O = (O, O}, O,, 03). The probability of the state sequence X is given by
PX 1 4) = 70 bro(O0) o, x1 b::1(O1) axi, 0 b:o(02) o, 13 bi3(O03)

where 7, is the probability of starting in state xo, b.y(QOy) is the probability of observing

Oy at xp and a,y, , s the probability of transiting from state xy to state x;. This easily

generalizes to a sequence of any length.

In our temperature example, with observation sequence O = (0, 1, 0, 2), we can compute

the probability of this observation sequence having been generated by each four-state



sequence. For example, the probability that observation O was generated by the state
sequence HHCC is

P(HHCC) =0.6(0.1)(0.7)(0.4)(0.3)(0.7)(0.6)(0.1) = 0.000212

In the same manner, we can compute the probability of each of the possible state
sequences of length four, given the fixed observation sequence O. These probabilities are
listed in Table 4. We will have some more to say about these probabilities when we

discuss the HMM algorithms.

state sequence probability
HHHH 0.000412
HHHC 0.000035
HHCH 0.000706
HHCC 0.000212
HCHH 0.000050
HCHC 0.000004
HCCH 0.000302
HccC 0.000091
CHHH 0.001098
CHHC 0.000094
CHCH 0.001882
CHCC 0.000564
CCHH 0.000470
CCHC 0.000040
CCCH 0.002822
ccce 0.000847
> probability 0.009629
max probability 0.002822

Table 4 Probabilities of observing O = (0, 1, 0, 2) for all possible 4-state sequences.

In general, the three problems that we are interested in solving with an HMM are [15]:



= Given the model 4 = (A, B, ) and an observation sequence O, find P(O | 1). That
is, find the likelihood of observing the sequence O given the model.

= Given 4 = (A, B, m) and an observation sequence O, find an optimal state sequence
that could have generated O. (This is what we wanted to do in the temperature
example above.) Note that “optimal” here has at least two interpretations. We can
reasonably define optimal as:
1) the state sequence with the highest probability from among all possible state

sequences; or

2) the state sequence that maximizes the expected number of correct states.

= Given an observation sequence O, the number of states N, and the number of
symbols M, find the model parameters, i.e., the probabilities in the A, B, and 7
matrices, that maximize the probability of observing O. This is a discrete hill
climb on the (A, B, m)-parameter space. In other words, we re-adjust the model

parameters to best fit the observations.

4.1.2 Algorithms
There exist efficient algorithms to solve the three problems listed above. A thorough
review of these algorithms can be found in [12] and [4]. In this section, we look at some

of these algorithms, which include:



= the Forward-Backward algorithm for calculating the probability of being in a
state g; at time ¢ given an observation sequence O;
= the Viterbi algorithm for finding the most likely state sequence given O; and

= the Baum-Welch algorithm for iteratively re-estimating the parameters A, B, 7.

4.1.2.1 Finding the likelihood of an observation sequence O: the Forward algorithm

In the previous section, we saw that the probability of an observation sequence O = (O,
O\, ..., Or) generated by a particular state sequence X = (xo, X1, ..., X7.1) given a model 4
is given by

P(O’ X j~) = Tixo be(OO) Axo, x1 bxl(Ol) Ax1,x2 «oo Qx12, xT-1 be—l(OT—l)-

To find the probability of observing the sequence O, we generate all possible state

sequences X; of length T and sum over the probabilities P(O, X; | 4).

P(O1A) =Y P(O,X,12)

= Z ﬂ-xobxu (00 )axo,xl bxl (01 )ax] Xy '“axT_z,xT_] bxr_l (OTfl )
X;

Going back to our temperature example, the probability of observing tree ring sizes O =
(0, 1, 0, 2) given our model is equal to the sum of all the probabilities listed in Table 1,

which is 0.009629.



The probability P(O | 1) tells us how well the observation sequence O matches the HMM
. If 2 has N states and O has length T, then there are N' possible state sequences.
Finding the probability P(O, X; | 1) for one of the state sequence X; requires about 27
multiplications and so a direct computation of the summation requires about 27N"

computations, which is infeasible even for small HMMs.

Instead of generating all possible state sequences, we use the Forward algorithm
(sometimes called the a-pass) to compute this probability efficiently. Fort=0, 1, ..., T —

landi=0,1, ..., N— 1, define a forward variable
at(l) = P(O(),O]’---’ Ot,‘xt =4, Iﬂ,)

which denotes the probability of observing the partial sequence (Oo, Oj, ..., O;) up to

time ¢ and being in state g; at time .

The forward variables can be found recursively using the following recurrence relation:
Step 1 Initialization:
Oto(i) =T bi(O()), fOI‘i=O, 1, ...,N— 1

Step 2 Induction:

N-1
at(i):{Zat_l(j)aﬂ}bi(@), fort=1,2,..,T—1andi=0,1,...,N—1.

j=0



Figure 7 illustrates the inductive process of finding a,(i) using the variables o,.(j).

t-1 t
. 1() a.(i)

Figure 7 The inductive process of finding a,(i) from variables a,(j).

The probability of observing the sequence O given the model 4, P(O | 1), can then be

calculated as

N-1
P(O14) =Y P(0,,0,,....0; x;, = q; | })

i=0

=2%4u

The recursive computation requires N°7 multiplications, which is much better than 27N"

for the naive approach.



4.1.2.2 Finding the most likely state sequence: the Viterbi algorithm

Given an observation sequence O = (Qy, Oj, ..., Or.1) and an HMM 4, the Viterbi
algorithm finds a highest scoring overall path X* that maximizes the probability P(O, X |
A). We can determine the state sequence that is mostly likely to occur given the

observation sequence.

Fort=0,1,...,T-1andi=0,1, ..., N-1, let 6(i) denotes the probability of the most
probable state path (xo, xy, ..., x;) that generates the partial sequence (O, Oy, ..., O,) up to

time ¢ and ending in state g;,

0,(i) = max P(0,,0,,...,0, , Xy, X, ... X, X, = q; | A)

X0+ Xy

The 0,(i) values can be found recursively as follows:
Step 1 Initialization:

00(i) = m; bi(Oy), fori=0,1,....,N-1
Step 2 Induction:

5,(i):Omalela,_l(j)aﬁJb,.(o,), forr=1,2,...,T—1andi=0,1,...N—1.
<jSN-

At each successive t, the algorithm gives the probability of the best path ending at each of
the states i =0, 1, ..., N— 1. Consequently, the probability of the most likely state

sequence for the observation sequence O is



P*= max [6,,(i)]

0<isN-1

The Viterbi algorithm is similar to the Forward algorithm, except that maximizations
replace the summations in the recursive calculations. Notice that the d,(i) values are
probabilities values only. To actually find the state sequence X*, we can use back-
pointers at each step to keep track of the best states chosen along the path. The path can

then be extracted by backtracking from the highest-scoring final state.

For our temperature example given at the beginning of Section 4.1, the mostly likely state

sequence is CCCH, having the highest probability of 0.002822 as shown in Table 1.

4.1.2.3 Finding the optimal model parameters: the Baum-Welch algorithm

One of the most useful features of an HMM is that we can efficiently re-adjust the model
parameters to best fit the observations. Given the matrix dimensions N and M, we can
iteratively re-estimate the elements of A, B, and  so that the probability of observing an

observation sequence O is maximized.

Before we discuss the re-estimation algorithm, let us first take a look at the Backward

algorithm, or f-pass, which is analogous to the a-pass given above.



Fort=0,1,...,T-1andi=0,1, ..., N— 1, define the backward variable
B,()=P(0,,,0,.,...0;_, | x, = q;, )

which denotes the probability of observing the partial sequence (O, O, ..., OT1.1)

given we are in state g; at time .

[(i) measures the probability after time # and can be obtained recursively starting at the

end of the sequence:
Step 1 Initialization:
pra()=1, fori=0,1,....N-1

Step 2 Induction:

N-1
B(i)=> ab,0,.)B.(j), fort=T-2,T-1,....,0andi=0,1,....,N-1.
j=0

Figure 8 illustrates the recursive process.



bo(O 1)

b1(041)

b;(041)

bN-l(0t+l)

t t+1
B:@) Bi1()

Figure 8 The inductive process of finding f,(i) from variables f,(j).

The Backward algorithm also gives us the probability of observing the sequence O given
the model 4, or P(O | 1), which should be the same number produced by the Forward

algorithm:

P(OIA)= jfﬁibi(oo)ﬂo(i) .

Now, define the probability of being in state g; at time ¢ given the observation sequence O

and the model A, forr=0,1, ..., 7T—-2andi=0,1,..., N—-1, as

y,(i))=P(x, =q,10,4).

This probability can be obtained from the forward-backward variables as



,(i)p,(i)

7.() = PO1A)

_ a,0)B0)
> e, () B, ()

since ay(i) accounts for the observations up to time ¢ and f,(i) accounts for the

observations after time 7 given we are in state g; at time t. The denominator P(O | 1) =
-1 N . . . e e
ZZO «,(i)B,(i) is the normalization factor, which makes y,(i) a probability distribution

and sum to 1.

Next, define the joint probability of being in state g; at time ¢ and transiting to state g; at

timet+ 1,forr=0,1,...,7T-2and i,j € {0,,..,N -1}, as

7z(i’j):P(Xt =4 X4 :qj |072)

This probability can be written in terms of a, £, A, and B as

i) = a,(ab (0,,)B,,(j)
Vit PO A) '

The relationship among these probabilities is illustrated graphically in Figure 9.



aybj(0t+0
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a,(i) ﬁt+1(])

Figure 9 The variables for the computation of the joint probability y,(, j).

The y,(i) and y(i, j) are related by

AOEDWAN)

j=0

y((i) gives us the probability of being in state g; at time ¢. If we sum the probability over
all possible T, we get the expected number of transitions from state g; to any state. y,(i, j)
gives us the joint probability of being in state g; at time ¢ and in state g; at time ¢ + 1. The

summation of y,(7, j) over T thus gives the expected number of transitions from state g; to

state g;. In other words,

7
LS}

7,(i) = the expected number of transitions from state g; to any state, and

~
I
(=)

7
LS}

7,(i, j) = the expected number of transitions from state g; to state g;.

~
I
(=)



We can now re-estimate the parameters of 1 = (A, B, ) using the following formulae:

Fori=0,1,...,N-1,
7 =7,(i)

= probability of being in state g; at r = 0.

Fori=0,1,...,N-landj=0,1,...,N—1,
_ T-2 T-2
ag =Y.y, ) [ D 7.30)
=0 t=0

Expected number of transitions from ¢, to g,

Expected number of transitions out of g,

Forj=0,1,....N-landk=0,1, ..., M -1,
_ T-2 T-2
bi(k)y=Y7,() /D7)

=0 =0
0,=k

Expected number of times the model is in state g; with observation k

Expected number of times the model is in state g

We re-estimate 4 iteratively until P(O | 1) does not increase (or the increase is less than a
predefined threshold) or until the maximum number of iterations is reached. The
complete Baum-Welch expectation-maximization (EM) algorithm can be summarized as:
6) Initialize A = (A, B, ) with a best guess. If no prior information is available, choose

random m; = 1/N, a;; = 1/N, and bj(k) = 1/M.



7) Calculate a/i), Si(i), y«(i) and y.(i, j).

8) Re-estimate the model 1 = (A, B,7), and calculate P(O | 71).

9) Stopif P(O I Z) — P(O 1 1) is less than the predefined threshold or the maximum

number of iterations is reached; otherwise set A = A and goto (2).

4.1.2.4 Posterior state probabilities

The Viterbi algorithm given in Section 4.1.2.2 finds the most probable state path through
the model. But as we mentioned in Section 4.1.1, there is a second interpretation as to
what constitutes an “optimal” state sequence. Instead of finding the highest scoring
overall path, as is done by the Viterbi algorithm, we may want to find the most probable
state for each specific observation O, in the observation sequence O = (Qy, Oy, ..., Or.)).
More generally, we may want to find the probability that observation O; is generated by
state g; given the sequence O, i.e., P(x; = g; | O, A). This is called the posterior probability

of state g; at time .

This posterior probability is exactly the y,(i) variable defined above in Section 4.1.2.3,
which is given by

@, () ,()

P(x,=q,10,1) = I

Hence, the optimal path that finds the most probable state for each position is obtained by

finding, foreach =0, 1, ..., T— 1, the state g; for which y,(i) is maximum.



This state sequence is not necessarily the same as the highest scoring sequence found by
the Viterbi algorithm. We may be more interested in this sequence that maximizes all
posterior probabilities when there are many different paths that have probabilities very
close to the most probable one, or when we want to know only the state assignment at a
particular point ¢ rather than the complete path. It is possible that this state sequence may
not be particularly likely as a path through the HMM. Sometimes it is not even a

legitimate path when some of the transitions between states are not allowed.

4.1.3 Implementation Issue: Underflow and Scaling

The HMM computations discussed in Section 4.1.2 require repeated multiplications of
the transition and observation probability values. One major challenge in the
implementation is to deal with these small products which tend to zero exponentially as T’
increases and can easily cause underflow if care is not taken. To solve this problem, we
can scale the forward and backward variables while maintaining the validity of the re-

estimation formulae.

The scaled version of the Forward algorithm normalizes each a.(i) by dividing by the sum

(over j) of all a,(j) for each value ¢, or observation O,. Let &, (i) denotes the forward
probability that is scaled up to # — 1 but not scaled for ¢ yet; &, (i) denotes the scaled
probability; and ¢, (i) denotes the non-scaled probability as given in the original forward

algorithm. The scaling coefficient c; at each time ¢ is defined by



where ¢, =+ and @,(i) = c,&, (i) fori=0,1,..., N—1 whent=0.
%, (J)

J=0

Then foreacht=1, 2, ..., T—1, calculate

&)=Y & (jab,0,) and

t [}

=

~
i}
[=)

&, (i) = ¢, @, (i) fori =0,1,...,N-1.

N-1
The scaled probabilities are now normalized so that Z &, (i) =1. Also, it can be proven
i=0

by induction that
&, (i)=c,a (i)
=cyCy...c,, (i) .

Combining these two properties and setting t = 7 — 1, we have

=

-1

1= &T—l(j)

~
Il
(=]

N-1
& 1= Coc1---cr—1zar—1(j)
j=0



& l=cyc...cp ,P(OIA)

1

-1

ch.

Jj=0

& POIA)=

To avoid underflow, we compute the log likelihood log[P(O | 1)], instead of the P(O | 4):

log[P(0 1 1)] = log

-1

ch

J=0

The same scale factor ¢, is used for £,(i) so that ,3,(1' ) =c,[3,(i) . The computations of y,(i)

and y,(i, j) use the same formulae as given in Section 4.1.2.3 substituting &, (i) and ,5’,(1')

for o,(i) and S,(i). These values are then used to re-estimate the model parameters A, B,

and 7.

The implementation of the Viterbi algorithm can also result in underflow. This is avoided

by taking logarithms. The underflow-resistant Viterbi algorithm is defined as:

Step 1 Initialization:
(i) = log[7,b,(0,)], fori=0,1,...,N—1

Step 2 Induction:



8,(i) = max {8,.,(j)+logla,1+loglb, (0]},

forr=1,2,...,T-1landi=0,1,...,N-1.

The optimal log probability is given by

log P*= max [5,_,(i)]

N—

and as before back-pointers can be used to keep track of the optimal path.

4.2 HMM for Computer Virus Detection

Given a set of metamorphic virus variants, our goal is to train one or more hidden
Markov models (HMMs) to represent the statistical properties of the virus family so that
we can later use a trained model to determine whether a given program is similar to the

viruses in the training set.

We trained our models based on the assembly opcode sequences of the virus files. For
viruses originally generated in assembly source format, we first compiled the assembly
source into executables using TASM 5.0. We then disassembled the executables using
IDA Pro with identical default settings. We trained our models on the IDA-generated
files rather than the original assembly source from the virus generators. We believed this

makes our method more realistic. Disassembling executables is typically part of the virus



analysis process. This virus pre-processing procedure is the same as the one we used in
the virus similarity test in Section 3 and is summarized again below:

TASM, TLINK IDA Pro
Virus Assembly Source ———» Virus Executables —————— Disassembled Virus ASM Files

There are generally two approaches to training an HMM when there are multiple
observation sequences. We can either concatenate the sequences and make them into one
long observation sequence; or train the HMM with each sequence separately and average
the parameters from the different trainings [4]. We chose the former approach in our
training process. With the set of pre-processed virus ASM files, we extracted the
assembly opcode sequences, concatenated them into one long sequence of opcodes and

used it to train our HMMs.

A trained model maximizes the probability of observing the training sequence. By
calculating the probability of observing any given sequence in the HMM and comparing
it to the probability of observing the training sequence, we know how well the given
sequence matches the training sequence, or how “similar” the given sequence is to the
training sequence. When trained with multiple sequences, the resulting HMM represents
the “average” behavior, or the behavior of all the sequences in the form of a statistical
profile. We can represent a whole virus family, as opposed to individual viruses, with a
single HMM. The probability of any sequence in the HMM then tells us how likely it is

that the given sequence belongs to the same virus family.



One extremely useful aspect of an HMM is that it tells us something about the training
sequence without any requirement that we know how to interpret the observations or
underlying features. Without specific knowledge of the features of the metamorphic
viruses, we trained our HMMs using different number of states and examined the
resulting probabilities to deduce what features the states represent. The number of states
N that we tested are N =2, 3, 4, 5, and 6. The number of observation symbols (opcodes)
M, varies from model to model. We set M equal to the total number of distinct opcodes
seen in all the training sequences for each model. With our data, M was typically around
70 to 80. The viruses we trained on have about 350 to 450 opcodes each, with an average
of 416 opcodes. Concatenating 160 virus opcodes to train a model made the length of the
observed training sequence 7 in the range of 66,000 to 67,000. The average T for the

models we trained is 66,650.

Our HMM implementation used the scaled version of the Forward and the Backward
algorithm as discussed in Section 4.1.3. To avoid underflow, we computed the log
likelihood, instead of the raw probability, of observing the training sequence in the model
at each step of the iterative training process. Re-estimation stopped when the log
likelihood of the training sequence converged or a maximum of 800 iterations have been

reached.



4.3 Training and Testing

Training and testing was done using standard cross-validation methodology [6]. With
five-fold cross validation, we divide the data set into five equal-sized subsets. Each time
when we train a model, we choose one of the subsets as the test set and train the model
using data from the other four subsets. Because data from the test set is not used during
training, we can use it to evaluate the performance of the model over unseen instances.
Repeating this process five times, choosing a different subset as the test set each time, we

can get five different models from the same set of data.

After training, a model should assign high probabilities to files similar to the training
viruses and low probabilities to all other files, whether they are viruses from different
families or “normal” benign programs. We made a comparison set which consisted of
viruses generated by creation kits other than the one used to generate the training viruses
and normal executable files of sizes comparable to the virus executables. We computed
the log likelihood of the virus variants in the test set and the other programs in the
comparison set using a trained model. Log likelihood is strongly length dependent, since
it is a sum of log transition probabilities and log observation probabilities. A longer
sequence will naturally have more transitions and more observations and thus a greater
log likelihood, independent of how similar it is to the training sequences. Because the
sequences in the comparison set may have lengths different from the sequences in the

training and test set, we divided the log likelihood of a sequence by the sequence length



(which is the number of opcodes) to obtain the log likelihood per opcode (LLPO), which

adjusts for the length difference. This LLPO is the score of the sequence.

With a trained model, we scored the files in the test set and those in the comparison set.
There should be a separation of scores between files from these two sets as the model
should assign higher probabilities and thus higher log likelihood per opcode to files in the
same virus family. From these empirical scores, we determined a threshold, above which
we will consider a file as belonging to the same family as the viruses in the training set.
To classify whether a program is in the same virus family as the training data, we

compute its score and compare it to the threshold.

The training and classifying process is summarized as

Training:

1) Given a data set consisting of different variants of a metamorphic virus, pick one
subset as the test set and use the remaining four subsets for training.

2) Train HMM 4 for sequences in the training set until the log likelihood of the training
sequence converges.

3) Compute the score, i.e., the log probability per opcode (LLPO), of viruses in the test
set and other files in the comparison set.

4) Determine a cutpoint (threshold) score above which a file is classified as a member

virus. The threshold separates virus family members from non-members.



5) Repeat from (1), choosing a different subset as the test set, until all five subsets have
been chosen.

Classifying:

1) To determine whether any program is part of the virus family, score and compare its

LLPO to the model thresholds.

The HMM algorithms were implemented in C and compiled with Visual C++ 2005
Express Edition. We wrote some Ruby scripts using Ruby 1.8.4 on Windows [13] to
perform the cross-validation. All trainings are carried out on a Pentium M 1.4 GHz

machine running Windows XP Home Edition with 768 MB of RAM.

4.4 Data Used

Our data set consisted of 200 viruses generated by the Next Generation Virus Creation
Kit (NGVCK), which was shown to be the most effective of the four virus generators we
tested in Section 3. With five-fold cross validation, the number of viruses in each test set
was 40 and the number of sequences used for training was 160 for each of the model.
There were 65 files in the comparison set consisting of both viral and benign programs.

These included:



= 25 viruses generated by the three generators G2, MPCGEN, and VCL32. They
were the same programs that we tested for similarity in Section 3;
= 40 random executable files chosen from the Cygwin DLL (version 1.5.19) to
represent “normal” benign programs. The first 20 were the same ones that we
used in our similarity test.
All these programs were unique and there were no duplicates. Training and testing used
files disassembled by IDA Pro (version 4.6.0) [3]. The four generators are downloadable

from [19] while the Cygwin DLL is available at [2].

The IDA-preprocessed files were named as follows:
= the 200 viruses in the data set were named IDA_NO to IDA_N199 (N for
NGVCK);
= the 25 “other” viruses in the comparison set were named IDA_VO0 to IDA_V24 (V
for viruses);

= the 40 “normal” files were named IDA_RO to IDA_R39 (R for random).

We divided the 200 viruses in the data set into five subsets of 40 viruses according to
virus number:

=  Testset 0: IDA_NO to IDA_N39;

= Testset 1: IDA_N40 to IDA_N79;

=  Testset2: IDA_N8O to IDA_NI119;

= Testset 3: IDA_N120 to IDA_N159;



= Testset4: IDA_N160 to IDA_N199.

4.5 Experiment Result

Foreach N =2, 3,4, 5, and 6, training and testing was run as described above and five
models were obtained for each N giving a total of 25 models. Seven of the models made a
complete separation of scores between viruses in the test set and files in the comparison
set. That is, the log likelihood per opcode (LLPO) of the family viruses were all higher
than those of the non-family viruses and the random files. For the other models, we find
some overlapping of scores where some non-family viruses have scores higher than some

of the family viruses.

Figure 10 shows the result of a test run. The model in this test had three states, i.e., N =3,
and used test set 0 as the test set. As can be seen in Figure 10, for this case all random
files have scores lower than those of the family viruses in the test set. However, the score
distinction between family viruses and non-family viruses is not as clear. Some non-
family viruses in the comparison set have scores very close to or higher than the family
viruses. In the example shown here, the separation between family and non-family

viruses is not perfect.
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Figure 10 Log likelihood per opcode (LLPO) of family viruses, non-family viruses and random files.

This test used test set 0 and N = 3.

The result illustrated in Figure 10 is typical of most models. In fact, if we look at the
graph for each of the test sets for each N, the score distribution is very similar. If a file
has a low score in one model, it always has a low score in all other models, although the
scores are not always identical. We have included more of these graphs in Appendix B.
Table B-1 shows the models trained with N = 3 states and Table B-2 shows the models
with N =5 states. The shapes of the curves are very similar in every graph. Our HMMs
show consistent performance over the test data, regardless of number of hidden states.

The raw scores of all the test runs are listed in Table B-3 in Appendix B.



Next we want to quantify the numbmer of false positives and false negatives associated
with each model. A false positive occurs when a program not belonging to the virus
family represented by an HMM is classified by the HMM as being a member virus. A
false negative occurs when a member virus is misclassified as being a non-member.
Analogously, true positives are family viruses correctly classified as members; while true
negatives are programs not belonging to the virus family correctly classified as non-

members.

Recall that a trained HMM classifies a program by comparing its log likelihood per
opcode (LLPO) to the threshold LLPO. The choice of threshold value therefore affects
the classification and thus the amount of false positives and false negatives a model
produces. If we choose a higher threshold, fewer programs would score higher than the
threshold and there would be fewer false positives. This, however, is usually
accompanied by more false negatives as more member viruses may have scores lower
than the threshold. We examined the amount of false positives and false negatives that
came with different threshold values. Figure 11 illustrates the tradeoff between the two
when the threshold changes from -3.5 to -2.5, for the model with N = 2 hidden states

using test set 4.
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Figure 11 The tradeoff between false positives (FP) and false negatives (FN) with changing threshold

values.

Table 5 shows the number of false classifications as plotted in Figure 11. At a threshold
value of -3.0, there are two false positives and one false negative. Increasing the
threshold to -2.9 reduces the number of false positives to zero but increases the number of
false negatives to four. Depending on the desired tradeoff, we could select the threshold

accordingly.

Threshold| -3.5 | -84 [ -33 ] -832 | -31 | -3.0] -29 | -28 | -2.7 | -26 | -2.5
FP 5 5 5 5 5 2 0 0 0 0 0
FN 1 1 1 1 1 1 4 16 39 40 40

Table 5 False positive (FP) and false negative (FN) counts for threshold ranging from -3.5 to -2.5.

This model used test set 4 and N = 2.



Besides the raw false positive and false negative counts, we calculated three other
performance measures based on these counts: detection rate, false positive rate, and
overall accuracy. The detection rate tells us the sensitivity of the model and is defined as
the number of member viruses that are caught by an HMM divided by the total number of
member viruses in the test set (40 in our experiments). The false positive rate is related to
the specificity of the model and is defined as the number of false positives divided by the
total number of non-member programs in the comparison set (65 in our test runs). Overall
accuracy is defined as the number of true predictions (positives and negatives) divided by
the total number of member and non-member programs (105 in our tests). The three
measures are related to true positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN) as follows:

TP .
= Detection rate =———— , as TP + FN equals total number of member viruses
TP + FN
tested;
.. F
= False positive rate =———— , as FP + TN equals total number of non-member
FP+TN

programs tested;

TP + TN
TP+ TN +FP+FN

=  QOverall accuracy =

The detection rate, false positive rate, and overall accuracy of the test run above are
shown in Figure 12. We plotted the rates from threshold -4.5 to -2.5. The three rates are

again functions of the threshold. At a threshold value of -3.0, the detection rate and



overall accuracy are 97.5% and 97.1% respectively while the false positive rate is 3.1%.
If we increase the threshold to -2.9, the false positive rate would be 0% but both detection

rate and accuracy would drop, to 90% and 96.2% respectively.

There is no one best way to define what an “optimal” threshold is. If false alarms are
absolutely unacceptable, we may want to choose the higher threshold of -2.9. On the
other hard, if it is absolutely necessary that we detect all viruses in the family, we may
need to use the lower threshold and we may go all the way to the threshold of -4.4 which
gives a 100% detection rate. This of course comes at the expense of a higher false

positive rate, which is 7.7% in this case. Choosing a threshold always implies a tradeoff.
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Figure 12 Comparison of false positive rate, detection rate and overall accuracy.

Suppose we want to limit the false negative rate to 10%. In other words, we want to have

a detection rate of 90% or more. The threshold values that would produce the desired

detection performance are listed in Table 6. The value for each model is the largest

threshold LLPO that can still maintain a false negative rate of 10%. If we choose a

threshold lower than the listed value, it is possible to achieve a higher detection rate,

although it is likely that the increase in detection rate will be accompanied by an increase

in false positive rate. The false positive rates for all the models, at the respective



threshold values, fall within 0% to 7.7%. All models with three states (N = 3) produced

0% false positives. Even so, the overall accuracy of all the models is quite similar.

Detection rate >= 90% | threshold FP FN  detectrate FPrate accuracy
test 0 -3.0 2 3 0.925 0.031 0.952
test 1 -2.9 2 4 0.900 0.031 0.943
N=2 test 2 -2.9 1 3 0.925 0.015 0.962
test 3 -4.4 5 2 0.950 0.077 0.933
test 4 -2.9 0 4 0.900 0.000 0.962
test 0 -4.5 0 4 0.900 0.000 0.962
test 1 -4.4 0 3 0.925 0.000 0.971
N=3 test 2 -2.8 0 4 0.900 0.000 0.962
test 3 -4.3 0 4 0.900 0.000 0.962
test 4 -2.8 0 4 0.900 0.000 0.962
test 0 -2.8 0 3 0.925 0.000 0.971
test 1 -2.7 0 4 0.900 0.000 0.962
N=4 test 2 -2.7 2 4 0.900 0.031 0.943
test 3 -4.2 3 4 0.900 0.046 0.933
test 4 -2.7 0 4 0.900 0.000 0.962
test 0 -2.7 0 4 0.900 0.000 0.962
test 1 -2.7 3 4 0.900 0.046 0.933
N=5 test 2 -2.7 0 4 0.900 0.000 0.962
test 3 -4.2 5 3 0.925 0.077 0.924
test 4 -2.7 0 3 0.925 0.000 0.971
test 0 -2.7 0 4 0.900 0.000 0.962
test 1 -4.2 0 3 0.925 0.000 0.971
N=6 test 2 -4.1 5 4 0.900 0.077 0.914
test 3 -4.2 3 1 0.975 0.046 0.962
test 4 -2.6 0 4 0.900 0.000 0.962

Table 6 Threshold LLPO that gives a detection rate of 90% or more for each model.

Next, we pick the value -4.5, which is the lowest threshold in the analysis above, and see
how the performance measures would change with this lower threshold value. Table 7
shows the false positive count, false negative count, detection rate, false positive rate and

overall accuracy when we set the cutpoint at -4.5 for all the models. Compared to the



previous table, the detection rates as well as the false positive rates indeed have increased
for most models. We see that 17 of the models have detection rate reaching 100% and 10
models have 0% false positive rate. Although the performance of all the models is quite
similar, models with two states (N = 2) do have slightly higher false positive rates and
lower accuracy. We conclude there is not a significant difference in performance between
models with three or more states. With the right choice of threshold, detection rate and

overall accuracy of all models can reach 90% or more while the false positive rate can be

kept below 10%.



Threshold = -4.5 FP FN detectrate FPrate  accuracy
test 0 5 0 1.000 0.077 0.952
test 1 5 2 0.950 0.077 0.933
N=2 test 2 5 2 0.950 0.077 0.933
test 3 5 0 1.000 0.077 0.952
test 4 5 0 1.000 0.077 0.952
test 0 0 4 0.900 0.000 0.962
test 1 0 2 0.950 0.000 0.981
N=3 test 2 0 1 0.975 0.000 0.990
test 3 0 0 1.000 0.000 1.000
test 4 0 0 1.000 0.000 1.000
test 0 0 0 1.000 0.000 1.000
test 1 3 2 0.950 0.046 0.952
N=4 test 2 5 0 1.000 0.077 0.952
test 3 3 0 1.000 0.046 0.971
test 4 3 0 1.000 0.046 0.971
test 0 0 0 1.000 0.000 1.000
test 1 5 2 0.950 0.077 0.933
N=5 test 2 5 0 1.000 0.077 0.952
test 3 5 0 1.000 0.077 0.952
test 4 0 0 1.000 0.000 1.000
test 0 0 0 1.000 0.000 1.000
test 1 0 3 0.925 0.000 0.971
N=6 test 2 5 0 1.000 0.077 0.952
test 3 3 0 1.000 0.046 0.971
test 4 5 0 1.000 0.077 0.952

Table 7 False positive count, false negative count, detection rate, false positive rate and overall

accuracy when threshold is set at -4.5 for all models.

5. CONCLUSION

Virus writers and anti-virus researches generally agree that metamorphism is the way to
generate undetectable viruses. Several virus writers have released virus creation kits and
claimed that they possess the ability to automatically produce morphed virus variants that

look substantially different from one another.



To see how effective these code morphing engines are, and how much difference exists
between variants of a same virus, we measured the similarity between virus variants
generated by four virus generators downloaded from the Internet. Our result shows that
the effectiveness of these generators varies widely. While the best generator, NGVCK, is
able to create viruses that share only a few percent of similarities, the other generators
produce viruses that are over 60% similar, on average. In addition, our similarity graphs
show that some of these variant pairs have long segments of identical assembly opcodes
at identical positions of the virus files. Compared to random utility files which have a
similarity of about 35%, we see that some of the virus creation kits are not very effective.
But since they produce assembly code, hackers with some knowledge of assembly
programming can manually change the code further and make the virus more difficult to

detect.

To detect metamorphic virus variants, we experimented with the use of hidden Markov
models (HMMs) to capture the statistical properties of viruses in the same family. We
generated 200 NGVCK viruses, trained 25 models and used the trained models to classify
65 programs including both NGVCK viruses and other random non-viral programs. For
seven of our models we were able to perfectly distinguish the two types of files by their
scores. The other cases produced different number of false positives and false negatives,
depending on the threshold used in the classifying process. In most cases, our models
were able to have a detection rate of over 90% and a false positive rate of less than 10%.

The number of states N of a model does not seem to have much impact on the



performance of the HMM. We saw only small differences in the performance measures

for models with N from 3 to 6.

If the variants of a metamorphic virus are sufficiently different that signature-based
scanning cannot detect a newly morphed variant, the HMM approach provides a feasible
solution. As with any statistical detection method, false predictions are possible. We
showed the tradeoff between the detection rate and false positive rate. Of course, users
generally want a classifier that has low false positive rate and low false negative rate.
They would not want false alarms, which can be annoying and can destroy their trust to
the classifier; nor would they want a model that may let viruses go undetected.
Compromising between false positives and false negatives is a challenge with any

statistical approach.

6. FUTURE WORK

We trained our models on disassembled virus executables. The disassembling process can
take some time and the result of the disassembling depends on the quality of the
disassembler. To speed up virus pre-processing and to eliminate the reliance on a
particular disassembler, we can train the HMMs on the binary code of the viruses. Other
machine learning techniques, like the data mining or the neural network approach, might

also work directly on the binaries.



Training on raw executable byte sequences is more challenging as these byte sequences
are longer and contain more irrelevant parts. We can train our HMMs on the complete
code if the size of the virus is small enough. Otherwise, we can train the models using
only the code segments and perhaps the data segments, excluding header and other kinds
of identification information, since the behavior of a program is primarily determined by

its code segments.

Our models were tested on only one family of metamorphic viruses, namely the viruses
generated by the Next Generation Virus Creation Virus Creation Kit (NGVCK). To more
thoroughly evaluate the performance of the HMM approach, it would be useful to test on

a larger set of virus variants and also test on different types of viruses.
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Appendix A: Virus similarity test results

Table A-1 Similarity scores between NGVCK virus variants.

Similarity scores between files:

IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCKO
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK1
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK2
IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK3

IDA_NGVCK1
IDA_NGVCK2
IDA_NGVCK3
IDA_NGVCK4
IDA_NGVCK5
IDA_NGVCK86
IDA_NGVCK7
IDA_NGVCK8
IDA_NGVCK9
IDA_NGVCK10
IDA_NGVCK11
IDA_NGVCK12
IDA_NGVCK13
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK16
IDA_NGVCK17
IDA_NGVCK18
IDA_NGVCK19
IDA_NGVCK2
IDA_NGVCK3
IDA_NGVCK4
IDA_NGVCK5
IDA_NGVCK6
IDA_NGVCK7
IDA_NGVCK8
IDA_NGVCK9
IDA_NGVCK10
IDA_NGVCK11
IDA_NGVCK12
IDA_NGVCK13
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK16
IDA_NGVCK17
IDA_NGVCK18
IDA_NGVCK19
IDA_NGVCK3
IDA_NGVCK4
IDA_NGVCK5
IDA_NGVCK6
IDA_NGVCK7
IDA_NGVCK8
IDA_NGVCK9
IDA_NGVCK10
IDA_NGVCK11
IDA_NGVCK12
IDA_NGVCK13
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK16
IDA_NGVCK17
IDA_NGVCK18
IDA_NGVCK19
IDA_NGVCK4
IDA_NGVCK5
IDA_NGVCK86
IDA_NGVCK7
IDA_NGVCK8
IDA_NGVCK9
IDA_NGVCK10
IDA_NGVCK11
IDA_NGVCK12

0.07434
0.08920
0.15131
0.18340
0.09070|
0.05134
0.05413]
0.11911
0.09770)
0.12208|
0.17967|
0.14436
0.10156|
0.12691
0.09563|
0.13088|
0.09841
0.12794
0.07873]
0.08636
0.10922
0.16578|
0.09711
0.12297|
0.09787|
0.07977|
0.19684
0.17116)
0.10572
0.11574
0.11579
0.14021
0.08796
0.07606|
0.09617|
0.11478|
0.11744
0.11767|
0.10050|
0.08412
0.05393|
0.12356|
0.10744
0.04529
0.11901
0.04575)
0.06784
0.01493
0.11570)
0.09738|
0.06714
0.02224
0.05040|
0.08155
0.14915
0.13363
0.15358|
0.14616)
0.05070|
0.13307|
0.13738|
0.13700|
0.05351

IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK3
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK4
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK5
IDA_NGVCK6
IDA_NGVCK6
IDA_NGVCK6
IDA_NGVCK6
IDA_NGVCK6
IDA_NGVCK6
IDA_NGVCK6
IDA_NGVCK6
IDA_NGVCK6
IDA_NGVCK6
IDA_NGVCK6
IDA_NGVCK6
IDA_NGVCK6
IDA_NGVCK7
IDA_NGVCK7
IDA_NGVCK7
IDA_NGVCK7
IDA_NGVCK7
IDA_NGVCK7
IDA_NGVCK7
IDA_NGVCK7
IDA_NGVCK7
IDA_NGVCK7
IDA_NGVCK7
IDA_NGVCK7
IDA_NGVCK8
IDA_NGVCK8

IDA_NGVCK13
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK16
IDA_NGVCK17
IDA_NGVCK18
IDA_NGVCK19
IDA_NGVCK5

IDA_NGVCK6

IDA_NGVCK7

IDA_NGVCK8

IDA_NGVCK9

IDA_NGVCK10
IDA_NGVCK11
IDA_NGVCK12
IDA_NGVCK13
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK16
IDA_NGVCK17
IDA_NGVCK18
IDA_NGVCK19
IDA_NGVCK6

IDA_NGVCK7

IDA_NGVCK8

IDA_NGVCK9

IDA_NGVCK10
IDA_NGVCK11
IDA_NGVCK12
IDA_NGVCK13
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK16
IDA_NGVCK17
IDA_NGVCK18
IDA_NGVCK19
IDA_NGVCK7

IDA_NGVCK8

IDA_NGVCK9

IDA_NGVCK10
IDA_NGVCK11
IDA_NGVCK12
IDA_NGVCK13
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK16
IDA_NGVCK17
IDA_NGVCK18
IDA_NGVCK19
IDA_NGVCK8

IDA_NGVCK9

IDA_NGVCK10
IDA_NGVCK11
IDA_NGVCK12
IDA_NGVCK13
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK16
IDA_NGVCK17
IDA_NGVCK18
IDA_NGVCK19
IDA_NGVCK9

IDA_NGVCK10

0.10067|
0.10554
0.08981
0.13886|
0.14873
0.13848
0.12308|
0.08773
0.10706|
0.11275
0.07676|
0.09182
0.18537|
0.05152
0.10682
0.06559
0.17728
0.13155]
0.10552
0.10273
0.07407|
0.11025
0.05343
0.07103
0.12342
0.12222
0.07149
0.12851
0.06257|
0.03453
0.05849
0.05950
0.05158
0.10532
0.06744
0.16166
0.07618
0.06070
0.10760
0.15063
0.07058
0.08605
0.06433
0.08921
0.03582
0.07146
0.15974
0.08771
0.05652
0.10729
0.09201
0.17010
0.12210
0.04414
0.08843
0.21018
0.17078
0.09845
0.11370
0.08161
0.14470
0.12738
0.10699

IDA_NGVCK8

IDA_NGVCK8

IDA_NGVCK8

IDA_NGVCK8

IDA_NGVCK8

IDA_NGVCK8

IDA_NGVCK8

IDA_NGVCK8

IDA_NGVCK8

IDA_NGVCK9

IDA_NGVCK9

IDA_NGVCK9

IDA_NGVCK9

IDA_NGVCK9

IDA_NGVCK9

IDA_NGVCK9

IDA_NGVCK9

IDA_NGVCK9

IDA_NGVCK9

IDA_NGVCK10
IDA_NGVCK10
IDA_NGVCK10Q
IDA_NGVCK10
IDA_NGVCK10Q
IDA_NGVCK10
IDA_NGVCK10Q
IDA_NGVCK10
IDA_NGVCK10
IDA_NGVCK11
IDA_NGVCK11
IDA_NGVCK11
IDA_NGVCK11
IDA_NGVCK11
IDA_NGVCK11
IDA_NGVCK11
IDA_NGVCK11
IDA_NGVCK12
IDA_NGVCK12
IDA_NGVCK12
IDA_NGVCK12
IDA_NGVCK12
IDA_NGVCK12
IDA_NGVCK12
IDA_NGVCK13
IDA_NGVCK13
IDA_NGVCK13
IDA_NGVCK13
IDA_NGVCK13
IDA_NGVCK13
IDA_NGVCK14
IDA_NGVCK14
IDA_NGVCK14
IDA_NGVCK14
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK15
IDA_NGVCK15
IDA_NGVCK15
IDA_NGVCK16
IDA_NGVCK1§
IDA_NGVCK16
IDA_NGVCK17|
IDA_NGVCK17|
IDA_NGVCK18§

IDA_NGVCK11
IDA_NGVCK12
IDA_NGVCK13
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK1¢|
IDA_NGVCK17
IDA_NGVCK1g
IDA_NGVCK19Y
IDA_NGVCK10|
IDA_NGVCK11
IDA_NGVCK12
IDA_NGVCK13}
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK16¢|
IDA_NGVCK17
IDA_NGVCK1g
IDA_NGVCK19Y
IDA_NGVCK11
IDA_NGVCK12
IDA_NGVCK13}
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK1¢|
IDA_NGVCK17
IDA_NGVCK1g
IDA_NGVCK19Y
IDA_NGVCK12
IDA_NGVCK13}
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK16¢
IDA_NGVCK17|
IDA_NGVCK1g
IDA_NGVCK19Y
IDA_NGVCK13}
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK1¢|
IDA_NGVCK17
IDA_NGVCK1g
IDA_NGVCK19Y
IDA_NGVCK14
IDA_NGVCK15
IDA_NGVCK1¢|
IDA_NGVCK17
IDA_NGVCK1g
IDA_NGVCK19
IDA_NGVCK15
IDA_NGVCK1¢|
IDA_NGVCK17|
IDA_NGVCK1g
IDA_NGVCK19
IDA_NGVCK1¢|
IDA_NGVCK17
IDA_NGVCK1g
IDA_NGVCK19
IDA_NGVCK17
IDA_NGVCK1g
IDA_NGVCK19
IDA_NGVCK1g
IDA_NGVCK19
IDA_ NGVCK19Y

0.07875)
0.03634
0.03600|
0.02934
0.07818|
0.04610)
0.04854
0.06508|
0.13540
0.15118|
0.11877|
0.09489
0.13758|
0.09824
0.11261
0.16471
0.07887|
0.10710|
0.15248
0.10869
0.17176
0.08110|
0.15890|
0.16645
0.12996
0.11580)
0.06672
0.04028|
0.05686
0.14430)
0.12858|
0.14992
0.13306|
0.11945
0.10001
0.11414
0.03950
0.11242
0.12866|
0.03688|
0.05149
0.10002
0.09563|
0.09217|
0.08607|
0.04954
0.13265|
0.05564
0.07022
0.16591
0.09793
0.09638|
0.06559
0.08164
0.14119
0.03772
0.08714
0.08801
0.08680|
0.03431
0.04922
0.06581
0.15762
0.08161

min
max

0.02934
0.17176

average  0.09600




Table A-2 Similarity scores between G2 virus variants.

Similarity scores between files:
IDA_GO |IDA_GH 0.70808 min 0.62845
IDA_GO |IDA_G2 0.79452|  max 0.84864
IDA_ GO |IDA_G3 0.79818| average 0.74491
IDA_GO |IDA_G4 0.70615
IDA_GO |IDA_G5 0.73516
IDA_GO |IDA_G6 0.64831
IDA_GO |IDA_G7 0.77626
IDA_GO |IDA_G8 0.73685
IDA_GO |IDA_G9 0.68037
IDA_G1 |IDA_G2 0.72647
IDA_G1 |IDA_G3 0.77599
IDA_G1 |IDA_G4 0.66519
IDA_G1 |IDA_G5 0.80004
IDA_G1 |IDA_G6 0.76389
IDA_G1 |IDA_G7 0.78624
IDA_G1 |IDA_G8 0.78343
IDA_G1 |IDA_G9 0.72187
IDA_G2 |IDA_G3 0.68350
IDA_G2 |IDA_G4 0.71527
IDA_G2 |IDA_G5 0.71690
IDA_G2 |IDA_G6 0.67589
IDA_G2 |IDA_G7 0.78995
IDA_G2 |IDA_G8 0.76888
IDA_G2 |IDA_G9 0.76256
IDA_G3 |IDA_G4 0.71857
IDA_G3 |IDA_G5 0.84864
IDA_G3 |IDA_G6 0.79908
IDA_G3 |IDA_G7 0.62845
IDA_G3 |IDA_G8 0.78621
IDA_G3 |IDA_G9 0.67891
IDA_G4 |IDA_G5 0.76994
IDA_G4 |IDA_G6 0.67437
IDA_G4 |IDA_G7 0.75171
IDA_G4 |IDA_G8 0.78997
IDA_G4 |IDA_G9 0.80183
IDA_G5 |IDA_G6 0.79544
IDA_G5 |IDA_G7 0.71690
IDA_G5 |IDA_G8 0.84669
IDA_G5 |IDA_G9 0.75799
IDA_G6 |IDA_G7 0.78165
IDA_G6 |IDA_G8 0.76960
IDA_G6 |IDA_G9 0.73567
IDA_G7 |IDA_G8 0.67735
IDA_G7 |IDA_G9 0.76256
IDA_G8 |IDA_G9 0.70939




Table A-3 Similarity scores between VCL32 virus variants.

Similarity scores between files:

IDA_VCLO
IDA_VCLO
IDA_VCLO
IDA_VCLO
IDA_VCLO
IDA_VCLO
IDA_VCLO
IDA_VCLO
IDA_VCLO
IDA_VCLA1
IDA_VCLA1
IDA_VCLA1
IDA_VCLA1
IDA_VCLA1
IDA_VCLA1
IDA_VCLA1
IDA_VCLA1
IDA_VCL2
IDA_VCL2
IDA_VCL2
IDA_VCL2
IDA_VCL2
IDA_VCL2
IDA_VCL2
IDA_VCL3
IDA_VCL3
IDA_VCL3
IDA_VCL3
IDA_VCL3
IDA_VCL3
IDA_VCL4
IDA_VCL4
IDA_VCL4
IDA_VCL4
IDA_VCL4
IDA_VCL5
IDA_VCL5
IDA_VCL5
IDA_VCL5
IDA_VCL6
IDA_VCL6
IDA_VCL6
IDA_VCL7
IDA_VCL7
IDA_VCLS

IDA_VCL1
IDA_VCL2
IDA_VCL3
IDA_VCL4
IDA_VCL5
IDA_VCL6
IDA_VCL7
IDA_VCL8
IDA_VCL9
IDA_VCL2
IDA_VCL3
IDA_VCL4
IDA_VCL5
IDA_VCL6
IDA_VCL7
IDA_VCL8
IDA_VCL9
IDA_VCL3
IDA_VCL4
IDA_VCL5
IDA_VCL6
IDA_VCL7
IDA_VCL8
IDA_VCL9
IDA_VCL4
IDA_VCL5
IDA_VCL6
IDA_VCL7
IDA_VCL8
IDA_VCL9
IDA_VCL5
IDA_VCL6
IDA_VCL7
IDA_VCLS
IDA_VCL9
IDA_VCL6
IDA_VCL7
IDA_VCL8
IDA_VCL9
IDA_VCL7
IDA_VCL8
IDA_VCL9
IDA_VCLS
IDA_VCL9
IDA_VCL9

0.66883
0.71341
0.40061
0.81177
0.63669
0.80079
0.41714
0.56377
0.60213
0.43906
0.65971
0.81516
0.38916
0.57589
0.69156
0.85086
0.79484
0.79247
0.55693
0.91090
0.64831
0.34376
0.35551
0.38754
0.50818
0.72941
0.44217
0.52330
0.53924
0.49560
0.47466
0.55365
0.51529
0.70071
0.74909
0.58797
0.49445
0.51078
0.56698
0.62658
0.46267
0.41573
0.85004
0.78161
0.92907

min
max
average

0.34376
0.92907
0.60631




Table A-4 Similarity scores between MPCGEN virus variants.

Similarity scores between files:

IDA_MPCO
IDA_MPCO
IDA_MPCO
IDA_MPCO
IDA_MPCH
IDA_MPCH1
IDA_MPCH1
IDA_MPC2
IDA_MPC2
IDA_MPC3

IDA_MPCH
IDA_MPC2
IDA_MPC3
IDA_MPC4
IDA_MPC2
IDA_MPC3
IDA_MPC4
IDA_MPC3
IDA_MPC4
IDA_MPC4

0.45032
0.46885
0.78035
0.44970
0.80875
0.57993
0.96568
0.44964
0.80704
0.51009

min
max
average

0.44964
0.96568
0.62704




Table A-5 Similarity scores between random ‘‘normal” files.

Similarity scores between files:

DA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_RO
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R1
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R2
IDA_R3
IDA_R3
IDA_R3
IDA_R3
IDA_R3
IDA_R3
IDA_R3
IDA_R3
IDA_R3

IDA_R1
IDA_R2
IDA_R3
IDA_R4
IDA_R5
IDA_R6
IDA_R7
IDA_R8
IDA_R9
IDA_R10
IDA_R11
IDA_R12
IDA_R13
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R2
IDA_R3
IDA_R4
IDA_R5
IDA_R6
IDA_R7
IDA_R8
IDA_R9
IDA_R10
IDA_R11
IDA_R12
IDA_R13
IDA_R14
IDA_R15
IDA_R16
IDA R17
IDA_R18
IDA_R19
IDA_R3
IDA_R4
IDA_R5
IDA_R6
IDA_R7
IDA_R8
IDA_R9
IDA_R10
IDA_R11
IDA_R12
IDA_R13
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R4
IDA_R5
IDA_R6
IDA_R7
IDA_R8
IDA_R9
IDA_R10
IDA_R11
IDA_R12

0.35683
0.50040
0.33053
0.37981
0.19924
0.19600
0.19905
0.19984
0.33228
0.49773
0.41739
0.38726
0.29789
0.31944
0.46465
0.48780
0.41608
0.39995
0.34073
0.45579
0.29938
0.35691
0.17400
0.17063
0.17639
0.17465
0.24162
0.40046
0.43216
0.67496
0.24293
0.26337
0.45401
0.40808
0.34480
0.41433
0.27158
0.48679
0.54079
0.27792
0.27305
0.27697
0.27855
0.47721
0.72404
0.45543
0.49804
0.47001
0.32956
0.53073
0.72535
0.51154
0.53837
0.40102
0.45359
0.14913
0.14369
0.14617
0.15209
0.32238
0.44973
0.28466
0.31646

DA _R3
IDA_R3
IDA_R3
IDA_R3
IDA_R3
IDA_R3
IDA_R3
IDA_R4
IDA_R4
IDA_R4
IDA_R4
IDA_R4
IDA_R4
IDA_R4
IDA_R4
IDA_R4
IDA_R4
IDA_R4
IDA_R4
IDA_R4
IDA_R4
IDA_R4
IDA_R5
IDA R5
IDA_R5
IDA_R5
IDA_R5
IDA R5
IDA_R5
IDA_R5
IDA_R5
IDA R5
IDA_R5
IDA_R5
IDA R5
IDA R5
IDA_R6
IDA_R6
IDA_R6
IDA_R6
IDA_R6
IDA_R6
IDA_R6
IDA_R6
IDA_R6
IDA_R6
IDA_R6
IDA_R6
IDA_R6
IDA_R7
IDA_R7
IDA_R7
IDA_R7
IDA_R7
IDA_R7
IDA_R7
IDA_R7
IDA_R7
IDA_R7
IDA_R7
IDA_R7
IDA_R8
IDA_R8

DA R13
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R5
IDA_R6
IDA_R7
IDA_R8
IDA_R9
IDA_R10
IDA_R11
IDA_R12
IDA_R13
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R6
IDA_R7
IDA_R8
IDA_R9
IDA_R10
IDA_R11
IDA_R12
IDA_R13
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R7
IDA_R8
IDA_R9
IDA_R10
IDA_R11
IDA_R12
IDA_R13
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R8
IDA_R9
IDA_R10
IDA_R11
IDA_R12
IDA_R13
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R9
IDA_R10

0.33470
0.23842
0.35729
0.44687
0.37535
0.42995
0.27338
0.18656
0.17777
0.18059
0.18726
0.37206
0.51310
0.34440
0.36972
0.36090
0.25833
0.39103
0.48730
0.42200
0.44600
0.30770
0.89691
0.91066
0.93395
0.16720
0.26957
0.18895
0.23733
0.15394
0.13945
0.20742
0.27140
0.22024
0.24225
0.15141
0.88308
0.89003
0.16231
0.26633
0.18593
0.23077
0.13848
0.13603
0.20427
0.26421
0.20671
0.23949
0.14545
0.90905
0.16587
0.27080
0.18709
0.23494
0.14106
0.13775
0.20724
0.26824
0.20990
0.23978
0.14865
0.16777
0.27017

DA _R8
IDA_R8
IDA_R8
IDA_R8
IDA_R8
IDA_R8
IDA_R8
IDA_R8
IDA_R8
IDA_R9
IDA_R9
IDA_R9
IDA_R9
IDA_R9
IDA_R9
IDA_R9
IDA_R9
IDA_R9
IDA_R9
IDA_R10
IDA_R10
IDA_R10
IDA_R10
IDA_R10
IDA_R10
IDA_R10
IDA_R10
IDA_R10
IDA_R11
IDA_R11
IDA_R11
IDA_R11
IDA_R11
IDA_R11
IDA_R11
IDA_R11
IDA_R12
IDA_R12
IDA_R12
IDA_R12
IDA_R12
IDA_R12
IDA_R12
IDA_R13
IDA_R13
IDA_R13
IDA_R13
IDA_R13
IDA_R13
IDA_R14
IDA_R14
IDA_R14
IDA_R14
IDA_R14
IDA_R15
IDA_R15
IDA_R15
IDA_R15
IDA_R16
IDA_R16
IDA_R16
IDA_R17
IDA_R17
IDA_R18

DA _R11
IDA_R12
IDA_R13
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R10
IDA_R11
IDA_R12
IDA_R13
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R11
IDA_R12
IDA_R13
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R12
IDA_R13
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R13
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R14
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R15
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R16
IDA_R17
IDA_R18
IDA_R19
IDA_R17
IDA_R18
IDA_R19
IDA_R18
IDA_R19
IDA_R19

0.18961
0.23820
0.15451
0.14006
0.20801
0.27208
0.22085
0.24303
0.15206
0.49678
0.30930
0.27024
0.34013
0.25781
0.38430
0.44825
0.41396
0.36174
0.28417
0.45079
0.45866
0.44319
0.35968
0.49985
0.65204
0.52560
0.51452
0.40760
0.36396
0.31181
0.29316
0.51267
0.45261
0.36685
0.41693
0.30487
0.27602
0.28409
0.38460
0.45005
0.36188
0.43837
0.30907
0.25747
0.37897
0.41097
0.42617
0.39149
0.27386
0.34984
0.31725
0.32478
0.27324
0.24026
0.54225
0.40120
0.46115
0.36554
0.47555
0.51024
0.36608
0.44026
0.31786
0.30629

min
max

0.14369
0.72535

average 0.36337




Appendix B: HMM training and testing results

Table B-1 Log likelihood per opcode (LLPO) of family viruses, non-family viruses
and random files. The 5 graphs correspond to the 5 models with N = 3.
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Table B-2 Log likelihood per opcode (LLPO) of family viruses, non-family viruses
and random files. The 5 graphs correspond to the 5 models with N = 5.
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Table B-3 Raw LLPO scores of all 105 programs returned by the 25 HMMs. The
scores are grouped according to the test set used by an HMM. For each test set, 5
models with N = 2 to 6 were tested.

Test set 0 N=2 N=3 N=4 N=5 N=6 |[|Testset1 N=2 N=3 N =4 N=5 N=6
Files in the test set (same family viruses): Files in the test set (same family viruses):

IDA_NO -2.83844 -2.69903 -2.6256 -2.60804 -2.52266|/IDA_N40 -2.76366 -2.68011 -2.58964 -2.53576 -2.51455
IDA_N1 -4.38048 -5.85754 -4.19275 -4.1669 -4.06707||IDA_N41 -2.66436 -2.58935 -2.5111 -2.47107 -2.45238
IDA_N2 -2.85605 -2.7188 -2.68132 -2.67629 -2.55774||IDA_N42 -2.69348 -2.61696 -2.52229 -2.4727 -2.4123
IDA_N3 -2.68468 -4.33065 -2.49798 -2.47691 -2.39205|/IDA_N43 -2.67667 -2.65022 -2.53879 -2.47592 -2.48122
IDA_N4 -2.78905 -4.34511 -2.58534 -2.55277 -2.47677||IDA_N44 -2.81877 -4.30004 -2.66655 -2.60316 -4.10904
IDA_N5 -2.87672 -4.34558 -2.65451 -2.64242 -2.55389||IDA_N45 -2.71112 -2.64813 -2.57352 -2.51464 -4.11693
IDA_N6 -2.79097 -2.65019 -2.62367 -2.61525 -2.48092|/IDA_N46 -2.68092 -2.61321 -2.51652 -2.42621 -2.42194
IDA_N7 -2.692 -4.34712 -2.4885 -2.47446 -2.39059||IDA_N47 -2.69872 -2.61577 -2.52154 -2.45126 -2.42594
IDA_N8 -2.82293 -4.45772 -2.65826 -2.63877 -2.52677|/IDA_N48 -2.83159 -2.7425 -2.67465 -2.60111 -2.58626
IDA_N9 -2.71437 -4.45754 -2.52941 -2.51297 -2.42621||IDA_N49 -2.6207 -2.5232 -2.42938 -2.37143 -2.366
IDA_N10 -2.77855 -4.31873 -2.56441 -2.53805 -2.42304||IDA_N50 -2.61617 -2.55355 -2.46196 -2.41996 -2.3982
IDA_N11 -2.68199 -4.44285 -2.47388 -2.44936 -2.35678|/IDA_N51 -7.58719 -9.03848 -7.40715 -7.3438 -8.87874
IDA_N12 -2.85616  -2.7279 -2.65932 -2.65164 -2.55999||/IDA_N52 -2.64667 -2.5732 -2.47363 -2.4236 -2.41241
IDA_N13 -2.73863 -4.41354 -2.53999 -2.50189 -2.38622||IDA_N53 -2.61651 -2.54794 -2.4426 -2.36823 -2.33674
IDA_N14 -2.77855 -4.29042 -2.57118 -2.55275 -2.45347|/IDA_N54 -2.73205 -2.66418 -2.57222 -2.50114 -2.48516
IDA_N15 -2.81468 -4.35899 -2.56416 -2.55566 -2.47357||IDA_N55 -2.73317 -2.64225 -2.55513 -2.47167 -2.4622
IDA_N16 -2.74838 -2.63712 -2.56975 -2.56795 -2.46139||IDA_N56 -4.48225 -4.43088 -4.32367 -4.24991 -5.90228
IDA_N17 -2.76431 -2.62497 -2.58408 -2.56227 -2.46164|/IDA_N57 -2.91714 -2.86797 -2.76512 -2.70085 -2.69654
IDA_N18 -2.77806 -4.51851 -2.60557 -2.58518 -2.4591||IDA_N58 -2.70093 -2.63116 -2.54547 -2.48439 -2.46275
IDA_N19 -2.79064 -4.45237 -2.58552 -2.57452 -2.50117|/IDA_N59 -2.73989 -2.68482 -2.55744 -2.5066 -2.49595
IDA_N20 -2.82825 -2.68674 -2.65981 -2.64895 -2.48132|/IDA_N60 -2.70015 -2.6004 -2.5185 -2.46014 -2.41017
IDA_N21 -2.71906 -2.55134 -2.49386 -2.48976 -2.37984|/IDA_N61 -2.6528 -2.60145 -2.51327 -2.4788 -2.43913
IDA_N22 -2.85215 -4.38385 -2.64538 -2.62988 -2.52194|/IDA_N62 -2.68543 -2.59348 -2.49426 -2.4262 -2.45459
IDA_N23 -2.79084 -4.44067 -2.5707 -2.54889 -2.46194|/IDA_N63 -2.76852 -2.72129 -2.62608 -2.55203 -2.55381
IDA_N24 -2.74196 -2.58964 -2.57811 -2.54555 -2.43279|/IDA_N64 -2.65427 -2.57621 -2.48448 -2.41291 -2.43595
IDA_N25 -2.83737 -2.69987 -2.65412 -2.64446 -2.51287|/IDA_N65 -2.75828 -2.65424 -2.5927 -2.51481 -2.51811
IDA_N26 -2.75602 -2.59864 -2.5706 -2.55371 -2.45323||IDA_N66 -2.82538 -2.72391 -2.62952 -2.56258 -2.57424
IDA_N27 -2.74015 -4.48543 -2.57684 -2.55921 -2.44652||IDA_N67 -2.78551 -2.70432 -2.61095 -2.55111 -2.5417
IDA_N28 -2.79382 -4.31769 -2.61515 -2.59072 -2.46932|/IDA_N68 -2.61916 -2.52407 -2.41714 -2.35491 -2.3518
IDA_N29 -2.81342 -2.65369 -2.59382 -2.58248 -2.46846||IDA_N69 -2.71171 -2.6363 -2.53841 -2.48086 -2.45506
IDA_N30 -2.90366 -2.76041 -2.71772 -2.69408 -2.59481||IDA_N70 -2.78421 -2.78217 -2.63006 -2.57823 -4.15636
IDA_N31 -4.43492 -5.78653 -4.2053 -4.17633 -4.08559||/IDA_N71 -2.78259 -2.74365 -2.61111 -2.56922 -2.57302
IDA_N32 -2.78984 -2.65151 -2.60353 -2.57938 -2.51671||IDA_N72 -2.76467 -2.675 -2.58198 -2.51358 -2.50767
IDA_N33 -2.71116 -2.54243 -2.49379 -2.48103 -2.35476||/IDA_N73 -2.81895 -2.73003 -2.6272 -2.55822 -2.57578
IDA_N34 -4.40097 -5.77089  -4.1931 -4.183 -4.07268(|IDA_N74  -2.73572 -2.64437 -2.54353 -2.48121 -2.46222
IDA_N35 -2.83606 -2.69768 -2.64939 -2.63737 -2.53085|/IDA_N75 -2.77316 -2.69325 -2.58006 -2.54218 -2.50283
IDA_N36 -2.80357 -2.6256 -2.59359 -2.56195 -2.45723||/IDA_N76 -6.072  -5.9712 -5.92025 -5.83644 -5.85622
IDA_N37 -2.80591 -4.37577 -2.61369 -2.59847 -2.48674||IDA_N77 -2.71058 -2.66658 -2.54104 -2.47233 -2.44444
IDA_N38 -2.93256 -4.36418 -2.75564 -2.74424 -2.6344||IDA_N78 -2.63596 -2.56586 -2.4402 -2.42373 -2.3633
IDA_N39 -2.7216  -4.3746 -2.50902 -2.4919 -2.37628|[IDA_N79 -2.80304 -2.7073 -2.60189 -2.55057 -4.15786
min LLPO -4.43492 -5.85754 -4.2053 -4.183 -4.08559||min LLPO -7.58719 -9.03848 -7.40715 -7.3438 -8.87874




Test set 0 N=2 N=3 N=4 N=5 N=6 ||Testset1 N=2 N=3 N=4 N=5 N=6
Files in the comparison set (other non-family viruses): Files in the comparison set (other non-family viruses):

IDA_VO -110.68 -110.537 -110.51 -113.672 -116.88||IDA_VO -110.536 -113.711 -110.501 -113.692 -116.841
IDA_V1 -118.423 -118.391 -118.353 -121.55 -121.655||IDA_V1 -118.371 -121.604 -118.343 -118.388 -124.765
IDA_V2 -120.033 -119.994 -119.985 -123.12 -126.317||IDA_V2 -119.985 -128.157 -119.95 -120.005 -126.302
IDA_V3 -118.026 -117.894 -117.861 -121.052 -124.29|/IDA_V3 -117.886 -121.094 -117.853 -121.068 -124.252
IDA_V4 -119.478 -119.441 -119.435 -122.557 -122.634|IDA_V4 -119.443 -122.598 -119.408 -119.468 -125.714
IDA_V5 -120.159 -120.023 -120.001 -123.151 -126.352||IDA_V5 -120.012 -123.186 -119.98 -123.182 -126.339
IDA_V6 -118.432 -118.405 -118.378 -121.564 -124.82||IDA_V6 -118.4 -121.625 -118.366 -118.397 -124.793
IDA_V7 -120.167 -120.034 -120.01 -123.166 -126.374|/IDA_V7 -120.036 -123.211 -120 -123.186 -126.336
IDA_V8 -120.567 -120.541 -120.526 -123.673 -126.889|IDA_V8 -120.521 -128.716 -120.49 -120.543 -126.868
IDA_V9 -120.013 -119.976 -119.965 -123.1 -123.188||{IDA_V9 -119.976 -123.149 -119.941 -120.001 -126.283
IDA_V10 -152.12  -152.01 -152.124 -152.131 -151.978||IDA_V10 -152.129 -152.073 -152.036 -151.955 -152.017
IDA_V11 -101.51 -101.422 -101.479 -101.473 -101.482)|IDA_V11 -101.476 -101.458 -101.353 -101.4 -101.429
IDA_V12 -125.284 -125.185 -125.229 -125.227 -125.14|[IDA_V12 -125.255 -125.203 -125.129 -125.125 -125.186
IDA_V13 -116.654 -116.559 -116.657 -116.667 -116.685|[IDA_V13 -116.641 -116.635 -116.55 -116.564 -116.599
IDA_V14 -101.059 -100.975 -101.033 -101.03 -101.034|[{IDA_V14 -101.081 -101.01 -100.905 -100.953 -100.978
IDA_V15 -11.0989 -12.9583 -12.9958 -12.9572 -12.8483|[IDA_V15 -11.0055 -15.0036 -12.8509 -10.8721 -14.8833
IDA_V16 -2.99929 -5.40678 -5.37187 -5.33721 -5.30616|[IDA_V16 -2.86441 -7.99111 -5.24582 -2.67224 -7.76235
IDA_V17 -10.9101 -12.1256 -12.1616 -12.1392 -13.36||IDA_V17  -12.1081 -17.4324 -13.2475 -12.0539 -17.2344
IDA_V18 -6.07548 -7.51274 -7.50533 -7.48802 -8.96855||IDA_V18 -7.45631 -13.6628 -8.80031 -7.3797 -13.3882
IDA_V19 -2.95565 -5.73581 -5.74302 -5.68135 -5.61087|[IDA_V19 -2.82419 -8.7245 -5.60009 -2.6033 -8.64268
IDA_V20 -10.1124 -11.1703 -11.21 -11.1938 -12.2449||IDA_V20 -11.1813 -15.9209 -10.9923 -11.0869 -14.5662
IDA_V21 -10.8532 -12.6338 -12.6657 -12.6302 -14.45|[IDA_V21  -10.7554 -14.6156 -12.5222 -10.6257 -14.4848
IDA_V22 -3.06677 -4.89731 -4.8795 -4.86404 -6.75131|[IDA_V22 -2.94324 -6.93559 -2.72727 -2.72782 -4.72337
IDA_V23 -3.04203 -4.96946 -4.94235 -4.92553 -4.82566||IDA_V23 -2.91692 -7.09299 -2.70189 -2.68671 -4.77661
IDA_V24 -3.0499 -4.94289 -4.941  -4.9183 -4.81091||IDA_V24  -2.93749 -7.02483 -2.7352 -2.70715 -4.78438
max LLPO -2.95565 -4.89731 -4.8795 -4.86404 -4.81091|jmax LLPO -2.82419 -6.93559 -2.70189 -2.6033 -4.72337
Files in the comparison set (random files): Files in the comparison set (random files):

IDA_RO -20.3522 -24.4795 -20.1793 -20.1959 -25.7882||IDA_RO -19.0813 -25.6181 -25.4629 -19.3923 -30.964
IDA_R1 -13.9877 -24.3116 -14.7271 -13.9233  -24.204|/IDA_R1 -12.9742 -23.3083 -25.8326 -14.1531 -33.5984
IDA_R2 -14.9357 -16.5983 -14.8663 -14.9016 -15.7212|/IDA_R2 -14.892 -15.7651 -17.3202 -14.9418 -18.2097
IDA_R3 -27.6756 -31.0684 -27.647 -27.6873 -31.0792|/IDA_R3 -20.9218 -24.3491 -27.5827 -21.1412 -32.0876
IDA_R4 -22.7756 -25.8777 -22.7729 -22.8071 -25.8243||/IDA_R4 -22.7361 -25.2426 -26.9897 -22.9385 -32.4967
IDA_R5 -15.1323 -16.2721 -15.0734 -15.113 -15.5831||/IDA_R5 -15.0357 -15.6858 -18.4092 -15.1611 -22.9879
IDA_R6 -13.7367 -14.7423 -13.6801 -13.7221 -14.1334|/IDA_R6 -13.6455 -14.2019 -17.131 -13.7405 -21.7219
IDA_R7 -14.1954 -15.2444 -14.1447 -14.1902 -14.5943|IDA_R7 -14.1103 -14.6935 -17.2122 -14.7183 -21.4581
IDA_R8 -15.8122 -16.9595 -15.7393 -15.7798 -16.2559||IDA_R8 -15.7075 -16.3599 -19.681 -15.8273 -24.2979
IDA_R9 -33.7738 -37.8438 -33.7409 -33.7792 -37.8095||IDA_R9 -32.1023 -33.8338 -36.1359 -32.3185 -45.0598
IDA_R10 -12.2689 -17.6877 -12.2309 -12.267 -16.6443|[IDA_R10 -10.0797 -13.3747 -14.3734 -11.3154 -19.7933
IDA_R11 -23.8743 -30.9366 -23.7247 -23.7407 -30.8355|[IDA_R11  -23.7319 -30.9349 -30.8593 -24.5349 -37.361
IDA_R12 -9.48983 -10.4038 -10.3103 -9.50058 -10.3326/|IDA_R12 -8.59588 -9.53152 -17.9652 -9.67963 -18.9
IDA_R13 -33.6615 -33.7398 -33.6666 -33.7372 -33.6222|[IDA_R13 -33.5891 -33.6865 -38.6692 -33.8411 -38.7489
IDA_R14 -148.522 -152.084 -148.487 -148.489 -153.152|[IDA_R14 -120.268 -124.967 -125.499 -122.262 -137.027
IDA_R15 -12.2724 -28.6864 -12.0183 -12.0659 -29.7013|[{IDA_R15 -11.9631 -28.6641 -26.4973 -12.3387 -38.9709
IDA_R16 -8.06632 -8.90711 -7.99737 -8.02997 -8.03371|[IDA_R16 -8.01384 -8.08398 -14.426 -8.97044 -16.1008
IDA_R17 -14.7949 -16.0352 -14.7868 -14.8274 -18.3719|[IDA_R17 -13.5173 -13.5915 -15.8967 -13.6832 -20.7959
IDA_R18 -13.0679 -16.4832 -12.9911 -13.0175 -15.7305||{IDA_R18 -12.9705 -15.7858 -16.37 -13.0381 -18.5487
IDA_R19 -35.6981 -46.1659 -35.6743 -35.6973 -46.0777||{IDA_R19 -34.6171 -44.0611 -36.6797 -35.8427 -46.6268
IDA_R20 -33.1515 -33.8698 -35.4995 -33.0993 -35.4245|[IDA_R20 -33.0387 -33.851 -36.1835 -37.9465 -37.0886
IDA_R21 -14.2326  -21.767 -14.113 -14.1297 -21.7071|/IDA_R21  -14.0953 -21.7596 -20.9419 -14.2059 -28.6001
IDA_R22 -12.9223 -13.8657 -12.8723 -12.895 -14.7197|[IDA_R22 -9.95689 -15.2951 -21.6112 -10.9678 -31.1503
IDA_R23 -16.9245 -21.3879 -17.77 -16.9387  -21.244||IDA_R23 -10.6694 -15.2433 -17.7176 -11.7232 -22.1688
IDA_R24 -30.9469 -32.7376 -30.8959 -30.9188 -33.5087|[IDA_R24 -26.6315 -28.5351 -42.8449 -27.3516 -47.9732
IDA_R25 -9.16703 -10.7777 -9.04651 -9.05832 -10.2173|[IDA_R25 -7.38424 -8.57564 -9.57934 -7.98664 -11.9263
IDA_R26 -22.6304 -28.2234 -27.2185 -23.3968 -35.911|/IDA_R26 -19.4715 -25.3171 -30.06 -25.4243 -34.9636
IDA_R27 -21.8092 -26.9106 -21.7096 -21.747 -26.8393|IDA_R27 -21.694 -26.8971 -28.5276 -21.8715 -34.6
IDA_R28 -14.3619 -15.5332 -14.3302 -14.359 -14.2727|[{IDA_R28 -14.2948 -14.356 -21.1883 -14.3848 -23.5694
IDA_R29 -22.0801 -25.3197 -21.9719 -22.0301 -22.023|[{IDA_R29 -21.9533 -22.0916 -28.2818 -22.1719 -28.228
IDA_R30 -19.172 -20.1903 -19.1305 -19.1455 -21.1287|/IDA_R30 -18.087 -18.151 -24.0749 -18.2444 -25.1344
IDA_R31 -22.5469 -24.8483 -22.5491 -22.5927 -24.7886|[IDA_R31 -22.5222 -24.8293 -24.7074 -22.6012 -29.2088
IDA_R32 -31.503 -43.6435 -31.2799 -31.3329 -43.5575|(IDA_R32 -31.215 -43.6288 -47.021 -31.3551 -48.8613
IDA_R33 -149.001 -149.753 -149.077 -149.735 -149.66||IDA_R33 -134.309 -134.301 -135.629 -135.861 -135.683
IDA_R34 -42.8888 -43.5834 -42.7889 -42.8023 -43.542||[IDA_R34 -37.7545 -39.0629 -42.0903 -38.5235 -45.3049
IDA_R35 -51.267 -54.4469 -51.2 -51.2107 -54.3881||IDA_R35 -43.5655 -46.8861 -57.5935 -43.7333 -61.4655
IDA_R36 -21.458 -21.5564 -21.4072 -21.4287 -24.0999||IDA_R36 -21.3869 -24.9779 -29.0406 -22.4636 -40.1465
IDA_R37 -17.9681 -21.4674 -17.7994 -17.8171 -23.2231|[{IDA_R37 -17.8202 -20.6498 -23.1537 -18.2312 -33.7685
IDA_R38 -169.192 -169.933 -169.2 -170.533 -171.988||IDA_R38 -136.402 -141.157 -140.4 -137.329 -146.51
IDA_R39 -45.4978 -49.2993 -45.4443 -45.4541 -52.5257|[IDA_R39 -38.6277 -45.6849 -51.1963 -40.0192 -62.7995
max LLPO -8.06632 -8.90711 -7.99737 -8.02997 -8.03371||max LLPO -7.38424 -8.08398 -9.57934 -7.98664 -11.9263




Test set 2 N=2 N =3 N =4 N =5 N=6 |Testset3 N=2 N =3 N =4 N =5 N =6
Files in the test set (same family viruses): Files in the test set (same family viruses):

IDA_N80  -2.78596 -2.67798 -2.59714 -2.54315 -2.50417|/IDA_N120 -4.40838 -4.3549 -4.24551 -4.21035 -4.16695
IDA_N81 -2.71582 -2.61435 -2.51226 -2.483 -2.44984|[IDA_N121 -2.79207 -2.762 -2.64508 -2.62348 -2.58086
IDA_N82  -2.74543 -2.65419 -2.56718 -2.51449 -2.51249|/IDA_N122 -2.75272 -2.66651 -2.57969 -2.53086 -2.56025
IDA_N83  -2.78747 -2.70289 -2.61369 -2.55434 -2.53922||IDA_N123 -2.80885 -4.16994 -2.64693 -2.58321 -2.56961
IDA_N84  -2.74214 -2.64291 -2.54089 -2.5011 -2.46332|/IDA_N124 -2.79929 -2.72876 -2.61708 -2.56786 -2.53785
IDA_N85  -2.83384 -2.75978 -2.65446 -2.57352 -2.56557||IDA_N125 -2.84085 -2.71591 -2.64955 -2.60904 -2.57639
IDA_N86  -2.76724 -2.6864 -2.56902 -2.49985 -2.47487||IDA_N126 -2.71159 -2.64168 -2.54382 -2.48536 -2.48441
IDA_N87  -2.74763 -2.65757 -2.54139 -2.47209 -4.01189|[IDA_N127 -2.75706 -4.32286 -2.62511 -2.579 -2.55852
IDA_N88  -2.78115 -2.70848 -2.59279 -2.51722 -2.48952||IDA_N128 -2.75656 -2.71333 -2.58294 -2.5476 -2.52283
IDA_N89  -2.80629 -2.70219 -2.60907 -2.57565 -2.56103||IDA_N129 -2.80964 -2.81176 -2.65443 -2.63213 -2.62324
IDA_N90  -2.70537 -2.63583 -2.51728 -2.43874 -2.41315|/IDA_N130 -4.38085 -4.26365 -4.20121 -4.1437 -4.11532
IDA_NO91 -2.72608 -2.6466 -2.50874 -2.46342 -4.22017|[IDA_N131 -2.68634 -2.61763 -2.5276 -2.50032 -2.44971
IDA_N92  -2.81399 -2.72244 -2.64023 -2.60376 -2.54441|[IDA_N132  -2.7368 -2.64647 -2.55378 -2.48693 -2.45418
IDA_N93 -2.767 -2.70535 -2.57776 -2.54274 -2.49414|[IDA_N133 -2.80202 -2.70288 -2.63477 -2.59805 -2.56288
IDA_N94 -2.7922 -2.70282 -2.5933 -2.53294 -2.51457|/IDA_N134 -2.76731 -2.6989 -2.58557 -2.5438 -2.508
IDA_N95  -2.75955 -2.65987 -2.55261 -2.48986 -2.49216||IDA_N135 -2.80256 -2.70427 -2.64668 -2.60969 -2.54873
IDA_N96  -2.79448 -2.73039 -2.60746 -4.19023 -2.49159||IDA_N136 -2.76941 -2.73932 -2.6191 -2.59471 -2.5523
IDA_N97  -2.70511 -2.61656 -2.50253 -2.45814 -2.42864||IDA_N137 -2.70422 -2.65856 -2.54594 -2.51609 -2.47892
IDA_N98  -2.70815 -2.64074 -2.5102 -2.45903 -2.41277|(IDA_N138 -4.29175 -4.22611 -4.109 -4.04495 -4.05201
IDA_N99  -4.34287 -4.25866 -4.14343 -4.07437 -4.07465||IDA_N139  -2.7641 -2.70675 -2.58996 -2.55617 -2.54058
IDA_N100 -2.85729 -2.74847 -2.65396 -2.59004 -2.60693[|IDA_N140 -2.75294 -2.65459 -2.56703 -2.53027 -2.48005
IDA_N101 -2.78114 -2.69631 -2.58819 -2.52942 -2.50849||IDA_N141 -2.84668 -2.80375 -2.70096 -2.64429 -2.64691
IDA_N102 -2.76594 -2.66987 -2.55994 -2.5083 -4.03463|[IDA_N142 -2.80492 -2.74301 -2.64392 -2.60063 -2.59846
IDA_N103 -2.74484 -2.66455 -2.55925 -2.49072 -2.47662|[IDA_N143 -2.81709 -2.75421 -2.62445 -2.58204 -2.54805
IDA_N104 -2.70546 -2.59114 -2.50912 -2.44322 -2.40703|/IDA_N144 -2.81491 -2.75971 -2.66119 -2.6216 -2.58588
IDA_N105 -2.75187 -2.65959 -2.55598 -2.49245 -2.46596|/IDA_N145 -2.76155 -2.66068 -2.59429 -2.53725 -2.52912
IDA_N106 -2.88066 -2.80588 -2.70703 -2.69344 -2.66017||IDA_N146  -2.6636 -2.55819 -2.47953 -2.44591 -2.40288
IDA_N107 -2.78407 -2.69533 -2.59493 -2.53562 -2.51467||IDA_N147 -2.75001 -2.68399 -2.57598 -2.52253 -2.50413
IDA_N108 -2.73623 -2.6356 -2.53705 -2.49401 -2.47551||IDA_N148 -2.63723 -2.59727 -2.4899 -2.45315 -2.43717
IDA_N109 -2.78223 -2.65009 -2.54986 -2.48129 -2.46029(/IDA_N149 -4.49808 -4.3908 -4.30824 -4.24797 -4.22151
IDA_N110 -2.80412 -2.69219 -2.58141 -2.51092 -2.4816[|IDA_N150 -2.83201 -2.7626 -2.64384 -2.62516 -2.5844
IDA_N111  -2.74461 -2.6614 -2.55099 -2.49983 -4.19169|/IDA_N151 -2.78473 -2.73271 -2.59089 -2.55756 -2.54645
IDA_N112 -2.81762 -2.75437 -2.62037 -2.55823 -2.52904|[IDA_N152 -2.72347 -2.61939 -2.52003 -2.50119 -2.45198
IDA_N113 -4.53895 -4.46736 -4.35621 -4.37182 -4.28506|/IDA_N153 -4.34245 -4.2674 -4.18126 -4.12804 -4.11664
IDA_N114 -2.74666 -2.6584 -2.5499 -2.49236 -2.46588|[IDA_N154 -2.68819 -2.62319 -2.51985 -2.48696 -2.45975
IDA_N115 -2.77698 -2.67656 -2.54838 -2.46894 -2.45529||IDA_N155 -2.76686 -2.70078 -2.59012 -2.53217 -2.49779
IDA_N116 -2.78568 -2.66194 -2.52794 -2.4681 -2.45549||IDA_N156 -4.38759 -4.34126 -4.24587 -4.20696 -4.1804
IDA_N117 -2.74814 -2.66958 -2.56053 -2.50569 -2.4633||IDA_N157 -2.70717 -2.64597 -2.53334 -2.48732 -2.44546
IDA_N118 -4.68817 -4.61851 -4.48343 -4.41854 -4.38075||IDA_N158 -2.88093 -2.78789 -2.71011 -2.68702 -2.65899
IDA_N119  -2.7264 -2.6377 -2.52504 -2.45912 -2.43363||IDA_N159 -2.67346 -2.62042 -2.52023 -2.48502 -2.44617
min LLPO  -4.68817 -4.61851 -4.48343 -4.41854 -4.38075||min LLPO  -4.49808 -4.3908 -4.30824 -4.24797 -4.22151




Test set 2 N=2 N=3 N=4 N=5 N=6 ||Testset3 N=2 N=3 N=4 N =5 N=6
Files in the comparison set (other non-family viruses): Files in the comparison set (other non-family viruses):

IDA_VO -110.548 -110.572 -110.498 -110.693 -110.664|/IDA_VO -110.536 -110.608 -110.5 -110.525 -110.666
IDA_V1 -118.396 -118.378 -118.339 -118.538 -118.509|[IDA_V1 -118.372 -118.458 -118.343 -118.374 -118.458
IDA_V2 -120 -119.999 -119.949 -120.152 -120.127|[IDA_V2 -119.985 -120.053 -119.95 -119.988 -120.137
IDA_V3 -117.902 -117.923 -117.849 -118.043 -118.009|(IDA_V3 -117.885 -117.962 -117.852 -117.874 -118.021
IDA_V4 -119.452 -119.46 -119.406 -119.606 -119.602||/IDA_V4 -119.442 -119.508 -119.407 -119.441 -119.528
IDA_V5 -120.027 -120.061 -119.977 -120.178 -120.16||IDA_V5 -120.011 -120.082 -119.979 -120.004 -120.171
IDA_V6 -118.412 -118.407 -118.359 -118.559 -118.529|(IDA_V6 -118.399 -118.479 -118.365 -118.381 -118.534
IDA_V7 -120.04 -120.068 -119.99 -120.193 -120.163||IDA_V7 -120.035 -120.106 -119.999 -120.011 -120.161
IDA_V8 -120.542 -120.541 -120.489 -120.689 -120.673||/IDA_V8 -120.521 -120.598 -120.489 -120.521 -120.681
IDA_V9 -119.985 -119.992 -119.938 -120.143 -120.127||/IDA_V9 -119.976 -120.046 -119.94 -119.978 -120.051
IDA_V10  -152.129 -152.17 -152.002 -152.011 -152.068||/IDA_V10 -152.125  -152.07 -152.031 -152.024 -152.017
IDA_V11 -101.482 -101.538 -101.353 -102.176 -104.647|(IDA_V11 -101.479 -101.464 -101.357 -101.395 -101.446
IDA_V12  -125.247 -125.321 -125.12 -125.278 -125.208||IDA_V12 -125.252 -125.201 -125.127 -125.154 -125.194
IDA_V13  -116.651 -116.679 -116.536 -117.558 -121.365||IDA_V13 -116.646 -116.644 -116.556 -116.572 -116.608
IDA_V14  -101.034 -101.09 -100.906 -101.725 -104.184|/IDA_V14 -101.034 -101.017 -100.91 -100.952 -100.993
IDA_V15  -11.0526 -12.9766 -10.8516 -10.9109 -12.9371|/IDA_V15 -11.0142  -13.049 -12.8581 -10.8223 -12.9563
IDA_V16  -2.91352 -5.37428 -2.71082 -2.87116 -2.83498||IDA_V16 -2.86898 -5.50177 -5.24964 -2.67762 -2.78742
IDA_V17  -10.8853 -12.0943 -13.2599 -10.789 -13.384||IDA_V17 -17.2615 -18.6015 -18.393 -17.0937 -18.5623
IDA_V18  -6.03072 -7.44328 -8.81842 -6.00191 -7.45941|/IDA_V18 -13.4335 -15.0164 -14.7689 -13.268 -13.431
IDA_V19 -2.8765 -8.64549 -2.66718 -2.71829 -2.7155|(IDA_V19 -2.82661 -5.84812 -5.60036 -2.59589 -8.60145
IDA_V20  -10.0731 -11.1388 -12.1581 -9.96582 -12.2788||IDA_V20 -15.7986 -16.9686 -15.6022 -15.5932 -16.8943
IDA_V21 -10.8112 -12.6565 -10.5948 -10.6503 -12.6381|[IDA_V21 -10.7661  -12.729 -12.5327 -10.5691 -10.7072
IDA_V22  -2.96596 -4.86855 -2.7186 -2.88576 -2.83208||IDA_V22 -2.94866 -4.97958 -2.73242 -2.69981 -2.76739
IDA_V23  -2.93546 -4.92886 -2.69302 -2.86526 -2.82199||IDA_V23 -2.92116 -5.04747 -2.70515 -2.67217 -2.73037
IDA_V24  -2.94892 -4.91569 -2.71813 -2.88978 -2.79682|IDA_V24 -2.94101 -5.01374 -2.73714 -2.69121 -4.80919
max LLPO  -2.8765 -4.86855 -2.66718 -2.71829 -2.7155||max LLPO -2.82661 -4.97958 -2.70515 -2.59589 -2.73037
Files in the comparison set (random files): Files in the comparison set (random files):

IDA_RO -20.241 -21.3017 -32.0329 -20.2415 -27.7415||/IDA_RO -19.0733 -22.3797 -25.4575 -29.8821 -24.5125
IDA_R1 -15.5845 -16.4398 -24.1227 -15.7917 -16.6454|(IDA_R1 -14.6656 -22.4553 -27.5165 -19.9896 -26.0485
IDA_R2 -15.7218 -16.631 -17.3306 -16.5678 -16.5666/(IDA_R2 -16.5353 -16.5734 -18.1385 -16.5177 -17.3848
IDA_R3 -25.445 -28.2337 -34.3191 -27.2103 -26.2244|(IDA_R3 -25.3828 -28.2235 -31.4691 -28.2749 -26.5838
IDA_R4 -24.0234 -24.6085 -27.6055 -24.0773 -25.2894||/IDA_R4 -25.1484 -25.2332 -29.9919 -25.2205 -27.6808
IDA_R5 -15.1889 -15.0671 -18.4239 -16.7348 -15.607|[IDA_R5 -16.1641  -16.232 -20.6588 -16.166 -19.0566
IDA_R6 -13.7968 -13.6796 -17.144 -14.6289 -14.1261|[IDA_R6 -14.6479  -14.687 -19.1296 -14.6336 -17.7192
IDA_R7 -14.2576 -14.1326 -17.2242 -15.1259 -15.1338||/IDA_R7 -16.1979 -16.2406 -20.3352 -16.1853 -18.8588
IDA_R8 -15.8568 -16.3115 -19.6964 -16.8518 -16.2749||/IDA_R8 -16.846 -16.9113 -21.9509 -16.8412 -20.3313
IDA_R9 -32.1813 -32.9641 -36.1879 -33.0407 -36.2825||IDA_R9 -36.9121 -37.0179 -40.1403 -37.0123 -37.8589
IDA_R10  -10.0854 -11.2118 -13.3016 -12.3539 -13.4084|IDA_R10 -15.443 -15.4953 -18.6434 -15.5129 -15.5375
IDA_R11 -23.8302 -24.4891 -29.4495 -23.8197 -26.592|[IDA_R11 -27.3056 -31.6491 -34.4136 -30.909 -33.1087
IDA_R12  -10.3428 -12.0377 -15.4153 -10.439 -10.37||IDA_R12 -8.5878 -9.52869 -17.9569 -8.68176 -12.1838
IDA_R13  -33.6998 -34.4903 -37.8368 -33.7281 -33.7347||IDA_R13 -33.5869 -33.6842 -38.6606 -33.6463 -37.9048
IDA_R14  -123.763 -126.04 -129.534 -125.611 -138.833|/IDA_R14 -124.857 -126.663 -129.497 -126.715 -128.449
IDA_R15  -12.0766 -13.0947 -26.516 -12.3021 -13.2413||/IDA_R15 -11.9634 -27.6113 -26.4995 -20.4132 -30.7991
IDA_R16  -8.06468 -8.89833 -11.2414 -8.13268 -8.87471|/IDA_R16 -8.80385 -8.86505 -15.2244 -8.88974 -12.1596
IDA_R17  -13.5885 -14.8085 -14.7247 -13.6691 -14.8508|(IDA_R17 -13.5114 -13.5997 -15.8947 -13.5916 -13.6148
IDA_R18 -13.034 -13.7234 -14.9996 -13.057 -13.0304|(IDA_R18 -12.9635 -15.7827 -17.0633 -14.3712 -16.4929
IDA_R19  -34.6448 -35.1749 -37.7394 -35.7471 -41.4484|IDA_R19 -45.607 -45.6405 -47.6154 -45.578 -46.1171
IDA_R20  -36.2998 -37.0972 -41.8702 -36.2976 -38.0069||IDA_R20 -33.029 -33.0575 -36.1755 -37.0828 -37.9303
IDA_R21 -14.1682 -14.918 -20.1976 -14.2488 -14.9229|/IDA_R21 -14.8482 -21.0235 -22.4521 -17.9806 -23.3207
IDA_R22  -10.7376 -12.2021 -21.6265 -12.3659 -11.6717|/IDA_R22 -10.6733 -11.661 -20.8805 -11.562 -15.3511
IDA_R23  -12.5025 -18.6126 -21.1913 -12.5908 -12.5571|/IDA_R23 -14.1798 -19.5891 -23.8061 -14.2806 -16.1485
IDA_R24  -26.7399 -30.069 -44.5473 -26.987 -27.7515||/IDA_R24 -29.152 -31.8685 -44.5021 -29.4037 -39.6263
IDA_R25  -7.91717 -9.69811 -11.2641 -8.51496 -8.5476||/IDA_R25 -9.06776 -10.2353 -11.8215 -9.10282 -9.17058
IDA_R26  -22.3951 -27.2093 -30.0525 -27.3349 -26.4668||/IDA_R26 -20.4191 -27.2461 -31.0077 -29.2257 -31.2292
IDA_R27  -21.7747 -22.588 -26.8228 -21.8227 -21.7678||IDA_R27 -22.5432 -26.0522 -29.3701 -25.1704 -28.652
IDA_R28  -14.3795 -15.5379 -20.0434 -14.3344 -14.3286||IDA_R28 -15.4499 -15.5185 -21.1844 -15.4242 -18.9564
IDA_R29  -21.9617 -25.1856 -28.24 -22.0525 -22.0477||IDA_R29 -21.9482 -22.1274 -28.2699 -21.946 -25.0892
IDA_R30  -19.1733 -20.1766 -25.1156 -21.2588 -22.1643||/IDA_R30 -21.1125 -21.1409 -24.07 -23.0999 -23.1083
IDA_R31 -22.5614 -23.7033 -24.7076 -22.6304 -22.5915|(IDA_R31 -24.7234 -24.8329 -25.7976 -24.7581 -24.81
IDA_R32  -31.2966 -33.0363 -45.2626 -31.3909 -31.3026|(IDA_R32 -31.2152 -43.6456  -47.017 -43.608 -45.4016
IDA_R33  -146.932 -147.626 -148.213 -146.924 -148.941|/IDA_R33 -134.306 -134.307 -135.627 -134.348 -134.991
IDA_R34  -39.0954 -39.7153 -44.6395 -39.6642 -41.6695|/IDA_R34 -37.7493 -38.4199 -42.0894 -37.7209 -41.5299
IDA_R35  -44.8848 -49.9879 -54.4208 -44.9983 -49.3819||IDA_R35 -49.2985 -53.8402 -61.3921 -50.0184 -50.1512
IDA_R36  -21.4809 -22.3114 -29.0516 -22.4039 -22.3303|/IDA_R36 -22.222 -22.4281 -30.7306 -22.343 -27.5638
IDA_R37 -17.895 -18.7717 -26.7078 -18.8006 -23.2127|(IDA_R37 -22.2145 -22.3416 -27.5314 -24.056 -26.7257
IDA_R38  -143.785 -144.475 -147.741 -143.862 -154.468|/IDA_R38 -138.396 -139.163 -141.724 -138.476 -140.542
IDA_R39  -40.8089 -41.8073 -55.3838 -41.4848 -48.2084||/IDA_R39 -44.3496 -45.1145 -54.3106 -44.524 -47.8366
max -7.91717 -8.89833 -11.2414 -8.13268 -8.5476|lmax LLPO  -8.5878 -8.86505 -11.8215 -8.68176 -9.17058




Testset 4 N=2 N=3 N =4 N =5 N =6
Files in the test set (same family viruses):

IDA_N160 -4.39243 -4.25642 -4.15688 -4.12541 -4.08538
IDA_N161 -2.77908 -2.64894 -2.54489 -2.51143 -2.47611
IDA_N162 -2.75727 -2.62508 -2.54452 -2.5253 -2.47465
IDA_N163 -2.85864 -2.7459 -2.62878 -2.59791 -2.56974
IDA_N164 -2.79247 -2.65693 -2.57332 -2.53272 -2.49402
IDA_N165 -2.68258 -2.54961 -2.42946 -2.39459 -2.359
IDA_N166 -2.77237 -2.62415 -2.55595 -2.51392 -2.49115
IDA_N167 -2.74633 -2.61362 -2.48832 -2.45684 -2.41554
IDA_N168 -2.83164 -2.68613 -2.61553 -2.57382 -2.55556
IDA_N169 -2.75223 -2.60303 -2.50869 -2.46421 -2.4381
IDA_N170 -2.80635 -2.68039 -2.5928 -2.55065 -2.49167
IDA_N171 -2.79455 -2.66581 -2.58196 -2.53781 -2.49518
IDA_N172 -2.77357 -2.65464 -2.55351 -2.52545 -2.47973
IDA_N173 -2.85727 -2.70765 -2.60495 -2.56565 -2.53795
IDA_N174 -2.93994 -2.84019 -2.75818 -2.74438 -2.7188
IDA_N175 -2.93905 -2.81191 -2.71527 -2.6864 -2.66831
IDA_N176 -2.79106 -2.67423 -2.62019 -2.57352 -2.52349
IDA_N177 -2.87316 -2.72633 -2.62461 -2.56762 -2.51474
IDA_N178 -2.77296 -2.63028 -2.55853 -2.5241 -2.49757
IDA_N179 -2.80715 -2.67119 -2.56987 -2.51599 -2.49416
IDA_N180 -2.75548 -2.61047 -2.50619 -2.45819 -2.43056
IDA_N181 -2.80222 -2.65451 -2.55 -2.51199 -2.45073
IDA_N182 -2.84607 -2.71719 -2.63298 -2.59614 -2.56706
IDA_N183 -2.72344 -2.61417 -4.24962 -4.22606 -4.18224
IDA_N184 -2.773 -2.64818 -2.52487 -2.48326 -2.44597
IDA_N185 -2.74974 -2.64907 -2.55916 -2.49875 -2.44594
IDA_N186 -2.75482 -2.62857 -2.503 -2.48492 -2.43935
IDA_N187 -2.92102 -2.81729 -2.69102 -2.65694 -2.59634
IDA_N188 -2.79064 -2.64407 -2.53938 -2.51061 -2.46562
IDA_N189 -2.86644 -2.72852 -2.64486 -2.59644 -2.55025
IDA_N190 -2.76535 -2.65274 -2.56992 -2.53456 -2.48836
IDA_N191 -2.82767 -2.69113 -2.56424 -2.52854 -2.50268
IDA_N192 -2.74421 -2.58996 -2.51949 -2.47678 -2.44569
IDA_N193 -2.71996 -2.58907 -2.47888 -2.45171 -2.41948
IDA_N194 -2.79703 -2.67058 -2.5859 -2.54315 -2.50827
IDA_N195 -2.78615 -2.64356 -2.53724 -2.49518 -2.45193
IDA_N196 -2.78074 -2.65315 -2.56436 -2.51639 -2.4879
IDA_N197 -2.77092 -2.62677 -2.54959 -2.52238 -2.47503
IDA_N198 -2.80319 -2.67665 -2.5749 -2.5417 -2.51799
IDA_N199 -2.85907 -2.72493 -2.63389 -2.59389 -2.57147
min LLPO  -4.39243 -4.25642 -4.24962 -4.22606 -4.18224




Test set 4 N=2 N =3 N =4 N=5 N =6
Files in the comparison set (other non-family viruses):

IDA_VO -110.616 -110.613 -110.5 -110.524 -110.546
IDA_V1 -118.424 -118.464 -118.342 -118.365 -118.39
IDA_V2 -120.031 -120.06 -119.949 -119.984 -120.024
IDA_V3 -117.966 -117.968 -117.851 -117.88 -117.901
IDA_V4 -119.481 -119.514 -119.406 -119.432 -119.459
IDA_V5 -120.096 -120.088 -119.978 -120.024 -120.039
IDA_V6 -118.439 -118.484 -118.364 -118.398 -118.42
IDA_V7 -120.106 -120.112 -119.998 -120.029 -120.042
IDA_V8 -120.569 -120.604 -120.489 -120.519 -120.557
IDA_V9 -120.018 -120.051 -119.939 -119.976 -119.99
IDA_V10 -152.121 -152.071 -152.033 -152.041 -152.058
IDA_V11 -101.512 -101.459 -101.352 -101.43 -101.416
IDA_V12 -125.283 -125.202 -125.127 -125.16 -125.158
IDA_V13 -116.656 -116.635 -116.55 -116.628 -116.624
IDA_V14 -101.061 -101.011 -100.905 -100.978 -100.969
IDA_V15 -11.0917 -13.0485 -12.8542 -12.935 -10.9524
IDA_V16  -2.99791 -5.50839 -5.24915 -5.34029 -2.76881
IDA_V17 -10.911 -12.3416 -11.9606 -13.3352 -10.807
IDA_V18  -6.08117 -7.75545 -7.3062 -8.89463 -5.92958
IDA_V19 -2.95419  -5.8593 -5.60426 -5.72121 -2.78321
IDA_V20  -10.1117 -11.3595 -9.83898 -12.1735 -9.94703
IDA_V21 -10.8451 -12.7228 -12.5242 -12.6091 -10.683
IDA_V22 -3.06267 -4.98016 -2.72896 -4.70665 -2.74673
IDA_V23 -3.03823 -5.05128 -2.70359 -4.76206 -2.71525
IDA_V24 -3.04684 -5.02015 -2.7385 -4.75772 -2.75785
max LLPO  -2.95419 -4.98016 -2.70359 -4.70665 -2.71525
Files in the comparison set (random files):

IDA_RO -19.1717 -22.3703 -25.4642 -24.4636 -23.4035
IDA_R1 -13.0646 -20.7857 -25.8426 -20.1267 -19.993
IDA_R2 -14.9371 -15.7655 -17.3223 -16.6044 -16.5445
IDA_R3 -20.9474 -21.5938 -27.5827 -26.0192 -21.5414
IDA_R4 -22.7749 -22.8497 -26.9899 -25.9005 -25.2307
IDA_R5 -15.1295 -15.1084 -18.405 -17.9208 -17.9062
IDA_R6 -13.7337 -13.6882 -17.1276 -16.7109 -16.7004
IDA_R7 -14.1933 -14.159 -17.2086 -16.7692 -16.7603
IDA_R8 -15.8097 -15.7774 -19.6769 -19.1926 -19.1698
IDA_R9 -32.1609 -33.0164 -36.13 -33.8791 -33.7931
IDA_R10  -10.1109 -10.1691 -14.3727 -11.3021 -10.1571
IDA_R11 -23.8316 -28.0983 -30.8604 -28.8274 -28.0574
IDA_R12 -8.63557 -8.69344 -17.9714 -13.0733 -12.0628
IDA_R13  -33.6607 -33.6887 -38.6735 -37.9194 -37.8844
IDA_R14 -120.335 -121.546 -125.494 -124.445 -123.859
IDA_R15  -12.1246 -27.6094 -26.5074 -23.5743 -23.5465
IDA_R16 -8.06467 -8.08928 -14.4292 -12.1662 -11.2774
IDA_R17  -13.5816 -13.5934 -15.8965 -13.6325 -13.5501
IDA_R18 -13.0409 -15.7832 -16.3722 -15.0876 -15.0517
IDA_R19  -34.6436 -35.7859 -36.6715 -35.7382 -36.2041
IDA_R20  -33.0675 -33.0497 -36.1826 -34.6595 -37.8778
IDA_R21 -14.1728 -20.2576 -20.9464 -19.5258 -19.4826
IDA_R22 -10.0212 -10.2051 -21.6119 -16.7399 -14.5165
IDA_R23 -10.7864 -10.9172 -17.7176 -16.0938 -12.5916
IDA_R24  -26.7171 -26.8872 -42.853 -40.4542 -37.0516
IDA_R25 -7.47815 -7.45901 -9.58624 -8.55061 -7.46619
IDA_R26 -19.5274 -22.4482 -30.0591 -25.5589 -26.311
IDA_R27 -21.7713 -25.2027 -28.5317 -26.0853 -26.0178
IDA_R28 -14.3515 -14.3586 -21.1881 -18.9919 -17.7641
IDA_R29  -22.0307 -22.0946 -28.2797 -25.2217 -25.0751
IDA_R30 -18.1315 -18.1467 -24.0743 -21.1998 -20.0668
IDA_R31 -22.546 -22.6497 -24.7071 -23.6938 -22.5747
IDA_R32  -31.3673 -43.6283 -47.0231 -43.6668 -43.5965
IDA_R33 -134.343 -134.298 -135.629 -135.014 -134.971
IDA_R34 -37.835 -38.4167 -42.0884 -41.537 -41.5127
IDA_R35 -43.5953  -44.346 -57.5913 -51.4633 -44.3291
IDA_R36 -21.4591 -21.5946 -29.0391 -27.4525 -26.6484
IDA_R37 -17.9073 -18.8366 -23.1441 -22.3652 -23.1984
IDA_R38 -136.477 -137.181 -140.4 -139.155 -138.517
IDA_R39 -38.714 -38.9298 -51.1972 -45.6897 -41.9901
max LLPO -7.47815 -7.45901 -9.58624 -8.55061 -7.46619
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