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1.  INTRODUCTION 

“A computer virus is a program that recursively and explicitly copies a possibly evolved 

version of itself” [16]. A virus copies itself to a host file or system area. Once it gets 

control, it multiplies itself to form newer generations. A virus may carry out damaging 

activities on the host machine like corrupting or erasing files, overwriting the whole hard 

disk, or crashing the computer. Some viruses may print text on the screen or simply do 

nothing. These viruses remain harmless but keep reproducing themselves. In any case, 

they take up system resource and are undesirable to computer users.   

 

Over the past two decades, the number of viruses has been increasing very rapidly. We 

have seen several attacks that caused great disruption to the Internet and brought huge 

damage to organizations and individuals. In 1999, the infamous Melissa virus infected 

thousands of computers and caused damage close to $80 million; the Code Red worm 

outbreak in 2001 affected systems running Windows NT and Windows 2000 server and 

caused damage in excess of $2 billion [20]. Computer virus attacks will continue to pose 

serious security threats to every computer user.  

 

To simplify the virus creation process, virus writers make virus construction kits readily 

available on the Internet [19]. This allows a lot more people who may not have the 

expertise in assembly coding to generate their own viruses. These virus writers also 

recognize that for their viruses to have a chance to escape detection, the viruses created 

have to look substantially different from one another. Some kits come equipped with the 



  

ability to generate automatically morphed variants even from a single configuration file. 

Precisely how effective are these code morphing generators? How different do the 

morphed variants look? We generated variants of a few metamorphic viruses using some 

of these tools and measured the similarity between some morphed variants.  

 

Detecting metamorphic viruses is challenging. The problem with simple signature-based 

scanning is that even small changes in the viral code may cause a scanner to fail and the 

signature database requires constant updates to signify newly morphed variants. We 

experimented using a single hidden Markov model (HMM) to represent the behavior of a 

whole virus family. The HMM is then used to determine whether a given program 

belongs to the virus family that the HMM represents. This approach can be used to 

distinguish member viruses from non-member programs.  

 

The challenges with the HMM approach include finding the right balance between 

sensitivity and specificity, and conforming to time and space constraints of the computers 

performing the detection. We evaluate the effectiveness of this approach by its detection 

rate, the amount of false positives and false negatives, and the overall accuracy of the 

classification.  

 

This paper is organized as follows. In Section 2, we provide some background 

information on computer viruses and discuss some possible defenses. Section 3 describes 

our virus similarity test and shows our results. Section 4 details the design and 



  

implementation of our HMM approach and presents our experimental results. Section 5 is 

our conclusion. And finally possible extension to the project and future work is discussed 

in Section 6.  

 

2. EVOLUTION OF VIRUSES AND ANTIVIRUS DEFENSE TECHNIQUES  

2.1 Virus Obfuscation Techniques 

Virus-like programs first appeared on microcomputers in the 1980s [16]. Since then, the 

battle between virus writers and anti-virus (AV) researchers has never ceased. To 

challenge virus scanning products, virus writers constantly develop new obfuscation 

techniques to make virus code more difficult to detect [16]. To escape generic scanning, a 

virus can modify its code and alters its appearance on each infection. The techniques that 

have been employed to achieve this end range from encryption to polymorphic 

techniques, to modern metamorphic techniques [17]. 

 

2.1.1 Encrypted Viruses 

The simplest way to change the appearance of a virus is to use encryption. An encrypted 

virus consists of a small decrypting module (a decryptor) and an encrypted virus body. If 

a different encryption key is used for each infection, the encrypted virus body will look 

different. Typically, the encryption method is rather simple, such as xor of the key with 

each byte of the virus body. Simple xor is very practical because xoring the encrypted 

code with the key again will give the original code and so a virus can use the same 

routine for both encryption and decryption.     



  

 

With encryption, the decryptor remains constant from generation to generation. As a 

result, detection is possible based on the code pattern of the decryptor. A scanner that 

cannot decrypt or detect the virus body directly can recognize the decryptor in most 

cases.    

 

2.1.2 Polymorphic Viruses 

To overcome the problem of encryption, namely the fact that the decryptor code is long 

and unique enough for detection, virus writers started implementing techniques to create 

mutated decryptors. Polymorphic viruses can change their decryptors in newer 

generations. They can generate a large number of unique decryptors which use different 

encryption method to encrypt the virus body. A polymorphic virus thus has no parts that 

stay constant on each infection.  

 

To detect polymorphic viruses, anti-virus software incorporates a code emulator which 

dynamically decrypts the encrypted virus body. Because all polymorphic viruses carry a 

constant virus body, detection is still possible based on the decrypted virus code.  

 

2.1.3 Metamorphic Viruses 

To make viruses more robust to emulation, virus writers developed numerous advanced 

metamorphic techniques. According to Muttik [11], “Metamorphics are body-

polymorphics”. A metamorphic virus not only changes it decryptor on each infection but 



  

also its virus body. New virus generations look different from one another and they do 

not decrypt to a constant virus body. A metamorphic virus changes its “shape” but not its 

behavior. This is illustrated diagrammatically by Szor in [17], and is shown in Figure 1.  

 

 

Figure 1  The multiple shapes of a metamorphic virus body, reproduced from [17]. 

 

Different techniques have been implemented by virus writers to create mutated virus 

bodies. One of the simplest techniques employs register usage exchange; an example is 

the W95/Regswap virus [16]. With this technique, a virus uses the same code but 

different registers in a new generation. Such viruses can usually be detected by a 

wildcard string [16].  



  

 

A stronger technique employs permutation to reorder a virus’s subroutines, as seen in the 

W32/Ghost virus [16]. With n different subroutines, a virus can generate n! different 

virus generations. W32/Ghost has 10 subroutines and so it has 10! = 3,628,800 variations. 

Even with the high number of subroutine combinations, the virus may still be detected 

with search strings [16]. 

 

More complex metamorphic viruses insert garbage instructions between core 

instructions. Garbage instructions are instructions that are either not executed or have no 

effect on program outcomes [10]. An example of the former is the nop instruction while 

“add eax, 0” and “sub ebx, 0” are sample instructions that do not affect program results. 

Alternatively, metamorphic viruses insert jump instructions into their code to point to the 

next instruction of the virus code. The Win95/Zperm family of viruses creates new 

mutations by removal and insertion of jump and garbage instructions as illustrated in 

Figure 2 [16].   

 

 



  

 

Figure 2  The Zperm virus, reproduced from [16]. 

 

Another common metamorphic technique is substitution, which is the replacement of an 

instruction or group of instructions with an equivalent instruction or group. For example, 

a conditional jump (Jcc) can be replaced by JNcc with inverted test condition and 

swapped branch labels [21]. A “push ebp; mov ebp, esp” sequence can be replaced by 

“push ebp; push esp; pop ebp” [16]. Sometimes, viruses implement instruction opcode 

changes. For example, to zero out the register eax, we can either xor its content with itself 

or use sub to achieve the same result. In other words, “xor eax, eax” can be replaced by 

“sub eax, eax” [16].  

 

Transposition, or rearrangement of instruction order, is another technique used by 

metamorphic viruses. Instruction reordering is possible if no dependency exists between 

instructions. Consider the following example from [21]: 

op1 [r1] [, r2]   

op2 [r3] [, r4]   ; here r1 and/or r3 are to be modified 



  

Swapping of the two instructions is allowed if  

1) r1 not equal to r4; and 

2) r2 not equal to r3; and 

3) r1 not equal to r3. 

  

Depending on the implemented techniques, a metamorphic virus can be very complex 

and very hard to detect even with present day detection techniques. Unlike polymorphic 

viruses, which decrypt themselves to a constant virus body in memory and provide a 

complete snapshot of the decrypted virus body during its execution, metamorphic viruses 

do not become constant anytime anywhere. The detection of metamorphic viruses has 

been and will likely to continue to be an active research area.   

       

2.1.4 Virus Construction Kits 

Viruses are mostly written in assembly language, and not too many people can manage to 

write complicated and functional assembly code. Some virus-writing groups try to make 

the virus creation process quick and easy. They make available many virus construction 

kits which can generate all kinds of malicious programs like viruses, worms, Trojan 

horses and logic bombs. Virtually any type of virus can be created – DOS COM / EXE 

viruses, 16-bit / 32-bit Windows viruses, script viruses, macro viruses, PE viruses, etc 

[16]. These toolkits are designed to be simple to use and some even come with 

commercial-grade interactive graphical interfaces. The tools allow anybody, novice or 

expert, to generate malicious code quickly and easily.  



  

 

User-friendly as they are, some of these tools are also built with very sophisticated 

features such as anti-disassembly, anti-debugging, anti-emulation, and anti-behavior 

blocking. Some kits come equipped with code morphing ability which allows them to 

produce different-looking viruses. In this sense, the viruses they produce are 

metamorphic, not just polymorphic. The more popular ones among the 150+ generators 

available at the VX Heavens [19] include: 

� PS-MPC (Phalcon/Skism Mass-Produced Code generator) 

� G2 (Second Generation virus generator) 

� MPCGEN (Mass Code Generator) 

� NGVCK (Next Generation Virus Creation Kit) 

� VCL32 (Virus Creation Lab for Win32) 

 

2.2 Antivirus Defense Techniques 

As computer viruses evolve and become more complex, antivirus software must become 

more sophisticated to defend against virus attacks. This section discusses the virus 

detection techniques that have been deployed over the years. These techniques include:  

1) pattern-based scanning in first-generation scanners; 

2) nearly exact and exact identification in second-generation scanners; 

3) code emulation;  

4) heuristic analysis to detect new and unknown viruses [16].     



  

 

2.2.1 First Generation Scanners 

The simplest approach to virus detection is string scanning. First generation scanners 

look for “virus signatures” which are sequences of bytes (strings) extracted from viruses 

in files or in memory. A good signature for a virus consists of sequences of text strings or 

byte codes found commonly in the virus but infrequently in benign programs. Usually, a 

human expert converts the virus binary code into assembly code, looks for sections that 

signify viral activities and picks the corresponding bytes in the machine code to be the 

virus signature. More efficient methods use statistical techniques to extract good 

signatures automatically [5].  

 

Virus signatures are organized into databases. To identify virus infection, virus scanners 

check specific areas in files or system areas and match them against known signatures in 

databases. Some simple scanners also support wildcard search strings, such as “??02 

33C9 8BD1 419C” where the wildcard is indicated by ‘?’. Wildcard strings allow 

skipped bytes and regular expressions and can sometimes be used to detect encrypted or 

even polymorphic viruses [16]. Using a search string from the common code areas of all 

known variants of a virus to scan for the virus family is known as generic detection [16]. 

A generic string typically contains wildcards.   

 

To speed up detection, some scanners search only the start and the end of a file instead of 

the entire file as early computer viruses are mostly prepending (i.e., attached to the front 



  

of the host programs) or appending (i.e., attached to the end of the hosts). Faster scanners 

look for entry-points, which are common targets of computer viruses, in the headers of 

executable files. 

 

2.2.2 Second Generation Scanners 

Second-generation scanners refine the detection process to detect viruses that evolve to 

mutate their body. Smart scanning ignores junk instructions like nop and excludes them 

in virus signatures. Nearly exact identification uses double strings, cryptographic 

checksums, or hash functions to achieve higher speed and greater accuracy. Exact 

identification uses all (as opposed to one in nearly exact identification) constant ranges of 

the virus bytes to calculate a checksum. Exact identification scanners are usually slower 

than simple scanners but a well-written one can differentiate virus variants precisely.   

 

2.2.3 Code Emulation 

With code emulation, anti-virus software implements a virtual machine to simulate CPU 

and memory activities. Scanners execute the virus code on the virtual machine rather than 

on the real processor. Depending on how well the virtual machine mimics system 

functionalities, few viruses are able to recognize that they are confined and examined in a 

virtual environment.  

 

Code emulation is a very powerful technique, particularly in dealing with encrypted and 

polymorphic viruses. Encrypted and polymorphic viruses decrypt themselves in memory. 



  

If an emulator is run long enough, the decrypted virus body will eventually present itself 

to a scanner for detection. The scanner can check its virtual machine’s memory when a 

maximum number of iterations or other stop conditions are met. Alternatively, string 

scanning can be done periodically every predefined number of iterations. In this way, 

complete decryption of the virus body is not necessary as long as the decrypted part is 

long enough for identification.  Code emulation can also be applied to metamorphic 

viruses that use single or multiple encryptions. 

 

Code emulation can become too slow to be useful if the decryption loop is very long, 

particularly when a virus inserts garbage instructions in its polymorphic decryptor. A new 

decryption technique uses code optimization to reduce the polymorphic decryptor to its 

core instruction set. As the emulator iterates through the decryption loop, it removes junk 

and other instructions that do not change program state. Code optimization speeds up 

emulation and provides a profile of the decryptor for detection [16]. 

    

2.2.4 Heuristic Analysis 

Heuristic analysis is used to detect new or unknown viruses. Often times, it is used to 

detect variants of an existing virus family. Heuristic methods can be static or dynamic. 

Static heuristics base the analysis on file format and the code structure of virus fragments. 

Dynamic heuristics use code emulation to simulate the processor and operating system 

and detect suspicious operations while the virus code is executed on a virtual machine. 

 



  

Heuristic analysis is prone to false positives. A false positive occurs when a heuristic 

analyzer incorrectly tags a benign program as viral. These false alarms are not cost-

effective. Too many false positives destroy users’ trust and make a system more 

vulnerable as users may mistakenly assume a false alarm when it is a real attack.      

 

2.3 Use of Machine Learning Techniques 

Various researchers have attempted to use machine learning techniques to perform 

heuristic analysis on metamorphic viruses. This section covers the result and potential of 

some of the techniques, which include: 

1) data mining methods; 

2) use of neural networks; 

3) use of hidden Markov models.  

 

2.3.1 Data Mining Approach 

Data mining methods are often used to detect patterns in a large set of data. These 

patterns are then used to identify future instances in a similar type of data. Schultz et al. 

experimented with a number of data mining techniques to identify new malicious binaries 

[14]. They used three learning algorithms to train a set of classifiers on some publicly-

available malicious and benign executables. They compared their algorithms to a 

traditional signature-based method and reported a higher detection rate for each of their 

algorithms. However, their algorithms also resulted in higher false positive rates when 

compared to signature-based method. 



  

 

The key to any data mining framework is the extraction of features, which are properties 

extracted from examples in the dataset. Schultz et al. extracted some static properties of 

the binaries as features. These include system resource information (the list of DLLs, the 

list of DLL function calls, and the number of different function calls within each DLL) 

obtained from the program header, and consecutive printable characters found in the files. 

The most informative feature they used was byte sequences, which were short sequences 

of machine code instructions generated by the hexdump tool.  

 

The features were used in three different training algorithms. There was an inductive 

rule-based learner that generated Boolean rules to learn what a malicious executable was; 

a probabilistic method that applied Bayes rule to compute the likelihood of a particular 

program being malicious, given its set of features; and a multi-classifier system that 

combined the output of other classifiers to give the most likely prediction. 

 

2.3.2 Using Neural Networks 

Researchers at IBM implemented a neural network for heuristic detection of boot sector 

viruses [18]. The features they used were short byte strings, called trigrams, which appear 

frequently in viral boot sectors but not in clean boot sectors. They extracted about 50 

features from a corpus of training data, which consisted of both viral and legitimate boot 

sectors. Each sample in the dataset was then represented by a Boolean vector indicating 

the presence or absence of these features.  



  

 

The network was single-layered with no hidden units. It was trained using classic 

backpropagation technique. One common problem with neural network is overfitting, 

which occurs when a network is trained to identify the training set but fails to generalize 

to unseen instances. To eliminate this problem, multiple networks were trained using 

different features and a voting scheme was used to determine the final prediction.   

 

The neural network was able to identify 80-85% of viral boot sectors in the validation set 

with a false positive rate of less than 1%. The neural network classifier has been 

incorporated into the IBM AntiVirus software which has identified about 75% of new 

boot sector viruses since it was released [18]. A similar technique was later applied by 

Arnold and Tesauro to successfully detect Win32 viruses [1]. From [18], we can 

conclude that neural networks are very effective in detecting viruses closely related to 

those in the training set. They can also identify new families of viruses containing similar 

features as the training samples.  

 

2.3.3 Using Hidden Markov Models 

Hidden Markov models (HMMs) are well suited for statistical pattern analysis. Since 

their initial application to speech recognition problems in the early 1970’s [12], HMMs 

have been applied to many other areas including biological sequence analysis [7].  

 



  

An HMM is a state machine where the transitions between states have fixed probabilities. 

Each state in an HMM is associated with a probability distribution for observing a set of 

observation symbols. We can “train” an HMM to represent a set of data, which is usually 

in the form of observation sequences. The states in the trained HMM then represent the 

features of the input data, while the transition and the observation probabilities represent 

the statistical properties of these features. Given any observation sequence, we can match 

it against a trained HMM to determine the probability of seeing such a sequence. The 

probability will be high if the sequence is “similar” to the training sequences. 

  

In protein modeling, HMMs are used to model a given family of proteins [8]. The states 

correspond to the sequence of positions in space while the observations correspond to the 

probability distribution of the 20 amino acids that can occur in each position. A model for 

a protein family assigns high probabilities to sequences belonging to that family. A 

trained HMM can then be used to discriminate family members from non-members.    

 

Metamorphic viruses form families of viruses. Even though members in the same family 

mutate and change their appearances, some similarities must exist for the variants to 

maintain the same functionality. Detecting virus variants thus reduces to finding ways to 

detect these similarities. Hidden Markov models provide a means to describe sequence 

variations statistically. We propose to use HMMs similar to those used in protein 

sequence analysis to model virus families. In virus modeling, the states correspond to the 

features of the virus code, while the observations are instructions or opcodes making up 



  

the program. A trained model should then be able to assign high probabilities to and thus 

identify viruses belonging to the same family as the viruses in the training set.    

 

 

3. SIMILARITIES BETWEEN VARIANTS OF METAMORPHIC VIRUSES 

It has generally been agreed that for a virus to escape detection, metamorphism is the best 

approach. Different generations of a virus must look different to avoid detection by 

signature-based scanning. Some of the virus creation toolkits that we mentioned in 

Section 2.1.4, including G2 (Second Generation virus generator) and NGVCK (Next 

Generation Virus Creation Kit), come with the ability to generate morphed versions of 

the same virus, even from identical configurations. In this section, we take a look at how 

“effective” these generators are, or how “different” are the variants generated by the same 

engine. We use a similarity index and also a graphically representation to display the 

similarity between two assembly programs.   

   

3.1 Method to Compare Two Pieces of Code 

To compare two pieces of code, we employed the method developed by Mishra in [9]. 

His method compares two assembly programs and assigns a quantitative score to 

represent the percentage of similarity between the two programs.  

 

Mishra’s method is outlined below and is illustrated graphically in Figure 3.   



  

1) Given two assembly programs X, and Y for which we want to measure their 

similarity, we extract the sequence of opcodes for each of the programs, excluding 

comments, blank lines, labels, and other directives. The result is two opcode 

sequences of length n, and m, where n and m are the numbers of opcodes in programs 

X and Y, respectively.  

2) We compare the two opcode sequences by considering all subsequences of three 

consecutive opcodes from each sequence. We count as a match any case where all 

three opcodes are the same in any order, and we mark on a graph the coordinate (x, y) 

of the match where x is the opcode number of the first opcode of the three-opcode 

subsequence in program X and y is the opcode number of the opcode subsequence in 

program Y. 

3) After comparing the entire opcode sequences and marking all the match coordinates, 

we obtain a graph plotted on a grid of dimension n × m. Opcode numbers of program 

X are represented on the x-axis and those of program Y are represented on the y-axis. 

To remove noise and random matches, we only graph those line segments of length 

greater than the threshold value five. 

4) Since we are performing a sequential match between the two opcode sequences, 

identical segments of opcodes will form line segments of 45 degrees to either axis 

(i.e., having a slope of 1) on the graph. If a line falls right on the diagonal, the 

matching opcodes are at identical locations on the two opcode sequences. A line off 

the diagonal indicates that the matching opcodes appear at different locations in the 

two files.      



  

5) For each axis, we count the number of opcodes that are covered by one or more of the 

45 degree “match” line segments. This number is divided by the respective total 

number of opcodes (n for program X and m for program Y) to give the percentage of 

opcodes that match some opcodes in the other program. The similarity score for the 

two programs is the average of these two percentages. 
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Figure 3  The process of finding the similarity between two assembly programs. 

     

3.2 Test Data 

We analyzed 45 viruses generated by four virus generators that we downloaded from VX 

Heavens [19]. We also compared some randomly chosen utility programs from the 

Cygwin DLL [2] to see how viruses differ from “normal” executable files. The programs 

that we analyzed include: 



  

� 20 viruses generated by NGVCK (Next Generation Virus Creation Kit) version 

0.30 released in June 2001; 

� 10 viruses generated by G2 (Second Generation virus generator) version 0.70a 

released in January 1993; 

� 10 viruses generated by VCL32 (Virus Creation Lab for Win32) released in 

February 2004; 

� 5 viruses generated by MPCGEN (Mass Code Generator) version 1.0 released in 

1993; 

� 20 randomly chosen utility executables from the Cygwin DLL version 1.5.19. 

 

The virus variants were named after their generators as follows: 

� the 20 viruses generated by NGVCK were named NGVCK0 to NGVCK19; 

� the 10 generated by G2 were named G0 to G9; 

� the 10 generated by VCL32 were named VCL0 to VCL9; 

� the 5 generated by MPCGEN were named MPC0 to MPC4.  

The 20 random utilities files were named R0 to R19. 

    

The viruses created by the virus generators were in assembly source code. To make virus 

executable files, we assembled them with the Borland Turbo Assembler TASM 5.0. The 

generated executables were then disassembled by the IDA Pro Disassembler [3] version 

4.6.0. All the disassembling used the same default settings. The cygwin utilities were also 

disassembled by IDA Pro. The sequence of process is summarized as: 



  

TASM, TLINK IDA Pro
Virus Assembly Source Virus Executables Disassembled Virus ASM Files

Random Cygwin Executables Diassembled Random ASM Files  

 

We added the prefix “IDA_” to the respective file names to denote that the files were 

disassembled ASM files created by IDA Pro and to distinguish them from the original 

ASM files. For example, the file disassembled from R0.EXE was named IDA_R0.ASM.   

 

We compared the disassembled assembly (ASM) files instead of the original assembly 

codes generated by the virus generators. We believed by assembling and disassembling 

with the same tools using the same settings, we can eliminate some differences due to 

different coding style of the different virus writers. The standardized disassembling 

process makes for more accurate comparison when we compare the viruses generated by 

different generators, or when we compare viruses with random “normal” programs. It 

makes the similarity measure better reflect the effectiveness of the metamorphism 

employed. The process also simulates a more realistic scenario because when detecting 

viruses in real environment, what we have available are virus executables. That is, 

disassembling and analyzing the resultant assembly files is what we need to do in 

practice.    

 

3.3 Test Result 

For each of the virus generator, we compared each of the viruses it generated to all the 

other viruses generated by the same generator, to see how “effective” the generator is in 



  

terms of generating different-looking virus variants. For each pair of virus variants under 

comparison, we computed their similarity score using the method described above in 

Section 3.1. Comparisons were also made between the random normal files. The raw 

similarity scores of all the comparisons are given in Table A-1 to Table A-5 in Appendix 

A. Figure 4 below is a scatter plot showing the similarity scores of the 190 comparisons 

among the 20 NGVCK viruses and the 190 comparisons among the 20 random files. 

Clearly, similarities between NGVCK virus variants are lower than those between 

random files.  
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Figure 4  Scatter plot showing similarity scores between NGVCK virus variants and those between 

random “normal” files. 

 



  

The minimum, maximum, and average scores of each generator and the normal files are 

summarized below in Table 1.  

NGVCK G2 VCL32 MPCGEN Normal
min 0.01493 0.62845 0.34376 0.44964 0.13603
max 0.21018 0.84864 0.92907 0.96568 0.93395
average 0.10087 0.74491 0.60631 0.62704 0.34689

Minimum, maximum, and average similarity scores 

 

Table 1  Minimum, maximum, and average similarity scores between virus variants generated by the 

generators and between random "normal" files. 

 

Comparing the four generators, NGVCK generates viruses of the lowest similarities, 

which range from 1.5% to 21.0% with an average of about 10.0%. The other generators 

are not as effective at generating different-looking viruses. The similarities between two 

variants of the same virus range from 34.4% to 96.6%, and the average scores of G2, 

VCL32, and MPCGEN are 74.5%, 60.6%, and 62.7%, respectively. Compare to random 

normal files, which have an average similarity of 34.7%, we can see that the viruses that 

NGVCK generates are substantially different from one another, while the virus variants 

generated by the other generators are more similar to one another than random files.  

 

These comparison results are represented graphically by the bubble graph in Figure 5. 

Here the minimum score is shown along the x-axis; the maximum score is shown along 

the y-axis; and the size of the bubble represents the average similarity. Under this 

representation, an effective generator would have a bubble that is very close to the origin 



  

and also has a very small size, since effectively morphed variants of a virus should have 

low minimum, low maximum and low average similarities.  

Size of bubble = average similarity
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Figure 5   Bubble graph showing the minimum, maximum, and average similarity between virus 

variants generated by each of the generators and between random “normal” files. 

 

As is shown in the graph, NGVCK clearly outperforms the other generators in terms of 

generating different-looking viruses. VCL32 and MPCGEN have similar morphing 

ability as their variants have comparable minimum, maximum, and average similarities. 

G2-viruses have a higher average similarity, as is represented by the bigger bubble size, 

although the maximum similarity of the variants is lower than that of VCL32- and 

MPCGEN-viruses. Random files have similarities higher than NGVCK-viruses but lower 

than virus variants produced by generators G2, VCL32, and MPCGEN.   

 



  

The following table shows the similarity graphs of some of the virus pairs. For each 

generator, we chose a representative pair which has a similarity score close to the average 

similarity score, to illustrate how a typical virus pair differ from each other. The first 

column gives the virus names with their similarity score in parenthesis. The second 

column shows the graphs of all matches, as defined in Section 3.1 above. The third 

column shows the graphs of real matches after noise and random matches have been 

removed. The pairs selected and their scores are: 

� IDA_NGVCK0 against IDA_NGVCK8, similarity = 11.9% 

� IDA_G4 against IDA_G7, similarity = 75.2% 

� IDA_VCL0 against IDA_VCL9, similarity = 60.2% 

� IDA_MPC1 against IDA_MPC3, similarity = 58.0% 

� random files IDA_R0 and IDA_R1, similarity = 35.7%. 

       

Virus Pair 

(Similarity 

score) 

Graph of all matches 

(matching 3 consecutive opcodes in 

any order) 

Graph of real matches 

(match of length > 5) 



  

 

IDA_ 

NGVCK0- 

IDA_ 

NGVCK8 

(11.9%) 

   

 

IDA_G4- 

IDA_G7 

(75.2%) 

  

 

IDA_VCL

0- 

IDA_VCL

9 

(60.2%) 



  

 

IDA_MPC

1- 

IDA_MPC

3 

(58.0%) 

  

 

IDA_R0- 

IDA_R1 

(35.7%) 

  

Table 2  Similarity graphs of 4 selected virus pairs and one random file pair. 

 

If we take a closer look at the graphs for the pair of G2-viruses and the pair of VCL32-

viruses, we can see that the real matches are almost all along the diagonal. This indicates 

that virus variants of the same virus have identical opcodes at identical positions. This is 

obviously not very effective metamorphism. On the other hand, the matches between the 

MPCGEN-virus pair are off the diagonal, which shows that identical opcodes appear in 

different positions of the two virus variants. From this evidence, we can say that 



  

MPCGEN has a greater morphing ability than the other two generators. NGVCK is the 

most effective in the sense that the match segments are very short and that they are way 

off the diagonal. Even if we look at the pair that has the highest similarity 

(IDA_NGVCK7 and IDA_NGVCK14, similarity = 21.0%), the match segments are still 

short and off the diagonal. The two similarity graphs of this pair are shown below.  

     

 

IDA_ 

NGVCK7- 

IDA_ 

NGVCK14 

(21.0%) 

  

Table 3  Similarity graphs of the NGVCK-virus pair that has the highest similarity. 

   

4. HIDDEN MARKOV MODELS TO DETECT VIRUSES IN SAME FAMILY 

In this project, we developed a system to train multiple hidden Markov models (HMMs) 

on a set of metamorphic virus variants. The trained models were tested for their ability to 

detect morphed variants of the same virus. The effectiveness of the HMM approach is 

determined by the detection rate, the number of false positives and false negatives, and 

the overall accuracy. 



  

 

4.1 Theory and Algorithms for Hidden Markov Models  

A hidden Markov model is a statistical model that describes a series of observations 

generated by a stochastic process, or Markov process. A Markov process is a sequence of 

states, where the progression to the next state depends solely on the present state but not 

on the past states. The Markov process in an HMM is “hidden”; what we can see is the 

sequence of observations associated with the states. Our goal is to make use of the 

observable information to gain insight into various aspects of the underlying Markov 

process [15]. 

 

We illustrate these concepts by an example taken from [15]. Suppose we want to know 

the average annual temperature of a particular location over a preceding period of several 

consecutive years and suppose that there is no recording of past temperature of any form 

for this location. Since there is no way to know the year-to-year temperature directly, we 

look for evidence to predict the temperature indirectly.  

 

For simplicity, we consider only two possible annual temperatures: “hot” (H) or “cold” 

(C). Suppose we know that the probability of a hot year followed by another hot year is 

0.7 and that of a cold year followed by another cold year is 0.6. This information can be 

represented by the matrix: 

�
�

�
�
�

�

6.04.0
3.07.0

C

H

CH

. 



  

 

Now assume research result tells us that the tree ring size of a certain kind of tree, 

whether it is small (S), medium (M), or large (L), is related to the annual temperature as: 

�
�

�
�
�

�

1.02.07.0
5.04.01.0

C

H

LMS

 

meaning that in a hot year, the probability of a tree having a small, medium, or a large 

tree ring is 0.1, 0.4 and 0.5 respectively. If we observe the tree ring sizes for such a tree, 

we can use this information to deduce the possible annual temperatures over the years of 

interest.    

 

In this example, the temperatures (H and C) are the states and the transition of 

temperature from year to year defines the Markov process. Tree ring sizes (S, M, L) are 

the observable outcomes and the probabilities of seeing the different tree ring sizes at 

each temperature represent the probability distribution of the observation symbols at each 

state. The actual states are “hidden” since we cannot directly observe the temperatures. 

What we can see are the observations (tree ring sizes) and these are related to the states 

statistically.  

 

Suppose we represent the observation symbols S, M, L by 0, 1, 2 respectively and 

suppose that a particular four-year series of observed tree ring sizes is given by the 

observation sequence O = (0, 1, 0, 2). We might want to find the most likely state 

sequence of the Markov process that generates the observation sequence. In other words, 



  

we may want to determine the most likely annual temperatures (H or C) over this series 

of four years from our observation of the tree ring sizes.  

 

 

4.1.1 Notation 

Let  

T = the length of the observed sequence  

N = the number of states in the model 

M = the number of distinct observation symbols 

O = the observation sequence = {O0, O1, …, OT-1} 

Q = the set of states of the Markov process = {q0, q1, …, qN-1} 

V = the set of observation symbols = {0, 1, … M – 1} 

A = the state transition probability distributions  

B = the observation probability distributions  

� = the initial state distribution  

� = (A, B, �) = the HMM defined by its parameter A, B, and �.  

 

Figure 6 shows a generic HMM. The state and observation at time t are represented by Xt 

and Ot respectively. The Markov process, which is hidden behind the dashed line, is 

determined by the initial state X0 and the A matrix. What we can observe are the 

observations Ot, which are related to the states of the Markov process by the B matrix.   

 



  

 

Figure 6  A generic hidden Markov model, reproduced from [15]. 

 

For our temperature example, the state transition matrix A is defined by the probabilities 

of temperature transitions from year to year; the observation matrix B is defined by the 

probabilities of observing the tree ring sizes. That is,  

�
�

�
�
�

�=
6.04.0
3.07.0

A , and 

�
�

�
�
�

�=
1.02.07.0
5.04.01.0

B  

which are the same matrices given previously. 

 

The matrix A = {aij} is N × N with  

 aij = P(qj  at t+1 | qi at t) 

representing the probability of making a transition from state qi at time t to state qj at time 

t+1.  

 

The matrix B = {bj(k)} is N × M with  

bj(k) = P(observation k at t | state qj at t) 



  

representing the probability of observing symbol k at time t given we are in state qj at 

time t. 

 

The matrix � = {�i} is 1 × M with  

�i = P(qi at t = 0) 

representing the probability of being initially in state qi at time 0. We assume for the 

temperature example that [ ]4.06.0=π . 

 

The matrices A, B, and � make up the parameters of an HMM. Note that A, B, � are row 

stochastic, i.e., each row of these matrices represents a probability distribution and 

therefore must sum to 1 [15]. 

 

For a generic state sequence X = (x0, x1, x2, x3) of length four, with corresponding 

observations O = (O0, O1, O2, O3). The probability of the state sequence X is given by 

P(X  |  �) =  �x0 bx0(O0) ax0, x1 bx1(O1) ax1, x2 bx2(O2) ax2, x3 bx3(O3) 

where �x0 is the probability of starting in state x0, bx0(O0) is the probability of observing 

O0 at x0 and ax0, x1 is the probability of transiting from state x0 to state x1. This easily 

generalizes to a sequence of any length. 

 

In our temperature example, with observation sequence O = (0, 1, 0, 2), we can compute 

the probability of this observation sequence having been generated by each four-state 



  

sequence. For example, the probability that observation O was generated by the state 

sequence HHCC is 

P(HHCC) = 0.6(0.1)(0.7)(0.4)(0.3)(0.7)(0.6)(0.1) = 0.000212 

 

In the same manner, we can compute the probability of each of the possible state 

sequences of length four, given the fixed observation sequence O. These probabilities are 

listed in Table 4. We will have some more to say about these probabilities when we 

discuss the HMM algorithms. 

 

state sequence probability
HHHH 0.000412
HHHC 0.000035
HHCH 0.000706
HHCC 0.000212
HCHH 0.000050
HCHC 0.000004
HCCH 0.000302
HCCC 0.000091
CHHH 0.001098
CHHC 0.000094
CHCH 0.001882
CHCC 0.000564
CCHH 0.000470
CCHC 0.000040
CCCH 0.002822
CCCC 0.000847

� probability 0.009629
max probability 0.002822  

Table 4  Probabilities of observing O = (0, 1, 0, 2) for all possible 4-state sequences. 

 

In general, the three problems that we are interested in solving with an HMM are [15]: 



  

� Given the model � = (A, B, �) and an observation sequence O, find P(O | �). That 

is, find the likelihood of observing the sequence O given the model. 

� Given � = (A, B, �) and an observation sequence O, find an optimal state sequence 

that could have generated O. (This is what we wanted to do in the temperature 

example above.) Note that “optimal” here has at least two interpretations. We can 

reasonably define optimal as: 

1) the state sequence with the highest probability from among all possible state 

sequences; or 

2) the state sequence that maximizes the expected number of correct states.  

� Given an observation sequence O, the number of states N, and the number of 

symbols M, find the model parameters, i.e., the probabilities in the A, B, and � 

matrices, that maximize the probability of observing O. This is a discrete hill 

climb on the (A, B, �)-parameter space. In other words, we re-adjust the model 

parameters to best fit the observations.   

 

4.1.2 Algorithms 

There exist efficient algorithms to solve the three problems listed above. A thorough 

review of these algorithms can be found in [12] and [4]. In this section, we look at some 

of these algorithms, which include:  



  

� the Forward-Backward algorithm for calculating the probability of being in a 

state qi at time t given an observation sequence O;  

� the Viterbi algorithm for finding the most likely state sequence given O; and 

� the Baum-Welch algorithm for iteratively re-estimating the parameters A, B, �.   

 

4.1.2.1 Finding the likelihood of an observation sequence O: the Forward algorithm 

In the previous section, we saw that the probability of an observation sequence O = (O0, 

O1, …, OT-1) generated by a particular state sequence X = (x0, x1, …, xT-1) given a model � 

is given by 

P(O, X |  �) =  �x0 bx0(O0) ax0, x1 bx1(O1) ax1, x2  ...  axT-2, xT-1 bxT-1(OT-1). 

 

To find the probability of observing the sequence O, we generate all possible state 

sequences Xi of length T and sum over the probabilities P(O, Xi |  �). 

         �=
iX

iXOPOP )|,()|( λλ  

           � −−−−
=

i

TTT
X

Txxxxxxxxxx ObaaObaOb )(...)()( 1,,1,0 1122111000
π  

 

Going back to our temperature example, the probability of observing tree ring sizes O = 

(0, 1, 0, 2) given our model is equal to the sum of all the probabilities listed in Table 1, 

which is 0.009629.   

 



  

The probability P(O |  �) tells us how well the observation sequence O matches the HMM 

�.  If � has N states and O has length T, then there are NT possible state sequences. 

Finding the probability P(O, Xi |  �) for one of the state sequence Xi requires about 2T 

multiplications and so a direct computation of the summation requires about 2TNT 

computations, which is infeasible even for small HMMs. 

 

Instead of generating all possible state sequences, we use the Forward algorithm 

(sometimes called the �-pass) to compute this probability efficiently. For t = 0, 1, …, T – 

1 and i = 0, 1, …, N – 1, define a forward variable  

)|,...,,()( ,10 λα ittt qxOOOPi ==  

which denotes the probability of observing the partial sequence (O0, O1, …, Ot) up to 

time t and being in state qi at time t.  

 

The forward variables can be found recursively using the following recurrence relation: 

Step 1 Initialization:  

   �0(i) = �i bi(O0),  for i = 0, 1, …, N – 1 

Step 2  Induction: 

   )()()(
1

0
1 ti

N

j
jitt Obaji �
�

�
�
�

�
= �

−

=
−αα , for t = 1, 2, …, T – 1 and i = 0, 1, …, N – 1.  

 



  

Figure 7 illustrates the inductive process of finding �t(i) using the variables �t-1(j).  

q0 

a 0i

q1 

a 1i qi 

qj   a ji b i (O t )

 a N- 1i

qN-1 

t - 1 t

� t- 1(j ) � t (i )

…
…

 

Figure 7  The inductive process of finding �t(i) from variables �t-1(j). 

     

The probability of observing the sequence O given the model �, P(O |  �), can then be 

calculated as 

�
−

=

==
1

0
,10 )|,...,,()|(

N

i
iTT qxOOOPOP λλ  

     �
−

=
−=

1

0
1 )(

N

i
T iα . 

The recursive computation requires N2T multiplications, which is much better than 2TNT 

for the naive approach.  

 



  

4.1.2.2 Finding the most likely state sequence: the Viterbi algorithm 

Given an observation sequence O = (O0, O1, …, OT-1) and an HMM �, the Viterbi 

algorithm finds a highest scoring overall path X* that maximizes the probability P(O, X | 

�). We can determine the state sequence that is mostly likely to occur given the 

observation sequence. 

 

For t = 0, 1, …, T – 1 and i = 0, 1, …, N – 1, let �t(i) denotes the probability of the most 

probable state path (x0, x1, …, xt) that generates the partial sequence (O0, O1, …, Ot) up to 

time t and ending in state qi,  

)|,...,,,,...,,(max)( ,110,10... 10

λδ itttxxt qxxxxOOOPi
t

== −
−

 

 

The �t(i) values can be found recursively as follows: 

Step 1 Initialization:  

   �0(i) = �i bi(O0), for i = 0, 1, …, N – 1 

Step 2  Induction: 

    [ ] )()(max)( 110 tijitNjt Obaji −−≤≤
= δδ , for t = 1, 2, …, T – 1 and i = 0, 1, …, N – 1.  

 

At each successive t, the algorithm gives the probability of the best path ending at each of 

the states i = 0, 1, …, N – 1. Consequently, the probability of the most likely state 

sequence for the observation sequence O is  



  

[ ])(max* 110
iP T

Ni
−−≤≤

= δ  

 

The Viterbi algorithm is similar to the Forward algorithm, except that maximizations 

replace the summations in the recursive calculations. Notice that the �t(i) values are 

probabilities values only. To actually find the state sequence X*, we can use back-

pointers at each step to keep track of the best states chosen along the path. The path can 

then be extracted by backtracking from the highest-scoring final state. 

 

For our temperature example given at the beginning of Section 4.1, the mostly likely state 

sequence is CCCH, having the highest probability of 0.002822 as shown in Table 1. 

 

4.1.2.3 Finding the optimal model parameters: the Baum-Welch algorithm 

One of the most useful features of an HMM is that we can efficiently re-adjust the model 

parameters to best fit the observations. Given the matrix dimensions N and M, we can 

iteratively re-estimate the elements of A, B, and � so that the probability of observing an 

observation sequence O is maximized. 

 

Before we discuss the re-estimation algorithm, let us first take a look at the Backward 

algorithm, or �-pass, which is analogous to the �-pass given above.   

 



  

For t = 0, 1, …, T – 1 and i = 0, 1, …, N – 1, define the backward variable  

),|,...,,()( 121 λβ itTttt qxOOOPi == −++  

which denotes the probability of observing the partial sequence (Ot+1, Ot+2, …, OT-1) 

given we are in state qi at time t.  

 

�t(i) measures the probability after time t and can be obtained recursively starting at the 

end of the sequence: 

Step 1 Initialization:  

   �T-1(i) = 1,  for i = 0, 1, …, N – 1 

Step 2  Induction: 

   �
−

=
++=

1

0
11 )()()(

N

j
ttjijt jObai ββ ,    for t = T – 2, T – 1, …, 0 and i = 0, 1, …, N – 1.  

 

Figure 8 illustrates the recursive process.  
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Figure 8  The inductive process of finding �t(i) from variables �t+1(j). 

 

The Backward algorithm also gives us the probability of observing the sequence O given 

the model �, or P(O |  �), which should be the same number produced by the Forward 

algorithm: 

�
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=

=
1

0
00 )()()|(
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ii iObOP βπλ . 

      

Now, define the probability of being in state qi at time t given the observation sequence O 

and the model �, for t = 0, 1, …, T – 2 and i = 0, 1, …, N – 1, as  

),|()( λγ OqxPi itt == . 

 

This probability can be obtained from the forward-backward variables as  
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since �t(i) accounts for the observations up to time t and �t(i) accounts for the 

observations after time t given we are in state qi at time t. The denominator P(O | �) = 

�
−

=

1

0
)()(

N

i tt ii βα  is the normalization factor, which makes �t(i) a probability distribution 

and sum to 1. 

 

Next, define the joint probability of being in state qi at time t and transiting to state qj at 

time t + 1, for t = 0, 1, …, T – 2 and i, j }1,...,1,0{ −∈ N , as 

),|,(),( 1 λγ OqxqxPji jtitt === + . 

 

This probability can be written in terms of �, �, A, and B as 

)|(

)()()(
),( 11

λ
βα

γ
OP

jObai
ji ttjijt

t
++= . 

The relationship among these probabilities is illustrated graphically in Figure 9.  
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Figure 9  The variables for the computation of the joint probability �t(i, j).  

 

The �t(i) and �t(i, j) are related by 

�
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�t(i) gives us the probability of being in state qi at time t. If we sum the probability over 

all possible T, we get the expected number of transitions from state qi to any state. �t(i, j) 

gives us the joint probability of being in state qi at time t and in state qj at time t + 1. The 

summation of �t(i, j) over T thus gives the expected number of transitions from state qi to 

state qj. In other words, 

�
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=

2

0

 )(
T

t
t iγ = the expected number of transitions from state qi to any state, and 

�
−

=

2

0

 ),(
T

t
t jiγ = the expected number of transitions from state qi to state qj. 



  

 

We can now re-estimate the parameters of � = (A, B, �) using the following formulae: 

For i = 0, 1, …, N – 1, 

)(0 ii γπ =  

      = probability of being in state qi at t = 0. 

 

For i = 0, 1, …, N – 1 and j = 0, 1, …, N – 1, 
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For j = 0, 1, …, N – 1 and k = 0, 1, …, M – 1,  
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We re-estimate � iteratively until P(O | �) does not increase (or the increase is less than a 

predefined threshold) or until the maximum number of iterations is reached. The 

complete Baum-Welch expectation-maximization (EM) algorithm can be summarized as: 

6) Initialize � = (A, B, �) with a best guess. If no prior information is available, choose 

random �i � 1/N, aij � 1/N, and bj(k) � 1/M.  



  

7) Calculate �t(i), �t(i), �t(i) and �t(i, j). 

8) Re-estimate the model ),,( πλ BA= , and calculate P(O | λ ). 

9) Stop if P(O | λ ) – P(O | �) is less than the predefined threshold or the maximum 

number of iterations is reached; otherwise set � = λ  and goto (2). 

 

4.1.2.4 Posterior state probabilities 

The Viterbi algorithm given in Section 4.1.2.2 finds the most probable state path through 

the model. But as we mentioned in Section 4.1.1, there is a second interpretation as to 

what constitutes an “optimal” state sequence. Instead of finding the highest scoring 

overall path, as is done by the Viterbi algorithm, we may want to find the most probable 

state for each specific observation Ot in the observation sequence O = (O0, O1, …, OT-1). 

More generally, we may want to find the probability that observation Ot is generated by 

state qi given the sequence O, i.e., P(xt = qi | O, �). This is called the posterior probability 

of state qi at time t.  

 

This posterior probability is exactly the �t(i) variable defined above in Section 4.1.2.3, 

which is given by 

)|(
)()(
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βαλ
OP

ii
OqxP tt
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Hence, the optimal path that finds the most probable state for each position is obtained by 

finding, for each t = 0, 1, …, T – 1, the state qi for which �t(i) is maximum.  

 



  

This state sequence is not necessarily the same as the highest scoring sequence found by 

the Viterbi algorithm. We may be more interested in this sequence that maximizes all 

posterior probabilities when there are many different paths that have probabilities very 

close to the most probable one, or when we want to know only the state assignment at a 

particular point t rather than the complete path. It is possible that this state sequence may 

not be particularly likely as a path through the HMM. Sometimes it is not even a 

legitimate path when some of the transitions between states are not allowed.   

 

4.1.3 Implementation Issue: Underflow and Scaling 

The HMM computations discussed in Section 4.1.2 require repeated multiplications of 

the transition and observation probability values. One major challenge in the 

implementation is to deal with these small products which tend to zero exponentially as T 

increases and can easily cause underflow if care is not taken. To solve this problem, we 

can scale the forward and backward variables while maintaining the validity of the re-

estimation formulae. 

 

The scaled version of the Forward algorithm normalizes each �t(i) by dividing by the sum 

(over j) of all �t(j) for each value t, or observation Ot. Let )(~ itα  denotes the forward 

probability that is scaled up to t – 1 but not scaled for t yet; )(ˆ itα  denotes the scaled 

probability; and )(itα  denotes the non-scaled probability as given in the original forward 

algorithm. The scaling coefficient ct at each time t is defined by 
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Then for each t = 1, 2, …, T – 1, calculate  
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The scaled probabilities are now normalized so that 1)(ˆ
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To avoid underflow, we compute the log likelihood log[P(O | �)], instead of the P(O | �): 
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The same scale factor ct is used for �t(i) so that )()(ˆ ici ttt ββ = . The computations of �t(i) 

and �t(i, j) use the same formulae as given in Section 4.1.2.3 substituting )(ˆ itα  and )(ˆ itβ  

for �t(i) and �t(i). These values are then used to re-estimate the model parameters A, B, 

and �.  

 

The implementation of the Viterbi algorithm can also result in underflow. This is avoided 

by taking logarithms. The underflow-resistant Viterbi algorithm is defined as: 

Step 1 Initialization:  

   )](log[)(ˆ
00 Obi iiπδ = , for i = 0, 1, …, N – 1 

Step 2  Induction: 



  

    )]}(log[]log[)(ˆ{max)(ˆ
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δδ ,  

for t = 1, 2, …, T – 1 and i = 0, 1, …, N – 1.  

 

The optimal log probability is given by  

)](ˆ[max*log 110
iP TNi −−≤≤

= δ  

and as before back-pointers can be used to keep track of the optimal path. 

 

4.2 HMM for Computer Virus Detection  

Given a set of metamorphic virus variants, our goal is to train one or more hidden 

Markov models (HMMs) to represent the statistical properties of the virus family so that 

we can later use a trained model to determine whether a given program is similar to the 

viruses in the training set.  

 

We trained our models based on the assembly opcode sequences of the virus files. For 

viruses originally generated in assembly source format, we first compiled the assembly 

source into executables using TASM 5.0. We then disassembled the executables using 

IDA Pro with identical default settings. We trained our models on the IDA-generated 

files rather than the original assembly source from the virus generators. We believed this 

makes our method more realistic. Disassembling executables is typically part of the virus 



  

analysis process. This virus pre-processing procedure is the same as the one we used in 

the virus similarity test in Section 3 and is summarized again below: 

TASM, TLINK IDA Pro
Virus Assembly Source Virus Executables Disassembled Virus ASM Files  

 

There are generally two approaches to training an HMM when there are multiple 

observation sequences. We can either concatenate the sequences and make them into one 

long observation sequence; or train the HMM with each sequence separately and average 

the parameters from the different trainings [4]. We chose the former approach in our 

training process. With the set of pre-processed virus ASM files, we extracted the 

assembly opcode sequences, concatenated them into one long sequence of opcodes and 

used it to train our HMMs.  

 

A trained model maximizes the probability of observing the training sequence. By 

calculating the probability of observing any given sequence in the HMM and comparing 

it to the probability of observing the training sequence, we know how well the given 

sequence matches the training sequence, or how “similar” the given sequence is to the 

training sequence. When trained with multiple sequences, the resulting HMM represents 

the “average” behavior, or the behavior of all the sequences in the form of a statistical 

profile. We can represent a whole virus family, as opposed to individual viruses, with a 

single HMM. The probability of any sequence in the HMM then tells us how likely it is 

that the given sequence belongs to the same virus family.   



  

 

One extremely useful aspect of an HMM is that it tells us something about the training 

sequence without any requirement that we know how to interpret the observations or 

underlying features. Without specific knowledge of the features of the metamorphic 

viruses, we trained our HMMs using different number of states and examined the 

resulting probabilities to deduce what features the states represent. The number of states 

N that we tested are N = 2, 3, 4, 5, and 6. The number of observation symbols (opcodes) 

M, varies from model to model. We set M equal to the total number of distinct opcodes 

seen in all the training sequences for each model. With our data, M was typically around 

70 to 80. The viruses we trained on have about 350 to 450 opcodes each, with an average 

of 416 opcodes. Concatenating 160 virus opcodes to train a model made the length of the 

observed training sequence T in the range of 66,000 to 67,000. The average T for the 

models we trained is 66,650.  

 

Our HMM implementation used the scaled version of the Forward and the Backward 

algorithm as discussed in Section 4.1.3. To avoid underflow, we computed the log 

likelihood, instead of the raw probability, of observing the training sequence in the model 

at each step of the iterative training process. Re-estimation stopped when the log 

likelihood of the training sequence converged or a maximum of 800 iterations have been 

reached. 

   



  

4.3 Training and Testing 

Training and testing was done using standard cross-validation methodology [6]. With 

five-fold cross validation, we divide the data set into five equal-sized subsets. Each time 

when we train a model, we choose one of the subsets as the test set and train the model 

using data from the other four subsets. Because data from the test set is not used during 

training, we can use it to evaluate the performance of the model over unseen instances.  

Repeating this process five times, choosing a different subset as the test set each time, we 

can get five different models from the same set of data.   

 

After training, a model should assign high probabilities to files similar to the training 

viruses and low probabilities to all other files, whether they are viruses from different 

families or “normal” benign programs. We made a comparison set which consisted of 

viruses generated by creation kits other than the one used to generate the training viruses 

and normal executable files of sizes comparable to the virus executables. We computed 

the log likelihood of the virus variants in the test set and the other programs in the 

comparison set using a trained model. Log likelihood is strongly length dependent, since 

it is a sum of log transition probabilities and log observation probabilities. A longer 

sequence will naturally have more transitions and more observations and thus a greater 

log likelihood, independent of how similar it is to the training sequences. Because the 

sequences in the comparison set may have lengths different from the sequences in the 

training and test set, we divided the log likelihood of a sequence by the sequence length 



  

(which is the number of opcodes) to obtain the log likelihood per opcode (LLPO), which 

adjusts for the length difference. This LLPO is the score of the sequence. 

 

With a trained model, we scored the files in the test set and those in the comparison set. 

There should be a separation of scores between files from these two sets as the model 

should assign higher probabilities and thus higher log likelihood per opcode to files in the 

same virus family. From these empirical scores, we determined a threshold, above which 

we will consider a file as belonging to the same family as the viruses in the training set. 

To classify whether a program is in the same virus family as the training data, we 

compute its score and compare it to the threshold.  

 

The training and classifying process is summarized as 

Training: 

1) Given a data set consisting of different variants of a metamorphic virus, pick one 

subset as the test set and use the remaining four subsets for training. 

2) Train HMM � for sequences in the training set until the log likelihood of the training 

sequence converges. 

3) Compute the score, i.e., the log probability per opcode (LLPO), of viruses in the test 

set and other files in the comparison set. 

4) Determine a cutpoint (threshold) score above which a file is classified as a member 

virus. The threshold separates virus family members from non-members. 



  

5) Repeat from (1), choosing a different subset as the test set, until all five subsets have 

been chosen. 

Classifying: 

1) To determine whether any program is part of the virus family, score and compare its 

LLPO to the model thresholds.   

 

The HMM algorithms were implemented in C and compiled with Visual C++ 2005 

Express Edition. We wrote some Ruby scripts using Ruby 1.8.4 on Windows [13] to 

perform the cross-validation. All trainings are carried out on a Pentium M 1.4 GHz 

machine running Windows XP Home Edition with 768 MB of RAM.   

             

4.4 Data Used  

Our data set consisted of 200 viruses generated by the Next Generation Virus Creation 

Kit (NGVCK), which was shown to be the most effective of the four virus generators we 

tested in Section 3. With five-fold cross validation, the number of viruses in each test set 

was 40 and the number of sequences used for training was 160 for each of the model. 

There were 65 files in the comparison set consisting of both viral and benign programs. 

These included:  



  

� 25 viruses generated by the three generators G2, MPCGEN, and VCL32. They 

were the same programs that we tested for similarity in Section 3; 

� 40 random executable files chosen from the Cygwin DLL (version 1.5.19) to 

represent “normal” benign programs. The first 20 were the same ones that we 

used in our similarity test.  

All these programs were unique and there were no duplicates. Training and testing used 

files disassembled by IDA Pro (version 4.6.0) [3]. The four generators are downloadable 

from [19] while the Cygwin DLL is available at [2].  

 

The IDA-preprocessed files were named as follows:  

� the 200 viruses in the data set were named IDA_N0 to IDA_N199 (N for 

NGVCK); 

� the 25 “other” viruses in the comparison set were named IDA_V0 to IDA_V24 (V 

for viruses);  

� the 40 “normal” files were named IDA_R0 to IDA_R39 (R for random).  

 

We divided the 200 viruses in the data set into five subsets of 40 viruses according to 

virus number: 

� Test set 0: IDA_N0 to IDA_N39; 

� Test set 1: IDA_N40 to IDA_N79; 

� Test set 2: IDA_N80 to IDA_N119; 

� Test set 3: IDA_N120 to IDA_N159; 



  

� Test set 4: IDA_N160 to IDA_N199. 

 

4.5 Experiment Result 

For each N = 2, 3, 4, 5, and 6, training and testing was run as described above and five 

models were obtained for each N giving a total of 25 models. Seven of the models made a 

complete separation of scores between viruses in the test set and files in the comparison 

set. That is, the log likelihood per opcode (LLPO) of the family viruses were all higher 

than those of the non-family viruses and the random files. For the other models, we find 

some overlapping of scores where some non-family viruses have scores higher than some 

of the family viruses. 

 

Figure 10 shows the result of a test run. The model in this test had three states, i.e., N = 3, 

and used test set 0 as the test set. As can be seen in Figure 10, for this case all random 

files have scores lower than those of the family viruses in the test set. However, the score 

distinction between family viruses and non-family viruses is not as clear. Some non-

family viruses in the comparison set have scores very close to or higher than the family 

viruses. In the example shown here, the separation between family and non-family 

viruses is not perfect.          
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Figure 10  Log likelihood per opcode (LLPO) of family viruses, non-family viruses and random files. 

This test used test set 0 and N = 3. 

 

The result illustrated in Figure 10 is typical of most models. In fact, if we look at the 

graph for each of the test sets for each N, the score distribution is very similar. If a file 

has a low score in one model, it always has a low score in all other models, although the 

scores are not always identical. We have included more of these graphs in Appendix B. 

Table B-1 shows the models trained with N = 3 states and Table B-2 shows the models 

with N = 5 states. The shapes of the curves are very similar in every graph. Our HMMs 

show consistent performance over the test data, regardless of number of hidden states. 

The raw scores of all the test runs are listed in Table B-3 in Appendix B.    

 



  

Next we want to quantify the numbmer of false positives and false negatives associated 

with each model. A false positive occurs when a program not belonging to the virus 

family represented by an HMM is classified by the HMM as being a member virus. A 

false negative occurs when a member virus is misclassified as being a non-member. 

Analogously, true positives are family viruses correctly classified as members; while true 

negatives are programs not belonging to the virus family correctly classified as non-

members.  

 

Recall that a trained HMM classifies a program by comparing its log likelihood per 

opcode (LLPO) to the threshold LLPO. The choice of threshold value therefore affects 

the classification and thus the amount of false positives and false negatives a model 

produces. If we choose a higher threshold, fewer programs would score higher than the 

threshold and there would be fewer false positives. This, however, is usually 

accompanied by more false negatives as more member viruses may have scores lower 

than the threshold. We examined the amount of false positives and false negatives that 

came with different threshold values. Figure 11 illustrates the tradeoff between the two 

when the threshold changes from -3.5 to -2.5, for the model with N = 2 hidden states 

using test set 4.  

 



  

Test set 4, N = 2
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Figure 11  The tradeoff between false positives (FP) and false negatives (FN) with changing threshold 

values. 

 

Table 5 shows the number of false classifications as plotted in Figure 11. At a threshold 

value of -3.0, there are two false positives and one false negative. Increasing the 

threshold to -2.9 reduces the number of false positives to zero but increases the number of 

false negatives to four. Depending on the desired tradeoff, we could select the threshold 

accordingly. 

Threshold -3.5 -3.4 -3.3 -3.2 -3.1 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5
FP 5 5 5 5 5 2 0 0 0 0 0
FN 1 1 1 1 1 1 4 16 39 40 40  

Table 5  False positive (FP) and false negative (FN) counts for threshold ranging from -3.5 to -2.5. 

This model used test set 4 and N = 2. 

 



  

Besides the raw false positive and false negative counts, we calculated three other 

performance measures based on these counts: detection rate, false positive rate, and 

overall accuracy. The detection rate tells us the sensitivity of the model and is defined as 

the number of member viruses that are caught by an HMM divided by the total number of 

member viruses in the test set (40 in our experiments). The false positive rate is related to 

the specificity of the model and is defined as the number of false positives divided by the 

total number of non-member programs in the comparison set (65 in our test runs). Overall 

accuracy is defined as the number of true predictions (positives and negatives) divided by 

the total number of member and non-member programs (105 in our tests). The three 

measures are related to true positives (TP), true negatives (TN), false positives (FP), and 

false negatives (FN) as follows: 

� Detection rate =
FNTP

TP
+

, as TP + FN equals total number of member viruses 

tested; 

� False positive rate =
TNFP

FP
+

, as FP + TN equals total number of non-member 

programs tested; 

� Overall accuracy =
FNFPTNTP

TNTP
+++

+
. 

 

The detection rate, false positive rate, and overall accuracy of the test run above are 

shown in Figure 12. We plotted the rates from threshold -4.5 to -2.5. The three rates are 

again functions of the threshold. At a threshold value of -3.0, the detection rate and 



  

overall accuracy are 97.5% and 97.1% respectively while the false positive rate is 3.1%. 

If we increase the threshold to -2.9, the false positive rate would be 0% but both detection 

rate and accuracy would drop, to 90% and 96.2% respectively.  

 

There is no one best way to define what an “optimal” threshold is. If false alarms are 

absolutely unacceptable, we may want to choose the higher threshold of -2.9. On the 

other hard, if it is absolutely necessary that we detect all viruses in the family, we may 

need to use the lower threshold and we may go all the way to the threshold of -4.4 which 

gives a 100% detection rate. This of course comes at the expense of a higher false 

positive rate, which is 7.7% in this case. Choosing a threshold always implies a tradeoff.  
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Figure 12  Comparison of false positive rate, detection rate and overall accuracy.  

 

Suppose we want to limit the false negative rate to 10%. In other words, we want to have 

a detection rate of 90% or more. The threshold values that would produce the desired 

detection performance are listed in Table 6. The value for each model is the largest 

threshold LLPO that can still maintain a false negative rate of 10%. If we choose a 

threshold lower than the listed value, it is possible to achieve a higher detection rate, 

although it is likely that the increase in detection rate will be accompanied by an increase 

in false positive rate. The false positive rates for all the models, at the respective 



  

threshold values, fall within 0% to 7.7%. All models with three states (N = 3) produced 

0% false positives. Even so, the overall accuracy of all the models is quite similar.      

  

threshold FP FN detect rate FP rate accuracy 
test 0 -3.0 2 3 0.925 0.031 0.952
test 1 -2.9 2 4 0.900 0.031 0.943
test 2 -2.9 1 3 0.925 0.015 0.962
test 3 -4.4 5 2 0.950 0.077 0.933
test 4 -2.9 0 4 0.900 0.000 0.962
test 0 -4.5 0 4 0.900 0.000 0.962
test 1 -4.4 0 3 0.925 0.000 0.971
test 2 -2.8 0 4 0.900 0.000 0.962
test 3 -4.3 0 4 0.900 0.000 0.962
test 4 -2.8 0 4 0.900 0.000 0.962
test 0 -2.8 0 3 0.925 0.000 0.971
test 1 -2.7 0 4 0.900 0.000 0.962
test 2 -2.7 2 4 0.900 0.031 0.943
test 3 -4.2 3 4 0.900 0.046 0.933
test 4 -2.7 0 4 0.900 0.000 0.962
test 0 -2.7 0 4 0.900 0.000 0.962
test 1 -2.7 3 4 0.900 0.046 0.933
test 2 -2.7 0 4 0.900 0.000 0.962
test 3 -4.2 5 3 0.925 0.077 0.924
test 4 -2.7 0 3 0.925 0.000 0.971
test 0 -2.7 0 4 0.900 0.000 0.962
test 1 -4.2 0 3 0.925 0.000 0.971
test 2 -4.1 5 4 0.900 0.077 0.914
test 3 -4.2 3 1 0.975 0.046 0.962
test 4 -2.6 0 4 0.900 0.000 0.962

Detection rate >= 90%

N = 6

N = 2

N = 3

N = 4 

N = 5 

 

Table 6  Threshold LLPO that gives a detection rate of 90% or more for each model. 

 

Next, we pick the value -4.5, which is the lowest threshold in the analysis above, and see 

how the performance measures would change with this lower threshold value. Table 7 

shows the false positive count, false negative count, detection rate, false positive rate and 

overall accuracy when we set the cutpoint at -4.5 for all the models. Compared to the 



  

previous table, the detection rates as well as the false positive rates indeed have increased 

for most models. We see that 17 of the models have detection rate reaching 100% and 10 

models have 0% false positive rate. Although the performance of all the models is quite 

similar, models with two states (N = 2) do have slightly higher false positive rates and 

lower accuracy. We conclude there is not a significant difference in performance between 

models with three or more states. With the right choice of threshold, detection rate and 

overall accuracy of all models can reach 90% or more while the false positive rate can be 

kept below 10%.    

 



  

FP FN detect rate FP rate accuracy 
test 0 5 0 1.000 0.077 0.952
test 1 5 2 0.950 0.077 0.933
test 2 5 2 0.950 0.077 0.933
test 3 5 0 1.000 0.077 0.952
test 4 5 0 1.000 0.077 0.952
test 0 0 4 0.900 0.000 0.962
test 1 0 2 0.950 0.000 0.981
test 2 0 1 0.975 0.000 0.990
test 3 0 0 1.000 0.000 1.000
test 4 0 0 1.000 0.000 1.000
test 0 0 0 1.000 0.000 1.000
test 1 3 2 0.950 0.046 0.952
test 2 5 0 1.000 0.077 0.952
test 3 3 0 1.000 0.046 0.971
test 4 3 0 1.000 0.046 0.971
test 0 0 0 1.000 0.000 1.000
test 1 5 2 0.950 0.077 0.933
test 2 5 0 1.000 0.077 0.952
test 3 5 0 1.000 0.077 0.952
test 4 0 0 1.000 0.000 1.000
test 0 0 0 1.000 0.000 1.000
test 1 0 3 0.925 0.000 0.971
test 2 5 0 1.000 0.077 0.952
test 3 3 0 1.000 0.046 0.971
test 4 5 0 1.000 0.077 0.952

N = 5 

N = 6

Threshold = -4.5

N = 2

N = 3

N = 4 

 

Table 7  False positive count, false negative count, detection rate, false positive rate and overall 

accuracy when threshold is set at -4.5 for all models. 

 

5. CONCLUSION  

Virus writers and anti-virus researches generally agree that metamorphism is the way to 

generate undetectable viruses. Several virus writers have released virus creation kits and 

claimed that they possess the ability to automatically produce morphed virus variants that 

look substantially different from one another.  

 



  

To see how effective these code morphing engines are, and how much difference exists 

between variants of a same virus, we measured the similarity between virus variants 

generated by four virus generators downloaded from the Internet. Our result shows that 

the effectiveness of these generators varies widely. While the best generator, NGVCK, is 

able to create viruses that share only a few percent of similarities, the other generators 

produce viruses that are over 60% similar, on average. In addition, our similarity graphs 

show that some of these variant pairs have long segments of identical assembly opcodes 

at identical positions of the virus files. Compared to random utility files which have a 

similarity of about 35%, we see that some of the virus creation kits are not very effective. 

But since they produce assembly code, hackers with some knowledge of assembly 

programming can manually change the code further and make the virus more difficult to 

detect.    

 

To detect metamorphic virus variants, we experimented with the use of hidden Markov 

models (HMMs) to capture the statistical properties of viruses in the same family. We 

generated 200 NGVCK viruses, trained 25 models and used the trained models to classify 

65 programs including both NGVCK viruses and other random non-viral programs. For 

seven of our models we were able to perfectly distinguish the two types of files by their 

scores. The other cases produced different number of false positives and false negatives, 

depending on the threshold used in the classifying process. In most cases, our models 

were able to have a detection rate of over 90% and a false positive rate of less than 10%. 

The number of states N of a model does not seem to have much impact on the 



  

performance of the HMM. We saw only small differences in the performance measures 

for models with N from 3 to 6.    

 

If the variants of a metamorphic virus are sufficiently different that signature-based 

scanning cannot detect a newly morphed variant, the HMM approach provides a feasible 

solution. As with any statistical detection method, false predictions are possible. We 

showed the tradeoff between the detection rate and false positive rate. Of course, users 

generally want a classifier that has low false positive rate and low false negative rate. 

They would not want false alarms, which can be annoying and can destroy their trust to 

the classifier; nor would they want a model that may let viruses go undetected. 

Compromising between false positives and false negatives is a challenge with any 

statistical approach.    

     

6. FUTURE WORK 

We trained our models on disassembled virus executables. The disassembling process can 

take some time and the result of the disassembling depends on the quality of the 

disassembler. To speed up virus pre-processing and to eliminate the reliance on a 

particular disassembler, we can train the HMMs on the binary code of the viruses. Other 

machine learning techniques, like the data mining or the neural network approach, might 

also work directly on the binaries.  

 



  

Training on raw executable byte sequences is more challenging as these byte sequences 

are longer and contain more irrelevant parts. We can train our HMMs on the complete 

code if the size of the virus is small enough. Otherwise, we can train the models using 

only the code segments and perhaps the data segments, excluding header and other kinds 

of identification information, since the behavior of a program is primarily determined by 

its code segments.  

 

Our models were tested on only one family of metamorphic viruses, namely the viruses 

generated by the Next Generation Virus Creation Virus Creation Kit (NGVCK). To more 

thoroughly evaluate the performance of the HMM approach, it would be useful to test on 

a larger set of virus variants and also test on different types of viruses.  
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Appendix A: Virus similarity test results 
Table A-1 Similarity scores between NGVCK virus variants.   

IDA_NGVCK0 IDA_NGVCK1 0.07434 IDA_NGVCK3 IDA_NGVCK13 0.10067 IDA_NGVCK8 IDA_NGVCK11 0.07875 min 0.02934
IDA_NGVCK0 IDA_NGVCK2 0.08920 IDA_NGVCK3 IDA_NGVCK14 0.10554 IDA_NGVCK8 IDA_NGVCK12 0.03634 max 0.17176
IDA_NGVCK0 IDA_NGVCK3 0.15131 IDA_NGVCK3 IDA_NGVCK15 0.08981 IDA_NGVCK8 IDA_NGVCK13 0.03600 average 0.09600
IDA_NGVCK0 IDA_NGVCK4 0.18340 IDA_NGVCK3 IDA_NGVCK16 0.13886 IDA_NGVCK8 IDA_NGVCK14 0.02934
IDA_NGVCK0 IDA_NGVCK5 0.09070 IDA_NGVCK3 IDA_NGVCK17 0.14873 IDA_NGVCK8 IDA_NGVCK15 0.07818
IDA_NGVCK0 IDA_NGVCK6 0.05134 IDA_NGVCK3 IDA_NGVCK18 0.13848 IDA_NGVCK8 IDA_NGVCK16 0.04610
IDA_NGVCK0 IDA_NGVCK7 0.05413 IDA_NGVCK3 IDA_NGVCK19 0.12308 IDA_NGVCK8 IDA_NGVCK17 0.04854
IDA_NGVCK0 IDA_NGVCK8 0.11911 IDA_NGVCK4 IDA_NGVCK5 0.08773 IDA_NGVCK8 IDA_NGVCK18 0.06508
IDA_NGVCK0 IDA_NGVCK9 0.09770 IDA_NGVCK4 IDA_NGVCK6 0.10706 IDA_NGVCK8 IDA_NGVCK19 0.13540
IDA_NGVCK0 IDA_NGVCK10 0.12208 IDA_NGVCK4 IDA_NGVCK7 0.11275 IDA_NGVCK9 IDA_NGVCK10 0.15118
IDA_NGVCK0 IDA_NGVCK11 0.17967 IDA_NGVCK4 IDA_NGVCK8 0.07676 IDA_NGVCK9 IDA_NGVCK11 0.11877
IDA_NGVCK0 IDA_NGVCK12 0.14436 IDA_NGVCK4 IDA_NGVCK9 0.09182 IDA_NGVCK9 IDA_NGVCK12 0.09489
IDA_NGVCK0 IDA_NGVCK13 0.10156 IDA_NGVCK4 IDA_NGVCK10 0.18537 IDA_NGVCK9 IDA_NGVCK13 0.13758
IDA_NGVCK0 IDA_NGVCK14 0.12691 IDA_NGVCK4 IDA_NGVCK11 0.05152 IDA_NGVCK9 IDA_NGVCK14 0.09824
IDA_NGVCK0 IDA_NGVCK15 0.09563 IDA_NGVCK4 IDA_NGVCK12 0.10682 IDA_NGVCK9 IDA_NGVCK15 0.11261
IDA_NGVCK0 IDA_NGVCK16 0.13088 IDA_NGVCK4 IDA_NGVCK13 0.06559 IDA_NGVCK9 IDA_NGVCK16 0.16471
IDA_NGVCK0 IDA_NGVCK17 0.09841 IDA_NGVCK4 IDA_NGVCK14 0.17728 IDA_NGVCK9 IDA_NGVCK17 0.07887
IDA_NGVCK0 IDA_NGVCK18 0.12794 IDA_NGVCK4 IDA_NGVCK15 0.13155 IDA_NGVCK9 IDA_NGVCK18 0.10710
IDA_NGVCK0 IDA_NGVCK19 0.07873 IDA_NGVCK4 IDA_NGVCK16 0.10552 IDA_NGVCK9 IDA_NGVCK19 0.15248
IDA_NGVCK1 IDA_NGVCK2 0.08636 IDA_NGVCK4 IDA_NGVCK17 0.10273 IDA_NGVCK10 IDA_NGVCK11 0.10869
IDA_NGVCK1 IDA_NGVCK3 0.10922 IDA_NGVCK4 IDA_NGVCK18 0.07407 IDA_NGVCK10 IDA_NGVCK12 0.17176
IDA_NGVCK1 IDA_NGVCK4 0.16578 IDA_NGVCK4 IDA_NGVCK19 0.11025 IDA_NGVCK10 IDA_NGVCK13 0.08110
IDA_NGVCK1 IDA_NGVCK5 0.09711 IDA_NGVCK5 IDA_NGVCK6 0.05343 IDA_NGVCK10 IDA_NGVCK14 0.15890
IDA_NGVCK1 IDA_NGVCK6 0.12297 IDA_NGVCK5 IDA_NGVCK7 0.07103 IDA_NGVCK10 IDA_NGVCK15 0.16645
IDA_NGVCK1 IDA_NGVCK7 0.09787 IDA_NGVCK5 IDA_NGVCK8 0.12342 IDA_NGVCK10 IDA_NGVCK16 0.12996
IDA_NGVCK1 IDA_NGVCK8 0.07977 IDA_NGVCK5 IDA_NGVCK9 0.12222 IDA_NGVCK10 IDA_NGVCK17 0.11580
IDA_NGVCK1 IDA_NGVCK9 0.19684 IDA_NGVCK5 IDA_NGVCK10 0.07149 IDA_NGVCK10 IDA_NGVCK18 0.06672
IDA_NGVCK1 IDA_NGVCK10 0.17116 IDA_NGVCK5 IDA_NGVCK11 0.12851 IDA_NGVCK10 IDA_NGVCK19 0.04028
IDA_NGVCK1 IDA_NGVCK11 0.10572 IDA_NGVCK5 IDA_NGVCK12 0.06257 IDA_NGVCK11 IDA_NGVCK12 0.05686
IDA_NGVCK1 IDA_NGVCK12 0.11574 IDA_NGVCK5 IDA_NGVCK13 0.03453 IDA_NGVCK11 IDA_NGVCK13 0.14430
IDA_NGVCK1 IDA_NGVCK13 0.11579 IDA_NGVCK5 IDA_NGVCK14 0.05849 IDA_NGVCK11 IDA_NGVCK14 0.12858
IDA_NGVCK1 IDA_NGVCK14 0.14021 IDA_NGVCK5 IDA_NGVCK15 0.05950 IDA_NGVCK11 IDA_NGVCK15 0.14992
IDA_NGVCK1 IDA_NGVCK15 0.08796 IDA_NGVCK5 IDA_NGVCK16 0.05158 IDA_NGVCK11 IDA_NGVCK16 0.13306
IDA_NGVCK1 IDA_NGVCK16 0.07606 IDA_NGVCK5 IDA_NGVCK17 0.10532 IDA_NGVCK11 IDA_NGVCK17 0.11945
IDA_NGVCK1 IDA_NGVCK17 0.09617 IDA_NGVCK5 IDA_NGVCK18 0.06744 IDA_NGVCK11 IDA_NGVCK18 0.10001
IDA_NGVCK1 IDA_NGVCK18 0.11478 IDA_NGVCK5 IDA_NGVCK19 0.16166 IDA_NGVCK11 IDA_NGVCK19 0.11414
IDA_NGVCK1 IDA_NGVCK19 0.11744 IDA_NGVCK6 IDA_NGVCK7 0.07618 IDA_NGVCK12 IDA_NGVCK13 0.03950
IDA_NGVCK2 IDA_NGVCK3 0.11767 IDA_NGVCK6 IDA_NGVCK8 0.06070 IDA_NGVCK12 IDA_NGVCK14 0.11242
IDA_NGVCK2 IDA_NGVCK4 0.10050 IDA_NGVCK6 IDA_NGVCK9 0.10760 IDA_NGVCK12 IDA_NGVCK15 0.12866
IDA_NGVCK2 IDA_NGVCK5 0.08412 IDA_NGVCK6 IDA_NGVCK10 0.15063 IDA_NGVCK12 IDA_NGVCK16 0.03688
IDA_NGVCK2 IDA_NGVCK6 0.05393 IDA_NGVCK6 IDA_NGVCK11 0.07058 IDA_NGVCK12 IDA_NGVCK17 0.05149
IDA_NGVCK2 IDA_NGVCK7 0.12356 IDA_NGVCK6 IDA_NGVCK12 0.08605 IDA_NGVCK12 IDA_NGVCK18 0.10002
IDA_NGVCK2 IDA_NGVCK8 0.10744 IDA_NGVCK6 IDA_NGVCK13 0.06433 IDA_NGVCK12 IDA_NGVCK19 0.09563
IDA_NGVCK2 IDA_NGVCK9 0.04529 IDA_NGVCK6 IDA_NGVCK14 0.08921 IDA_NGVCK13 IDA_NGVCK14 0.09217
IDA_NGVCK2 IDA_NGVCK10 0.11901 IDA_NGVCK6 IDA_NGVCK15 0.03582 IDA_NGVCK13 IDA_NGVCK15 0.08607
IDA_NGVCK2 IDA_NGVCK11 0.04575 IDA_NGVCK6 IDA_NGVCK16 0.07146 IDA_NGVCK13 IDA_NGVCK16 0.04954
IDA_NGVCK2 IDA_NGVCK12 0.06784 IDA_NGVCK6 IDA_NGVCK17 0.15974 IDA_NGVCK13 IDA_NGVCK17 0.13265
IDA_NGVCK2 IDA_NGVCK13 0.01493 IDA_NGVCK6 IDA_NGVCK18 0.08771 IDA_NGVCK13 IDA_NGVCK18 0.05564
IDA_NGVCK2 IDA_NGVCK14 0.11570 IDA_NGVCK6 IDA_NGVCK19 0.05652 IDA_NGVCK13 IDA_NGVCK19 0.07022
IDA_NGVCK2 IDA_NGVCK15 0.09738 IDA_NGVCK7 IDA_NGVCK8 0.10729 IDA_NGVCK14 IDA_NGVCK15 0.16591
IDA_NGVCK2 IDA_NGVCK16 0.06714 IDA_NGVCK7 IDA_NGVCK9 0.09201 IDA_NGVCK14 IDA_NGVCK16 0.09793
IDA_NGVCK2 IDA_NGVCK17 0.02224 IDA_NGVCK7 IDA_NGVCK10 0.17010 IDA_NGVCK14 IDA_NGVCK17 0.09638
IDA_NGVCK2 IDA_NGVCK18 0.05040 IDA_NGVCK7 IDA_NGVCK11 0.12210 IDA_NGVCK14 IDA_NGVCK18 0.06559
IDA_NGVCK2 IDA_NGVCK19 0.08155 IDA_NGVCK7 IDA_NGVCK12 0.04414 IDA_NGVCK14 IDA_NGVCK19 0.08164
IDA_NGVCK3 IDA_NGVCK4 0.14915 IDA_NGVCK7 IDA_NGVCK13 0.08843 IDA_NGVCK15 IDA_NGVCK16 0.14119
IDA_NGVCK3 IDA_NGVCK5 0.13363 IDA_NGVCK7 IDA_NGVCK14 0.21018 IDA_NGVCK15 IDA_NGVCK17 0.03772
IDA_NGVCK3 IDA_NGVCK6 0.15358 IDA_NGVCK7 IDA_NGVCK15 0.17078 IDA_NGVCK15 IDA_NGVCK18 0.08714
IDA_NGVCK3 IDA_NGVCK7 0.14616 IDA_NGVCK7 IDA_NGVCK16 0.09845 IDA_NGVCK15 IDA_NGVCK19 0.08801
IDA_NGVCK3 IDA_NGVCK8 0.05070 IDA_NGVCK7 IDA_NGVCK17 0.11370 IDA_NGVCK16 IDA_NGVCK17 0.08680
IDA_NGVCK3 IDA_NGVCK9 0.13307 IDA_NGVCK7 IDA_NGVCK18 0.08161 IDA_NGVCK16 IDA_NGVCK18 0.03431
IDA_NGVCK3 IDA_NGVCK10 0.13738 IDA_NGVCK7 IDA_NGVCK19 0.14470 IDA_NGVCK16 IDA_NGVCK19 0.04922
IDA_NGVCK3 IDA_NGVCK11 0.13700 IDA_NGVCK8 IDA_NGVCK9 0.12738 IDA_NGVCK17 IDA_NGVCK18 0.06581
IDA_NGVCK3 IDA_NGVCK12 0.05351 IDA_NGVCK8 IDA_NGVCK10 0.10699 IDA_NGVCK17 IDA_NGVCK19 0.15762

IDA_NGVCK18 IDA_NGVCK19 0.08161

Similarity scores between files:

 
 
 



  

Table A-2 Similarity scores between G2 virus variants.  
Similarity scores between files:
IDA_G0 IDA_G1 0.70808 min 0.62845
IDA_G0 IDA_G2 0.79452 max 0.84864
IDA_G0 IDA_G3 0.79818 average 0.74491
IDA_G0 IDA_G4 0.70615
IDA_G0 IDA_G5 0.73516
IDA_G0 IDA_G6 0.64831
IDA_G0 IDA_G7 0.77626
IDA_G0 IDA_G8 0.73685
IDA_G0 IDA_G9 0.68037
IDA_G1 IDA_G2 0.72647
IDA_G1 IDA_G3 0.77599
IDA_G1 IDA_G4 0.66519
IDA_G1 IDA_G5 0.80004
IDA_G1 IDA_G6 0.76389
IDA_G1 IDA_G7 0.78624
IDA_G1 IDA_G8 0.78343
IDA_G1 IDA_G9 0.72187
IDA_G2 IDA_G3 0.68350
IDA_G2 IDA_G4 0.71527
IDA_G2 IDA_G5 0.71690
IDA_G2 IDA_G6 0.67589
IDA_G2 IDA_G7 0.78995
IDA_G2 IDA_G8 0.76888
IDA_G2 IDA_G9 0.76256
IDA_G3 IDA_G4 0.71857
IDA_G3 IDA_G5 0.84864
IDA_G3 IDA_G6 0.79908
IDA_G3 IDA_G7 0.62845
IDA_G3 IDA_G8 0.78621
IDA_G3 IDA_G9 0.67891
IDA_G4 IDA_G5 0.76994
IDA_G4 IDA_G6 0.67437
IDA_G4 IDA_G7 0.75171
IDA_G4 IDA_G8 0.78997
IDA_G4 IDA_G9 0.80183
IDA_G5 IDA_G6 0.79544
IDA_G5 IDA_G7 0.71690
IDA_G5 IDA_G8 0.84669
IDA_G5 IDA_G9 0.75799
IDA_G6 IDA_G7 0.78165
IDA_G6 IDA_G8 0.76960
IDA_G6 IDA_G9 0.73567
IDA_G7 IDA_G8 0.67735
IDA_G7 IDA_G9 0.76256
IDA_G8 IDA_G9 0.70939  



  

Table A-3 Similarity scores between VCL32 virus variants. 
Similarity scores between files:
IDA_VCL0 IDA_VCL1 0.66883 min 0.34376
IDA_VCL0 IDA_VCL2 0.71341 max 0.92907
IDA_VCL0 IDA_VCL3 0.40061 average 0.60631
IDA_VCL0 IDA_VCL4 0.81177
IDA_VCL0 IDA_VCL5 0.63669
IDA_VCL0 IDA_VCL6 0.80079
IDA_VCL0 IDA_VCL7 0.41714
IDA_VCL0 IDA_VCL8 0.56377
IDA_VCL0 IDA_VCL9 0.60213
IDA_VCL1 IDA_VCL2 0.43906
IDA_VCL1 IDA_VCL3 0.65971
IDA_VCL1 IDA_VCL4 0.81516
IDA_VCL1 IDA_VCL5 0.38916
IDA_VCL1 IDA_VCL6 0.57589
IDA_VCL1 IDA_VCL7 0.69156
IDA_VCL1 IDA_VCL8 0.85086
IDA_VCL1 IDA_VCL9 0.79484
IDA_VCL2 IDA_VCL3 0.79247
IDA_VCL2 IDA_VCL4 0.55693
IDA_VCL2 IDA_VCL5 0.91090
IDA_VCL2 IDA_VCL6 0.64831
IDA_VCL2 IDA_VCL7 0.34376
IDA_VCL2 IDA_VCL8 0.35551
IDA_VCL2 IDA_VCL9 0.38754
IDA_VCL3 IDA_VCL4 0.50818
IDA_VCL3 IDA_VCL5 0.72941
IDA_VCL3 IDA_VCL6 0.44217
IDA_VCL3 IDA_VCL7 0.52330
IDA_VCL3 IDA_VCL8 0.53924
IDA_VCL3 IDA_VCL9 0.49560
IDA_VCL4 IDA_VCL5 0.47466
IDA_VCL4 IDA_VCL6 0.55365
IDA_VCL4 IDA_VCL7 0.51529
IDA_VCL4 IDA_VCL8 0.70071
IDA_VCL4 IDA_VCL9 0.74909
IDA_VCL5 IDA_VCL6 0.58797
IDA_VCL5 IDA_VCL7 0.49445
IDA_VCL5 IDA_VCL8 0.51078
IDA_VCL5 IDA_VCL9 0.56698
IDA_VCL6 IDA_VCL7 0.62658
IDA_VCL6 IDA_VCL8 0.46267
IDA_VCL6 IDA_VCL9 0.41573
IDA_VCL7 IDA_VCL8 0.85004
IDA_VCL7 IDA_VCL9 0.78161
IDA_VCL8 IDA_VCL9 0.92907  



  

Table A-4 Similarity scores between MPCGEN virus variants. 
Similarity scores between files:
IDA_MPC0 IDA_MPC1 0.45032 min 0.44964
IDA_MPC0 IDA_MPC2 0.46885 max 0.96568
IDA_MPC0 IDA_MPC3 0.78035 average 0.62704
IDA_MPC0 IDA_MPC4 0.44970
IDA_MPC1 IDA_MPC2 0.80875
IDA_MPC1 IDA_MPC3 0.57993
IDA_MPC1 IDA_MPC4 0.96568
IDA_MPC2 IDA_MPC3 0.44964
IDA_MPC2 IDA_MPC4 0.80704
IDA_MPC3 IDA_MPC4 0.51009  



  

Table A-5 Similarity scores between random “normal” files. 

IDA_R0 IDA_R1 0.35683 IDA_R3 IDA_R13 0.33470 IDA_R8 IDA_R11 0.18961 min 0.14369
IDA_R0 IDA_R2 0.50040 IDA_R3 IDA_R14 0.23842 IDA_R8 IDA_R12 0.23820 max 0.72535
IDA_R0 IDA_R3 0.33053 IDA_R3 IDA_R15 0.35729 IDA_R8 IDA_R13 0.15451 average 0.36337
IDA_R0 IDA_R4 0.37981 IDA_R3 IDA_R16 0.44687 IDA_R8 IDA_R14 0.14006
IDA_R0 IDA_R5 0.19924 IDA_R3 IDA_R17 0.37535 IDA_R8 IDA_R15 0.20801
IDA_R0 IDA_R6 0.19600 IDA_R3 IDA_R18 0.42995 IDA_R8 IDA_R16 0.27208
IDA_R0 IDA_R7 0.19905 IDA_R3 IDA_R19 0.27338 IDA_R8 IDA_R17 0.22085
IDA_R0 IDA_R8 0.19984 IDA_R4 IDA_R5 0.18656 IDA_R8 IDA_R18 0.24303
IDA_R0 IDA_R9 0.33228 IDA_R4 IDA_R6 0.17777 IDA_R8 IDA_R19 0.15206
IDA_R0 IDA_R10 0.49773 IDA_R4 IDA_R7 0.18059 IDA_R9 IDA_R10 0.49678
IDA_R0 IDA_R11 0.41739 IDA_R4 IDA_R8 0.18726 IDA_R9 IDA_R11 0.30930
IDA_R0 IDA_R12 0.38726 IDA_R4 IDA_R9 0.37206 IDA_R9 IDA_R12 0.27024
IDA_R0 IDA_R13 0.29789 IDA_R4 IDA_R10 0.51310 IDA_R9 IDA_R13 0.34013
IDA_R0 IDA_R14 0.31944 IDA_R4 IDA_R11 0.34440 IDA_R9 IDA_R14 0.25781
IDA_R0 IDA_R15 0.46465 IDA_R4 IDA_R12 0.36972 IDA_R9 IDA_R15 0.38430
IDA_R0 IDA_R16 0.48780 IDA_R4 IDA_R13 0.36090 IDA_R9 IDA_R16 0.44825
IDA_R0 IDA_R17 0.41608 IDA_R4 IDA_R14 0.25833 IDA_R9 IDA_R17 0.41396
IDA_R0 IDA_R18 0.39995 IDA_R4 IDA_R15 0.39103 IDA_R9 IDA_R18 0.36174
IDA_R0 IDA_R19 0.34073 IDA_R4 IDA_R16 0.48730 IDA_R9 IDA_R19 0.28417
IDA_R1 IDA_R2 0.45579 IDA_R4 IDA_R17 0.42200 IDA_R10 IDA_R11 0.45079
IDA_R1 IDA_R3 0.29938 IDA_R4 IDA_R18 0.44600 IDA_R10 IDA_R12 0.45866
IDA_R1 IDA_R4 0.35691 IDA_R4 IDA_R19 0.30770 IDA_R10 IDA_R13 0.44319
IDA_R1 IDA_R5 0.17400 IDA_R5 IDA_R6 0.89691 IDA_R10 IDA_R14 0.35968
IDA_R1 IDA_R6 0.17063 IDA_R5 IDA_R7 0.91066 IDA_R10 IDA_R15 0.49985
IDA_R1 IDA_R7 0.17639 IDA_R5 IDA_R8 0.93395 IDA_R10 IDA_R16 0.65204
IDA_R1 IDA_R8 0.17465 IDA_R5 IDA_R9 0.16720 IDA_R10 IDA_R17 0.52560
IDA_R1 IDA_R9 0.24162 IDA_R5 IDA_R10 0.26957 IDA_R10 IDA_R18 0.51452
IDA_R1 IDA_R10 0.40046 IDA_R5 IDA_R11 0.18895 IDA_R10 IDA_R19 0.40760
IDA_R1 IDA_R11 0.43216 IDA_R5 IDA_R12 0.23733 IDA_R11 IDA_R12 0.36396
IDA_R1 IDA_R12 0.67496 IDA_R5 IDA_R13 0.15394 IDA_R11 IDA_R13 0.31181
IDA_R1 IDA_R13 0.24293 IDA_R5 IDA_R14 0.13945 IDA_R11 IDA_R14 0.29316
IDA_R1 IDA_R14 0.26337 IDA_R5 IDA_R15 0.20742 IDA_R11 IDA_R15 0.51267
IDA_R1 IDA_R15 0.45401 IDA_R5 IDA_R16 0.27140 IDA_R11 IDA_R16 0.45261
IDA_R1 IDA_R16 0.40808 IDA_R5 IDA_R17 0.22024 IDA_R11 IDA_R17 0.36685
IDA_R1 IDA_R17 0.34480 IDA_R5 IDA_R18 0.24225 IDA_R11 IDA_R18 0.41693
IDA_R1 IDA_R18 0.41433 IDA_R5 IDA_R19 0.15141 IDA_R11 IDA_R19 0.30487
IDA_R1 IDA_R19 0.27158 IDA_R6 IDA_R7 0.88308 IDA_R12 IDA_R13 0.27602
IDA_R2 IDA_R3 0.48679 IDA_R6 IDA_R8 0.89003 IDA_R12 IDA_R14 0.28409
IDA_R2 IDA_R4 0.54079 IDA_R6 IDA_R9 0.16231 IDA_R12 IDA_R15 0.38460
IDA_R2 IDA_R5 0.27792 IDA_R6 IDA_R10 0.26633 IDA_R12 IDA_R16 0.45005
IDA_R2 IDA_R6 0.27305 IDA_R6 IDA_R11 0.18593 IDA_R12 IDA_R17 0.36188
IDA_R2 IDA_R7 0.27697 IDA_R6 IDA_R12 0.23077 IDA_R12 IDA_R18 0.43837
IDA_R2 IDA_R8 0.27855 IDA_R6 IDA_R13 0.13848 IDA_R12 IDA_R19 0.30907
IDA_R2 IDA_R9 0.47721 IDA_R6 IDA_R14 0.13603 IDA_R13 IDA_R14 0.25747
IDA_R2 IDA_R10 0.72404 IDA_R6 IDA_R15 0.20427 IDA_R13 IDA_R15 0.37897
IDA_R2 IDA_R11 0.45543 IDA_R6 IDA_R16 0.26421 IDA_R13 IDA_R16 0.41097
IDA_R2 IDA_R12 0.49804 IDA_R6 IDA_R17 0.20671 IDA_R13 IDA_R17 0.42617
IDA_R2 IDA_R13 0.47001 IDA_R6 IDA_R18 0.23949 IDA_R13 IDA_R18 0.39149
IDA_R2 IDA_R14 0.32956 IDA_R6 IDA_R19 0.14545 IDA_R13 IDA_R19 0.27386
IDA_R2 IDA_R15 0.53073 IDA_R7 IDA_R8 0.90905 IDA_R14 IDA_R15 0.34984
IDA_R2 IDA_R16 0.72535 IDA_R7 IDA_R9 0.16587 IDA_R14 IDA_R16 0.31725
IDA_R2 IDA_R17 0.51154 IDA_R7 IDA_R10 0.27080 IDA_R14 IDA_R17 0.32478
IDA_R2 IDA_R18 0.53837 IDA_R7 IDA_R11 0.18709 IDA_R14 IDA_R18 0.27324
IDA_R2 IDA_R19 0.40102 IDA_R7 IDA_R12 0.23494 IDA_R14 IDA_R19 0.24026
IDA_R3 IDA_R4 0.45359 IDA_R7 IDA_R13 0.14106 IDA_R15 IDA_R16 0.54225
IDA_R3 IDA_R5 0.14913 IDA_R7 IDA_R14 0.13775 IDA_R15 IDA_R17 0.40120
IDA_R3 IDA_R6 0.14369 IDA_R7 IDA_R15 0.20724 IDA_R15 IDA_R18 0.46115
IDA_R3 IDA_R7 0.14617 IDA_R7 IDA_R16 0.26824 IDA_R15 IDA_R19 0.36554
IDA_R3 IDA_R8 0.15209 IDA_R7 IDA_R17 0.20990 IDA_R16 IDA_R17 0.47555
IDA_R3 IDA_R9 0.32238 IDA_R7 IDA_R18 0.23978 IDA_R16 IDA_R18 0.51024
IDA_R3 IDA_R10 0.44973 IDA_R7 IDA_R19 0.14865 IDA_R16 IDA_R19 0.36608
IDA_R3 IDA_R11 0.28466 IDA_R8 IDA_R9 0.16777 IDA_R17 IDA_R18 0.44026
IDA_R3 IDA_R12 0.31646 IDA_R8 IDA_R10 0.27017 IDA_R17 IDA_R19 0.31786

IDA_R18 IDA_R19 0.30629

Similarity scores between files:

 



  

Appendix B: HMM training and testing results 
Table B-1 Log likelihood per opcode (LLPO) of family viruses, non-family viruses 
and random files. The 5 graphs correspond to the 5 models with N = 3. 
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Test set 2, N = 3
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Test set 3, N = 3
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Test set 4, N = 3
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Table B-2 Log likelihood per opcode (LLPO) of family viruses, non-family viruses 
and random files. The 5 graphs correspond to the 5 models with N = 5. 
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Test set 2, N = 5

-160

-140

-120

-100

-80

-60

-40

-20

0
0 10 20 30 40

File number

S
co

re
 (

L
L

P
O

)

test set 2

non-family
viruses

random
files

 

Test set 3, N = 5
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Test set 4, N = 5
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Table B-3 Raw LLPO scores of all 105 programs returned by the 25 HMMs. The 
scores are grouped according to the test set used by an HMM. For each test set, 5 
models with N = 2 to 6 were tested.  
 
Test set 0 N = 2 N = 3 N = 4 N = 5 N = 6 Test set 1 N = 2 N = 3 N = 4 N = 5 N = 6
Files in the test set (same family viruses): Files in the test set (same family viruses):
IDA_N0 -2.83844 -2.69903 -2.6256 -2.60804 -2.52266 IDA_N40 -2.76366 -2.68011 -2.58964 -2.53576 -2.51455
IDA_N1 -4.38048 -5.85754 -4.19275 -4.1669 -4.06707 IDA_N41 -2.66436 -2.58935 -2.5111 -2.47107 -2.45238
IDA_N2 -2.85605 -2.7188 -2.68132 -2.67629 -2.55774 IDA_N42 -2.69348 -2.61696 -2.52229 -2.4727 -2.4123
IDA_N3 -2.68468 -4.33065 -2.49798 -2.47691 -2.39205 IDA_N43 -2.67667 -2.65022 -2.53879 -2.47592 -2.48122
IDA_N4 -2.78905 -4.34511 -2.58534 -2.55277 -2.47677 IDA_N44 -2.81877 -4.30004 -2.66655 -2.60316 -4.10904
IDA_N5 -2.87672 -4.34558 -2.65451 -2.64242 -2.55389 IDA_N45 -2.71112 -2.64813 -2.57352 -2.51464 -4.11693
IDA_N6 -2.79097 -2.65019 -2.62367 -2.61525 -2.48092 IDA_N46 -2.68092 -2.61321 -2.51652 -2.42621 -2.42194
IDA_N7 -2.692 -4.34712 -2.4885 -2.47446 -2.39059 IDA_N47 -2.69872 -2.61577 -2.52154 -2.45126 -2.42594
IDA_N8 -2.82293 -4.45772 -2.65826 -2.63877 -2.52677 IDA_N48 -2.83159 -2.7425 -2.67465 -2.60111 -2.58626
IDA_N9 -2.71437 -4.45754 -2.52941 -2.51297 -2.42621 IDA_N49 -2.6207 -2.5232 -2.42938 -2.37143 -2.366
IDA_N10 -2.77855 -4.31873 -2.56441 -2.53805 -2.42304 IDA_N50 -2.61617 -2.55355 -2.46196 -2.41996 -2.3982
IDA_N11 -2.68199 -4.44285 -2.47388 -2.44936 -2.35678 IDA_N51 -7.58719 -9.03848 -7.40715 -7.3438 -8.87874
IDA_N12 -2.85616 -2.7279 -2.65932 -2.65164 -2.55999 IDA_N52 -2.64667 -2.5732 -2.47363 -2.4236 -2.41241
IDA_N13 -2.73863 -4.41354 -2.53999 -2.50189 -2.38622 IDA_N53 -2.61651 -2.54794 -2.4426 -2.36823 -2.33674
IDA_N14 -2.77855 -4.29042 -2.57118 -2.55275 -2.45347 IDA_N54 -2.73205 -2.66418 -2.57222 -2.50114 -2.48516
IDA_N15 -2.81468 -4.35899 -2.56416 -2.55566 -2.47357 IDA_N55 -2.73317 -2.64225 -2.55513 -2.47167 -2.4622
IDA_N16 -2.74838 -2.63712 -2.56975 -2.56795 -2.46139 IDA_N56 -4.48225 -4.43088 -4.32367 -4.24991 -5.90228
IDA_N17 -2.76431 -2.62497 -2.58408 -2.56227 -2.46164 IDA_N57 -2.91714 -2.86797 -2.76512 -2.70085 -2.69654
IDA_N18 -2.77806 -4.51851 -2.60557 -2.58518 -2.4591 IDA_N58 -2.70093 -2.63116 -2.54547 -2.48439 -2.46275
IDA_N19 -2.79064 -4.45237 -2.58552 -2.57452 -2.50117 IDA_N59 -2.73989 -2.68482 -2.55744 -2.5066 -2.49595
IDA_N20 -2.82825 -2.68674 -2.65981 -2.64895 -2.48132 IDA_N60 -2.70015 -2.6004 -2.5185 -2.46014 -2.41017
IDA_N21 -2.71906 -2.55134 -2.49386 -2.48976 -2.37984 IDA_N61 -2.6528 -2.60145 -2.51327 -2.4788 -2.43913
IDA_N22 -2.85215 -4.38385 -2.64538 -2.62988 -2.52194 IDA_N62 -2.68543 -2.59348 -2.49426 -2.4262 -2.45459
IDA_N23 -2.79084 -4.44067 -2.5707 -2.54889 -2.46194 IDA_N63 -2.76852 -2.72129 -2.62608 -2.55203 -2.55381
IDA_N24 -2.74196 -2.58964 -2.57811 -2.54555 -2.43279 IDA_N64 -2.65427 -2.57621 -2.48448 -2.41291 -2.43595
IDA_N25 -2.83737 -2.69987 -2.65412 -2.64446 -2.51287 IDA_N65 -2.75828 -2.65424 -2.5927 -2.51481 -2.51811
IDA_N26 -2.75602 -2.59864 -2.5706 -2.55371 -2.45323 IDA_N66 -2.82538 -2.72391 -2.62952 -2.56258 -2.57424
IDA_N27 -2.74015 -4.48543 -2.57684 -2.55921 -2.44652 IDA_N67 -2.78551 -2.70432 -2.61095 -2.55111 -2.5417
IDA_N28 -2.79382 -4.31769 -2.61515 -2.59072 -2.46932 IDA_N68 -2.61916 -2.52407 -2.41714 -2.35491 -2.3518
IDA_N29 -2.81342 -2.65369 -2.59382 -2.58248 -2.46846 IDA_N69 -2.71171 -2.6363 -2.53841 -2.48086 -2.45506
IDA_N30 -2.90366 -2.76041 -2.71772 -2.69408 -2.59481 IDA_N70 -2.78421 -2.78217 -2.63006 -2.57823 -4.15636
IDA_N31 -4.43492 -5.78653 -4.2053 -4.17633 -4.08559 IDA_N71 -2.78259 -2.74365 -2.61111 -2.56922 -2.57302
IDA_N32 -2.78984 -2.65151 -2.60353 -2.57938 -2.51671 IDA_N72 -2.76467 -2.675 -2.58198 -2.51358 -2.50767
IDA_N33 -2.71116 -2.54243 -2.49379 -2.48103 -2.35476 IDA_N73 -2.81895 -2.73003 -2.6272 -2.55822 -2.57578
IDA_N34 -4.40097 -5.77089 -4.1931 -4.183 -4.07268 IDA_N74 -2.73572 -2.64437 -2.54353 -2.48121 -2.46222
IDA_N35 -2.83606 -2.69768 -2.64939 -2.63737 -2.53085 IDA_N75 -2.77316 -2.69325 -2.58006 -2.54218 -2.50283
IDA_N36 -2.80357 -2.6256 -2.59359 -2.56195 -2.45723 IDA_N76 -6.072 -5.9712 -5.92025 -5.83644 -5.85622
IDA_N37 -2.80591 -4.37577 -2.61369 -2.59847 -2.48674 IDA_N77 -2.71058 -2.66658 -2.54104 -2.47233 -2.44444
IDA_N38 -2.93256 -4.36418 -2.75564 -2.74424 -2.6344 IDA_N78 -2.63596 -2.56586 -2.4402 -2.42373 -2.3633
IDA_N39 -2.7216 -4.3746 -2.50902 -2.4919 -2.37628 IDA_N79 -2.80304 -2.7073 -2.60189 -2.55057 -4.15786
min LLPO -4.43492 -5.85754 -4.2053 -4.183 -4.08559 min LLPO -7.58719 -9.03848 -7.40715 -7.3438 -8.87874  
 
 



  

Test set 0 N = 2 N = 3 N = 4 N = 5 N = 6 Test set 1 N = 2 N = 3 N = 4 N = 5 N = 6
Files in the comparison set (other non-family viruses): Files in the comparison set (other non-family viruses):
IDA_V0 -110.68 -110.537 -110.51 -113.672 -116.88 IDA_V0 -110.536 -113.711 -110.501 -113.692 -116.841
IDA_V1 -118.423 -118.391 -118.353 -121.55 -121.655 IDA_V1 -118.371 -121.604 -118.343 -118.388 -124.765
IDA_V2 -120.033 -119.994 -119.985 -123.12 -126.317 IDA_V2 -119.985 -123.157 -119.95 -120.005 -126.302
IDA_V3 -118.026 -117.894 -117.861 -121.052 -124.29 IDA_V3 -117.886 -121.094 -117.853 -121.068 -124.252
IDA_V4 -119.478 -119.441 -119.435 -122.557 -122.634 IDA_V4 -119.443 -122.598 -119.408 -119.468 -125.714
IDA_V5 -120.159 -120.023 -120.001 -123.151 -126.352 IDA_V5 -120.012 -123.186 -119.98 -123.182 -126.339
IDA_V6 -118.432 -118.405 -118.378 -121.564 -124.82 IDA_V6 -118.4 -121.625 -118.366 -118.397 -124.793
IDA_V7 -120.167 -120.034 -120.01 -123.166 -126.374 IDA_V7 -120.036 -123.211 -120 -123.186 -126.336
IDA_V8 -120.567 -120.541 -120.526 -123.673 -126.889 IDA_V8 -120.521 -123.716 -120.49 -120.543 -126.868
IDA_V9 -120.013 -119.976 -119.965 -123.1 -123.188 IDA_V9 -119.976 -123.149 -119.941 -120.001 -126.283
IDA_V10 -152.12 -152.01 -152.124 -152.131 -151.978 IDA_V10 -152.129 -152.073 -152.036 -151.955 -152.017
IDA_V11 -101.51 -101.422 -101.479 -101.473 -101.482 IDA_V11 -101.476 -101.458 -101.353 -101.4 -101.429
IDA_V12 -125.284 -125.185 -125.229 -125.227 -125.14 IDA_V12 -125.255 -125.203 -125.129 -125.125 -125.186
IDA_V13 -116.654 -116.559 -116.657 -116.667 -116.685 IDA_V13 -116.641 -116.635 -116.55 -116.564 -116.599
IDA_V14 -101.059 -100.975 -101.033 -101.03 -101.034 IDA_V14 -101.031 -101.01 -100.905 -100.953 -100.978
IDA_V15 -11.0989 -12.9583 -12.9958 -12.9572 -12.8483 IDA_V15 -11.0055 -15.0036 -12.8509 -10.8721 -14.8833
IDA_V16 -2.99929 -5.40678 -5.37187 -5.33721 -5.30616 IDA_V16 -2.86441 -7.99111 -5.24582 -2.67224 -7.76235
IDA_V17 -10.9101 -12.1256 -12.1616 -12.1392 -13.36 IDA_V17 -12.1081 -17.4324 -13.2475 -12.0539 -17.2344
IDA_V18 -6.07548 -7.51274 -7.50533 -7.48802 -8.96855 IDA_V18 -7.45631 -13.6628 -8.80031 -7.3797 -13.3882
IDA_V19 -2.95565 -5.73581 -5.74302 -5.68135 -5.61087 IDA_V19 -2.82419 -8.7245 -5.60009 -2.6033 -8.64268
IDA_V20 -10.1124 -11.1703 -11.21 -11.1938 -12.2449 IDA_V20 -11.1813 -15.9209 -10.9923 -11.0869 -14.5662
IDA_V21 -10.8532 -12.6338 -12.6657 -12.6302 -14.45 IDA_V21 -10.7554 -14.6156 -12.5222 -10.6257 -14.4848
IDA_V22 -3.06677 -4.89731 -4.8795 -4.86404 -6.75131 IDA_V22 -2.94324 -6.93559 -2.72727 -2.72782 -4.72337
IDA_V23 -3.04203 -4.96946 -4.94235 -4.92553 -4.82566 IDA_V23 -2.91692 -7.09299 -2.70189 -2.68671 -4.77661
IDA_V24 -3.0499 -4.94289 -4.941 -4.9183 -4.81091 IDA_V24 -2.93749 -7.02483 -2.7352 -2.70715 -4.78438
max LLPO -2.95565 -4.89731 -4.8795 -4.86404 -4.81091 max LLPO -2.82419 -6.93559 -2.70189 -2.6033 -4.72337

Files in the comparison set (random files): Files in the comparison set (random files):
IDA_R0 -20.3522 -24.4795 -20.1793 -20.1959 -25.7882 IDA_R0 -19.0813 -25.6181 -25.4629 -19.3923 -30.964
IDA_R1 -13.9877 -24.3116 -14.7271 -13.9233 -24.204 IDA_R1 -12.9742 -23.3083 -25.8326 -14.1531 -33.5984
IDA_R2 -14.9357 -16.5983 -14.8663 -14.9016 -15.7212 IDA_R2 -14.892 -15.7651 -17.3202 -14.9418 -18.2097
IDA_R3 -27.6756 -31.0684 -27.647 -27.6873 -31.0792 IDA_R3 -20.9218 -24.3491 -27.5827 -21.1412 -32.0876
IDA_R4 -22.7756 -25.8777 -22.7729 -22.8071 -25.8243 IDA_R4 -22.7361 -25.2426 -26.9897 -22.9385 -32.4967
IDA_R5 -15.1323 -16.2721 -15.0734 -15.113 -15.5831 IDA_R5 -15.0357 -15.6858 -18.4092 -15.1611 -22.9879
IDA_R6 -13.7367 -14.7423 -13.6801 -13.7221 -14.1334 IDA_R6 -13.6455 -14.2019 -17.131 -13.7405 -21.7219
IDA_R7 -14.1954 -15.2444 -14.1447 -14.1902 -14.5943 IDA_R7 -14.1103 -14.6935 -17.2122 -14.7183 -21.4581
IDA_R8 -15.8122 -16.9595 -15.7393 -15.7798 -16.2559 IDA_R8 -15.7075 -16.3599 -19.681 -15.8273 -24.2979
IDA_R9 -33.7738 -37.8438 -33.7409 -33.7792 -37.8095 IDA_R9 -32.1023 -33.8338 -36.1359 -32.3185 -45.0598
IDA_R10 -12.2689 -17.6877 -12.2309 -12.267 -16.6443 IDA_R10 -10.0797 -13.3747 -14.3734 -11.3154 -19.7933
IDA_R11 -23.8743 -30.9366 -23.7247 -23.7407 -30.8355 IDA_R11 -23.7319 -30.9349 -30.8593 -24.5349 -37.361
IDA_R12 -9.48983 -10.4038 -10.3103 -9.50058 -10.3326 IDA_R12 -8.59588 -9.53152 -17.9652 -9.67963 -18.9
IDA_R13 -33.6615 -33.7398 -33.6666 -33.7372 -33.6222 IDA_R13 -33.5891 -33.6865 -38.6692 -33.8411 -38.7489
IDA_R14 -148.522 -152.084 -148.487 -148.489 -153.152 IDA_R14 -120.268 -124.967 -125.499 -122.262 -137.027
IDA_R15 -12.2724 -28.6864 -12.0183 -12.0659 -29.7013 IDA_R15 -11.9631 -28.6641 -26.4973 -12.3387 -38.9709
IDA_R16 -8.06632 -8.90711 -7.99737 -8.02997 -8.03371 IDA_R16 -8.01384 -8.08398 -14.426 -8.97044 -16.1008
IDA_R17 -14.7949 -16.0352 -14.7868 -14.8274 -18.3719 IDA_R17 -13.5173 -13.5915 -15.8967 -13.6832 -20.7959
IDA_R18 -13.0679 -16.4832 -12.9911 -13.0175 -15.7305 IDA_R18 -12.9705 -15.7858 -16.37 -13.0381 -18.5487
IDA_R19 -35.6981 -46.1659 -35.6743 -35.6973 -46.0777 IDA_R19 -34.6171 -44.0611 -36.6797 -35.8427 -46.6268
IDA_R20 -33.1515 -33.8698 -35.4995 -33.0993 -35.4245 IDA_R20 -33.0387 -33.851 -36.1835 -37.9465 -37.0886
IDA_R21 -14.2326 -21.767 -14.113 -14.1297 -21.7071 IDA_R21 -14.0953 -21.7596 -20.9419 -14.2059 -28.6001
IDA_R22 -12.9223 -13.8657 -12.8723 -12.895 -14.7197 IDA_R22 -9.95689 -15.2951 -21.6112 -10.9678 -31.1503
IDA_R23 -16.9245 -21.3879 -17.77 -16.9387 -21.244 IDA_R23 -10.6694 -15.2433 -17.7176 -11.7232 -22.1688
IDA_R24 -30.9469 -32.7376 -30.8959 -30.9188 -33.5087 IDA_R24 -26.6315 -28.5351 -42.8449 -27.3516 -47.9732
IDA_R25 -9.16703 -10.7777 -9.04651 -9.05832 -10.2173 IDA_R25 -7.38424 -8.57564 -9.57934 -7.98664 -11.9263
IDA_R26 -22.6304 -28.2234 -27.2185 -23.3968 -35.911 IDA_R26 -19.4715 -25.3171 -30.06 -25.4243 -34.9636
IDA_R27 -21.8092 -26.9106 -21.7096 -21.747 -26.8393 IDA_R27 -21.694 -26.8971 -28.5276 -21.8715 -34.6
IDA_R28 -14.3619 -15.5332 -14.3302 -14.359 -14.2727 IDA_R28 -14.2948 -14.356 -21.1883 -14.3848 -23.5694
IDA_R29 -22.0801 -25.3197 -21.9719 -22.0301 -22.023 IDA_R29 -21.9533 -22.0916 -28.2818 -22.1719 -28.228
IDA_R30 -19.172 -20.1903 -19.1305 -19.1455 -21.1287 IDA_R30 -18.087 -18.151 -24.0749 -18.2444 -25.1344
IDA_R31 -22.5469 -24.8483 -22.5491 -22.5927 -24.7886 IDA_R31 -22.5222 -24.8293 -24.7074 -22.6012 -29.2088
IDA_R32 -31.503 -43.6435 -31.2799 -31.3329 -43.5575 IDA_R32 -31.215 -43.6288 -47.021 -31.3551 -48.8613
IDA_R33 -149.001 -149.753 -149.077 -149.735 -149.66 IDA_R33 -134.309 -134.301 -135.629 -135.861 -135.683
IDA_R34 -42.8888 -43.5834 -42.7889 -42.8023 -43.542 IDA_R34 -37.7545 -39.0629 -42.0903 -38.5235 -45.3049
IDA_R35 -51.267 -54.4469 -51.2 -51.2107 -54.3881 IDA_R35 -43.5655 -46.8861 -57.5935 -43.7333 -61.4655
IDA_R36 -21.458 -21.5564 -21.4072 -21.4287 -24.0999 IDA_R36 -21.3869 -24.9779 -29.0406 -22.4636 -40.1465
IDA_R37 -17.9681 -21.4674 -17.7994 -17.8171 -23.2231 IDA_R37 -17.8202 -20.6498 -23.1537 -18.2312 -33.7685
IDA_R38 -169.192 -169.933 -169.2 -170.533 -171.988 IDA_R38 -136.402 -141.157 -140.4 -137.329 -146.51
IDA_R39 -45.4978 -49.2993 -45.4443 -45.4541 -52.5257 IDA_R39 -38.6277 -45.6849 -51.1963 -40.0192 -62.7995
max LLPO -8.06632 -8.90711 -7.99737 -8.02997 -8.03371 max LLPO -7.38424 -8.08398 -9.57934 -7.98664 -11.9263



  

  
Test set 2 N = 2 N = 3 N = 4 N = 5 N = 6 Test set 3 N = 2 N = 3 N = 4 N = 5 N = 6
Files in the test set (same family viruses): Files in the test set (same family viruses):
IDA_N80 -2.78596 -2.67798 -2.59714 -2.54315 -2.50417 IDA_N120 -4.40838 -4.3549 -4.24551 -4.21035 -4.16695
IDA_N81 -2.71582 -2.61435 -2.51226 -2.483 -2.44984 IDA_N121 -2.79207 -2.762 -2.64508 -2.62348 -2.58086
IDA_N82 -2.74543 -2.65419 -2.56718 -2.51449 -2.51249 IDA_N122 -2.75272 -2.66651 -2.57969 -2.53086 -2.56025
IDA_N83 -2.78747 -2.70289 -2.61369 -2.55434 -2.53922 IDA_N123 -2.80885 -4.16994 -2.64693 -2.58321 -2.56961
IDA_N84 -2.74214 -2.64291 -2.54089 -2.5011 -2.46332 IDA_N124 -2.79929 -2.72876 -2.61708 -2.56786 -2.53785
IDA_N85 -2.83384 -2.75978 -2.65446 -2.57352 -2.56557 IDA_N125 -2.84085 -2.71591 -2.64955 -2.60904 -2.57639
IDA_N86 -2.76724 -2.6864 -2.56902 -2.49985 -2.47487 IDA_N126 -2.71159 -2.64168 -2.54382 -2.48536 -2.48441
IDA_N87 -2.74763 -2.65757 -2.54139 -2.47209 -4.01189 IDA_N127 -2.75706 -4.32286 -2.62511 -2.579 -2.55852
IDA_N88 -2.78115 -2.70848 -2.59279 -2.51722 -2.48952 IDA_N128 -2.75656 -2.71333 -2.58294 -2.5476 -2.52283
IDA_N89 -2.80629 -2.70219 -2.60907 -2.57565 -2.56103 IDA_N129 -2.80964 -2.81176 -2.65443 -2.63213 -2.62324
IDA_N90 -2.70537 -2.63583 -2.51728 -2.43874 -2.41315 IDA_N130 -4.38085 -4.26365 -4.20121 -4.1437 -4.11532
IDA_N91 -2.72608 -2.6466 -2.50874 -2.46342 -4.22017 IDA_N131 -2.68634 -2.61763 -2.5276 -2.50032 -2.44971
IDA_N92 -2.81399 -2.72244 -2.64023 -2.60376 -2.54441 IDA_N132 -2.7368 -2.64647 -2.55378 -2.48693 -2.45418
IDA_N93 -2.767 -2.70535 -2.57776 -2.54274 -2.49414 IDA_N133 -2.80202 -2.70288 -2.63477 -2.59805 -2.56288
IDA_N94 -2.7922 -2.70282 -2.5933 -2.53294 -2.51457 IDA_N134 -2.76731 -2.6989 -2.58557 -2.5438 -2.508
IDA_N95 -2.75955 -2.65987 -2.55261 -2.48986 -2.49216 IDA_N135 -2.80256 -2.70427 -2.64668 -2.60969 -2.54873
IDA_N96 -2.79448 -2.73039 -2.60746 -4.19023 -2.49159 IDA_N136 -2.76941 -2.73932 -2.6191 -2.59471 -2.5523
IDA_N97 -2.70511 -2.61656 -2.50253 -2.45814 -2.42864 IDA_N137 -2.70422 -2.65856 -2.54594 -2.51609 -2.47892
IDA_N98 -2.70815 -2.64074 -2.5102 -2.45903 -2.41277 IDA_N138 -4.29175 -4.22611 -4.109 -4.04495 -4.05201
IDA_N99 -4.34287 -4.25866 -4.14343 -4.07437 -4.07465 IDA_N139 -2.7641 -2.70675 -2.58996 -2.55617 -2.54058
IDA_N100 -2.85729 -2.74847 -2.65396 -2.59004 -2.60693 IDA_N140 -2.75294 -2.65459 -2.56703 -2.53027 -2.48005
IDA_N101 -2.78114 -2.69631 -2.58819 -2.52942 -2.50849 IDA_N141 -2.84668 -2.80375 -2.70096 -2.64429 -2.64691
IDA_N102 -2.76594 -2.66987 -2.55994 -2.5083 -4.03463 IDA_N142 -2.80492 -2.74301 -2.64392 -2.60063 -2.59846
IDA_N103 -2.74484 -2.66455 -2.55925 -2.49072 -2.47662 IDA_N143 -2.81709 -2.75421 -2.62445 -2.58204 -2.54805
IDA_N104 -2.70546 -2.59114 -2.50912 -2.44322 -2.40703 IDA_N144 -2.81491 -2.75971 -2.66119 -2.6216 -2.58588
IDA_N105 -2.75187 -2.65959 -2.55598 -2.49245 -2.46596 IDA_N145 -2.76155 -2.66068 -2.59429 -2.53725 -2.52912
IDA_N106 -2.88066 -2.80588 -2.70703 -2.69344 -2.66017 IDA_N146 -2.6636 -2.55819 -2.47953 -2.44591 -2.40288
IDA_N107 -2.78407 -2.69533 -2.59493 -2.53562 -2.51467 IDA_N147 -2.75001 -2.68399 -2.57598 -2.52253 -2.50413
IDA_N108 -2.73623 -2.6356 -2.53705 -2.49401 -2.47551 IDA_N148 -2.63723 -2.59727 -2.4899 -2.45315 -2.43717
IDA_N109 -2.78223 -2.65009 -2.54986 -2.48129 -2.46029 IDA_N149 -4.49808 -4.3908 -4.30824 -4.24797 -4.22151
IDA_N110 -2.80412 -2.69219 -2.58141 -2.51092 -2.4816 IDA_N150 -2.83201 -2.7626 -2.64384 -2.62516 -2.5844
IDA_N111 -2.74461 -2.6614 -2.55099 -2.49983 -4.19169 IDA_N151 -2.78473 -2.73271 -2.59089 -2.55756 -2.54645
IDA_N112 -2.81762 -2.75437 -2.62037 -2.55823 -2.52904 IDA_N152 -2.72347 -2.61939 -2.52003 -2.50119 -2.45198
IDA_N113 -4.53895 -4.46736 -4.35621 -4.37182 -4.28506 IDA_N153 -4.34245 -4.2674 -4.18126 -4.12804 -4.11664
IDA_N114 -2.74666 -2.6584 -2.5499 -2.49236 -2.46588 IDA_N154 -2.68819 -2.62319 -2.51985 -2.48696 -2.45975
IDA_N115 -2.77698 -2.67656 -2.54838 -2.46894 -2.45529 IDA_N155 -2.76686 -2.70078 -2.59012 -2.53217 -2.49779
IDA_N116 -2.78568 -2.66194 -2.52794 -2.4681 -2.45549 IDA_N156 -4.38759 -4.34126 -4.24587 -4.20696 -4.1804
IDA_N117 -2.74814 -2.66958 -2.56053 -2.50569 -2.4633 IDA_N157 -2.70717 -2.64597 -2.53334 -2.48732 -2.44546
IDA_N118 -4.68817 -4.61851 -4.48343 -4.41854 -4.38075 IDA_N158 -2.88093 -2.78789 -2.71011 -2.68702 -2.65899
IDA_N119 -2.7264 -2.6377 -2.52504 -2.45912 -2.43363 IDA_N159 -2.67346 -2.62042 -2.52023 -2.48502 -2.44617
min LLPO -4.68817 -4.61851 -4.48343 -4.41854 -4.38075 min LLPO -4.49808 -4.3908 -4.30824 -4.24797 -4.22151  
 



  

Test set 2 N = 2 N = 3 N = 4 N = 5 N = 6 Test set 3 N = 2 N = 3 N = 4 N = 5 N = 6
Files in the comparison set (other non-family viruses): Files in the comparison set (other non-family viruses):
IDA_V0 -110.548 -110.572 -110.498 -110.693 -110.664 IDA_V0 -110.536 -110.608 -110.5 -110.525 -110.666
IDA_V1 -118.396 -118.378 -118.339 -118.538 -118.509 IDA_V1 -118.372 -118.458 -118.343 -118.374 -118.458
IDA_V2 -120 -119.999 -119.949 -120.152 -120.127 IDA_V2 -119.985 -120.053 -119.95 -119.988 -120.137
IDA_V3 -117.902 -117.923 -117.849 -118.043 -118.009 IDA_V3 -117.885 -117.962 -117.852 -117.874 -118.021
IDA_V4 -119.452 -119.46 -119.406 -119.606 -119.602 IDA_V4 -119.442 -119.508 -119.407 -119.441 -119.528
IDA_V5 -120.027 -120.061 -119.977 -120.178 -120.16 IDA_V5 -120.011 -120.082 -119.979 -120.004 -120.171
IDA_V6 -118.412 -118.407 -118.359 -118.559 -118.529 IDA_V6 -118.399 -118.479 -118.365 -118.381 -118.534
IDA_V7 -120.04 -120.068 -119.99 -120.193 -120.163 IDA_V7 -120.035 -120.106 -119.999 -120.011 -120.161
IDA_V8 -120.542 -120.541 -120.489 -120.689 -120.673 IDA_V8 -120.521 -120.598 -120.489 -120.521 -120.681
IDA_V9 -119.985 -119.992 -119.938 -120.143 -120.127 IDA_V9 -119.976 -120.046 -119.94 -119.978 -120.051
IDA_V10 -152.129 -152.17 -152.002 -152.011 -152.068 IDA_V10 -152.125 -152.07 -152.031 -152.024 -152.017
IDA_V11 -101.482 -101.538 -101.353 -102.176 -104.647 IDA_V11 -101.479 -101.464 -101.357 -101.395 -101.446
IDA_V12 -125.247 -125.321 -125.12 -125.278 -125.208 IDA_V12 -125.252 -125.201 -125.127 -125.154 -125.194
IDA_V13 -116.651 -116.679 -116.536 -117.558 -121.365 IDA_V13 -116.646 -116.644 -116.556 -116.572 -116.608
IDA_V14 -101.034 -101.09 -100.906 -101.725 -104.184 IDA_V14 -101.034 -101.017 -100.91 -100.952 -100.993
IDA_V15 -11.0526 -12.9766 -10.8516 -10.9109 -12.9371 IDA_V15 -11.0142 -13.049 -12.8581 -10.8223 -12.9563
IDA_V16 -2.91352 -5.37428 -2.71082 -2.87116 -2.83498 IDA_V16 -2.86898 -5.50177 -5.24964 -2.67762 -2.78742
IDA_V17 -10.8853 -12.0943 -13.2599 -10.789 -13.384 IDA_V17 -17.2615 -18.6015 -18.393 -17.0937 -18.5623
IDA_V18 -6.03072 -7.44328 -8.81842 -6.00191 -7.45941 IDA_V18 -13.4335 -15.0164 -14.7689 -13.268 -13.431
IDA_V19 -2.8765 -8.64549 -2.66718 -2.71829 -2.7155 IDA_V19 -2.82661 -5.84812 -5.60036 -2.59589 -8.60145
IDA_V20 -10.0731 -11.1388 -12.1581 -9.96582 -12.2788 IDA_V20 -15.7986 -16.9686 -15.6022 -15.5932 -16.8943
IDA_V21 -10.8112 -12.6565 -10.5948 -10.6503 -12.6381 IDA_V21 -10.7661 -12.729 -12.5327 -10.5691 -10.7072
IDA_V22 -2.96596 -4.86855 -2.7186 -2.88576 -2.83208 IDA_V22 -2.94866 -4.97958 -2.73242 -2.69981 -2.76739
IDA_V23 -2.93546 -4.92886 -2.69302 -2.86526 -2.82199 IDA_V23 -2.92116 -5.04747 -2.70515 -2.67217 -2.73037
IDA_V24 -2.94892 -4.91569 -2.71813 -2.88978 -2.79682 IDA_V24 -2.94101 -5.01374 -2.73714 -2.69121 -4.80919
max LLPO -2.8765 -4.86855 -2.66718 -2.71829 -2.7155 max LLPO -2.82661 -4.97958 -2.70515 -2.59589 -2.73037

Files in the comparison set (random files): Files in the comparison set (random files):
IDA_R0 -20.241 -21.3017 -32.0329 -20.2415 -27.7415 IDA_R0 -19.0733 -22.3797 -25.4575 -29.8821 -24.5125
IDA_R1 -15.5845 -16.4398 -24.1227 -15.7917 -16.6454 IDA_R1 -14.6656 -22.4553 -27.5165 -19.9896 -26.0485
IDA_R2 -15.7218 -16.631 -17.3306 -16.5678 -16.5666 IDA_R2 -16.5353 -16.5734 -18.1385 -16.5177 -17.3848
IDA_R3 -25.445 -28.2337 -34.3191 -27.2103 -26.2244 IDA_R3 -25.3828 -28.2235 -31.4691 -28.2749 -26.5838
IDA_R4 -24.0234 -24.6085 -27.6055 -24.0773 -25.2894 IDA_R4 -25.1484 -25.2332 -29.9919 -25.2205 -27.6808
IDA_R5 -15.1889 -15.0671 -18.4239 -16.7348 -15.607 IDA_R5 -16.1641 -16.232 -20.6588 -16.166 -19.0566
IDA_R6 -13.7968 -13.6796 -17.144 -14.6289 -14.1261 IDA_R6 -14.6479 -14.687 -19.1296 -14.6336 -17.7192
IDA_R7 -14.2576 -14.1326 -17.2242 -15.1259 -15.1338 IDA_R7 -16.1979 -16.2406 -20.3352 -16.1853 -18.8588
IDA_R8 -15.8568 -16.3115 -19.6964 -16.8518 -16.2749 IDA_R8 -16.846 -16.9113 -21.9509 -16.8412 -20.3313
IDA_R9 -32.1813 -32.9641 -36.1879 -33.0407 -36.2825 IDA_R9 -36.9121 -37.0179 -40.1403 -37.0123 -37.8589
IDA_R10 -10.0854 -11.2118 -13.3016 -12.3539 -13.4084 IDA_R10 -15.443 -15.4953 -18.6434 -15.5129 -15.5375
IDA_R11 -23.8302 -24.4891 -29.4495 -23.8197 -26.592 IDA_R11 -27.3056 -31.6491 -34.4136 -30.909 -33.1087
IDA_R12 -10.3428 -12.0377 -15.4153 -10.439 -10.37 IDA_R12 -8.5878 -9.52869 -17.9569 -8.68176 -12.1838
IDA_R13 -33.6998 -34.4903 -37.8368 -33.7281 -33.7347 IDA_R13 -33.5869 -33.6842 -38.6606 -33.6463 -37.9048
IDA_R14 -123.763 -126.04 -129.534 -125.611 -138.833 IDA_R14 -124.857 -126.663 -129.497 -126.715 -128.449
IDA_R15 -12.0766 -13.0947 -26.516 -12.3021 -13.2413 IDA_R15 -11.9634 -27.6113 -26.4995 -20.4132 -30.7991
IDA_R16 -8.06468 -8.89833 -11.2414 -8.13268 -8.87471 IDA_R16 -8.80385 -8.86505 -15.2244 -8.88974 -12.1596
IDA_R17 -13.5885 -14.8085 -14.7247 -13.6691 -14.8508 IDA_R17 -13.5114 -13.5997 -15.8947 -13.5916 -13.6148
IDA_R18 -13.034 -13.7234 -14.9996 -13.057 -13.0304 IDA_R18 -12.9635 -15.7827 -17.0633 -14.3712 -16.4929
IDA_R19 -34.6448 -35.1749 -37.7394 -35.7471 -41.4484 IDA_R19 -45.607 -45.6405 -47.6154 -45.578 -46.1171
IDA_R20 -36.2998 -37.0972 -41.8702 -36.2976 -38.0069 IDA_R20 -33.029 -33.0575 -36.1755 -37.0828 -37.9303
IDA_R21 -14.1682 -14.918 -20.1976 -14.2488 -14.9229 IDA_R21 -14.8482 -21.0235 -22.4521 -17.9806 -23.3207
IDA_R22 -10.7376 -12.2021 -21.6265 -12.3659 -11.6717 IDA_R22 -10.6733 -11.661 -20.8805 -11.562 -15.3511
IDA_R23 -12.5025 -18.6126 -21.1913 -12.5908 -12.5571 IDA_R23 -14.1798 -19.5891 -23.8061 -14.2806 -16.1485
IDA_R24 -26.7399 -30.069 -44.5473 -26.987 -27.7515 IDA_R24 -29.152 -31.8685 -44.5021 -29.4037 -39.6263
IDA_R25 -7.91717 -9.69811 -11.2641 -8.51496 -8.5476 IDA_R25 -9.06776 -10.2353 -11.8215 -9.10282 -9.17058
IDA_R26 -22.3951 -27.2093 -30.0525 -27.3349 -26.4668 IDA_R26 -20.4191 -27.2461 -31.0077 -29.2257 -31.2292
IDA_R27 -21.7747 -22.588 -26.8228 -21.8227 -21.7678 IDA_R27 -22.5432 -26.0522 -29.3701 -25.1704 -28.652
IDA_R28 -14.3795 -15.5379 -20.0434 -14.3344 -14.3286 IDA_R28 -15.4499 -15.5185 -21.1844 -15.4242 -18.9564
IDA_R29 -21.9617 -25.1856 -28.24 -22.0525 -22.0477 IDA_R29 -21.9482 -22.1274 -28.2699 -21.946 -25.0892
IDA_R30 -19.1733 -20.1766 -25.1156 -21.2588 -22.1643 IDA_R30 -21.1125 -21.1409 -24.07 -23.0999 -23.1083
IDA_R31 -22.5614 -23.7033 -24.7076 -22.6304 -22.5915 IDA_R31 -24.7234 -24.8329 -25.7976 -24.7581 -24.81
IDA_R32 -31.2966 -33.0363 -45.2626 -31.3909 -31.3026 IDA_R32 -31.2152 -43.6456 -47.017 -43.608 -45.4016
IDA_R33 -146.932 -147.626 -148.213 -146.924 -148.941 IDA_R33 -134.306 -134.307 -135.627 -134.348 -134.991
IDA_R34 -39.0954 -39.7153 -44.6395 -39.6642 -41.6695 IDA_R34 -37.7493 -38.4199 -42.0894 -37.7209 -41.5299
IDA_R35 -44.8848 -49.9879 -54.4208 -44.9983 -49.3819 IDA_R35 -49.2985 -53.8402 -61.3921 -50.0184 -50.1512
IDA_R36 -21.4809 -22.3114 -29.0516 -22.4039 -22.3303 IDA_R36 -22.222 -22.4281 -30.7306 -22.343 -27.5638
IDA_R37 -17.895 -18.7717 -26.7078 -18.8006 -23.2127 IDA_R37 -22.2145 -22.3416 -27.5314 -24.056 -26.7257
IDA_R38 -143.785 -144.475 -147.741 -143.862 -154.468 IDA_R38 -138.396 -139.163 -141.724 -138.476 -140.542
IDA_R39 -40.8089 -41.8073 -55.3838 -41.4848 -48.2084 IDA_R39 -44.3496 -45.1145 -54.3106 -44.524 -47.8366
max -7.91717 -8.89833 -11.2414 -8.13268 -8.5476 max LLPO -8.5878 -8.86505 -11.8215 -8.68176 -9.17058  



  

 
Test set 4 N = 2 N = 3 N = 4 N = 5 N = 6
Files in the test set (same family viruses):
IDA_N160 -4.39243 -4.25642 -4.15688 -4.12541 -4.08538
IDA_N161 -2.77908 -2.64894 -2.54489 -2.51143 -2.47611
IDA_N162 -2.75727 -2.62508 -2.54452 -2.5253 -2.47465
IDA_N163 -2.85864 -2.7459 -2.62878 -2.59791 -2.56974
IDA_N164 -2.79247 -2.65693 -2.57332 -2.53272 -2.49402
IDA_N165 -2.68258 -2.54961 -2.42946 -2.39459 -2.359
IDA_N166 -2.77237 -2.62415 -2.55595 -2.51392 -2.49115
IDA_N167 -2.74633 -2.61362 -2.48832 -2.45684 -2.41554
IDA_N168 -2.83164 -2.68613 -2.61553 -2.57382 -2.55556
IDA_N169 -2.75223 -2.60303 -2.50869 -2.46421 -2.4381
IDA_N170 -2.80635 -2.68039 -2.5928 -2.55065 -2.49167
IDA_N171 -2.79455 -2.66581 -2.58196 -2.53781 -2.49518
IDA_N172 -2.77357 -2.65464 -2.55351 -2.52545 -2.47973
IDA_N173 -2.85727 -2.70765 -2.60495 -2.56565 -2.53795
IDA_N174 -2.93994 -2.84019 -2.75818 -2.74438 -2.7188
IDA_N175 -2.93905 -2.81191 -2.71527 -2.6864 -2.66831
IDA_N176 -2.79106 -2.67423 -2.62019 -2.57352 -2.52349
IDA_N177 -2.87316 -2.72633 -2.62461 -2.56762 -2.51474
IDA_N178 -2.77296 -2.63028 -2.55853 -2.5241 -2.49757
IDA_N179 -2.80715 -2.67119 -2.56987 -2.51599 -2.49416
IDA_N180 -2.75548 -2.61047 -2.50619 -2.45819 -2.43056
IDA_N181 -2.80222 -2.65451 -2.55 -2.51199 -2.45073
IDA_N182 -2.84607 -2.71719 -2.63298 -2.59614 -2.56706
IDA_N183 -2.72344 -2.61417 -4.24962 -4.22606 -4.18224
IDA_N184 -2.773 -2.64818 -2.52487 -2.48326 -2.44597
IDA_N185 -2.74974 -2.64907 -2.55916 -2.49875 -2.44594
IDA_N186 -2.75482 -2.62857 -2.503 -2.48492 -2.43935
IDA_N187 -2.92102 -2.81729 -2.69102 -2.65694 -2.59634
IDA_N188 -2.79064 -2.64407 -2.53938 -2.51061 -2.46562
IDA_N189 -2.86644 -2.72852 -2.64486 -2.59644 -2.55025
IDA_N190 -2.76535 -2.65274 -2.56992 -2.53456 -2.48836
IDA_N191 -2.82767 -2.69113 -2.56424 -2.52854 -2.50268
IDA_N192 -2.74421 -2.58996 -2.51949 -2.47678 -2.44569
IDA_N193 -2.71996 -2.58907 -2.47888 -2.45171 -2.41948
IDA_N194 -2.79703 -2.67058 -2.5859 -2.54315 -2.50827
IDA_N195 -2.78615 -2.64356 -2.53724 -2.49518 -2.45193
IDA_N196 -2.78074 -2.65315 -2.56436 -2.51639 -2.4879
IDA_N197 -2.77092 -2.62677 -2.54959 -2.52238 -2.47503
IDA_N198 -2.80319 -2.67665 -2.5749 -2.5417 -2.51799
IDA_N199 -2.85907 -2.72493 -2.63389 -2.59389 -2.57147
min LLPO -4.39243 -4.25642 -4.24962 -4.22606 -4.18224  
 



  

Test set 4 N = 2 N = 3 N = 4 N = 5 N = 6
Files in the comparison set (other non-family viruses):
IDA_V0 -110.616 -110.613 -110.5 -110.524 -110.546
IDA_V1 -118.424 -118.464 -118.342 -118.365 -118.39
IDA_V2 -120.031 -120.06 -119.949 -119.984 -120.024
IDA_V3 -117.966 -117.968 -117.851 -117.88 -117.901
IDA_V4 -119.481 -119.514 -119.406 -119.432 -119.459
IDA_V5 -120.096 -120.088 -119.978 -120.024 -120.039
IDA_V6 -118.439 -118.484 -118.364 -118.398 -118.42
IDA_V7 -120.106 -120.112 -119.998 -120.029 -120.042
IDA_V8 -120.569 -120.604 -120.489 -120.519 -120.557
IDA_V9 -120.018 -120.051 -119.939 -119.976 -119.99
IDA_V10 -152.121 -152.071 -152.033 -152.041 -152.058
IDA_V11 -101.512 -101.459 -101.352 -101.43 -101.416
IDA_V12 -125.283 -125.202 -125.127 -125.16 -125.158
IDA_V13 -116.656 -116.635 -116.55 -116.628 -116.624
IDA_V14 -101.061 -101.011 -100.905 -100.978 -100.969
IDA_V15 -11.0917 -13.0485 -12.8542 -12.935 -10.9524
IDA_V16 -2.99791 -5.50839 -5.24915 -5.34029 -2.76881
IDA_V17 -10.911 -12.3416 -11.9606 -13.3352 -10.807
IDA_V18 -6.08117 -7.75545 -7.3062 -8.89463 -5.92958
IDA_V19 -2.95419 -5.8593 -5.60426 -5.72121 -2.78321
IDA_V20 -10.1117 -11.3595 -9.83898 -12.1735 -9.94703
IDA_V21 -10.8451 -12.7228 -12.5242 -12.6091 -10.683
IDA_V22 -3.06267 -4.98016 -2.72896 -4.70665 -2.74673
IDA_V23 -3.03823 -5.05128 -2.70359 -4.76206 -2.71525
IDA_V24 -3.04684 -5.02015 -2.7385 -4.75772 -2.75785
max LLPO -2.95419 -4.98016 -2.70359 -4.70665 -2.71525

Files in the comparison set (random files):
IDA_R0 -19.1717 -22.3703 -25.4642 -24.4636 -23.4035
IDA_R1 -13.0646 -20.7857 -25.8426 -20.1267 -19.993
IDA_R2 -14.9371 -15.7655 -17.3223 -16.6044 -16.5445
IDA_R3 -20.9474 -21.5938 -27.5827 -26.0192 -21.5414
IDA_R4 -22.7749 -22.8497 -26.9899 -25.9005 -25.2307
IDA_R5 -15.1295 -15.1084 -18.405 -17.9208 -17.9062
IDA_R6 -13.7337 -13.6882 -17.1276 -16.7109 -16.7004
IDA_R7 -14.1933 -14.159 -17.2086 -16.7692 -16.7603
IDA_R8 -15.8097 -15.7774 -19.6769 -19.1926 -19.1698
IDA_R9 -32.1609 -33.0164 -36.13 -33.8791 -33.7931
IDA_R10 -10.1109 -10.1691 -14.3727 -11.3021 -10.1571
IDA_R11 -23.8316 -28.0983 -30.8604 -28.8274 -28.0574
IDA_R12 -8.63557 -8.69344 -17.9714 -13.0733 -12.0628
IDA_R13 -33.6607 -33.6887 -38.6735 -37.9194 -37.8844
IDA_R14 -120.335 -121.546 -125.494 -124.445 -123.859
IDA_R15 -12.1246 -27.6094 -26.5074 -23.5743 -23.5465
IDA_R16 -8.06467 -8.08928 -14.4292 -12.1662 -11.2774
IDA_R17 -13.5816 -13.5934 -15.8965 -13.6325 -13.5501
IDA_R18 -13.0409 -15.7832 -16.3722 -15.0876 -15.0517
IDA_R19 -34.6436 -35.7859 -36.6715 -35.7382 -36.2041
IDA_R20 -33.0675 -33.0497 -36.1826 -34.6595 -37.8778
IDA_R21 -14.1728 -20.2576 -20.9464 -19.5258 -19.4826
IDA_R22 -10.0212 -10.2051 -21.6119 -16.7399 -14.5165
IDA_R23 -10.7864 -10.9172 -17.7176 -16.0938 -12.5916
IDA_R24 -26.7171 -26.8872 -42.853 -40.4542 -37.0516
IDA_R25 -7.47815 -7.45901 -9.58624 -8.55061 -7.46619
IDA_R26 -19.5274 -22.4482 -30.0591 -25.5589 -26.311
IDA_R27 -21.7713 -25.2027 -28.5317 -26.0853 -26.0178
IDA_R28 -14.3515 -14.3586 -21.1881 -18.9919 -17.7641
IDA_R29 -22.0307 -22.0946 -28.2797 -25.2217 -25.0751
IDA_R30 -18.1315 -18.1467 -24.0743 -21.1998 -20.0668
IDA_R31 -22.546 -22.6497 -24.7071 -23.6938 -22.5747
IDA_R32 -31.3673 -43.6283 -47.0231 -43.6668 -43.5965
IDA_R33 -134.343 -134.298 -135.629 -135.014 -134.971
IDA_R34 -37.835 -38.4167 -42.0884 -41.537 -41.5127
IDA_R35 -43.5953 -44.346 -57.5913 -51.4633 -44.3291
IDA_R36 -21.4591 -21.5946 -29.0391 -27.4525 -26.6484
IDA_R37 -17.9073 -18.8366 -23.1441 -22.3652 -23.1984
IDA_R38 -136.477 -137.181 -140.4 -139.155 -138.517
IDA_R39 -38.714 -38.9298 -51.1972 -45.6897 -41.9901
max LLPO -7.47815 -7.45901 -9.58624 -8.55061 -7.46619  
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