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ABSTRACT 
 

Smart Search: A Firefox Add-On to Compute a Web Traffic Ranking 
by Vijaya Pamidi 

 
Search engines results are typically ordered according to some notion of importance of a 

web page as well as relevance of the content of a web page to a query. Web page importance is 

usually calculated based on some graph theoretic properties of the web. Another common 

technique to measure page importance is to make use of the traffic that goes to a particular web 

page as measured by a browser toolbar.Currently, there are some traffic ranking tools available 

like www.alexa.com, www.ranking.com, www.compete.com that give such analytic as to the 

number of users who visit a web site. Alexa provides the traffic rank for a website based on two 

factors: The number of users that view a website and the number of pages viewed. The Alexa 

toolbar is not open-source. 

The main goal of our project was to create a Smart Search Firefox add-on for the Yioop 

search engine, an open source search engine developed by my project advisor, Dr. Chris Pollett. 

This add-on would provide similar analytic data to the Yioop search engine, but in a transparent 

and open-source way. With the results received from the Smart Search toolbar extension, the 

Yioop search engine refines the search results as well as provides user centric-search results. 

Eventually, users would benefit from these better search results. 
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1. Introduction 
 

Search engines use web page ranks to determine the order of search results that should be 

presented. The ranking of a web site is determined by a search engine based on the ranking 

algorithm followed by that particular engine. Currently there are some tools available like 

www.alexa.com, www.ranking.com, www.compete.com and these tools provide analytic data for 

ranking the web sites based on web traffic and the number of users who visit a web site. Alexa 

provides the traffic rank for a website based on two factors: The number of users that view a 

website and the number of pages viewed.  Usually the factors that affect ranking of a web site are 

number of users that visit a web site and the incoming, outgoing link probability. Apart from 

these two factors we would like to add how user preferred search results affect the web traffic 

ranking. For this project we created a Firefox add-on to compute a Web Traffic Rank and the 

personal user search.  

 

Our extension can be installed by a user of Firefox. The Smart Search toolbar captures 

the link that user clicks. Apart from this link it also captures other user driven actions such as the 

target link, word that user clicked, timestamp of action performed and language preference. The 

captured data is sent to Yioop periodically. After receiving the data from toolbar, Yioop writes 

the data to text files under schedules folder. When Yioop performs a web crawl along the Index 

data, Schedule data, Robot data folders the Toolbar data folder will also be crawled by the Yioop 

crawler. All the crawled web pages will be indexed and ranked by Yioop. When a user enters a 

search query Yioop gives the results. The search results given to the user are based on both the 

open web crawl and the toolbar data. In this way the user eventually could experience a better 

search results that are very user specific. 
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One of the main toolbars that exist so far for traffic ranking a web site that is based on the 

user interest is Alexa. Alexa toolbar works in such a way that it gives ranking of web site from 

one to infinity, this means that a website with ranking one is more popular than any other web 

site and the one with ranking two is next and so on. Once a web site that wants to get an Alexa 

traffic ranking is crawled by Alexa crawler then it starts giving that web site a traffic rank from 

one to infinity. As Alexa starts getting user data from those users who have installed or using the 

Alexa toolbar it takes the analytics coming from those users and starts re ranking the current web 

site. The analytic data is sent to Alexa from the toolbar on a three month periodic basis. User 

who would like to know the Alexa traffics ranking for their web site should allow three months 

of time period to get accurate ranking. One thing to observe here is Alexa ranking for a particular 

web site is based on the traffic gathered from those users who has Alexa toolbar. There are many 

other toolbars available which does the similar job. Alexa ranking got more popular because of 

its early availability and the factors considered for traffic ranking and the Google analytics also 

does a similar traffic ranking.  

 

The Smart search toolbar also works in a similar way but is particularly developed to give 

user centric search results for users who search queries through Yioop search engine. Smart 

search toolbar captures user clicked links and some other information about those links. This 

data will be sent to Yioop server periodically not on the time basis but on the amount of the data 

captured. When Yioop server receives the data then Yioop performs a crawl the data from 

toolbar will also be crawled along with the open web crawl and the web sites that are crawled by 

Yioop will be given a page rank. Web sites will be ranked based on the continuous synchronized 

process mentioned earlier .This helps the users to get user centric search results.  

 

The initial part of the project report explains how a Firefox toolbar extension was built, 

modifications and enhancements done to the toolbar to capture user clicks, and the storage 

mechanism of the user clicks at the user end. The toolbar was also modified to communicate 

with Yioop and transfer toolbar data in periodic regular intervals. 

 

In the later part of the report the server side process will be explained. The details of how 

Yioop receives the toolbar data and processes the data to index and rank the web pages will also 
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be provided. Yioop gives refined search results to user when user enters a search query. The test 

results are experimented on the toolbar data with Yioop. The last part gives a conclusion to the 

research project report. 

 
 
2. Technologies Used 
 
 This section explains the technologies needed for developing the requirements of the 

project. The main user interface language needed to build any Firefox extension is XUL. One of 

the main requirements for the project is building a Firefox toolbar extension. In order to make 

the toolbar functional the JavaScript functions need to be added either to the toolbar or to the 

toolbar components like menu items. The other major component of this project is Yioop. The 

components of Yioop server need to be developed in PHP. 

 

2.1 XUL  
 

XUL pronounced as “zool” is an xml user interface language. XUL is used to develop 

Firefox extensions. XUL runner builds provide the possibility to develop applications on top of 

Mozilla applications. XUL documents are included in contents, skin, and locale folders. The 

main XUL overlay component chrome.manifest is placed under contents folder. In skin folder 

the css styles are included. [1] 

 

The elements that can be added as extension or XUL elements include window, dialogue, 

page, wizard etc. Elements like button, list box, text box, radio buttons, check boxes, toolbar, and 

menu can also be added. [1] 

 

Events and scripts include command, script, key etc. Apart from these there are many 

other elements, and events that can be included with XUL. In this project XUL is used to build 

the Smartsearch toolbar extension and also to add the JavaScript functionality to the toolbar. 

 
2.2 JavaScript 
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JavaScript is an object oriented web language that is mainly used to build web application 

functionalities. In this project most of the functionalities were developed in JavaScript. As the 

Smartsearch toolbar resides at user end or client side we can say that client side functionalities 

were developed using JavaScript. The details of how the JavaScript code and integration of the 

various functionalities work will be explained in the later sections. 

 

2.3 PHP 
 

PHP is a scripting language generally used for “server side web development”. PHP runs 

generally on web server. In the current project the server is Yioop! Search engine. Most of the 

development for Yioop was done with PHP scripting. The application components that need to 

be developed to communicate with Yioop server should be coded in PHP. So the server side 

components development for the current project was done in PHP. [2] 

 

 The main goal of the project involves working and understanding knowledge of Yioop 

search engine. One of the main components for any search engine is its ranking strategy and the 

algorithm to rank the web pages. In order to gain knowledge of the algorithms we have to know 

various existing ranking algorithms. For this project we have studied Google’s Page-Rank 

algorithm and modeled the Page-Rank algorithm for a 10X10 matrix where the matrix represents 

web pages with incoming and outgoing links. The details of the Page-Rank algorithm and 

implementation are discussed in the next section. 

 

3. Design Challenges 
 

The main components that needed to be developed to achieve the goals of our project 

were user end toolbar, storing captured data, server side data handling and ranking the crawled 

toolbar data along with the web crawl. The main challenge involved in the design phase was to 

handle the data from many downloaded instances of our Smart search toolbar, as they all send 

data to Yioop server simultaneously. So making the Yioop server scalable to handle these results 

is challenging. When the data from the toolbar is sent to Yioop and a crawl is performed then 

indexing these results is another design challenge involved.  
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4. Study and Model Page-Rank Algorithm 
 

To understand how the Page-Rank algorithm works, we implemented Google’s Page-

rank algorithm for a 10X10 matrix. The algorithm needs to be developed in JavaScript. This 

10X10 matrix is linked in a way to model a group of web pages connected with outgoing and 

incoming links.  The program is checked in such a way that Google matrix should converge on a 

given matrix. Also the program outputs the Page-rank values for the 10 web pages given. The 

10X10 matrix that would model a web with outgoing links represented as 1 is shown in Figure 1 

and this matrix is the input matrix for the Page-Rank algorithm modeled. 

 

Figure 1: Inputs given for our Page-Rank algorithm  

4.1 Page-Rank in brief 

                  Internet is a source of billions of web pages which are accessible to the user. Search 

engine needs to find a way to give the most relevant web pages to the user by comparing the 

relevance and importance of all these web pages. A challenging task is to rank these web pages 

with an algorithm that can incorporate common usage patterns i.e. “a user who visits a web page 

A is more likely to click the link to page B than the link to page C.” [3] 

4.2 Algorithm Outline 
 

 The Page-Rank algorithm gives the page rank for the 10X10 matrix web pages by applying the 

power method on the given input matrix. The Google matrix with the properties “Stochastic, 

Irreducible, and Aperiodic” converges on the given input matrix. Converge is a factor of having 

a very small deviation in the product of the Google matrix and the input matrix value. In the 
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Figure 2 how the values of convergence keeps reducing and then finally can observe a small 

change in the values and then it is said the Google Matrix is converged on the input matrix and 

the output of the algorithm is the Page-Rank values for the web pages represented in the model 

matrix. [3] 

The algorithm convergence information looks like in Figure2: 

 

Figure 2: Algorithm convergence. 

 

Next we show the page rank for all the web pages from P0 to P9 in Figure 2 

 

Figure 3: Page-Rank output 

 

5.  Building a Firefox Extension 

 The first step to build or work with any extension is to learn the basic steps involved in 

building an extension. In order to execute this step we built a simple Firefox extension. With this 

we get to know the directory structure and how the extension should be added to the profiles as 

extensions. Along with file structure, we also need to understand the way chrome.manifest and 

install.rdf involve in the extension development.  
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5.1 Simple Firefox Extension 

To build a fully functional Firefox toolbar extension and to understand intricacies 

involved in the building process we started by building a simple Firefox extension with a Status 

bar displaying "Hello, World". Initially to learn more about Firefox extension features like 

"Hello-World" menu pop up with menu items labeled were added initially. An alert message will 

be displayed for each menu item based on the appropriate click by the user.  A “New-Tool” was 

added to the tool menu pop up to learn about the” insert after” feature.  To program any Firefox 

extension one should have the knowledge of XUL and the XUL documents needed to build 

extension. [7] 

The XUL documents that are essential for the programmers to define an XUL user interface are 

Content: “The XUL document and the JavaScript files exist in this folder. The elements of these 
components define the layout of the user interface for an extension”. 

Skin: the CSS and image files are placed under this skin folder. This is responsible for the 
appearance of the extension. 

Locale: The files to make the extension localization available. The language “user-visible 
strings” are responsible for making software localization easy. [7] 

The code block used to build a Firefox extension is given in Figure 4 
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Figure 4: install.rdf 

 

 

Figure 5: chrome.manifest 

 

Figure 6: sample. XUL the XUL overlay 

 

6. Building a Firefox Toolbar Extension 

After getting familiar with building a Firefox extension next step would be to build a 

Toolbar extension with id “Smart Search”.  The function of a toolbar button will be to capture 

the user clicked link and target link. Along with these two features the timestamp when user 

clicked on the link and language of the web page would be also captured. XUL code block is 

shown in Figure 7. 
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Figure 7: XUL code for a toolbar 

In the XUL code shown in the Figure 7 we can observe that the JavaScript functions are 

called on the oncommand event. When we click on the menu item Smart search then the function 

lickclick () is called. At this point the functions are added to the event oncommand to test the 

working of functionalities. After the toolbar completes the development and completes testing 

then user the functionality of the toolbar should be automatically loaded when user opens Fire 

fox browser. With load event the first JavaScript function linkclick is called which in turn gives 

the flow for the rest of sequence of functions. This is achieved by the document.addEventListner 

and call the function linkclick () with the event load.  The line of code is shown in the Figure 8 

 

Figure 8: calling click with load 
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6.1 Adding Functionality to the Toolbar 

The JavaScript function linkclick () is called when user clicks on a link on a web page. 

This in turn calls the getword () function which captures the user clicked link and target link at 

initial stage of the project. 

 In function linkclick () for loop is used to traverse through each link and calls 

addEventListner function which has three parameters (“event”, function, true) that could be 

passed. In the present case the three parameters are (“click”, getword, true). The   “getword” is 

another function where the user clicks an URL or a link and target links are captured.  The 

command window.content.location.href was used to capture user clicked link or URL and 

event.target.href is used to capture target links. The results would be stored in an array for future 

use. The JavaScript showing the linkclick and getword function is at initial stage. The JavaScript 

functions code for linkclick and get word is shown in Figure 9. 

 

Figure 9: linkclick and getword functions 
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6.2 Adding Styles to the toolbar 

Making the toolbar button or an extension look good is one of the tasks of building a 

viable toolbar extension. For this we added the Yioop search engine icon to the Smart search 

toolbar button. In order to add the icon to the toolbar button we should include the skin folder 

under our extension folder. The skin folder should be placed at the same hierarchy as content sub 

folder under the chrome folder. The skin folder should hold the Yioop search engine icon which 

in this case is named as favicon.jpg and this is downloaded from the Yioop. The skin folder 

should also contain the css file that is required to add the styles for icon. For this toolbar the css 

file is named as test.css.  The XUL file should contain the path for the test.css file. After adding 

the Yioop icon the toolbar button looks like in the Figure 10 shown below. 

 

 

Figure 10: Toolbar button with Yioop icon 

 

 

 

6.3 Yioop! Code study 

The goal of the project is to provide user specific search results with the Firefox toolbar 

extension. In order to do that we need to merge the user captured toolbar data with the Yioop 

index archive. To understand the work flow of Yioop search engine it is mandatory to study the 

Yioop code. The goal of code study is to understand the flow of functional events taking place in 

Yioop. This starts at the point where user enters search query in the Yioop search bar and ends at 

the point where Yioop returns the results back to the user. To understand the working of Yioop 

code in a better way, a small task like changing the color of a part of the search results was done. 
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The matching word in the results for the search query was changed to color green. For example if 

user entered the word “sjsu” in search text field, each “sjsu” word in the results was changed to 

color green.  These changes are shown in Figure 11 and Figure 12. 

The Yioop results before change. 

 

Figure 11: Yioop before code change 

 

The Yioop results after the color change. 

 

Figure 12: Yioop after code change 

 Yioop is an open source search engine and it was developed in PHP. The main goal and 

advantage of Yioop is that user can have control over the crawls done with Yioop if Yioop is 

already installed locally on user’s system. This helps users to get results from a known set of data 

rather from a massive crawl data by the popular search engines. Even from the Yioops website 

user can select the crawls from which he/she would like to get results from and can also select a 

mix of crawls as well. To get the advantages of Yioop search engine and the search results from 
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Yioop one should have knowledge or should learn about the crawling and index mechanisms 

done by search engines. [4] 

 The main entry point for Yioop is index.php which is the search engine main web page. 

This takes the query from user which is entered in the search query text box. The main folder 

that contains programs for the crawl is bin folder. This contains fetcher.php and 

queue_server.php. These two are needed to run the crawl after the initial installation and also do 

other crawls in future. Creation of WORK_DIRECTORY can be done when user signs-in as 

admin with the given user name and pass word. The user interface provides the availability to 

configure a work directory, manage crawls, manage roles, mix crawls, manage locales, manage 

users and manage accounts. The WORK_DIRECTORY set by user contains all the folders and 

the crawl sites and information in these folders. The Yioop configs folder contains all the 

necessary programs to carry out these tasks. Once the configuration is set and when user 

executes a crawl the controllers that are needed to perform the crawl and other activities exist in 

controllers folder in Yioop. Most of the requests made to Yioop comes to the entry point 

index.php and the query string after the “?” in the url informs the controller that is responsible 

for the specific request. The query request made contains a variable c= which tell Yioop which 

controller should be used to process the request. The arg= variable in the query request string tell 

which data should be retrieved to get the appropriate results and the models needed for the data 

and finally the views with which the results should be given back to users.[4] 

 The other folders like css, data, lib, locale, models, tests and views the basic styles used 

for Yioop, WORK_DIRECTORY information, scripts contain JavaScript files used by Yioop 

etc. 

 Schedules folder under work directory contains the folders with the time stamp in the 

folder name. The three main sub folders that schedule folder contain are index data folder, robot 

data folder and schedule data folder. All these folders contain the crawl data gained by the 

fetcher when it runs a crawl. This data will be processes by queue_server at later point during 

crawl. The information that comes from robot.txt files is stored in robot data folder. The 

schedules data folder contains the sites that are found during the web crawl and theses sites will 
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be later crawled by the crawler. As the sites are crawled these are added to the mini inverted 

index first and then later to the global index. The indexes are stored in Index data folder. [4] 

 Once the crawl is completed with the folders in the schedule folder the cache folder 

contains the entire cache of the web pages that were crawled. The cache folder contains 

Quebundle folder, Archive folder and Index data folder. The index data folder contains 

summaries and dictionaries folder inside. To serve search results Yioop relies on all of these 

folders. The queue_server.php is responsible for the Quebundle and Index data folders. 

Quebundleis responsible for the priority information for the queue to be processed during crawls. 

The cache of web pages crawled by the crawler are stored in Archivebundle folder. [4] 

6.4 Making a Toolbar Extension Communicate with Yioop 

After capturing the user clicked links the next step would be to send the captured data to 

Yioop server. This brings the need for communicating with Yioop into picture. At this point, data 

is sent to Yioop instantly whenever user data is captured without storing it at user end. 

As part of making communication with Yioop, a POST request is made to Yioop from 

toolbar button. All the links sent to Yioop are saved in a text file and a link is added to access 

this text file. To achieve this JavaScript was used at user end and PHP was used for POST at the 

server end which in this case was Yioop. As this was the development phase of the project, the 

Yioop code was located at the root folder at local host and the server side programming was 

done in the local host for deployment. The JavaScript function “Write” was coded to achieve this 

task. The function has got two arguments passed to it. One is URL and the other is content. This 

function was invoked at the end of getword function. 

The function “Write” has “createXHR” function called in it. The “createXHR” was to 

establish an http request, if the “readyState ==4” is yes then a connection will be opened to the 

given URL and makes a POST request. Then it will POST the content to the URL, which 

incase here it is http://localhost/yioop/ajax.php. 

               At server side the ajax.php is responsible for the POST request and to capture the 

content sent from the toolbar button. Once the content is received, the PHP program creates a 
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text file with the given name in the program and writes the content into the file. Once writing is 

done it closes the text file. Writing to the text was done in a+ mode. It is an append mode used 

for both writing and reading the content to the file. The a+ mode was used keeping the future 

project development in view.   

                 Accessing this file is done from Yioop index page instead of accessing it with typing 

the location of the file in the browser. A link is created with name “Activity” in the index page of 

the Yioop code. When clicked on the link it navigates to the page where links were saved. 

The code snippet is shown in Figure 13:  

JavaScript code where “Write” function is invoked in “getword” function 

 

Figure 13: Communicate with Yioop 

 

 

JavaScript code that shows how the “createXHR ()” and “Write ()” functions were implemented 

is given in the code shown in Figure 14. 
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Figure 14: Write and Ajax calls 

 

Ajax.php code that shows how the POST was handled and how the content was written into the 

text file is shown in Figure 15. 

 

Figure 15: Write at Yioop with POST 

7. Capture and Store User Search History 
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  User data that is captured by toolbar needs to be stored at user end. After storing a certain 

amount of data based in the conditional check the data will be sent to Yioop. We have chosen 

SQLite database to store the user end captured data.  

7.1 SQLite in brief 

SQLite is a light weight database and stores the data in the Firefox profiles folder. As the 

extension that is being built is a Firefox extension using SQLite database the storage of the user 

captured data in a SQLite database table would be appropriate. 

Most of the commands that work for SQL work in SQLite as well. The knowledge of 

how to access the SQLite database from command line is required. To access SQLite from 

command line we should go the default directory in the profiles folder. Profiles folder exists in 

Mozilla, Firefox. After going to the defaults directory we give the command > sqlite3 

example_databse.sqlite, here example_database is the name given to the database we want to 

store the data tables. In this database we can create, insert and retrieve tables. The database that 

we use to store the user end data is user_searchcapture.sqlite and the table is user_capture. 

 

7.2 Storage API 

To be able to work with SQLite database through the toolbar we need an API. Storage is 

an API for SQLite database. This can be used with only trusted components like Firefox 

extensions and components. [5] 

7.2.1 Steps in Storage API: 

Opening a connection with user_seaarchcapture.sqlite is shown in Figure 16 

 

 

Figure 16: Code for Opening an API connection 
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The code snippet above creates user_searchcapture.sqlite database in profile directory. 

 

Creating Statements and Binding Parameters 

After database is created the need arises for the creation of the table to store the data. The 

sequence of statements for creation and insertion of data into the table are done with CREATE; 

INSERT commands. The commands are shown in Figure 17 

 

Figure 17: create and insert in Storage SPI 

 

In the above code block above search_capture table is created with create statement. 

Insert statement inserts the values into the table. In storage API the values to be stored in the 

table need to bind with parameters. stmt.BibindingParamsArray(); is used to bind the parameters 

with the values. This is to increase the efficiency of the working of statements such as create and 

insert. 

At this point we included all the data values that we would like to capture when user 

clicks on a link. We captured the word that user clicked on with “event.target.innerHTML” , the 

link that user clicked and the target links are captured with window.content.loacation.href” and 

“event.target.href” respectively. Apart from these we are capturing the time stamp that user 

clicked on the link with “newDate()” function and the language of the web page that user clicked 

on is captured with content.document.getElementsByTagName("html")[0].getAttribute("lang"). 

All this data is captured at this point with a view point of Yioop search engine’s indexing and 

ranking strategies.  After this “stmt.executeAync();” executes all the statements and this results 

in creating table, inserting values into table. 
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8. Send User Search Capture To Yioop! 

After capturing the required data with user click, next step is to send the data stored in 

SQLite database table to Yioop periodically. Initially at the development stage the data amount 

we would like to set the condition and send to Yioop is 10 rows in the search_capture table. This 

means Once 10 rows are inserted into the table the data will be sent to Yioop. Once the 

development is completed this will be set to 50 rows. The component that sends the data from 

toolbar to Yioop is sendCapture function. 

The code block is shown in Figure 18 

 

 

Figure 18: Component to read data from table and send to Yioop. 

 

8.1 Component that communicates to Yioop! Periodically 

To retrieve the rows from table the initial steps of opening the connection with SQLite 

database has to be done. Then the statement (“SELECT * FROM search_capture”) would be 

executed. As this statement needs to be executed asynchronous and should return the result set, 
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we need to loop through the rows and store the rows in an array. The colnew array stores the 

rows retrieved from table while looping through the result set. After retrieving the rows from 

table the condition clonew.length is checked, if the condition returns true check the function 

“uploadAsync();” is called. This function is responsible to send the user capture data to Yioop. 

Data is sent to Yioop with a POST request. When sending data to Yioop we have to make a 

controller that receives the data send by toolbar. This controller is toolbar_controller.php. 

The flow of functional events at Yioop starts with idex.php and this calls the responsible 

controllers base on the request made. So this point should be taken into consideration while 

sending data to Yioop. 

The code block for uploadAsync() is shown in Figure 19 

 

 

Figure 19: UploadAsync function 

The POST request made by the uploadAsync() is an Ajax call. The line of code – params 

= "c=toolbar&a=toolbarTraffic&b=" + record; makes a request POST to Yioop’s index.php 

which recognizes “c=toolbar” as a legitimate user request as toolbar is added in the available 

controllers. 

This takes the flow of function to toolbar_controller.php which again checks for 

“a=toolbarTraffic” to process the request received. Then the data value at “b=" + record” will be 

written into a text file by toolbar_controller. Once the file is closed after writing record, a 

response text is sent back to the uploadAsync function. After the response text is received the 

deleteRows() function will be called which is responsible to delete all the rows from table 
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search_capture. And again the process of capturing data, storing in the database, retrieving from 

table, checking the periodic condition, upload to Yioop and deleting rows from table are all done 

sequentially after a successful upload. 

The code block for deleteRows() is shown in Figure 20 

 

Figure 20: Code block for deleteRows function 

 

8.2 Yioop’s Toolbar controller 

The component at Yioop end that is responsible for receiving the POST request made by 

toolbar Firefox extension is toolbar_controller.php. The main functionality of this component is 

to process the POST request and writes the data into text files with the given directory structure 

and the filename. 

The directory that we would like to place the toolbar data is 

CRAWL_DIR."/schedules/"."ToolbarData" 

The ip address of the computer from which toolbar data is noted with 

$_SERVER['REMOTE_ADDR']. 

Under Toolbardata folder a day folder with the day it received the data as name of the folder is 

created. This is done as $day = floor($time/86400). Once this is done under the day folder a text 

file with the name 

$data_hash = crawlHash($data_string); 
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 $fname= $dir."/At".$time."From".$address."WithHash$data_hash.txt"; 

After this step we open the file in a+ mode, write the toolbar data in file and close. Once we 

close the file a response text “OK TEST” will be sent back to toolbar extension. 

Writing the flies with filename in this specific format is to make the synchronization with the 

other folders under schedules folder. The folders that exist under schedules folder will be 

crawled by the Yioop crawl when we run a crawl from Yioop.  

The code block for toolbarTraffic function in toolbar_controller.php is shown in Figure 21  

 

Figure 21: toolbar_controller.php 

 

9. Yioop Component Ranking and Refining 

 Once data is in the text files with the required name format in the schedules directory and 

under Toolbar data folder this means that toolbar data is ready to be crawled by the fetcher.php 

and processed by queue_server.php. When a crawl is performed the data exists in the schedules 

directory and its subfolders including the toolbar data folder get crawled. This is achieved by 
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adding the necessary functions to the queue_server.php. These functions are to do the crawl of 

the data exists in the schedule folder under WORK_DIRECTORY and in scheduled folder find 

the “Toolbardata “ folder and the text file exist in the toolbar data folder. The function that is 

responsible for doing this task in the queue_server.php is shown in the Figure 22 

 

 

Figure 22: processToolbardata function 

In the function processToolbarData() the $index_dir tells the queue server too look for 

the assigned path and this path is given as an argument to the function 

processDataFile($index_dir, “processToolbardataInvertedIndex”). The function processDataFile 

is a generic function to find the sub folders under schedules directory and call the appropriate 

call back method. This function returns the $file which to the processToolbardataInvertedIndex 

function which process the data in the file and builds a ToolbarInvertedIndex. The code for 

function processDataFile is shown in Figure 23 
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Figure 23: processDataFile function 

Once the file to be crawled is returned from the processDataFile function to the 

processToolbardataInvertedIndex() function first reading the data from the file which contains 

the user captured data from the toolbar exists. While reading the file with file_get_contents, the 

first step is to read the file by the row delimiter which is a “,” in this case, with the explode 

function. This returns the lines of the file into the $row variable which we take it as rows for 

better reading purpose. The next step s to read these rows data with the other delimiter and in this 

case "|:|" with the explode function again. This gives the entire user captured data into array 

which in this case is $tok. The values from the $tok array are assigned to the 

$site[self::LINKS][$tok[2]]= $tok[0] which assigns the target link captured by user clicks, then 

$site[self::TIMESTAMP]= $tok[3] is assigned which is the timestamp of the user click the last 

value the language is assigned to the $site[self::ENCODING]= $tok[4] variable. The functional 

code to achieve this task if the function is shown in the Figure 24 
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Figure 24: reading the file 

 

Once the reading process from the file is done and the values captured are assigned to the 

$site variable set the next step is to build a toolbar_shard from these values. This process is to 

read the information about the urls in the self::LINKS. After reading the information the values 

are added to $seen_sites array as summaries.  Reading the values of $sites and adding it to the 

$summaries then storing it in the $seen_sites array is shown in the Figure 25 
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Figure 25: adding to summary  

 

After the summary is in the seen_sites array then the document words are extracted from 

the links and are added to the function addDocumentWords().This step is shown with the code in 

the Figure 26 

 

Figure 26: adding documentwords 

 

With this the data from the Toolbardata files are added to the summaries folder in the 

Index data folder in the cache folder of the work directory. The next is to create generations 

where the words from the links are added to the dictionaries folder in Index data folder under 

cache folder under work directory.  To achieve this step the function initGenerationToAdd is 

called and the toolbar_shard is given an argument to this function. Once adding the words to 

generation then the function changeDocumentOffsets is called and summary_offsets is given as 

an argument to this function and the result is stored in toolbar_shard. To achieve this process the 

how the functions are called and how summary_offsets are read is shown in Figure 27 

 

Figure 27: adding to summary offsets 
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After the reading step and adding to the toolbar shard next step is to add the 

toolbar_shard to the index_archive and then add the current shard dictionary once save and add 

is done then the merge All tires tales place which add the words to the merges to the dictionary. 

For achieving these steps a set of functions need to be called this set is  

$toolbar_shard->changeDocumentOffsets($summary_offsets); 

$this->index_archive->addIndexData($toolbar_shard); 

$this->index_dirty = true; 

unlink ($file); 

9.1 User gets refined results for their search queries 

 When a crawl is done with all the steps given in the previous section the toolbar data is 

ready for the user to return the results. The results are retrieved from the Index data folder under 

the cache folder which located in the work directory set by the user. With the functions added to 

the queue_server.php data will be stored in the summaries and dictionaries folders in the Index 

data folder in the cache. After finishing the crawl and when that particular crawl is set as the 

index then results generated for the user search queries are returned from that particular Index 

data folder. Thus user can perform various crawls and can get the results from that particular 

crawl.  

 

10. Testing the Toolbar 

The basic testing necessary to test the main functionality of our project is to check if the 

Yioop is returning the results based on the toolbar data. Return of results based on the toolbar 

data is dependent on synchronization of many factors such as data capture by tool bar, data 

transfer from tool bar to Yioop, data crawl by Yioop crawler, and data indexing.Process starts 

when the Smart search toolbar captures the data properly. Then the data should be received by 

the Yioop and Yioop crawler should be able to crawl the toolbar data and index the data to return 

the results. To make the testing process more effective we included only one url was included in 

the seed sites list to be crawled at the manage crawl user interface at Yioop server and that site is 

www.ucanbuyart.com this url should be returned only for the search query “art” and the rest of 

http://www.ucanbuyart.com/�
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the results should be from the toolbar data from Smart search toolbar. All the tests are run at 

local host during the development stage which is http://localhost/yioop/. 

 

Test 1 

 This test is conducted to check the basic functionality of the project requirement which is 

to verify that toolbar data captured based on user clicks will be returned in the results. Results 

can be returned only after the Yioop crawl of the toolbar data and indexing of the pages. In order 

to do the test execution, the data when user browsed the ajpm-gold web site was captured. The 

result was tested for the test query “Silver bullion”. The test results show that the requirements 

were met. In the Figure 28 we can observe the results returned by the localhost Yioop. 

 

 

Figure 28: Test1 returning results 

 

Test 2 

 Now we can test one more step further and see how the toolbar data helps to get better 

results. For this test the scenario we choose to test if the crawl performed with toolbar data can 

http://localhost/yioop/�
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return the results for those search queries where we are not yielding any search results at 

www.yioop.com. For this first we entered the search query “Padmini Paladugu” at 

www.yioop.com  and it returned 0 results then we entered the same search query “Padmini 

Paladugu” at http://localhost/yioop/ in this case we know the user clicked on the link at 

http://www.cs.sjsu.edu/faculty/pollett/masters/ and the link exists in the toolbar data. We can see 

the difference in the results in the given Figure 29 and Figure 30 below. 

When the search query “Padmini Paladugu” entered at www.yioop.com. 

 

 

Figure 29: Tests at Yioop  

 

When the search query “Padmini Paladugu” entered at http://localhost/yioop/ 

http://www.yioop.com/�
http://www.yioop.com/�
http://localhost/yioop/�
http://www.cs.sjsu.edu/faculty/pollett/masters/�
http://www.yioop.com/�
http://localhost/yioop/�
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Figure 30: Test at localhost Yioop  

In this test also we can observe that the result is given the Rank 9.40. 

 

Test 3 

 This test is to compare the search results given for the same search query at 

www.yioop.com and the tool bar installed http://localhost/yioop/. The tool bar data contains the user 

captured data from the url http://www.cs.sjsu.edu/faculty/pollett/masters/. 

When the search query “Vijaya Pamidi” query is given at http://localhost/yioop/ 

 

http://www.yioop.com/�
http://localhost/yioop/�
http://www.cs.sjsu.edu/faculty/pollett/masters/�
http://localhost/yioop/�


CS298 Report   A Firefox Add-On to Compute a Web Traffic Ranking 

38 
 

 

Figure 31: Test at localhost  

When the same query is given at www.yioop.com 

 

Figure 32: Test at Yioop  

 

http://www.yioop.com/�
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From these two tests the returned results url is same but we can observe the difference in 

the Rank is 0.14 for the www.yioop.com and the Rank is 9.40 for the http://localhost/yioop/. This 

variation in the ranks exists as the Yioop results are ranked by the links of the web pages that are 

crawled with open web and whereas the rank for the results from localhost Yioop is based on the 

particular data that gives the page a high rank. 

Test 4 

 In test4 we would like to test the relevance of the results returned for the same search 

query. For this we selected the search query “Silver”. We gave the same query in the Yioop and 

the local host. In this case as the user was asked to browse the ajpm-gold web site the more 

relevant result would be the link pointing to that web site. When the test was conducted the 

results given in both the cases is shown in Figure 33 and Figure 34 respectively. 

 

Figure 33: Test4 testing the relevance of results  

 

http://www.yioop.com/�
http://localhost/yioop/�
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Figure 34: Test4 testing the relevance of results 

Observations  

 The first observation from test 1 is that the toolbar data is getting crawled by the Yioop 

server and returning the results. From test 2 the second observation is toolbar data is obviously 

helping to return the results which Yioop is giving 0 results for a search query. With test 3 we 

can observe that the ranking given by the Yioop with toolbar data is high. The Yioop search 

engine’s ranking is based on the link of the web pages that Yioop crawled with the open web. 

The toolbar data sent to Yioop contains the user clicked links, the url user clicked, target url, 

timestamp and language. These details should help a particular url get a high rank compared to 

the rank the same url was getting with present Yioop search. This can be observed from test 3 as 

the result returned for the search query given has the rank 0.14 and for the same search query 

with the toolbar data test returned the same url in the search result but got a high rank of 9.40. 

The score of the Yioop is 0.06 for the url returned and where as the score for the same results 

with toolbar data is 4.96. 
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These tests conducted show that user having the Smart search toolbar Firefox extension 

provide a vast improvement to search for getting user centric search results and it is an added 

advantage for the Yioop users. 

11. Conclusion 

 The main goal of the Smart search Firefox add on is to return the user centric search 

results from which user gets better search results compared to the current once from the 

www.yioop.com. The user end functionalities of the toolbar extension, capture of the user clicks 

and the other related information when user clicks on a particular link on a web page are all 

achieved using the Smart search add on. Synchronization of data transfer from toolbar to Yioop 

to the target folder and the toolbar data crawl by Yioop is done efficiently. After the crawl by the 

queue server is completed then the results are returned for a particular search query entered by 

the user. From the tests performed it was shown that having the Smart search toolbar extension 

improvised the search experience for the users of Yioop search engine by getting better and more 

user centric search results. 

  When the user is installing the Smart search engine one should be aware of the 

advantages of this smart search toolbar for Yioop search engine and how this is advantageous to 

the user. More over the user should also be made aware that the most of the web browsing and 

links clicked by the user would be captured by the toolbar. 
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