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ABSTRACT 

 

EVALUATION OF CLASSICAL INTER-PROCESS COMMUNICATION PROBLEMS IN 

PARALLEL PROGRAMMING LANGUAGES 

By Arunesh Joshi 

 

 

It is generally believed for the past several years that parallel programming is the future of 

computing technology due to its incredible speed and vastly superior performance as compared 

to classic linear programming.  However, how sure are we that this is the case?  Despite its 

aforesaid average superiority, usually parallel-program implementations run in single-processor 

machines, making the parallelism almost virtual.  In this case, does parallel programming still 

remain superior? 

 

The purpose of this document is to research and analyze the performance, in both storage and 

speed, of three parallel-programming language libraries: OpenMP, OpenMPI and PThreads, 

along with a few other hybrids obtained by combining two of these three libraries.  These 

analyses will be applied to three classical multi-process synchronization problems: Dining 

Philosophers, Producers-Consumers and Sleeping Barbers. 
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INTRODUCTION                                                                                    1.0 

As the speed of new processor technologies continues to grow, so do the programming 

techniques that would obtain the most out of them.  Multi-core processors have followed this 

trend and even work stations with several physical processors promise to deliver higher 

performance rates than their predecessors. 

 

Recently, multi-core processors have become very popular.  Multi-core processing is now a 

trend in the growing technology industry, as single core processors have reached the physical 

limits of possible complexity and speed.  Programmers can make use of these multi-core 

processors by developing parallel programs.  Multiprocessing is defined as ―the coordinated 

processing of programs by more than one computer processor‖ [11].  It is a general term that 

can be used to describe the dynamic assignment of a program to one or more computers 

working in tandem, or it can involve multiple computers working on the same program in 

parallel. 

 

Multiprocessing can be either asymmetric or symmetric.  These terms refer to how the operating 

system divides tasks between the processors in the system [15] [20].  Asymmetric 

multiprocessing designates some processors to perform only system tasks, and others to only 

run applications.  This is a rigid design that results in a loss of performance during the times 

when the computer needs to run many system tasks and no user tasks, or vice versa.  Symmetric 

multiprocessing, often abbreviated as SMP, allows either system or user tasks to run on any 

processor, which is more flexible and therefore leads to better performance.  Most 

multiprocessing PC motherboards use SMP nowadays. 

 

Two or more threads operate simultaneously in a multithreaded program.  These threads 

communicate with each other using synchronization calls.  If two or more threads try to access 

the same memory location without any interfacing synchronization calls, a race condition 

occurs.  Due to the non-deterministic behavior of the multithreaded programs, data races are 

considered program errors, which are most difficult to find and debug.  Even if we run the 

program with the same inputs; data races are difficult to reproduce.  Data races do not crash the 

program immediately, but they corrupt the existing data structures.  Data races may even cause 

system failures in some unrelated codes.  Automatic race detection is a high priority research 

problem for the shared memory multithreaded programs.  Multiprocessing and multithreading 

can be effective if the computer system has a suitable operating system and motherboard 

support which utilizes a motherboard that is capable of handling multiple processors or a 

processor with multiple cores or a processor that can handle multiple threads. 
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1.1 DEADLOCKS 

In a multiprogramming environment, several processes may compete for a finite number of 

resources.  If the resources are not available at the time they are requested, the process enters a 

waiting state.  It is sometimes the case that some waiting processes may never change their state 

because other waiting processes hold the resources they have requested.  This situation is 

referred to as deadlock. 

 

A deadlock occurs when two or more tasks permanently block each other by virtue of each task 

having a lock on a resource, which the other tasks are simultaneously trying to lock.  Figure 1a 

represents a high-level view of a deadlock state where: 

 

1. Task T1 has a lock on resource R1 (indicated by 

the arrow from R1 to T1) and has requested a 

lock on resource R2 (indicated by the arrow from 

T1 to R2). 

2. Task T2 has a lock on resource R2 (indicated by 

the arrow from R2 to T2) and has requested a 

lock on resource R1 (indicated by the arrow from 

T2 to R1). 

3. Because neither task can continue until a resource 

is available and neither resource can be released 

until a task continues, a deadlock state exists. 

 

In order for a deadlock to occur, four conditions must apply:  

 

1. Mutual Exclusion - Each resource is either currently allocated to exactly one process or 

it is available. (Two processes cannot simultaneously control the same resource or be in 

their critical sections). 

2. Hold and Wait - Processes currently holding resources can request new ones. 

3. No Preemption - Once a process holds a resource, another process or the kernel cannot 

take it away. 

4. Circular Wait - Each process is waiting to obtain a resource, which is held by another 

process. 

 

Another method of avoiding deadlocks is to require additional information about how the 

resources are to be requested.  With the knowledge of the complete sequence of requests and 

releases for each process, we can decide for each one whether or not the process should wait. 

Figure 1a 
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The simplest and most effective method requires that each process declares the maximum 

number of resources of each type it may need.  Given prior information about the maximum 

number of resources of each type that may be requested for each process, it is possible to 

construct an algorithm that ensures that the system will never reach a deadlock state [10]. 

 

1.2 RACE CONDITION 

A race condition is the state in which one or more processes or threads attempt to concurrently 

modify a shared resource.  This results in a general failure of the application causing the shared 

resource to have an incorrect or non-synchronized value. 

For example, suppose 

there are two processes 

A and B, both 

processes have their 

own tasks to perform 

and share a common 

resource, ―Counter.‖  

One of their 

characteristics is that 

after some internal 

computations they have to increment the counter by one.  

 

As shown in the figure 1b, if both processes are without any kind of restricted access to the 

same resource, and they write to it simultaneously without taking into consideration any 

previous modifications made by other processes, the result is usually undefined. But as in the 

example, the counter will end up having the value of ―1,‖ whereas it should have the value ―2‖ 

because there has been one action on each process. 

 

In the following sections I will attempt to define several methods that can be implemented to 

successfully overcome and prevent any kind of race conditions in parallel programming. 

 

1.2.1 RACE CONDITION DETECTION TECHNIQUES 

Analysis of a multithreaded shared memory parallel application is a difficult task.  Due to the 

non-deterministic behavior of parallel application, it is difficult to find and debug errors.  Even 

if the code is modified, it is difficult to make sure that the error is actually corrected and not 

concealed.  Data race detection in parallel program is like an NP-problem.  There are two 

approaches for race detection in multithreaded programs [4] [18]. 

Figure 1b 
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1.2.1.1 STATIC ANALYSIS 

Static analysis employs compile-time analysis on source programs.  It finds all the execution 

paths in a program.  The static analysis tool is known for finding low-level programming errors 

such as null pointer de-references, buffer overflows, use of uninitialized variables, etc [19].  For 

race detection, the static analysis tool tries to find data races at compile time. Finding data races 

in parallel programs using static analysis is very difficult.  The Static Analysis Techniques are 

as follows:  

 

Model Checking: The model of a system, like hardware or software systems, is tested 

automatically, irrespective of whether this model meets the specifications.  The latter includes 

safety requirements so as to avoid deadlocks or race conditions.   

Data-flow Analysis: This technique gathers information about possible sets of values calculated 

at various points in a computer program.  A control flow graph (CFG) is used to determine 

those parts of a program to which a particular value assigned to a variable might propagate.  

Compilers, when optimizing a program, often use information gathered.  

 

Advantages: In order to detect the errors, static analyzers do not run a program.  A static 

analyzer does not depend on an execution environment.  

Disadvantages: It is very difficult to apply static analysis to find race conditions in 

multithreaded programs.  It is difficult to determine an interleaving between threads, so static 

analysis makes a conservative estimation.  Scaling is also difficult to achieve using static 

analysis and produces false positives.  

 

1.2.1.2 DYNAMIC ANALYSIS 

Dynamic race detector analyzes the trace generated by execution of a parallel program.  This 

trace contains memory accesses and synchronization operations done during the executions of a 

program.  Dynamic analysis is totally dependent on the input dataset.  So, it can be run more 

than once with a variety of datasets to assure the correctness of a program [21]. 

 

Advantages: Dynamic analysis generates fewer false positives as compared to the static 

analysis.  Dynamic analysis provides the reasonable accurate race detection for multithreaded 

shared-memory parallel programs.  

Disadvantages: Dynamic analysis analyzes traces of executed programs.  So, it does not 

consider all the possible execution paths of a program.  Dynamic analysis is not a sound 

predictor and race conditions can occur after dynamic analysis proves it to be correct.  Dynamic 

analysis is also dependent on the execution of a program, so it has overhead on the execution of 

a program. 



 

 

Spring 2011 - Computer Science – SJSU  13 

 

Henceforth it is assumed that the reader has previous knowledge of several topics, including 

threads, processors, processes, memory management, operating system, posix standards, C/C++ 

language, Inter-Process Communication (IPC), signals, Multi-Process Synchronization (MPS), 

mutual exclusion, multithreading, multiprocessing, distributed programming, deadlocks, locks / 

mutexes, race conditions, spin locks, critical sections, and semaphores. 

 

1.3 PTHREADS 

 

POSIX Threads is a standard 

library that defines a set of C 

language functions, constants, 

macros and types that allow 

the user to create and 

manipulate threads in a 

reliable way.  It consists of 

almost one hundred procedures, which are categorized according to their use; these categories 

are: thread control, mutual exclusion, conditional variables and synchronization.  As shown in 

figure 1c, a process can have multiple threads, and each thread is connected directly to the 

kernel, this latter will schedule the threads on different processors when available. 

 

With Pthreads the user will be able to create threads without going through much trouble, and 

since this library is traditionally implemented at the kernel level (Pthreads is KLT – Kernel 

Level Threads), Pthreads are subject to the operating system and are able to take advantage of 

certain capabilities (if present) such as SMP (symmetric multiprocessing). 

 

1.4 OMP 

Open Multi Processing is an application 

programming interface that supports 

shared memory multiprocessing in 

C/C++ and several other languages [9].   

Unlike regular libraries in which the 

user has to invoke several library 

procedures, OpenMP is implemented as 

a set of compiler directives supported 

by languages, such as C/C++ and Fortran. This makes its use a lot easier, simpler and powerful 

[7].  As it is shown in Figure 1d, the master thread’s execution is forked into five sub-tasks 

Figure 1c 

Figure 1d Figure 1d 
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running concurrently in parallel; once the sub-tasks (threads) are finished they join the master 

thread for continued execution. 

 

OpenMP is an implementation of multithreading, ―a method of parallelization whereby the 

master thread forks a specified number of slave threads and a task is divided among them‖ [8]. 

These threads run concurrently in the runtime environment which allocates threads to different 

processors.
  

The tasks that are commonly forked by the master thread are loop language 

structures such as blocks: while, do, and for [1].  These forked blocks will run in parallel until 

all of them are finished; the master thread will then continue its execution. 

 

1.5 MPI 

Open Message Passing Interface 

or OpenMPI is an open source 

library project that combines 

technologies and resources from 

several other projects, and 

represents the merging of 

contributions from FT-MPI 

(University of Tennessee), LA-

MPI (Los Alamos National 

Laboratory), LAM/MPI (Indiana University) and PACX-MPI (University of Stuttgart).  These 

four institutions comprise of the founding members of the OpenMPI development team (vide 

www.lam-mpi.org or www.open-mpi.org). 

 

Message passing interface (MPI) is an API specification that allows processes to communicate 

with one another by sending and receiving messages [6].  It’s typically used for parallel 

programs running on computer clusters, as briefly described in figure 1e.  MPI is a language-

independent communication protocol, which is able to manage processes remotely and 

conveniently for distributed multiprocessing purposes. 

 

The OMP, MPI and P-Threads libraries provide a great deal of advantage when parallel 

programming is the main objective.  How each of these libraries was used in the testing subjects 

(the multi-process synchronization problems) and the test results are described in subsequent 

sections. 

 

These three libraries let us successfully solve several IPC problems and avoid several error 

states such as an occurrence of a race condition.  The race and deadlock conditions in a shared- 

Figure 1e 

http://www.lam-mpi.org/
http://www.open-mpi.org/
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memory parallel program [2] are subtle and harder to find than in a sequential program.  These 

conditions cause non-deterministic and unexpected results from the program and are difficult to 

find in a multithreading environment.  In a sense, it is not easy to debug a multithreaded 

application, but there are ways to avoid these conditions while programming in multithreading 

languages, such as the ones mentioned above.  Research on this topic reveals that there are 

many ways to write a race and deadlock free code in a multithreading environment, but each 

language or MP library has its own way of writing this code [4] [16]. 

 

The problems chosen in this study for implementation in these languages are three classical IPC 

problems: Dining Philosopher, Producer Consumer and Sleeping Barber.  These problems have 

both deadlock and race conditions while they are executed.  The goal is to code these problems 

in such a way that the deadlock and race conditions will not occur, and we can plot the 

performance matrices easily.  Therefore, if a new programmer wants to use parallel 

programming language, he/she can choose the best one by using the results of performance 

matrices described in this study. 
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MPS PROBLEM DETAILS                                                                    2.0 

IPC or Inter-Process Communication is a set of techniques for the exchange of data among 

multiple threads in one or more processes.  Processes may be running on one or more computers 

connected by a network. IPC techniques are divided into methods for message passing, 

synchronization, shared memory and remote procedure calls (RPC).  The method of IPC used 

may vary based on the implementation library, bandwidth and latency of communication 

between the threads and the type of data being communicated.  MPS or Multi-Process 

Synchronization is a set of techniques where one or more threads or processes communicate 

with one another using simple IPC methods, in order to accomplish a specified task.  

 

MPS problems are simple statements that implicitly define a great deal of concurrency in which 

synchronization is a rather complex issue that must be correctly managed in order to fulfill the 

requirements of the problem. It also accomplishes the goals without errors of any kind.  Classic 

MPS problems are Dining Philosophers, Producer-Consumer and the Sleeping Barber, all of 

which will be briefly introduced below. 

 

2.1 DINING PHILOSOPHERS 

This problem is generalized as N philosophers sitting at a 

round table doing one of two things only, either thinking or 

eating, but not both.  Usually the problem is exemplified 

using five philosophers sitting at a circular table with a bowl 

of spaghetti for each one (shown as the cyan circles in figure 

2a); a fork is placed between each philosopher.  Each 

philosopher has one fork at their left, and one on their right.  

It is assumed that each philosopher will require two forks in 

order to eat; each subject can use only the forks immediately 

to his left and right.  The problem states that the philosophers cannot talk to each other, 

imposing a possible deadlock if the problem is solved incorrectly.  The solution to the problem 

is a state when all philosophers can eat and think concurrently, without leaving any philosopher 

to starve.  This problem is solved by using locks for each fork and not entering a deadlock state 

by checking if both forks are free before taking them. 

 

2.2 PRODUCER AND CONSUMER 

This problem, also known as a bounded-buffer problem, is a good example of MPS.  It 

describes two processes, the producer (P) and the consumer (C); they share a common fixed size 

Figure 2a 
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buffer, the producer’s job is to generate an item of data and put it into the buffer, this is 

perpetual. 

 

 At the same time, the consumer is consuming the data 

items (i.e. removing an item from the common buffer) 

one by one.  The problem states that no consumer (C) 

will attempt to remove data from an empty buffer, and 

no producer (P) will attempt to produce an item when the 

buffer is completely full.  This example shows a 

practical way of learning to manage shared resources; in 

this case the common item is the buffer.  The solution is 

achieved by means of a semaphore implemented as a 

counter between the range 0 to N, where N is the 

maximum length of the item buffer. 

 

2.3 SLEEPING BARBER 

This problem initially is stated using only one barber, and later on can be escalated to use more 

than one barber at the same barber shop.  However primarily, the problem is stated as having 

one barber at one barber shop. This barber has one chair for cutting hair and a waiting room for 

customers with N chairs.  

 

The barber finishes cutting a customer’s hair and goes to 

check if there are any customers in the waiting room; if 

there are, he brings one of them to the chair, cuts his hair 

and goes to check for more customers.  If there are no 

more customers waiting, he returns to a sleep state.  

Now, when another customer arrives, the customer 

looks at the barber to see what he is doing.  If the barber 

is sleeping, this customer gladly walks to him, wakes 

him up, sits in the chair and gets his hair cut.  If the 

barber was cutting hair, the new customer simply walks into the waiting room and waits, but if 

there are no empty chairs in the waiting room, he leaves. 

 

Despite of its simplicity, it’s very complicated to synchronize this barber shop to make it work 

perfectly all the time. The solution is to implement a simple mutual exclusion lock that will 

ensure that all the participants in one particular moment can change state only one at a time. 

Figure 2b 

Figure 2c 
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PTHREADS                                                                                              3.0 

Programming with PThreads presented no problems; all that is needed is to have the latest 

version of the PThreads library installed on your system.  In the C-files it is required to include 

the ―pthread.h‖ header file in order to use PThread’s procedures and structures, and remember 

to always compile using the ―-pthread‖ linker flag when using gcc, in order to embed the 

Pthread’s library in your final executable program. 

 

3.1 PTHREADS: DINING PHILOSOPHERS 

This problem was implemented in PThreads by the use of one-thread for each philosopher on 

the table; each thread has a target of N-eats, i.e. the number of eats a thread has to perform 

before finishing its execution.  

 

Given M-philosophers (M is a mandatory odd-number that cannot be even), an array of Forks 

using the type pthread_mutex_t is created for M elements.  This array represents the forks on 

the table, and is described as mutexes since they are resources that need to be managed.  M-

threads are also created, these are the philosopher threads, and each of these threads will 

perform the following. 

1. INT Id = Current Thread Number 

2. INT Num_Eats = 0 

3. INT State = ―THINKING‖ 

4. INT Left = Id 

5. INT Right = (Id + 1) MOD M 

6. WHILE Num_Eats < N 

a. IF State = ―THINKING‖ THEN 

i. IF pthread_mutex_trylock( Forks[Left] ) THEN 

1. IF pthread_mutex_trylock( Forks[Right] ) THEN 

a. State = ―EATING‖ 

2. ELSE 

a. Pthread_mutex_unlock( Forks[Left] ) 

3. END IF 

ii. END IF 

b. ELIF State = ―EATING‖ 

i. pthread_mutex_unlock( Forks[Left] ) 

ii. pthread_mutex_unlock( Forks[Right] ) 

iii. Num_Eats = Num_Eats + 1 

iv. State = ―THINKING‖ 

c. END IF 

7. END WHILE 

Code Listing 3a 
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3.2 PTHREADS: PRODUCER AND CONSUMER 

This problem was implemented in PThreads by using N threads for producers and M threads for 

consumers.  T is the total number of items to produce and K is the length of the item buffer. 

Note that the execution of the program is finished once the number of produced items reaches T.  

 

This Producer/Consumer problem was solved in PThreads by using one mutex (known as 

bufferLock) to protect a common resource (which in this case is the item buffer), and two index 

counters known as c_index for the consumer threads and p_index for the producer threads.  The 

consumer threads will get elements from the buffer at c_index offset, and the producers will 

produce items at the p_index. Both threads increment and wrap-around their indices, when 

necessary.  The pseudo-code implementation for this solution is shown below. 

INT Num_Items_Produced = 0 

1. THREAD PRODUCER 

a. INT Id = Current Thread Number 

b. WHILE Num_Items_Produced < T 

i. pthread_mutex_lock( bufferLock ) 

ii. IF Num_Items_Produced < T THEN 

1. buffer[p_index] = Random Number (Item) 

2. p_index = (1 + p_index) MOD K 

3. Num_Items_Produced = 1 + Num_Items_Produced 

4. Items_Available = 1 + Items_Available 

iii. END IF 

iv. pthread_mutex_unlock( bufferLock ) 

c. END WHILE 

2. END THREAD 

3. THREAD CONSUMER 

a. INT Id = Current Thread Number 

b. WHILE Num_Items_Consumed < T 

i. IF Items_Available = 0 THEN CONTINUE 

ii. pthread_mutex_lock( bufferLock ) 

iii. IF Num_Items_Consumed < T AND Items_Available > 0 THEN 

1. Consume Item at buffer[c_index] 

2. c_index = (1 + c_index) MOD K 

3. Num_Items_Consumed = 1 + Num_Items_Consumed 

4. Items_Available = Items_Available - 1 

iv. END IF 

v. pthread_mutex_unlock( bufferLock ) 

c. END WHILE 

4. END THREAD 

Code Listing 3b 
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3.3 PTHREADS: SLEEPING BARBER 

Given there are N chairs in the waiting room, B barbers threads, T haircuts to perform and C 

customers threads, the sleeping barber problem using PThreads was solved by one barber-state 

buffer (bsb) with B elements, and three mutex locks m1, m2 and m3. These locks are used as 

critical section sentinels to make sure certain areas remain single-threaded. 

1. THREAD BARBER 

2. INT Id = Current Thread Number 

a. WHILE Num_Customers_Serviced < T 

i. IF NOT (bsb[Id] = ―SLEEPING‖) THEN 

1. pthread_mutex_lock( m1 ) 

2. IF NOT (Chairs_Occupied = 0) THEN 

a. Num_Customers_Services += 1 

b. Chairs_Occupied -= 1 

c. State = ―READY‖ 

3. ELSE 

a. State = ―SLEEPING‖ 

4. END IF 

5. pthread_mutex_unlock( m1 ) 

6. bsb[Id] = State 

ii. END IF 

b. END WHILE 

3. END THREAD 

4. THREAD CLIENT 

5. INT Id = Current Thread Number 

a. WHILE Num_Customers_Serviced < T 

i. pthread_mutex_lock( m2 ) 

ii. FOR i = 0 TO B – 1 

1. IF bsb[Id] = ―SLEEPING‖ THEN 

a. Num_Customers_Services += 1 

b. bsb[Id] = ―READY‖ 

c. pthread_mutex_unlock( m2 ) 

d. GOTO 2.a 

2. END IF 

iii. END FOR 

iv. pthread_mutex_unlock( m2 ) 

v. pthread_mutex_lock( m1 ) 

vi. IF Chairs_Occupied < N THEN 

1. Chairs_Occupied += 1 

vii. END IF 

viii. pthread_mutex_unlock( m1 ) 

Code Listing 3c 
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b. END WHILE 

6. END THREAD 
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OMP                                                                                                           4.0 

OMP presented a few issues, primarily because the entire programming scheme had to be 

reconsidered in order to match the syntax and execution flow of a regular OMP program. The 

main feature of OMP is defined by forking the master thread and then re-joining it.  In the latest 

OMP library for the C-language, one should include the ―omp.h‖ header file in one's 

applications and remember to compile using the –fopenmp linker flag (when using gcc) in 

order to compile OpenMP programs.  Another important thing to always remember is that OMP 

requires a higher level of anti-race condition code. [17]. 

 

4.1 OMP: DINING PHILOSOPHERS 

This problem was implemented in OMP exactly as in PThreads, with the only exception that 

each PThread function call was replaced by its respective OMP C-preprocessor directive.  This 

is because OMP works with preprocessor directives rather than function calls. It makes it easier 

to use and escalate.  Refer to the section 3.1 to understand the meaning of certain variable 

names used in this code listing.  

 

Some of the issues encountered while using OMP are those related to synchronization of global 

variables.  The reason is that OMP provides a realistic parallel execution of each thread.  The 

global variables shared among the threads have to be protected by using the #omp critical or 

#omp atomic directives in order to prevent a race condition.  The following pseudo code listing 

explains the overall operation of the philosopher’s thread in the main program.  The OMP 

directives are kept as-are to avoid confusion. 

1. #pragma omp parallel shared(Num_Eats, N, M, Forks) private(Id,State,Left,Right) 

2. INT Id = omp_get_thread_num () 

3. INT State = ―THINKING‖ 

4. INT Left = Id 

5. INT Right = (Id + 1) MOD M 

6. WHILE Num_Eats < N 

a. IF State = ―THINKING‖ THEN 

i. IF omp_test_lock ( Forks[Left] ) THEN 

1. IF omp_test_lock ( Forks[Right] ) THEN 

a. State = ―EATING‖ 

2. ELSE 

a. omp_unset_lock ( Forks[Left] ) 

3. END IF 

ii. END IF 

b. ELIF State = ―EATING‖ 

i. omp_unset_lock ( Forks[Left] ) 

Code Listing 4a 
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ii. omp_unset_lock ( Forks[Right] ) 

iii. #pragma omp atomic 

iv. Num_Eats = Num_Eats + 1 

v. State = ―THINKING‖ 

c. END IF 

7. END WHILE 

 

4.2 OMP: PRODUCER AND CONSUMER 

Due to the nature and direct relation of PThreads and OMP (as both libraries provide 

multithreading mechanisms), this problem was solved in a similar way as in PThreads, with the 

obvious differences of more efficient anti-race condition codes.  Refer to section 3.2 to 

understand several variables shown in the code listing below. 

INT Num_Items_Produced = 0 

1. FUNCTION MAIN 

2. omp_set_num_threads ( N + M ) 

3. #pragma omp parallel private(Id) 

a. WHILE Num_Items_Produced < T OR Num_Items_Consumed < T 

b. Id = omp_get_thread_num () 

c. IF Id < N THEN 

i. PRODUCER(Id) 

d. ELSE 

i. CONSUMER(Id) 

e. END IF 

f. END WHILE 

4. END FUNCTION 

 

5.  FUNCTION PRODUCER ( Id : INT ) 

6. #pragma omp critical (GCS) 

a. IF Num_Items_Produced < T THEN 

i. buffer[p_index] = Random Number (Item) 

ii. p_index = (1 + p_index) MOD K 

iii. Num_Items_Produced = 1 + Num_Items_Produced 

iv. Items_Available = 1 + Items_Available 

b. END IF 

7. END THREAD 

 

8. FUNCTION CONSUMER ( Id : INT ) 

9. #pragma omp critical (GCS) 

a. IF Items_Available = 0 OR Num_Items_Consumed >= T THEN RETURN 

b. Consume Item at buffer[c_index] 

Code Listing 4b 
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c. c_index = (1 + c_index) MOD K 

d. Num_Items_Consumed = 1 + Num_Items_Consumed 

e. Items_Available = Items_Available - 1 

10. END THREAD 

 

As it can be seen, the PThreads’ buffer mutex was replaced in OMP by using a global critical 

section (GCS).  GCS is used to prevent each thread from modifying the global state variables 

and/or the items buffer, thus preventing a race condition. 

 

4.3 OMP: SLEEPING BARBER 

This was solved by using one barber-state buffer (bsb) with B elements, and two critical 

sections to protect the barber-buffer and the chairs-buffer.  The solution is similar to the one 

created for the PThreads problem.  Refer to section 3.3 for more information about several 

variables used in the following pseudo-code listing. 

1. FUNCTION MAIN 

2. omp_set_num_threads ( B + C ) 

3. #pragma omp parallel private(Id) shared(Num_Customers_Serviced) 

a. WHILE Num_Customers_Serviced < T 

b. Id = omp_get_thread_num () 

c. IF Id < B THEN 

i. BARBER(Id) 

d. ELSE 

i. CUSTOMER(Id) 

e. END IF 

f. END WHILE 

4. END FUNCTION 

 

5.  FUNCTION BARBER ( Id : INT ) 

6.  IF Num_Customers_Serviced < T THEN 

a. #pragma critical ( CBSS ) 

b. IF NOT (bsb[Id] = ―SLEEPING‖) THEN 

i. #pragma critical ( CCSS ) 

1. IF NOT (Chairs_Occupied = 0) THEN 

a. Num_Customers_Serviced += 1 

b. Chairs_Occupied -= 1 

c. State = ―READY‖ 

2. ELSE 

a. State = ―SLEEPING‖ 

3. END IF 

Code Listing 4c 
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4. bsb[Id] = State 

c.    END IF 

7.  END FUNCTION 

 

8. FUNCTION CUSTOMER ( Id : INT ) 

9. IF Num_Customers_Serviced < T THEN 

a. #pragma critical ( CBSS ) 

i. FOR i = 0 TO B – 1 

1. IF bsb[Id] = ―SLEEPING‖ THEN 

a. Num_Customers_Serviced += 1 

b. bsb[Id] = ―READY‖ 

c. RETURN 

2. END IF 

ii. END FOR 

b. #pragma critical ( CCSS ) 

i. IF Chairs_Occupied < N THEN 

1. Chairs_Occupied += 1 

ii. END IF 

10. END FUNCTION 

 

The CCSS (Check Chair State Section) and CBSS (Check Barber State Section) are critical 

areas that are used to protect the two most important global variables: the barber state and the 

chair state. 
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MPI                                                                                                            5.0 

MPI, also known as Message Passing Interface, is the distributed-parallel-programming library 

used for the next test.  One will require the latest MPI library to be installed on the system, if 

one is using Linux, an original implementation of MPI, such as LAM (www.lam-mpi.org) or 

OpenMPI (www.open-mpi.org) to prevent any problem.  If Windows is being used, the only 

reliable library is DeinoMPI (mpi.deino.net).  Compile using ―mpicc –g source.c‖, the ―-g‖ 

option.  This allows the compiler to attach debugging information, just in case one wants to 

debug the program.  In order to run an MPI program in a single machine the ―mpirun‖ 

command should be issued indicating the number of processes to run the program binary code, 

e.g. ―mpirun -np 18 a.out‖, this example specifies to run ―a.out‖ in 18 processes. 

 

MPI imposes several difficulties when it comes down to synchronizing the processes using the 

provided message interface. Since this communication channel is somewhat slow, it causes the 

application’s response time to be severely affected. 

 

5.1 MPI: DINING PHILOSOPHERS 

In the implementations of this problem described so far we had the ability to use a shared-buffer 

to describe the fork-states.  Using this scheme, we were able to synchronize all the philosophers 

without problems, but in MPI each process has its own memory-space.  MPI uses only mutex-

tool, controlled using messages generated by the processes. 

 

This problem was solved by implementing one monitor-process and N-philosopher processes. 

The monitor process is used primarily as a ―shared-resource‖ among all the other processes.  

Any kind of information regarding the state of the forks is obtained by sending and receiving 

messages to the monitor-process; the philosopher’s finish when a required amount of global eats 

(M) has been attained.  The following pseudo-code listing shows a brief description of the 

overall operation of the monitor and philosopher processes in this solution. 

1. PROCESS MONITOR 

2. NUM_EATS = 0 

3. WHILE NUM_EATS < M 

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE 

b. SWITCH MPI_MESSAGE_TAG 

i. CASE ―GRAB_FORKS‖ 

1. L = MPI_SENDER_PROCESS - 1 

2. R = MPI_SENDER_PROCESS MOD N 

3. IF FORKS[L] = 0 AND FORKS[R] = 0 THEN 

a. FORKS[L] = 1 

Code Listing 5a 

http://www.lam-mpi.org/
http://www.open-mpi.org/
http://mpi.deino.net/mpi_functions/index.htm
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b. FORKS[R] = 1 

c. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS) 

d. NUM_EATS++ 

4. ELSE 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

5. END IF 

ii. CASE ―RELEASE_FORKS‖ 

1. L = MPI_SENDER_PROCESS - 1 

2. R = MPI_SENDER_PROCESS MOD N 

3. FORKS[L] = 0 

4. FORKS[R] = 0 

5. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS) 

c. END SWITCH 

4. END WHILE 

5. SEND SIGNAL TO TERMINATE PROCESSES 1 TO N - 1 

6. END PROCESS 

 

7. PROCESS PHILOSOPHER 

8. STATE = ―THINKING‖ 

9. WHILE TERMINATION_SIGNAL NOT RECEIVED 

a. IF STATE = ―THINKING‖ THEN 

i. STATE = ―HUNGRY‖ 

b. ELIF STATE = ―HUNGRY‖ THEN 

i. MPI_SEND (―GRAB_FORKS‖) TO (0) 

ii. IF MESSAGE_RESPONSE = ―OK‖ THEN 

1. DELAY FOR RANDOM TIME 

2. MPI_SEND (―RELEASE_FORKS‖) TO (0) 

iii. END IF 

iv. STATE = ―THINKING‖ 

c. END IF 

10. END WHILE 

11. END PROCESS 

 

5.2 MPI: PRODUCER AND CONSUMER 

Using a similar technique as with the Philosophers, the Producer-Consumer was implemented 

using a monitor-process followed by N-Producer processes and M-consumer processes.  The 

monitor process provides the shared-item buffer for K-elements and a message handler that 

reads commands from the producer/consumer processes and interprets them.  The following 

pseudo-code listing describes the functionality of this scheme.  The simulation ends when the 

number of desired item productions are completed (T). 
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 PROCESS MONITOR 

 PRODUCED = 0, CONSUMED = 0 

 P_INDEX = 0, C_INDEX = 0, COUNT = 0 

 WHILE (PRODUCED < T) AND (CONSUMED < T) 

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE 

b. SWITCH MPI_MESSAGE_TAG 

i. CASE ―PRODUCE_ITEM‖ 

1. IF COUNT >= K THEN 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

b. CONTINUE 

2. END IF 

3. BUFFER [ P_INDEX ] = RANDOM () 

4. COUNT ++, PRODUCED++ 

5. P_INDEX = ++P_INDEX MOD K 

ii. CASE ―CONSUME_ITEM‖ 

1. IF COUNT = 0 THEN 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

b. CONTINUE 

2. END IF 

3. COUNT--, CONSUMED++ 

4. C_INDEX = ++C_INDEX MOD K 

5. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS) 

c. END SWITCH 

 END WHILE 

 SEND SIGNAL TO TERMINATE PROCESSES 

 END PROCESS 

 

 PROCESS CONSUMER 

 WHILE TERMINATION_SIGNAL NOT RECEIVED 

a. MPI_SEND (―CONSUME_ITEM‖) TO (0) 

b. IF MESSAGE_RESPONSE = ―OK‖ THEN 

i. PRINT ―ITEM CONSUMED‖ 

c. END IF 

 END WHILE 

 END PROCESS 

 

 PROCESS PRODUCER 

 WHILE TERMINATION_SIGNAL NOT RECEIVED 

a. MPI_SEND (―PRODUCER_ITEM‖) TO (0) 

b. IF MESSAGE_RESPONSE = ―OK‖ THEN 

Code Listing 5b 
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i. PRINT ―ITEM PRODUCED‖ 

c. END IF 

 END WHILE 

 END PROCESS 

 

5.3 MPI: SLEEPING BARBER 

In the same way as the previous tests, this solution involves using a monitor process that 

manages the chair and barber state buffers.  The process consists of barber processes (N), 

customer processes (M), number of chairs (C) and number of customers (T) needing service in 

order to finish the test. 

1. PROCESS MONITOR 

2. SERVICED = 0 

3. CHAIRS_USED = 0 

4. WHILE SERVICED < T 

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE 

b. SWITCH MPI_MESSAGE_TAG 

i. CASE ―SIT_AND_WAIT‖ 

1. IF CHAIRS_USED >= C THEN 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

b. CONTINUE 

2. END IF 

3. CHAIRS_USED++ 

4. MPI_SEND (―YES‖) TO (MPI_SENDER_PROCESS) 

ii. CASE ―WAKE_SOMEBODY_UP‖ 

1. FOR I = 0 TO N – 1  

a. IF BARBER_STATE[ I ] = ―SLEEPING‖ THEN 

i. BARBER_STATE[ I ] = ―CUTTING‖ 

ii. SERVICED++ 

iii. MPI_SEND (―OK‖) TO 

(MPI_SENDER_PROCESS) 

iv. EXIT SWITCH 

b. END IF 

2. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

iii. CASE ―SLEEP‖ 

1. BARBER_STATE [MPI_SENDER_PROCESS] = ―SLEEPING‖ 

iv. CASE ―CHECK_WAITING_ROOM‖ 

1. IF BARBER_STATE[MPI_SENDER_PROCESS] = ―SLEEPING‖ 

THEN 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

b. EXIT SWITCH 

Code Listing 5c 
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2. END IF 

3. IF CHAIRS_USED >= 0 THEN 

a. BARBER_STATE[MPI_SENDER_PROCESS] = 

―CUTTING‖ 

b. SERVICED++, CHAIRS_USED— 

c. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS) 

4. ELSE 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

5. END IF 

c. END SWITCH 

5. END WHILE 

6. SEND SIGNAL TO TERMINATE PROCESSES 

7. END PROCESS 

8. PROCESS BARBER 

9. WHILE TERMINATION_SIGNAL NOT RECEIVED 

a. MPI_SEND (―CHECK_WAITING_ROOM‖) TO (0) 

b. IF MESSAGE_RESPONSE = ―OK‖ THEN 

i. PRINT ―CUSTOMER SERVICED‖ 

c. ELSE 

i. MPI_SEND (―SLEEPING‖) TO (0) 

d. END IF 

10. END WHILE 

11. END PROCESS 

12. PROCESS CUSTOMER 

13. WHILE TERMINATION_SIGNAL NOT RECEIVED 

e. MPI_SEND (―WAKE_SOMEBODY_UP‖) TO (0) 

f. IF MESSAGE_RESPONSE = ―OK‖ THEN 

i. PRINT ―CUSTOMER SERVICED‖ 

g. ELSE 

i. MPI_SEND (―SIT_AND_WAIT‖) TO (0) 

b. END IF 

14. END WHILE 

15. END PROCESS 

 

A very important and curious fact should be noted: in all of the MPI solutions no mutexes or 

anti-race-condition measures were taken.  This is because, since all messages are coming in 

linearly through the MPI message queue one by one, the monitor process of each solution is 

able to respond to one request at a time, thus avoiding the need to implement any kind of mutual 

exclusion code.  When a huge amount of data needs to be processed, MPI seems to be 

effectively the best library, because of its distributed nature [12]. 
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OMP+MPI                                                                                                 6.0 

By creating a hybrid combination of MPI and OMP, one can obtain a slightly more optimized 

solution that will take advantage of the CPU’s resources on each machine.  By using MPI, one 

is able to create a distributed application very quickly.  Unfortunately MPI is very slow due to 

the message transmission [14] [16]. 

 

In previous test cases, the MPI was implemented treating each process like an atomic entity (i.e. 

monitor, producer, consumer, philosopher, etc).  Here’s where the OMP integration will come 

in handy: one can delegate more tasks to each process and instead of treating each process like 

atomic entities; one can treat them like blocks that hold several atomic entities. 

 

In order to compile this specific breed of code, one needs OpenMPI and OpenMP installed on 

one's system.  For more information refer to the proper sections above.  To compile, one will 

have to use mpicc and the linker option –fopenmp (i.e. mpicc –fopenmp program.c). 

 

6.1 OMP + MPI: DINING PHILOSOPHERS 

For this problem, the solution is quite simple.  One is still tied to the master/slave architecture of 

any MPI program [13].  However, this time each slave process will be treated like a block of 

atomic units, each atomic unit in this case is a philosopher thread running with OMP.  

 

The master thread’s task will be to balance the number of threads along all the slave processes 

to maintain a high level of performance.  Say one has 351 philosophers (N) and one must run 

the program using ―mpirun –np 10 philos.bin‖.  This will produce 1 master process and 9 slave 

processes (K).  Then the master thread will divide the 351 threads along the 9 slaves, resulting 

in a balance of 39 OMP threads on each slave process. 

1. PROCESS MONITOR 

2. NUM_EATS = 0 

3. THREADS = N / K 

4. TOTAL = N 

5. FOR I = 1 TO K 

a. IF TOTAL > THREADS THEN 

i. M = THREADS 

b. ELSE 

i. M = TOTAL 

c. END IF 

d. MPI_SEND ( M ) TO ( I ) 

e. TOTAL = TOTAL - M 

6. NEXT 

Code Listing 6a 
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7. WHILE NUM_EATS < M 

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE 

b. SWITCH MPI_MESSAGE_TAG 

i. CASE ―GRAB_FORKS‖ 

1. L = MPI_SENDER_PROCESS - 1 

2. R = MPI_SENDER_PROCESS MOD N 

3. IF FORKS[L] = 0 AND FORKS[R] = 0 THEN 

a. FORKS[L] = 1 

b. FORKS[R] = 1 

c. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS) 

d. NUM_EATS++ 

4. ELSE 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

5. END IF 

ii. CASE ―RELEASE_FORKS‖ 

1. L = MPI_SENDER_PROCESS - 1 

2. R = MPI_SENDER_PROCESS MOD N 

3. FORKS[L] = 0 

4. FORKS[R] = 0 

5. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS) 

c. END SWITCH 

8. END WHILE 

9. SEND SIGNAL TO TERMINATE PROCESSES 1 TO N 

10. END PROCESS 

11. PROCESS PHILOSOPHER_CONTROLLER 

12. omp_set_num_threads ( MPI_RECEIVE ( INT ) ) 

13. #pragma omp parallel 

a. PHILOSOPHER () 

14. END PROCESS 

15. THREAD PHILOSOPHER 

16. STATE = ―THINKING‖ 

17. WHILE V_TERMINATION_SIGNAL NOT RECEIVED 

a. IF STATE = ―THINKING‖ THEN 

i. STATE = ―HUNGRY‖ 

b. ELIF STATE = ―HUNGRY‖ THEN 

i. V_MPI_SEND (―GRAB_FORKS‖) TO (0) 

ii. IF V_MESSAGE_RESPONSE = ―OK‖ THEN 

1. DELAY FOR RANDOM TIME 

2. V_MPI_SEND (―RELEASE_FORKS‖) TO (0) 

iii. END IF 
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iv. STATE = ―THINKING‖ 

c. END IF 

18. END WHILE 

19. END THREAD 

 

The functions prefixed with ―V_‖ are aliases of the MPI message functions that are created 

locally in order to add the request to a queue.  Since the MPI does not allow a thread to use the 

message transmission interface, one has to queue all the requests from the threads in to a buffer 

and then process them from the main thread.  Sending messages from a thread will cause the 

MPI to produce very strange results at the end.  This is a limitation of the MPI’s thread safety 

implementation of the MPI library used. 

 

6.2 OMP + MPI: PRODUCER AND CONSUMER 

This solution is very similar to the one created for MPI, with the exception that instead of 

sending messages directly to the MPI library, one has to use the V_ wrappers to send them to 

the local process queue for later sending.  One needs to balance the threads along the processes. 

 

Since the producers-consumers problem has 2 entities (producers and consumers), one will need 

to specify how many processes will be assigned for each entity, and also the total threads for 

each entity. Using that information, one can determine how many threads each process will 

contain, and how many processes each entity will be holding. npProds and npCons tells the 

number of producer and consumer processes, in the same way, ntProds and ntCons tells the 

number of producer and consumer threads. 

1. PROCESS MONITOR 

2. P = 1 

3. THREADS = ntProds / npProds 

4. TOTAL = ntProds 

5. FOR I = 1 TO npProds 

a. IF TOTAL > THREADS THEN 

i. M = THREADS 

b. ELSE 

i. M = TOTAL 

c. END IF 

d. MPI_SEND ( M ) TO ( P ) 

e. TOTAL = TOTAL - M 

f. P = P + 1 

6. NEXT 

7. THREADS = ntCons / npCons 

Code Listing 6b 
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8. TOTAL = ntCons 

9. FOR I = 1 TO npCons 

a. IF TOTAL > THREADS THEN 

i. M = THREADS 

b. ELSE 

i. M = TOTAL 

c. END IF 

d. MPI_SEND ( M ) TO ( P ) 

e. TOTAL = TOTAL - M 

f. P = P + 1 

10. NEXT 

11. PRODUCED = 0, CONSUMED = 0 

12. P_INDEX = 0, C_INDEX = 0, COUNT = 0 

13. WHILE (PRODUCED < T) AND (CONSUMED < T) 

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE 

b. SWITCH MPI_MESSAGE_TAG 

i. CASE ―PRODUCE_ITEM‖ 

1. IF COUNT >= K THEN 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

b. CONTINUE 

2. END IF 

3. BUFFER [ P_INDEX ] = RANDOM () 

4. COUNT ++, PRODUCED++ 

5. P_INDEX = ++P_INDEX MOD K 

ii. CASE ―CONSUME_ITEM‖ 

1. IF COUNT = 0 THEN 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

b. CONTINUE 

2. END IF 

3. COUNT--, CONSUMED++ 

4. C_INDEX = ++C_INDEX MOD K 

5. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS) 

c. END SWITCH 

14. END WHILE 

15. SEND SIGNAL TO TERMINATE PROCESSES 

16. END PROCESS 

17. PROCESS CONSUMER_CONTROLLER 

18. omp_set_num_threads ( MPI_RECEIVE ( INT ) ) 

19. #pragma omp parallel 

b. CONSUMER () 
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20. END PROCESS 

21. PROCESS PRODUCER_CONTROLLER 

22. omp_set_num_threads ( MPI_RECEIVE ( INT ) ) 

23. #pragma omp parallel 

c. PRODUCER () 

24. END PROCESS 

25. THREAD CONSUMER 

26. WHILE V_TERMINATION_SIGNAL NOT RECEIVED 

a. V_MPI_SEND (―CONSUME_ITEM‖) TO (0) 

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN 

i. PRINT ―ITEM CONSUMED‖ 

c. END IF 

27. END WHILE 

28. END PROCESS 

29. THREAD PRODUCER 

30. WHILE V_TERMINATION_SIGNAL NOT RECEIVED 

d. V_MPI_SEND (―PRODUCER_ITEM‖) TO (0) 

e. IF V_MESSAGE_RESPONSE = ―OK‖ THEN 

i. PRINT ―ITEM PRODUCED‖ 

f. END IF 

31. END WHILE 

32. END PROCESS 

 

If the number of threads specified is not divisible by the number of processes, the monitor 

process will assign a few extra threads to the last slave process in order to match the wanted 

number of threads. 

 

6.3 OMP + MPI: SLEEPING BARBER 

Similar to the previous tests, this solution involves using a global monitor process that manages 

the chair and barber state buffers and acts like an intermediary between the other processes.  It 

consists of barber processes (N), customer processes (M), number of chairs (C) and number of 

customers (T) needed service in order to finish the test, also the number of threads for the 

barbers (A) and the number of threads for the customers (B). 

1. PROCESS MONITOR 

2. P = 1 

3. THREADS = A / N 

4. TOTAL = A 

5. FOR I = 1 TO N 

a. IF TOTAL > THREADS THEN 

Code Listing 6c 
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i. M = THREADS 

b. ELSE 

i. M = TOTAL 

c. END IF 

d. MPI_SEND ( M ) TO ( P ) 

e. TOTAL = TOTAL - M 

f. P = P + 1 

6. NEXT 

7. THREADS = B / M 

8. TOTAL = B 

9. FOR I = 1 TO M 

a. IF TOTAL > THREADS THEN 

i. M = THREADS 

b. ELSE 

ii. M = TOTAL 

c. END IF 

d. MPI_SEND ( M ) TO ( P ) 

e. TOTAL = TOTAL - M 

f. P = P + 1 

10. NEXT 

11. SERVICED = 0 

12. CHAIRS_USED = 0 

13. WHILE SERVICED < T 

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE 

b. SWITCH MPI_MESSAGE_TAG 

i. CASE ―SIT_AND_WAIT‖ 

1. IF CHAIRS_USED >= C THEN 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

b. CONTINUE 

2. END IF 

3. CHAIRS_USED++ 

4. MPI_SEND (―YES‖) TO (MPI_SENDER_PROCESS) 

ii. CASE ―WAKE_SOMEBODY_UP‖ 

1. FOR I = 0 TO N – 1  

a. IF BARBER_STATE[ I ] = ―SLEEPING‖ THEN 

i. BARBER_STATE[ I ] = ―CUTTING‖ 

ii. SERVICED++ 

iii. MPI_SEND (―OK‖) TO 

(MPI_SENDER_PROCESS) 

iv. EXIT SWITCH 
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b. END IF 

2. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

iii. CASE ―SLEEP‖ 

1. BARBER_STATE [MPI_SENDER_PROCESS] = ―SLEEPING‖ 

iv. CASE ―CHECK_WAITING_ROOM‖ 

1. IF BARBER_STATE[MPI_SENDER_PROCESS] = ―SLEEPING‖ 

THEN 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

b. EXIT SWITCH 

2. END IF 

3. IF CHAIRS_USED >= 0 THEN 

a. BARBER_STATE[MPI_SENDER_PROCESS] = 

―CUTTING‖ 

b. SERVICED++, CHAIRS_USED— 

c. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS) 

4. ELSE 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

5. END IF 

c. END SWITCH 

14. END WHILE 

15. SEND SIGNAL TO TERMINATE PROCESSES 

16. END PROCESS 

17. PROCESS BARBER_CONTROLLER 

18. omp_set_num_threads ( MPI_RECEIVE ( INT ) ) 

19. #pragma omp parallel 

a. BARBER () 

20. END PROCESS 

21. PROCESS CUSTOMER_CONTROLLER 

22. omp_set_num_threads ( MPI_RECEIVE ( INT ) ) 

23. #pragma omp parallel 

a. CUSTOMER () 

24. END PROCESS 

25. THREAD BARBER 

26. WHILE V_TERMINATION_SIGNAL NOT RECEIVED 

a. V_MPI_SEND (―CHECK_WAITING_ROOM‖) TO (0) 

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN 

i. PRINT ―CUSTOMER SERVICED‖ 

c. ELSE 

i. V_MPI_SEND (―SLEEPING‖) TO (0) 

d. END IF 



 

 

Spring 2011 - Computer Science – SJSU  38 

 

27. END WHILE 

28. END THREAD 

29. THREAD CUSTOMER 

30. WHILE V_TERMINATION_SIGNAL NOT RECEIVED 

a. V_MPI_SEND (―WAKE_SOMEBODY_UP‖) TO (0) 

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN 

i. PRINT ―CUSTOMER SERVICED‖ 

c. ELSE 

ii. V_MPI_SEND (―SIT_AND_WAIT‖) TO (0) 

d. END IF 

31. END WHILE 

32. END THREAD 
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PTHREADS+MPI                                                                                    7.0 

Similar to the previous test case when OMP was combined with MPI, one is able to make 

another hybrid resulting from merging PThreads multithreading library with MPI.  One will 

require the same items that were mentioned in the PThreads and MPI sections, respectively.  

The same principle will apply, that is, using a primary monitor process that will act like a shared 

resources manager.  

 

In order to compile this type of code, one needs OpenMPI and PThreads installed on one's 

system, for more information refer to the proper sections.  To compile, one will have to use 

mpicc and the linker option –pthread (i.e. mpicc –pthread program.c). 

 

7.1 PTHREADS + MPI: DINING PHILOSOPHERS 

Again, the brief description of this solution might be somewhat redundant, as it is the same as 

the one used for the previous test (when OMP and MPI was combined).  Skipping over to the 

pseudo-code listing for this code, K is the number of philosophers to use, remember that K must 

be an odd number, or else an error will be issued and N is the number of threads to assign for 

the purpose of this problem. 

1. PROCESS MONITOR 

2. NUM_EATS = 0 

3. THREADS = N / K 

4. TOTAL = N 

5. FOR I = 1 TO K 

a. IF TOTAL > THREADS THEN 

i. M = THREADS 

b. ELSE 

i. M = TOTAL 

c. END IF 

d. MPI_SEND ( M ) TO ( I ) 

e. TOTAL = TOTAL - M 

6. NEXT 

7. WHILE NUM_EATS < M 

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE 

b. SWITCH MPI_MESSAGE_TAG 

i. CASE ―GRAB_FORKS‖ 

1. L = MPI_SENDER_PROCESS - 1 

2. R = MPI_SENDER_PROCESS MOD N 

3. IF FORKS[L] = 0 AND FORKS[R] = 0 THEN 

a. FORKS[L] = 1 

Code Listing 7a 
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b. FORKS[R] = 1 

c. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS) 

d. NUM_EATS++ 

4. ELSE 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

5. END IF 

ii. CASE ―RELEASE_FORKS‖ 

1. L = MPI_SENDER_PROCESS - 1 

2. R = MPI_SENDER_PROCESS MOD N 

3. FORKS[L] = 0 

4. FORKS[R] = 0 

5. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS) 

c. END SWITCH 

8. END WHILE 

9. SEND SIGNAL TO TERMINATE PROCESSES 1 TO N 

10. END PROCESS 

 

11. PROCESS PHILOSOPHER_CONTROLLER 

12. INT THREADS = MPI_RECEIVE ( INT ) 

13. FOR I = 1 TO THREADS 

a. PTHREAD_ALLOC_THREAD (&PHILOSOPHER) 

14. NEXT 

15. END PROCESS 

 

16. FUNCTION PHILOSOPHER 

17. STATE = ―THINKING‖ 

18. WHILE V_TERMINATION_SIGNAL NOT RECEIVED 

a. IF STATE = ―THINKING‖ THEN 

i. STATE = ―HUNGRY‖ 

b. ELIF STATE = ―HUNGRY‖ THEN 

i. V_MPI_SEND (―GRAB_FORKS‖) TO (0) 

ii. IF V_MESSAGE_RESPONSE = ―OK‖ THEN 

1. DELAY FOR RANDOM TIME 

2. V_MPI_SEND (―RELEASE_FORKS‖) TO (0) 

iii. END IF 

iv. STATE = ―THINKING‖ 

c.  END IF 

19. END WHILE 

20. END FUNCTION 
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The function named ―PTHREAD_ALLOC_THREAD‖ encapsulates the thread initialization, 

i.e. creating a handle for the thread, initializing the handle with the appropriate attributes and 

then setting the entry point to the provided address of the function. 

 

7.2 PTHREADS + MPI: PRODUCER AND CONSUMER 

The overall functionality of this solution is incredibly similar to the OMP+MPI solution.  For 

these problems, the main and only difference is the use of the PThreads library to allocate 

threads, whereas the other solution used OMP.  The variables used here are npProds and 

npCons.  These specify the number of producers and consumers (processes), and ntProds and 

ntCons which tell the number of threads for each entity. 

1. PROCESS MONITOR 

2. P = 1 

3. THREADS = ntProds / npProds 

4. TOTAL = ntProds 

5. FOR I = 1 TO npProds 

a. IF TOTAL > THREADS THEN 

i. M = THREADS 

b. ELSE 

i. M = TOTAL 

c. END IF 

d. MPI_SEND ( M ) TO ( P ) 

e. TOTAL = TOTAL - M 

f. P = P + 1 

6. NEXT 

7. THREADS = ntCons / npCons 

8. TOTAL = ntCons 

9. FOR I = 1 TO npCons 

a. IF TOTAL > THREADS THEN 

i. M = THREADS 

b. ELSE 

ii. M = TOTAL 

c. END IF 

d. MPI_SEND ( M ) TO ( P ) 

e. TOTAL = TOTAL - M 

f. P = P + 1 

10. NEXT 

11. PRODUCED = 0, CONSUMED = 0 

12. P_INDEX = 0, C_INDEX = 0, COUNT = 0 

13. WHILE (PRODUCED < T) AND (CONSUMED < T) 

Code Listing 7b 
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a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE 

b. SWITCH MPI_MESSAGE_TAG 

i. CASE ―PRODUCE_ITEM‖ 

1. IF COUNT >= K THEN 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

b. CONTINUE 

2. END IF 

3. BUFFER [ P_INDEX ] = RANDOM () 

4. COUNT ++, PRODUCED++ 

5. P_INDEX = ++P_INDEX MOD K 

ii. CASE ―CONSUME_ITEM‖ 

1. IF COUNT = 0 THEN 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

b. CONTINUE 

2. END IF 

3. COUNT--, CONSUMED++ 

4. C_INDEX = ++C_INDEX MOD K 

5. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS) 

c. END SWITCH 

14. END WHILE 

15. SEND SIGNAL TO TERMINATE PROCESSES 

16. END PROCESS 

 

17. PROCESS CONSUMER_CONTROLLER 

18. INT THREADS =  MPI_RECEIVE ( INT ) 

19. FOR I = 1 TO THREADS 

a. PTHREAD_ALLOC_THREAD (&CONSUMER) 

20. NEXT 

21. END PROCESS 

 

22. PROCESS PRODUCER_CONTROLLER 

23. INT THREADS = MPI_RECEIVE ( INT ) 

24. FOR I = 1 TO THREADS 

a. PTHREAD_ALLOC_THREAD (&PRODUCER) 

25. END PROCESS 

 

26. FUNCTION CONSUMER 

27. WHILE V_TERMINATION_SIGNAL NOT RECEIVED 

a. V_MPI_SEND (―CONSUME_ITEM‖) TO (0) 

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN 
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i. PRINT ―ITEM CONSUMED‖ 

c. END IF 

28. END WHILE 

29. END FUNCTION 

 

30. FUNCTION PRODUCER 

31. WHILE V_TERMINATION_SIGNAL NOT RECEIVED 

a. V_MPI_SEND (―PRODUCER_ITEM‖) TO (0) 

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN 

i. PRINT ―ITEM PRODUCED‖ 

c. END IF 

32. END WHILE 

33. END FUNCTION 

 

7.3 PTHREADS + MPI: SLEEPING BARBER 

The variables used for these solutions are: N: Number of Barber processes; M: Number of 

Customer processes; C: Number of chairs in the waiting room and T: Number of customers 

serviced to reach in order to finish the test; A: Number of threads for barbers and B: Number of 

threads for customers. 

1. PROCESS MONITOR 

2. P = 1 

3. THREADS = A / N 

4. TOTAL = A 

5. FOR I = 1 TO N 

a. IF TOTAL > THREADS THEN 

iii. M = THREADS 

b. ELSE 

iv. M = TOTAL 

c. END IF 

d. MPI_SEND ( M ) TO ( P ) 

e. TOTAL = TOTAL - M 

f. P = P + 1 

6. NEXT 

7. THREADS = B / M 

8. TOTAL = B 

9. FOR I = 1 TO M 

a. IF TOTAL > THREADS THEN 

i. M = THREADS 

b. ELSE 

i. M = TOTAL 

Code Listing 7c 
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c. END IF 

d. MPI_SEND ( M ) TO ( P ) 

e. TOTAL = TOTAL - M 

f. P = P + 1 

10. NEXT 

11. SERVICED = 0 

12. CHAIRS_USED = 0 

13. WHILE SERVICED < T 

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE 

b. SWITCH MPI_MESSAGE_TAG 

i. CASE ―SIT_AND_WAIT‖ 

1. IF CHAIRS_USED >= C THEN 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

b. CONTINUE 

2. END IF 

3. CHAIRS_USED++ 

4. MPI_SEND (―YES‖) TO (MPI_SENDER_PROCESS) 

ii. CASE ―WAKE_SOMEBODY_UP‖ 

1. FOR I = 0 TO N – 1  

a. IF BARBER_STATE[ I ] = ―SLEEPING‖ THEN 

i. BARBER_STATE[ I ] = ―CUTTING‖ 

ii. SERVICED++ 

iii. MPI_SEND (―OK‖) TO 

(MPI_SENDER_PROCESS) 

iv. EXIT SWITCH 

b. END IF 

2. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

iii. CASE ―SLEEP‖ 

1. BARBER_STATE [MPI_SENDER_PROCESS] = ―SLEEPING‖ 

iv. CASE ―CHECK_WAITING_ROOM‖ 

1. IF BARBER_STATE[MPI_SENDER_PROCESS] = ―SLEEPING‖ 

THEN 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

b. EXIT SWITCH 

2. END IF 

3. IF CHAIRS_USED >= 0 THEN 

a. BARBER_STATE[MPI_SENDER_PROCESS] = 

―CUTTING‖ 

b. SERVICED++, CHAIRS_USED— 

c. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS) 
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4. ELSE 

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS) 

5. END IF 

c. END SWITCH 

14. END WHILE 

15. SEND SIGNAL TO TERMINATE PROCESSES 

16. END PROCESS 

 

17. PROCESS BARBER_CONTROLLER 

18. INT THREADS = MPI_RECEIVE ( INT ) 

19. FOR I = 1 TO THREADS 

a. PTHREAD_ALLOC_THREAD (&BARBER) 

20. NEXT 

21. END PROCESS 

 

22. PROCESS CUSTOMER_CONTROLLER 

23. INT THREADS = MPI_RECEIVE ( INT ) 

24. FOR I = 1 TO THREADS 

a. PTHREAD_ALLOC_THREAD (&CUSTOMER) 

25. NEXT 

26. END PROCESS 

 

27. FUNCTION BARBER 

28. WHILE V_TERMINATION_SIGNAL NOT RECEIVED 

a. V_MPI_SEND (―CHECK_WAITING_ROOM‖) TO (0) 

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN 

i. PRINT ―CUSTOMER SERVICED‖ 

c. ELSE 

i. V_MPI_SEND (―SLEEPING‖) TO (0) 

d. END IF 

e. END IF 

29. END WHILE 

30. END FUNCTION 

 

31. FUNCTION CUSTOMER 

32. WHILE V_TERMINATION_SIGNAL NOT RECEIVED 

a. V_MPI_SEND (―WAKE_SOMEBODY_UP‖) TO (0) 

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN 

i. PRINT ―CUSTOMER SERVICED‖ 

c. ELSE 
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ii. V_MPI_SEND (―SIT_AND_WAIT‖) TO (0) 

f. END IF 

33. END WHILE 

34. END FUNCTION 
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TEST SCENARIO                                                                                    8.0 

 

 Single Core Dual Core Quad Core MTL 

Hardware Intel® 

Pentium® 4 

Processor (2.60 

GHz, 512K 

Cache, 800 

MHz FSB) 

2 GB RAM 

Intel® Core™2 

Duo Processor 

E4700 

(2M Cache, 2.60 

GHz, 800 MHz 

FSB) 

2 GB RAM 

 Intel® Core™2 

Quad Processor 

Q6700  

(8M Cache, 2.66 

GHz, 1066 MHz 

FSB) 

2 GB RAM 

Intel 32 Core 

Processor 

Operating System 

and Software 

Packages. 

Linux Ubuntu 

10.4 

OpenMPI 1.4.3 

OpenMP 3.0 

Linux Ubuntu 

10.4 

OpenMPI 1.4.3 

OpenMP 3.0 

Linux Ubuntu 

10.4 

OpenMPI 1.4.3 

OpenMP 3.0 

N/A 

Hardware and Software configuration used for Testing 

 

 Case 1 Case 2 Case 3 

Dining Philosopher M1 = 3-257 

N1  = 100 

M1 = 3-257 

N1 = 1000 

M1 = 3-257 

N1 = 10000 

Producer Consumer M2 = 2-256 

N2  = 2-256 

O2  = 2000 

P2   = 2000 

M2 = 2-256 

N2  = 2-256 

O2  = 20000 

P2   = 2000 

M2= 2-256 

N2 = 2-256 

O2 = 200000 

P2  = 2000 

Sleeping Barber M3 = 150 

N3  = 2-256 

O3  = 200 

P3   = 2-256 

M3 = 150 

N3 =  2-256 

O3  = 2000 

P3   = 2-256 

M3 = 150 

N3  = 2-256 

O3  = 20000 

P3   = 2-256 

Test Cases for Inter-Process Communication Problems 

 

 M1 - Philosopher Threads / Processes, N1 - Total Eats 

 

 M2 - Producer Threads / Processes, N2 - Consumer Threads / Processes, O2 - Total 

Packets, P2 - Buffer Size 

 

 M3 - Chairs in Barber Shop, N3 - Barber Threads / Processes, O3 - Total Haircuts, P3 - 

Client Threads / Processes 

 

 

 

 

 

Table 8a 

Table 8b 



 

 

Spring 2011 - Computer Science – SJSU  48 

 

RESULTS                                                                                                  9.0 

9.1 DINING PHILOSOPHERS 
 

 

Dining Philosophers execution time in Seconds vs. Threads / Processes (Quad Core – Test Case 2) 

 

 

Dining Philosophers memory consumption in MiB vs. Threads / Processes (Quad Core – Test Case 2) 

*The MiB or mebibyte is a multiple of the unit byte for quantities of digital information. The binary prefix 

mebi means 2
20

, therefore 1 mebibyte is 1048576bytes. 

Graph 9.1b 

Graph 9.1a 
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9.2 PRODUCER AND CONSUMER 

 

 

Producer Consumer execution time in Seconds vs. Threads / Processes (Quad Core – Test Case 2) 

 

 

Producer Consumer memory consumption in MiB vs. Threads / Processes (Quad Core – Test Case 2) 

 

*The MiB or mebibyte is a multiple of the unit byte for quantities of digital information. The binary prefix 

mebi means 2
20

, therefore 1 mebibyte is 1048576bytes. 

 

Graph 9.2a 

Graph 9.2b 
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9.3 SLEEPING BARBER 

 

 

Sleeping Barber execution time in Seconds vs. Threads / Processes (Quad Core – Test Case 2) 

 

 

Sleeping Barber memory consumption in MiB vs. Threads / Processes (Quad Core – Test Case 2) 

 

*The MiB or mebibyte is a multiple of the unit byte for quantities of digital information. The binary prefix 

mebi means 2
20

, therefore 1 mebibyte is 1048576bytes. 

Graph 9.3a 

Graph 9.3b 
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9.4 MTL RESULTS 

 

 

Dining Philosophers execution time in Seconds vs. Threads (32 Core MTL – Test Case 2) 

 

 

Producer Consumer execution time in Seconds vs. Threads (32 Core MTL – Test Case 2) 

 

 

Sleeping Barber execution time in Seconds vs. Threads (32 Core MTL – Test Case 2) 

Graph 9.4b 

Graph 9.4c 

Graph 9.4a 
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9.5 PERFORMANCE STATISTICS 

 

 OpenMP OpenMPI PThreads 
OpenMP + 

OpenMPI 

PThreads + 

OpenMPI 

Dual Core Vs. 

Single Core 10% 4% 9% 8% 7% 

Quad Core Vs. 

Single Core 22% 9% 17% 16% 15% 

Performance Gain by decrease in execution time 

 
Performance Gain 

 

 OpenMP OpenMPI PThreads 
OpenMP + 

OpenMPI 

PThreads + 

OpenMPI 

Dual Core Vs. 

Single Core 
3% 10% 4% 6% 7% 

Quad Core Vs. 

Single Core 
6% 22% 9% 14% 15% 

Increase in memory consumption by decrease in execution time 

 
Memory Consumption 

Table 9a 

Table 9b 

Graph 9.5a 

Graph 9.5b 



 

 

Spring 2011 - Computer Science – SJSU  53 

 

ANALYSES                                                                                             10.0 

From the analyses of graphs and performance matrices, it can be concluded that due to context 

switching and OS scheduling policies, a CPU can run several threads concurrently over a 

system.  But with an increase in the number of threads, the performance can rise up to a certain 

limit, rather than increasing infinitely.  After that, if we increase more threads the performance 

starts degrading.  This is due to the fact that as more threads are created, the kernel management 

modules become too overloaded to handle such level of threads, resulting in a noticeable 

degradation of the performance.  This saturation of kernel management related to multi-

threading can be seen in the following figure. 

 

 

For the presented inter-process communication problems, until now, OpenMP has, undoubtedly, 

proven to be the best contender in both performance and memory usage. My opinion in this 

matter is rather down to earth.  OMP is the only one of the libraries used that implement its 

functionality completely hidden from the user.  In the rest (MPI and PThreads), the user needs 

to create and manipulate the threads, causing a certain level of user-library interaction, but OMP 

hides all the actual management and provides only very easy-to-use #pragma directives to create 

the threads.  The actual management is done internally by OMP, providing a much greater 

optimization.  The kernel is freed from working with so many threads, causing the overall 

experience of working with OMP to be a lot more efficient, as shown in the following figure. 

 

Figure 10a 

Figure 10b 
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I have tested my results on single core, dual core and quad core machines manufactured by Intel 

Corporation, but the results I got were very close to each other as compared to different APIs 

and libraries used in this project.  By having more processors and cores the efficiency can be 

increased if one uses user level threads because that maintains the kernel a bit less saturated, as 

it can be observed in the following figure. 

 

 

There are some significant facts I came across about all these libraries and API specifications, 

which are mentioned in more detail in the table shown below.  It explains the limits, learning 

time, difficulty to perform certain tasks and overall performance. 

 

Features OpenMP OpenMPI PThreads 
OpenMP + 

OpenMPI 

PThreads + 

OpenMPI 

Max Threads / 

Processes 

380 252 Tested up to 

50,000. 

95,760 Tested up to 

50,000. 

Synchronization Easy Tough Easy Toughest Toughest 

Lock Structure Easy Medium Easy Hard Hard 

Learning Curve Low High Medium Highest Highest 

Memory Usage Less More Less Lesser than 

MPI 

Lesser than 

MPI 

Performance High in 

shared 

memory 

architecture. 

High in 

distributed 

memory 

architecture. 

Moderate in 

shared 

memory 

architecture. 

Highest in 

distributed 

memory 

architecture. 

Highest in 

distributed 

memory 

architecture. 

Lines of Code Less More More than 

OpenMP. 

More than 

MPI. 

More than 

MPI. 

Significant Facts about libraries and API specifications 

In case of hybrid memory, I faced a problem.  MPI messages are quite slow as compared to 

threads.  I am getting non-deterministic bugs in my code such as deadlocks and race conditions, 

due to lack of synchronization, so for this I have come up with a solution.  What I did was 

Figure 10c 

Table 10a 
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simple.  I didn't send MPI calls from the threads; instead, I used the main process to send the 

messages.  This way each thread sends and receives messages to a virtual message queue, and 

then the main process takes that queue and processes it one message at a time.  This is how I am 

able to achieve proper synchronization in hybrid memory architecture.  The slower performance 

of MPI is due to its message passing through the network interface, causing a very unpleasant 

and long latency when several messages are sent, because the internal message queues become 

very full as it can be seen in the following figure. 

 

 

While running my code on Quad-Core machines, I found several non-deterministic bugs in one 

of my IPC problems, so I had to modify the code and test the results again over a different 

platform including MTL.  Now I can say that my code is scalable over N number of Cores as I 

tested it on Intel 32 Core Machine. This work was made possible because of machine time 

provided by Intel on their Manycore Testing Lab (MTL). 

 

Here both white box and black box testing is done effectively by using extensive test cases and 

the codes are highly optimized in so that I can achieve the best performance from them. 

 

This project is helpful for future programmers because it explains the problems that they will 

face when using any of these libraries; tricky problems such as the MPI passing interface 

working only from the main-thread; or that the OMP has a limited amount of threads that can be 

created.  Using this information, a programmer will be able to decide if the library will actually 

be of use for his project. 

 

The code written for the test cases has been tested for correctness in several ways, first by 

checking that the output of each IPC problem was indeed correct.  Each problem was done by 

Figure 10d 
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hand, one at a time.  Val grind along with the Memcheck utility for MPI and the rest of the 

libraries has been used in order to detect any kind of misuse of memory pointers, corrupted 

memory, null-pointer assignments and memory leaks. This was necessary because 

multithreading applications are very susceptible to memory corruption and one small corruption 

will create an enormous amount of errors.  No more than the standard C-libraries were used in 

order to maintain the code as clean and as optimized as possible. 
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CONCLUSIONS                                                                                     11.0 

The results show that much better efficiency is obtained with higher number of data items due 

to the divide-and-conquer technique used.  Larger sizes of input data are ideally tackled by 

parallel programming as more elements will be easily divided between threads/processors.  

Since these are multiprocessing techniques, single-core, dual-core, and even quad-core 

machines always show a slow performance for all the three test cases.  This is because these 

types of processors do not run processes and threads in symmetrical fashion.  This causes the 

directly-proportional relation between the increase in the number of processes and the execution 

time.  This indicates that an X cored machine is not enough for true multiprocessing. 

 

In terms of speed and memory usage, we can say that the performance of OpenMP is slightly 

better than PThreads in most cases, as mentioned earlier.  This might be due to the fact that 

OpenMP hides the functionality and provides a rather simple interface, taking care of the 

initialization and manipulation internally by the library.  

 

The performance and memory usage of OpenMPI + OpenMP are also much better than when 

using OpenMPI + PThreads, again, due to the better performance of OpenMP over PThreads.  

 

Furthermore, last but not least, The MPI, which despite its amazing power, when it comes down 

to writing distributed applications easily, still runs very slow, uses a large amount of memory, 

and has overall poor performance in all the test cases.  The MPI can be used for distributed 

applications such as server-clusters or clusters in general.  The primary rule when using MPI is 

to maintain the global communications between each process at a minimum whenever it might 

be possible, since reducing communications will reduce the overhead caused by the message 

passing, improving the application performance to a great extent. 

 

In this later case (MPI library), the memory usage increased significantly when the number of 

processes was incremented.  Another problem is that MPI message passing is very slow due to 

usage of the network protocol to communicate.  Messages are very slow and cannot be sent 

from threads.  Only the master thread of the process is able to transmit and receive messages.  

This reminds me of the previously mentioned rule: ―MPI is great, but please reduce the global 

process communication to attain a much better performance‖ [6]. 

 

The performance of a multithreaded application is mutually inclusive with the amount of 

processing cores available to it; i.e. the more cores that are free, the higher the performance our 

application will be able to reach. 
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