
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2011

EVALUATION OF CLASSICAL INTER-PROCESS COMMUNICATION EVALUATION OF CLASSICAL INTER-PROCESS COMMUNICATION

PROBLEMS IN PARALLEL PROGRAMMING LANGUAGES PROBLEMS IN PARALLEL PROGRAMMING LANGUAGES

Arunesh Joshi
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the OS and Networks Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
Joshi, Arunesh, "EVALUATION OF CLASSICAL INTER-PROCESS COMMUNICATION PROBLEMS IN
PARALLEL PROGRAMMING LANGUAGES" (2011). Master's Projects. 172.
DOI: https://doi.org/10.31979/etd.btq9-m69c
https://scholarworks.sjsu.edu/etd_projects/172

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/172?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Spring 2011 - Computer Science – SJSU 1

EVALUATION OF CLASSICAL INTER-PROCESS COMMUNICATION PROBLEMS IN

PARALLEL PROGRAMMING LANGUAGES

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Masters of Science

By

Arunesh Joshi

Spring 2011

Spring 2011 - Computer Science – SJSU 2

Copyright © 2011

Arunesh Joshi

All Rights Reserved

Spring 2011 - Computer Science – SJSU 3

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

____________________________________ _____________

Dr. Robert Chun Date

____________________________________ _____________

Dr. Soon Tee Teoh Date

____________________________________ _____________

Mr. Snehal Patel Date

Spring 2011 - Computer Science – SJSU 4

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my advisor, Dr. Robert Chun, for providing his

constant guidance and support throughout this project. I appreciate my committee members Dr.

Dr. Soon Tee Teoh and Mr. Snehal Patel for their time and suggestions.

Special thanks to my dear friends, Priyadarshini Shanmuganathan and Payal Gupta, and to Mom

and Dad for their encouragement and support during the completion of the project.

Also, I would like to thank and offer my regards to all of those who supported me in any way

for completing my Master’s project in Computer Science at San Jose State University.

Spring 2011 - Computer Science – SJSU 5

ABSTRACT

EVALUATION OF CLASSICAL INTER-PROCESS COMMUNICATION PROBLEMS IN

PARALLEL PROGRAMMING LANGUAGES

By Arunesh Joshi

It is generally believed for the past several years that parallel programming is the future of

computing technology due to its incredible speed and vastly superior performance as compared

to classic linear programming. However, how sure are we that this is the case? Despite its

aforesaid average superiority, usually parallel-program implementations run in single-processor

machines, making the parallelism almost virtual. In this case, does parallel programming still

remain superior?

The purpose of this document is to research and analyze the performance, in both storage and

speed, of three parallel-programming language libraries: OpenMP, OpenMPI and PThreads,

along with a few other hybrids obtained by combining two of these three libraries. These

analyses will be applied to three classical multi-process synchronization problems: Dining

Philosophers, Producers-Consumers and Sleeping Barbers.

Spring 2011 - Computer Science – SJSU 6

TABLE OF CONTENTS

1.0 INTRODUCTION . 09

1.1 DEADLOCKS . 10

1.2 RACE CONDITIONS .11

1.2.1 RACE CONDITION DETECTION TECHNIQUES11

1.2.1.1 STATIC ANALYSIS .12

1.2.1.2 DYNAMIC ANALYSIS . 12

1.3 PTHREADS .13

1.4 OMP .13

1.5 MPI . 14

2.0 MPS PROBLEM DETAILS .16

2.1 DINING PHILOSOPHERS .16

2.2 PRODUCER AND CONSUMER. 16

2.3 SLEEPING BARBER. .17

3.0 PTHREADS . 18

3.1 PTHREADS: DINING PHILOSOPHERS . 18

3.2 PTHREADS: PRODUCER AND CONSUMER . 19

3.3 PTHREADS: SLEEPING BARBER .20

4.0 OMP . 22

4.1 OMP: DINING PHILOSOPHERS . 22

4.2 OMP: PRODUCER AND CONSUMER . 23

4.3 OMP: SLEEPING BARBER .24

5.0 MPI .26

5.1 MPI: DINING PHILOSOPHERS. .26

5.2 MPI: PRODUCER AND CONSUMER. .27

5.3 MPI: SLEEPING BARBER. .29

6.0 OMP + MPI . 31

6.1 OMP + MPI: DINING PHILOSOPHERS .31

6.2 OMP + MPI: PRODUCER AND CONSUMER .33

6.3 OMP + MPI: SLEEPING BARBER .35

7.0 PTHREADS + MPI . 39

7.1 PTHREADS + MPI: DINING PHILOSOPHERS .39

7.2 PTHREADS + MPI: PRODUCER AND CONSUMER41

7.3 PTHREADS + MPI: SLEEPING BARBER .43

8.0 TEST SCENARIO . 47

9.0 RESULTS .48

Spring 2011 - Computer Science – SJSU 7

9.1 DINING PHILOSOPHER .48

9.2 PRODUCER AND CONSUMER .49

9.3 SLEEPING BARBER . 50

9.4 MTL RESULTS .51

9.5 PERFORMANCE STATISTICS .52

10.0 ANALYSES .52

11.0 CONCLUSIONS . 57

REFRENCES

APPENDIX-1 TEST DATA AND GRAPHS . 60

APPENDIX-2 PTHREADS SOURCE CODES . 160

APPENDIX-3 OMP SOURCE CODES . 169

APPENDIX-4 MPI SOURCE CODES . 178

APPENDIX-5 OMP+MPI SOURCE CODES . 192

APPENDIX-6 PTHREADS+MPI SOURCE CODES . 214

Spring 2011 - Computer Science – SJSU 8

INDEX OF FIGURES, GRAPHS, LISTING AND TABLES

Figure 1a Deadlock Situation 10

Figure 1b Race Situation . 11

Figure 1c Brief description of how P-Threads library works . 13

Figure 1d Classical master thread fork in OpenMP .13

Figure 1e Master/Slave architecture among different machines in OpenMPI 14

Figure 2a Dining Philosophers Problem . 16

Figure 2b Producer and Consumer Problem . 17

Figure 2c Sleeping Barber Problem . 17

Figure 10a Saturation of kernel level threads (KLT) . 53

Figure 10b Optimized kernel by using user level threads (ULT) . 53

Figure 10c Advantages of ULT with kernel interface for multi processors.54

Figure 10d Saturation of messages in MPI . 55

Graph 9.1a Dining Philosophers execution time in Seconds vs. Threads / Processes 48

Graph 9.1b Dining Philosophers memory consumption in MiB vs. Threads / Processes. . 48

Graph 9.2a Producer Consumer execution time in Seconds vs. Threads / Processes 49

Graph 9.2b Producer Consumer memory consumption in MiB vs. Threads / Processes. . 49

Graph 9.3a Sleeping Barber execution time in Seconds vs. Threads / Processes 50

Graph 9.3b Sleeping Barber memory consumption in MiB vs. Threads / Processes 50

Graph 9.4a Dining Philosophers execution time in Seconds vs. Threads (MTL) 51

Graph 9.4b Producer Consumer execution time in Seconds vs. Threads (MTL) 51

Graph 9.4c Sleeping Barber execution time in Seconds vs. Threads (MTL) 51

Graph 9.5a Performance Gain . 52

Graph 9.5b Memory Consumption .52

Listing 3a Dining Philosophers Solution Pseudo-Code P-Threads 18

Listing 3b Producer and Consumer Solution Pseudo-Code P-Threads 19

Listing 3c Sleeping Barber Solution Pseudo-Code P-Threads . 20

Listing 4a Dining Philosophers Solution Pseudo-Code OMP . 22

Listing 4b Producer and Consumer Solution Pseudo-Code OMP 23

Listing 4c Sleeping Barber Solution Pseudo-Code OMP . 24

Listing 5a Dining Philosophers Solution Pseudo-Code MPI . 26

Listing 5b Producer and Consumer Solution Pseudo-Code MPI 28

Listing 5c Sleeping Barber Solution Pseudo-Code MPI . 29

Listing 6a Dining Philosophers Solution Pseudo-Code OMP+MPI 31

Listing 6b Producer and Consumer Solution Pseudo-Code OMP+MPI 33

Listing 6c Sleeping Barber Solution Pseudo-Code OMP+MPI . 35

Listing 7a Dining Philosophers Solution Pseudo-Code PTHREADS+MPI 39

Listing 7b Producer and Consumer Solution Pseudo-Code PTHREADS+MPI 41

Listing 7c Sleeping Barber Solution Pseudo-Code PTHREADS+MPI 43

Table 8a Hardware and Software configuration . 47

Table 8b Test cases for Inter-Process Communication Problems 47

Table 9a Performance gain by decrease in execution time . 52

Table 9b Increase in memory consumption by decrease in execution time 52

Table 10a Significant Facts about libraries and API specifications 54

Spring 2011 - Computer Science – SJSU 9

INTRODUCTION 1.0

As the speed of new processor technologies continues to grow, so do the programming

techniques that would obtain the most out of them. Multi-core processors have followed this

trend and even work stations with several physical processors promise to deliver higher

performance rates than their predecessors.

Recently, multi-core processors have become very popular. Multi-core processing is now a

trend in the growing technology industry, as single core processors have reached the physical

limits of possible complexity and speed. Programmers can make use of these multi-core

processors by developing parallel programs. Multiprocessing is defined as ―the coordinated

processing of programs by more than one computer processor‖ [11]. It is a general term that

can be used to describe the dynamic assignment of a program to one or more computers

working in tandem, or it can involve multiple computers working on the same program in

parallel.

Multiprocessing can be either asymmetric or symmetric. These terms refer to how the operating

system divides tasks between the processors in the system [15] [20]. Asymmetric

multiprocessing designates some processors to perform only system tasks, and others to only

run applications. This is a rigid design that results in a loss of performance during the times

when the computer needs to run many system tasks and no user tasks, or vice versa. Symmetric

multiprocessing, often abbreviated as SMP, allows either system or user tasks to run on any

processor, which is more flexible and therefore leads to better performance. Most

multiprocessing PC motherboards use SMP nowadays.

Two or more threads operate simultaneously in a multithreaded program. These threads

communicate with each other using synchronization calls. If two or more threads try to access

the same memory location without any interfacing synchronization calls, a race condition

occurs. Due to the non-deterministic behavior of the multithreaded programs, data races are

considered program errors, which are most difficult to find and debug. Even if we run the

program with the same inputs; data races are difficult to reproduce. Data races do not crash the

program immediately, but they corrupt the existing data structures. Data races may even cause

system failures in some unrelated codes. Automatic race detection is a high priority research

problem for the shared memory multithreaded programs. Multiprocessing and multithreading

can be effective if the computer system has a suitable operating system and motherboard

support which utilizes a motherboard that is capable of handling multiple processors or a

processor with multiple cores or a processor that can handle multiple threads.

Spring 2011 - Computer Science – SJSU 10

1.1 DEADLOCKS

In a multiprogramming environment, several processes may compete for a finite number of

resources. If the resources are not available at the time they are requested, the process enters a

waiting state. It is sometimes the case that some waiting processes may never change their state

because other waiting processes hold the resources they have requested. This situation is

referred to as deadlock.

A deadlock occurs when two or more tasks permanently block each other by virtue of each task

having a lock on a resource, which the other tasks are simultaneously trying to lock. Figure 1a

represents a high-level view of a deadlock state where:

1. Task T1 has a lock on resource R1 (indicated by

the arrow from R1 to T1) and has requested a

lock on resource R2 (indicated by the arrow from

T1 to R2).

2. Task T2 has a lock on resource R2 (indicated by

the arrow from R2 to T2) and has requested a

lock on resource R1 (indicated by the arrow from

T2 to R1).

3. Because neither task can continue until a resource

is available and neither resource can be released

until a task continues, a deadlock state exists.

In order for a deadlock to occur, four conditions must apply:

1. Mutual Exclusion - Each resource is either currently allocated to exactly one process or

it is available. (Two processes cannot simultaneously control the same resource or be in

their critical sections).

2. Hold and Wait - Processes currently holding resources can request new ones.

3. No Preemption - Once a process holds a resource, another process or the kernel cannot

take it away.

4. Circular Wait - Each process is waiting to obtain a resource, which is held by another

process.

Another method of avoiding deadlocks is to require additional information about how the

resources are to be requested. With the knowledge of the complete sequence of requests and

releases for each process, we can decide for each one whether or not the process should wait.

Figure 1a

Spring 2011 - Computer Science – SJSU 11

The simplest and most effective method requires that each process declares the maximum

number of resources of each type it may need. Given prior information about the maximum

number of resources of each type that may be requested for each process, it is possible to

construct an algorithm that ensures that the system will never reach a deadlock state [10].

1.2 RACE CONDITION

A race condition is the state in which one or more processes or threads attempt to concurrently

modify a shared resource. This results in a general failure of the application causing the shared

resource to have an incorrect or non-synchronized value.

For example, suppose

there are two processes

A and B, both

processes have their

own tasks to perform

and share a common

resource, ―Counter.‖

One of their

characteristics is that

after some internal

computations they have to increment the counter by one.

As shown in the figure 1b, if both processes are without any kind of restricted access to the

same resource, and they write to it simultaneously without taking into consideration any

previous modifications made by other processes, the result is usually undefined. But as in the

example, the counter will end up having the value of ―1,‖ whereas it should have the value ―2‖

because there has been one action on each process.

In the following sections I will attempt to define several methods that can be implemented to

successfully overcome and prevent any kind of race conditions in parallel programming.

1.2.1 RACE CONDITION DETECTION TECHNIQUES

Analysis of a multithreaded shared memory parallel application is a difficult task. Due to the

non-deterministic behavior of parallel application, it is difficult to find and debug errors. Even

if the code is modified, it is difficult to make sure that the error is actually corrected and not

concealed. Data race detection in parallel program is like an NP-problem. There are two

approaches for race detection in multithreaded programs [4] [18].

Figure 1b

Spring 2011 - Computer Science – SJSU 12

1.2.1.1 STATIC ANALYSIS

Static analysis employs compile-time analysis on source programs. It finds all the execution

paths in a program. The static analysis tool is known for finding low-level programming errors

such as null pointer de-references, buffer overflows, use of uninitialized variables, etc [19]. For

race detection, the static analysis tool tries to find data races at compile time. Finding data races

in parallel programs using static analysis is very difficult. The Static Analysis Techniques are

as follows:

Model Checking: The model of a system, like hardware or software systems, is tested

automatically, irrespective of whether this model meets the specifications. The latter includes

safety requirements so as to avoid deadlocks or race conditions.

Data-flow Analysis: This technique gathers information about possible sets of values calculated

at various points in a computer program. A control flow graph (CFG) is used to determine

those parts of a program to which a particular value assigned to a variable might propagate.

Compilers, when optimizing a program, often use information gathered.

Advantages: In order to detect the errors, static analyzers do not run a program. A static

analyzer does not depend on an execution environment.

Disadvantages: It is very difficult to apply static analysis to find race conditions in

multithreaded programs. It is difficult to determine an interleaving between threads, so static

analysis makes a conservative estimation. Scaling is also difficult to achieve using static

analysis and produces false positives.

1.2.1.2 DYNAMIC ANALYSIS

Dynamic race detector analyzes the trace generated by execution of a parallel program. This

trace contains memory accesses and synchronization operations done during the executions of a

program. Dynamic analysis is totally dependent on the input dataset. So, it can be run more

than once with a variety of datasets to assure the correctness of a program [21].

Advantages: Dynamic analysis generates fewer false positives as compared to the static

analysis. Dynamic analysis provides the reasonable accurate race detection for multithreaded

shared-memory parallel programs.

Disadvantages: Dynamic analysis analyzes traces of executed programs. So, it does not

consider all the possible execution paths of a program. Dynamic analysis is not a sound

predictor and race conditions can occur after dynamic analysis proves it to be correct. Dynamic

analysis is also dependent on the execution of a program, so it has overhead on the execution of

a program.

Spring 2011 - Computer Science – SJSU 13

Henceforth it is assumed that the reader has previous knowledge of several topics, including

threads, processors, processes, memory management, operating system, posix standards, C/C++

language, Inter-Process Communication (IPC), signals, Multi-Process Synchronization (MPS),

mutual exclusion, multithreading, multiprocessing, distributed programming, deadlocks, locks /

mutexes, race conditions, spin locks, critical sections, and semaphores.

1.3 PTHREADS

POSIX Threads is a standard

library that defines a set of C

language functions, constants,

macros and types that allow

the user to create and

manipulate threads in a

reliable way. It consists of

almost one hundred procedures, which are categorized according to their use; these categories

are: thread control, mutual exclusion, conditional variables and synchronization. As shown in

figure 1c, a process can have multiple threads, and each thread is connected directly to the

kernel, this latter will schedule the threads on different processors when available.

With Pthreads the user will be able to create threads without going through much trouble, and

since this library is traditionally implemented at the kernel level (Pthreads is KLT – Kernel

Level Threads), Pthreads are subject to the operating system and are able to take advantage of

certain capabilities (if present) such as SMP (symmetric multiprocessing).

1.4 OMP

Open Multi Processing is an application

programming interface that supports

shared memory multiprocessing in

C/C++ and several other languages [9].

Unlike regular libraries in which the

user has to invoke several library

procedures, OpenMP is implemented as

a set of compiler directives supported

by languages, such as C/C++ and Fortran. This makes its use a lot easier, simpler and powerful

[7]. As it is shown in Figure 1d, the master thread’s execution is forked into five sub-tasks

Figure 1c

Figure 1d Figure 1d

Spring 2011 - Computer Science – SJSU 14

running concurrently in parallel; once the sub-tasks (threads) are finished they join the master

thread for continued execution.

OpenMP is an implementation of multithreading, ―a method of parallelization whereby the

master thread forks a specified number of slave threads and a task is divided among them‖ [8].

These threads run concurrently in the runtime environment which allocates threads to different

processors.

The tasks that are commonly forked by the master thread are loop language

structures such as blocks: while, do, and for [1]. These forked blocks will run in parallel until

all of them are finished; the master thread will then continue its execution.

1.5 MPI

Open Message Passing Interface

or OpenMPI is an open source

library project that combines

technologies and resources from

several other projects, and

represents the merging of

contributions from FT-MPI

(University of Tennessee), LA-

MPI (Los Alamos National

Laboratory), LAM/MPI (Indiana University) and PACX-MPI (University of Stuttgart). These

four institutions comprise of the founding members of the OpenMPI development team (vide

www.lam-mpi.org or www.open-mpi.org).

Message passing interface (MPI) is an API specification that allows processes to communicate

with one another by sending and receiving messages [6]. It’s typically used for parallel

programs running on computer clusters, as briefly described in figure 1e. MPI is a language-

independent communication protocol, which is able to manage processes remotely and

conveniently for distributed multiprocessing purposes.

The OMP, MPI and P-Threads libraries provide a great deal of advantage when parallel

programming is the main objective. How each of these libraries was used in the testing subjects

(the multi-process synchronization problems) and the test results are described in subsequent

sections.

These three libraries let us successfully solve several IPC problems and avoid several error

states such as an occurrence of a race condition. The race and deadlock conditions in a shared-

Figure 1e

http://www.lam-mpi.org/
http://www.open-mpi.org/

Spring 2011 - Computer Science – SJSU 15

memory parallel program [2] are subtle and harder to find than in a sequential program. These

conditions cause non-deterministic and unexpected results from the program and are difficult to

find in a multithreading environment. In a sense, it is not easy to debug a multithreaded

application, but there are ways to avoid these conditions while programming in multithreading

languages, such as the ones mentioned above. Research on this topic reveals that there are

many ways to write a race and deadlock free code in a multithreading environment, but each

language or MP library has its own way of writing this code [4] [16].

The problems chosen in this study for implementation in these languages are three classical IPC

problems: Dining Philosopher, Producer Consumer and Sleeping Barber. These problems have

both deadlock and race conditions while they are executed. The goal is to code these problems

in such a way that the deadlock and race conditions will not occur, and we can plot the

performance matrices easily. Therefore, if a new programmer wants to use parallel

programming language, he/she can choose the best one by using the results of performance

matrices described in this study.

Spring 2011 - Computer Science – SJSU 16

MPS PROBLEM DETAILS 2.0

IPC or Inter-Process Communication is a set of techniques for the exchange of data among

multiple threads in one or more processes. Processes may be running on one or more computers

connected by a network. IPC techniques are divided into methods for message passing,

synchronization, shared memory and remote procedure calls (RPC). The method of IPC used

may vary based on the implementation library, bandwidth and latency of communication

between the threads and the type of data being communicated. MPS or Multi-Process

Synchronization is a set of techniques where one or more threads or processes communicate

with one another using simple IPC methods, in order to accomplish a specified task.

MPS problems are simple statements that implicitly define a great deal of concurrency in which

synchronization is a rather complex issue that must be correctly managed in order to fulfill the

requirements of the problem. It also accomplishes the goals without errors of any kind. Classic

MPS problems are Dining Philosophers, Producer-Consumer and the Sleeping Barber, all of

which will be briefly introduced below.

2.1 DINING PHILOSOPHERS

This problem is generalized as N philosophers sitting at a

round table doing one of two things only, either thinking or

eating, but not both. Usually the problem is exemplified

using five philosophers sitting at a circular table with a bowl

of spaghetti for each one (shown as the cyan circles in figure

2a); a fork is placed between each philosopher. Each

philosopher has one fork at their left, and one on their right.

It is assumed that each philosopher will require two forks in

order to eat; each subject can use only the forks immediately

to his left and right. The problem states that the philosophers cannot talk to each other,

imposing a possible deadlock if the problem is solved incorrectly. The solution to the problem

is a state when all philosophers can eat and think concurrently, without leaving any philosopher

to starve. This problem is solved by using locks for each fork and not entering a deadlock state

by checking if both forks are free before taking them.

2.2 PRODUCER AND CONSUMER

This problem, also known as a bounded-buffer problem, is a good example of MPS. It

describes two processes, the producer (P) and the consumer (C); they share a common fixed size

Figure 2a

Spring 2011 - Computer Science – SJSU 17

buffer, the producer’s job is to generate an item of data and put it into the buffer, this is

perpetual.

 At the same time, the consumer is consuming the data

items (i.e. removing an item from the common buffer)

one by one. The problem states that no consumer (C)

will attempt to remove data from an empty buffer, and

no producer (P) will attempt to produce an item when the

buffer is completely full. This example shows a

practical way of learning to manage shared resources; in

this case the common item is the buffer. The solution is

achieved by means of a semaphore implemented as a

counter between the range 0 to N, where N is the

maximum length of the item buffer.

2.3 SLEEPING BARBER

This problem initially is stated using only one barber, and later on can be escalated to use more

than one barber at the same barber shop. However primarily, the problem is stated as having

one barber at one barber shop. This barber has one chair for cutting hair and a waiting room for

customers with N chairs.

The barber finishes cutting a customer’s hair and goes to

check if there are any customers in the waiting room; if

there are, he brings one of them to the chair, cuts his hair

and goes to check for more customers. If there are no

more customers waiting, he returns to a sleep state.

Now, when another customer arrives, the customer

looks at the barber to see what he is doing. If the barber

is sleeping, this customer gladly walks to him, wakes

him up, sits in the chair and gets his hair cut. If the

barber was cutting hair, the new customer simply walks into the waiting room and waits, but if

there are no empty chairs in the waiting room, he leaves.

Despite of its simplicity, it’s very complicated to synchronize this barber shop to make it work

perfectly all the time. The solution is to implement a simple mutual exclusion lock that will

ensure that all the participants in one particular moment can change state only one at a time.

Figure 2b

Figure 2c

Spring 2011 - Computer Science – SJSU 18

PTHREADS 3.0

Programming with PThreads presented no problems; all that is needed is to have the latest

version of the PThreads library installed on your system. In the C-files it is required to include

the ―pthread.h‖ header file in order to use PThread’s procedures and structures, and remember

to always compile using the ―-pthread‖ linker flag when using gcc, in order to embed the

Pthread’s library in your final executable program.

3.1 PTHREADS: DINING PHILOSOPHERS

This problem was implemented in PThreads by the use of one-thread for each philosopher on

the table; each thread has a target of N-eats, i.e. the number of eats a thread has to perform

before finishing its execution.

Given M-philosophers (M is a mandatory odd-number that cannot be even), an array of Forks

using the type pthread_mutex_t is created for M elements. This array represents the forks on

the table, and is described as mutexes since they are resources that need to be managed. M-

threads are also created, these are the philosopher threads, and each of these threads will

perform the following.

1. INT Id = Current Thread Number

2. INT Num_Eats = 0

3. INT State = ―THINKING‖

4. INT Left = Id

5. INT Right = (Id + 1) MOD M

6. WHILE Num_Eats < N

a. IF State = ―THINKING‖ THEN

i. IF pthread_mutex_trylock(Forks[Left]) THEN

1. IF pthread_mutex_trylock(Forks[Right]) THEN

a. State = ―EATING‖

2. ELSE

a. Pthread_mutex_unlock(Forks[Left])

3. END IF

ii. END IF

b. ELIF State = ―EATING‖

i. pthread_mutex_unlock(Forks[Left])

ii. pthread_mutex_unlock(Forks[Right])

iii. Num_Eats = Num_Eats + 1

iv. State = ―THINKING‖

c. END IF

7. END WHILE

Code Listing 3a

Spring 2011 - Computer Science – SJSU 19

3.2 PTHREADS: PRODUCER AND CONSUMER

This problem was implemented in PThreads by using N threads for producers and M threads for

consumers. T is the total number of items to produce and K is the length of the item buffer.

Note that the execution of the program is finished once the number of produced items reaches T.

This Producer/Consumer problem was solved in PThreads by using one mutex (known as

bufferLock) to protect a common resource (which in this case is the item buffer), and two index

counters known as c_index for the consumer threads and p_index for the producer threads. The

consumer threads will get elements from the buffer at c_index offset, and the producers will

produce items at the p_index. Both threads increment and wrap-around their indices, when

necessary. The pseudo-code implementation for this solution is shown below.

INT Num_Items_Produced = 0

1. THREAD PRODUCER

a. INT Id = Current Thread Number

b. WHILE Num_Items_Produced < T

i. pthread_mutex_lock(bufferLock)

ii. IF Num_Items_Produced < T THEN

1. buffer[p_index] = Random Number (Item)

2. p_index = (1 + p_index) MOD K

3. Num_Items_Produced = 1 + Num_Items_Produced

4. Items_Available = 1 + Items_Available

iii. END IF

iv. pthread_mutex_unlock(bufferLock)

c. END WHILE

2. END THREAD

3. THREAD CONSUMER

a. INT Id = Current Thread Number

b. WHILE Num_Items_Consumed < T

i. IF Items_Available = 0 THEN CONTINUE

ii. pthread_mutex_lock(bufferLock)

iii. IF Num_Items_Consumed < T AND Items_Available > 0 THEN

1. Consume Item at buffer[c_index]

2. c_index = (1 + c_index) MOD K

3. Num_Items_Consumed = 1 + Num_Items_Consumed

4. Items_Available = Items_Available - 1

iv. END IF

v. pthread_mutex_unlock(bufferLock)

c. END WHILE

4. END THREAD

Code Listing 3b

Spring 2011 - Computer Science – SJSU 20

3.3 PTHREADS: SLEEPING BARBER

Given there are N chairs in the waiting room, B barbers threads, T haircuts to perform and C

customers threads, the sleeping barber problem using PThreads was solved by one barber-state

buffer (bsb) with B elements, and three mutex locks m1, m2 and m3. These locks are used as

critical section sentinels to make sure certain areas remain single-threaded.

1. THREAD BARBER

2. INT Id = Current Thread Number

a. WHILE Num_Customers_Serviced < T

i. IF NOT (bsb[Id] = ―SLEEPING‖) THEN

1. pthread_mutex_lock(m1)

2. IF NOT (Chairs_Occupied = 0) THEN

a. Num_Customers_Services += 1

b. Chairs_Occupied -= 1

c. State = ―READY‖

3. ELSE

a. State = ―SLEEPING‖

4. END IF

5. pthread_mutex_unlock(m1)

6. bsb[Id] = State

ii. END IF

b. END WHILE

3. END THREAD

4. THREAD CLIENT

5. INT Id = Current Thread Number

a. WHILE Num_Customers_Serviced < T

i. pthread_mutex_lock(m2)

ii. FOR i = 0 TO B – 1

1. IF bsb[Id] = ―SLEEPING‖ THEN

a. Num_Customers_Services += 1

b. bsb[Id] = ―READY‖

c. pthread_mutex_unlock(m2)

d. GOTO 2.a

2. END IF

iii. END FOR

iv. pthread_mutex_unlock(m2)

v. pthread_mutex_lock(m1)

vi. IF Chairs_Occupied < N THEN

1. Chairs_Occupied += 1

vii. END IF

viii. pthread_mutex_unlock(m1)

Code Listing 3c

Spring 2011 - Computer Science – SJSU 21

b. END WHILE

6. END THREAD

Spring 2011 - Computer Science – SJSU 22

OMP 4.0

OMP presented a few issues, primarily because the entire programming scheme had to be

reconsidered in order to match the syntax and execution flow of a regular OMP program. The

main feature of OMP is defined by forking the master thread and then re-joining it. In the latest

OMP library for the C-language, one should include the ―omp.h‖ header file in one's

applications and remember to compile using the –fopenmp linker flag (when using gcc) in

order to compile OpenMP programs. Another important thing to always remember is that OMP

requires a higher level of anti-race condition code. [17].

4.1 OMP: DINING PHILOSOPHERS

This problem was implemented in OMP exactly as in PThreads, with the only exception that

each PThread function call was replaced by its respective OMP C-preprocessor directive. This

is because OMP works with preprocessor directives rather than function calls. It makes it easier

to use and escalate. Refer to the section 3.1 to understand the meaning of certain variable

names used in this code listing.

Some of the issues encountered while using OMP are those related to synchronization of global

variables. The reason is that OMP provides a realistic parallel execution of each thread. The

global variables shared among the threads have to be protected by using the #omp critical or

#omp atomic directives in order to prevent a race condition. The following pseudo code listing

explains the overall operation of the philosopher’s thread in the main program. The OMP

directives are kept as-are to avoid confusion.

1. #pragma omp parallel shared(Num_Eats, N, M, Forks) private(Id,State,Left,Right)

2. INT Id = omp_get_thread_num ()

3. INT State = ―THINKING‖

4. INT Left = Id

5. INT Right = (Id + 1) MOD M

6. WHILE Num_Eats < N

a. IF State = ―THINKING‖ THEN

i. IF omp_test_lock (Forks[Left]) THEN

1. IF omp_test_lock (Forks[Right]) THEN

a. State = ―EATING‖

2. ELSE

a. omp_unset_lock (Forks[Left])

3. END IF

ii. END IF

b. ELIF State = ―EATING‖

i. omp_unset_lock (Forks[Left])

Code Listing 4a

Spring 2011 - Computer Science – SJSU 23

ii. omp_unset_lock (Forks[Right])

iii. #pragma omp atomic

iv. Num_Eats = Num_Eats + 1

v. State = ―THINKING‖

c. END IF

7. END WHILE

4.2 OMP: PRODUCER AND CONSUMER

Due to the nature and direct relation of PThreads and OMP (as both libraries provide

multithreading mechanisms), this problem was solved in a similar way as in PThreads, with the

obvious differences of more efficient anti-race condition codes. Refer to section 3.2 to

understand several variables shown in the code listing below.

INT Num_Items_Produced = 0

1. FUNCTION MAIN

2. omp_set_num_threads (N + M)

3. #pragma omp parallel private(Id)

a. WHILE Num_Items_Produced < T OR Num_Items_Consumed < T

b. Id = omp_get_thread_num ()

c. IF Id < N THEN

i. PRODUCER(Id)

d. ELSE

i. CONSUMER(Id)

e. END IF

f. END WHILE

4. END FUNCTION

5. FUNCTION PRODUCER (Id : INT)

6. #pragma omp critical (GCS)

a. IF Num_Items_Produced < T THEN

i. buffer[p_index] = Random Number (Item)

ii. p_index = (1 + p_index) MOD K

iii. Num_Items_Produced = 1 + Num_Items_Produced

iv. Items_Available = 1 + Items_Available

b. END IF

7. END THREAD

8. FUNCTION CONSUMER (Id : INT)

9. #pragma omp critical (GCS)

a. IF Items_Available = 0 OR Num_Items_Consumed >= T THEN RETURN

b. Consume Item at buffer[c_index]

Code Listing 4b

Spring 2011 - Computer Science – SJSU 24

c. c_index = (1 + c_index) MOD K

d. Num_Items_Consumed = 1 + Num_Items_Consumed

e. Items_Available = Items_Available - 1

10. END THREAD

As it can be seen, the PThreads’ buffer mutex was replaced in OMP by using a global critical

section (GCS). GCS is used to prevent each thread from modifying the global state variables

and/or the items buffer, thus preventing a race condition.

4.3 OMP: SLEEPING BARBER

This was solved by using one barber-state buffer (bsb) with B elements, and two critical

sections to protect the barber-buffer and the chairs-buffer. The solution is similar to the one

created for the PThreads problem. Refer to section 3.3 for more information about several

variables used in the following pseudo-code listing.

1. FUNCTION MAIN

2. omp_set_num_threads (B + C)

3. #pragma omp parallel private(Id) shared(Num_Customers_Serviced)

a. WHILE Num_Customers_Serviced < T

b. Id = omp_get_thread_num ()

c. IF Id < B THEN

i. BARBER(Id)

d. ELSE

i. CUSTOMER(Id)

e. END IF

f. END WHILE

4. END FUNCTION

5. FUNCTION BARBER (Id : INT)

6. IF Num_Customers_Serviced < T THEN

a. #pragma critical (CBSS)

b. IF NOT (bsb[Id] = ―SLEEPING‖) THEN

i. #pragma critical (CCSS)

1. IF NOT (Chairs_Occupied = 0) THEN

a. Num_Customers_Serviced += 1

b. Chairs_Occupied -= 1

c. State = ―READY‖

2. ELSE

a. State = ―SLEEPING‖

3. END IF

Code Listing 4c

Spring 2011 - Computer Science – SJSU 25

4. bsb[Id] = State

c. END IF

7. END FUNCTION

8. FUNCTION CUSTOMER (Id : INT)

9. IF Num_Customers_Serviced < T THEN

a. #pragma critical (CBSS)

i. FOR i = 0 TO B – 1

1. IF bsb[Id] = ―SLEEPING‖ THEN

a. Num_Customers_Serviced += 1

b. bsb[Id] = ―READY‖

c. RETURN

2. END IF

ii. END FOR

b. #pragma critical (CCSS)

i. IF Chairs_Occupied < N THEN

1. Chairs_Occupied += 1

ii. END IF

10. END FUNCTION

The CCSS (Check Chair State Section) and CBSS (Check Barber State Section) are critical

areas that are used to protect the two most important global variables: the barber state and the

chair state.

Spring 2011 - Computer Science – SJSU 26

MPI 5.0

MPI, also known as Message Passing Interface, is the distributed-parallel-programming library

used for the next test. One will require the latest MPI library to be installed on the system, if

one is using Linux, an original implementation of MPI, such as LAM (www.lam-mpi.org) or

OpenMPI (www.open-mpi.org) to prevent any problem. If Windows is being used, the only

reliable library is DeinoMPI (mpi.deino.net). Compile using ―mpicc –g source.c‖, the ―-g‖

option. This allows the compiler to attach debugging information, just in case one wants to

debug the program. In order to run an MPI program in a single machine the ―mpirun‖

command should be issued indicating the number of processes to run the program binary code,

e.g. ―mpirun -np 18 a.out‖, this example specifies to run ―a.out‖ in 18 processes.

MPI imposes several difficulties when it comes down to synchronizing the processes using the

provided message interface. Since this communication channel is somewhat slow, it causes the

application’s response time to be severely affected.

5.1 MPI: DINING PHILOSOPHERS

In the implementations of this problem described so far we had the ability to use a shared-buffer

to describe the fork-states. Using this scheme, we were able to synchronize all the philosophers

without problems, but in MPI each process has its own memory-space. MPI uses only mutex-

tool, controlled using messages generated by the processes.

This problem was solved by implementing one monitor-process and N-philosopher processes.

The monitor process is used primarily as a ―shared-resource‖ among all the other processes.

Any kind of information regarding the state of the forks is obtained by sending and receiving

messages to the monitor-process; the philosopher’s finish when a required amount of global eats

(M) has been attained. The following pseudo-code listing shows a brief description of the

overall operation of the monitor and philosopher processes in this solution.

1. PROCESS MONITOR

2. NUM_EATS = 0

3. WHILE NUM_EATS < M

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE

b. SWITCH MPI_MESSAGE_TAG

i. CASE ―GRAB_FORKS‖

1. L = MPI_SENDER_PROCESS - 1

2. R = MPI_SENDER_PROCESS MOD N

3. IF FORKS[L] = 0 AND FORKS[R] = 0 THEN

a. FORKS[L] = 1

Code Listing 5a

http://www.lam-mpi.org/
http://www.open-mpi.org/
http://mpi.deino.net/mpi_functions/index.htm

Spring 2011 - Computer Science – SJSU 27

b. FORKS[R] = 1

c. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS)

d. NUM_EATS++

4. ELSE

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

5. END IF

ii. CASE ―RELEASE_FORKS‖

1. L = MPI_SENDER_PROCESS - 1

2. R = MPI_SENDER_PROCESS MOD N

3. FORKS[L] = 0

4. FORKS[R] = 0

5. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS)

c. END SWITCH

4. END WHILE

5. SEND SIGNAL TO TERMINATE PROCESSES 1 TO N - 1

6. END PROCESS

7. PROCESS PHILOSOPHER

8. STATE = ―THINKING‖

9. WHILE TERMINATION_SIGNAL NOT RECEIVED

a. IF STATE = ―THINKING‖ THEN

i. STATE = ―HUNGRY‖

b. ELIF STATE = ―HUNGRY‖ THEN

i. MPI_SEND (―GRAB_FORKS‖) TO (0)

ii. IF MESSAGE_RESPONSE = ―OK‖ THEN

1. DELAY FOR RANDOM TIME

2. MPI_SEND (―RELEASE_FORKS‖) TO (0)

iii. END IF

iv. STATE = ―THINKING‖

c. END IF

10. END WHILE

11. END PROCESS

5.2 MPI: PRODUCER AND CONSUMER

Using a similar technique as with the Philosophers, the Producer-Consumer was implemented

using a monitor-process followed by N-Producer processes and M-consumer processes. The

monitor process provides the shared-item buffer for K-elements and a message handler that

reads commands from the producer/consumer processes and interprets them. The following

pseudo-code listing describes the functionality of this scheme. The simulation ends when the

number of desired item productions are completed (T).

Spring 2011 - Computer Science – SJSU 28

 PROCESS MONITOR

 PRODUCED = 0, CONSUMED = 0

 P_INDEX = 0, C_INDEX = 0, COUNT = 0

 WHILE (PRODUCED < T) AND (CONSUMED < T)

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE

b. SWITCH MPI_MESSAGE_TAG

i. CASE ―PRODUCE_ITEM‖

1. IF COUNT >= K THEN

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

b. CONTINUE

2. END IF

3. BUFFER [P_INDEX] = RANDOM ()

4. COUNT ++, PRODUCED++

5. P_INDEX = ++P_INDEX MOD K

ii. CASE ―CONSUME_ITEM‖

1. IF COUNT = 0 THEN

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

b. CONTINUE

2. END IF

3. COUNT--, CONSUMED++

4. C_INDEX = ++C_INDEX MOD K

5. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS)

c. END SWITCH

 END WHILE

 SEND SIGNAL TO TERMINATE PROCESSES

 END PROCESS

 PROCESS CONSUMER

 WHILE TERMINATION_SIGNAL NOT RECEIVED

a. MPI_SEND (―CONSUME_ITEM‖) TO (0)

b. IF MESSAGE_RESPONSE = ―OK‖ THEN

i. PRINT ―ITEM CONSUMED‖

c. END IF

 END WHILE

 END PROCESS

 PROCESS PRODUCER

 WHILE TERMINATION_SIGNAL NOT RECEIVED

a. MPI_SEND (―PRODUCER_ITEM‖) TO (0)

b. IF MESSAGE_RESPONSE = ―OK‖ THEN

Code Listing 5b

Spring 2011 - Computer Science – SJSU 29

i. PRINT ―ITEM PRODUCED‖

c. END IF

 END WHILE

 END PROCESS

5.3 MPI: SLEEPING BARBER

In the same way as the previous tests, this solution involves using a monitor process that

manages the chair and barber state buffers. The process consists of barber processes (N),

customer processes (M), number of chairs (C) and number of customers (T) needing service in

order to finish the test.

1. PROCESS MONITOR

2. SERVICED = 0

3. CHAIRS_USED = 0

4. WHILE SERVICED < T

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE

b. SWITCH MPI_MESSAGE_TAG

i. CASE ―SIT_AND_WAIT‖

1. IF CHAIRS_USED >= C THEN

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

b. CONTINUE

2. END IF

3. CHAIRS_USED++

4. MPI_SEND (―YES‖) TO (MPI_SENDER_PROCESS)

ii. CASE ―WAKE_SOMEBODY_UP‖

1. FOR I = 0 TO N – 1

a. IF BARBER_STATE[I] = ―SLEEPING‖ THEN

i. BARBER_STATE[I] = ―CUTTING‖

ii. SERVICED++

iii. MPI_SEND (―OK‖) TO

(MPI_SENDER_PROCESS)

iv. EXIT SWITCH

b. END IF

2. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

iii. CASE ―SLEEP‖

1. BARBER_STATE [MPI_SENDER_PROCESS] = ―SLEEPING‖

iv. CASE ―CHECK_WAITING_ROOM‖

1. IF BARBER_STATE[MPI_SENDER_PROCESS] = ―SLEEPING‖

THEN

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

b. EXIT SWITCH

Code Listing 5c

Spring 2011 - Computer Science – SJSU 30

2. END IF

3. IF CHAIRS_USED >= 0 THEN

a. BARBER_STATE[MPI_SENDER_PROCESS] =

―CUTTING‖

b. SERVICED++, CHAIRS_USED—

c. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS)

4. ELSE

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

5. END IF

c. END SWITCH

5. END WHILE

6. SEND SIGNAL TO TERMINATE PROCESSES

7. END PROCESS

8. PROCESS BARBER

9. WHILE TERMINATION_SIGNAL NOT RECEIVED

a. MPI_SEND (―CHECK_WAITING_ROOM‖) TO (0)

b. IF MESSAGE_RESPONSE = ―OK‖ THEN

i. PRINT ―CUSTOMER SERVICED‖

c. ELSE

i. MPI_SEND (―SLEEPING‖) TO (0)

d. END IF

10. END WHILE

11. END PROCESS

12. PROCESS CUSTOMER

13. WHILE TERMINATION_SIGNAL NOT RECEIVED

e. MPI_SEND (―WAKE_SOMEBODY_UP‖) TO (0)

f. IF MESSAGE_RESPONSE = ―OK‖ THEN

i. PRINT ―CUSTOMER SERVICED‖

g. ELSE

i. MPI_SEND (―SIT_AND_WAIT‖) TO (0)

b. END IF

14. END WHILE

15. END PROCESS

A very important and curious fact should be noted: in all of the MPI solutions no mutexes or

anti-race-condition measures were taken. This is because, since all messages are coming in

linearly through the MPI message queue one by one, the monitor process of each solution is

able to respond to one request at a time, thus avoiding the need to implement any kind of mutual

exclusion code. When a huge amount of data needs to be processed, MPI seems to be

effectively the best library, because of its distributed nature [12].

Spring 2011 - Computer Science – SJSU 31

OMP+MPI 6.0

By creating a hybrid combination of MPI and OMP, one can obtain a slightly more optimized

solution that will take advantage of the CPU’s resources on each machine. By using MPI, one

is able to create a distributed application very quickly. Unfortunately MPI is very slow due to

the message transmission [14] [16].

In previous test cases, the MPI was implemented treating each process like an atomic entity (i.e.

monitor, producer, consumer, philosopher, etc). Here’s where the OMP integration will come

in handy: one can delegate more tasks to each process and instead of treating each process like

atomic entities; one can treat them like blocks that hold several atomic entities.

In order to compile this specific breed of code, one needs OpenMPI and OpenMP installed on

one's system. For more information refer to the proper sections above. To compile, one will

have to use mpicc and the linker option –fopenmp (i.e. mpicc –fopenmp program.c).

6.1 OMP + MPI: DINING PHILOSOPHERS

For this problem, the solution is quite simple. One is still tied to the master/slave architecture of

any MPI program [13]. However, this time each slave process will be treated like a block of

atomic units, each atomic unit in this case is a philosopher thread running with OMP.

The master thread’s task will be to balance the number of threads along all the slave processes

to maintain a high level of performance. Say one has 351 philosophers (N) and one must run

the program using ―mpirun –np 10 philos.bin‖. This will produce 1 master process and 9 slave

processes (K). Then the master thread will divide the 351 threads along the 9 slaves, resulting

in a balance of 39 OMP threads on each slave process.

1. PROCESS MONITOR

2. NUM_EATS = 0

3. THREADS = N / K

4. TOTAL = N

5. FOR I = 1 TO K

a. IF TOTAL > THREADS THEN

i. M = THREADS

b. ELSE

i. M = TOTAL

c. END IF

d. MPI_SEND (M) TO (I)

e. TOTAL = TOTAL - M

6. NEXT

Code Listing 6a

Spring 2011 - Computer Science – SJSU 32

7. WHILE NUM_EATS < M

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE

b. SWITCH MPI_MESSAGE_TAG

i. CASE ―GRAB_FORKS‖

1. L = MPI_SENDER_PROCESS - 1

2. R = MPI_SENDER_PROCESS MOD N

3. IF FORKS[L] = 0 AND FORKS[R] = 0 THEN

a. FORKS[L] = 1

b. FORKS[R] = 1

c. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS)

d. NUM_EATS++

4. ELSE

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

5. END IF

ii. CASE ―RELEASE_FORKS‖

1. L = MPI_SENDER_PROCESS - 1

2. R = MPI_SENDER_PROCESS MOD N

3. FORKS[L] = 0

4. FORKS[R] = 0

5. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS)

c. END SWITCH

8. END WHILE

9. SEND SIGNAL TO TERMINATE PROCESSES 1 TO N

10. END PROCESS

11. PROCESS PHILOSOPHER_CONTROLLER

12. omp_set_num_threads (MPI_RECEIVE (INT))

13. #pragma omp parallel

a. PHILOSOPHER ()

14. END PROCESS

15. THREAD PHILOSOPHER

16. STATE = ―THINKING‖

17. WHILE V_TERMINATION_SIGNAL NOT RECEIVED

a. IF STATE = ―THINKING‖ THEN

i. STATE = ―HUNGRY‖

b. ELIF STATE = ―HUNGRY‖ THEN

i. V_MPI_SEND (―GRAB_FORKS‖) TO (0)

ii. IF V_MESSAGE_RESPONSE = ―OK‖ THEN

1. DELAY FOR RANDOM TIME

2. V_MPI_SEND (―RELEASE_FORKS‖) TO (0)

iii. END IF

Spring 2011 - Computer Science – SJSU 33

iv. STATE = ―THINKING‖

c. END IF

18. END WHILE

19. END THREAD

The functions prefixed with ―V_‖ are aliases of the MPI message functions that are created

locally in order to add the request to a queue. Since the MPI does not allow a thread to use the

message transmission interface, one has to queue all the requests from the threads in to a buffer

and then process them from the main thread. Sending messages from a thread will cause the

MPI to produce very strange results at the end. This is a limitation of the MPI’s thread safety

implementation of the MPI library used.

6.2 OMP + MPI: PRODUCER AND CONSUMER

This solution is very similar to the one created for MPI, with the exception that instead of

sending messages directly to the MPI library, one has to use the V_ wrappers to send them to

the local process queue for later sending. One needs to balance the threads along the processes.

Since the producers-consumers problem has 2 entities (producers and consumers), one will need

to specify how many processes will be assigned for each entity, and also the total threads for

each entity. Using that information, one can determine how many threads each process will

contain, and how many processes each entity will be holding. npProds and npCons tells the

number of producer and consumer processes, in the same way, ntProds and ntCons tells the

number of producer and consumer threads.

1. PROCESS MONITOR

2. P = 1

3. THREADS = ntProds / npProds

4. TOTAL = ntProds

5. FOR I = 1 TO npProds

a. IF TOTAL > THREADS THEN

i. M = THREADS

b. ELSE

i. M = TOTAL

c. END IF

d. MPI_SEND (M) TO (P)

e. TOTAL = TOTAL - M

f. P = P + 1

6. NEXT

7. THREADS = ntCons / npCons

Code Listing 6b

Spring 2011 - Computer Science – SJSU 34

8. TOTAL = ntCons

9. FOR I = 1 TO npCons

a. IF TOTAL > THREADS THEN

i. M = THREADS

b. ELSE

i. M = TOTAL

c. END IF

d. MPI_SEND (M) TO (P)

e. TOTAL = TOTAL - M

f. P = P + 1

10. NEXT

11. PRODUCED = 0, CONSUMED = 0

12. P_INDEX = 0, C_INDEX = 0, COUNT = 0

13. WHILE (PRODUCED < T) AND (CONSUMED < T)

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE

b. SWITCH MPI_MESSAGE_TAG

i. CASE ―PRODUCE_ITEM‖

1. IF COUNT >= K THEN

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

b. CONTINUE

2. END IF

3. BUFFER [P_INDEX] = RANDOM ()

4. COUNT ++, PRODUCED++

5. P_INDEX = ++P_INDEX MOD K

ii. CASE ―CONSUME_ITEM‖

1. IF COUNT = 0 THEN

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

b. CONTINUE

2. END IF

3. COUNT--, CONSUMED++

4. C_INDEX = ++C_INDEX MOD K

5. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS)

c. END SWITCH

14. END WHILE

15. SEND SIGNAL TO TERMINATE PROCESSES

16. END PROCESS

17. PROCESS CONSUMER_CONTROLLER

18. omp_set_num_threads (MPI_RECEIVE (INT))

19. #pragma omp parallel

b. CONSUMER ()

Spring 2011 - Computer Science – SJSU 35

20. END PROCESS

21. PROCESS PRODUCER_CONTROLLER

22. omp_set_num_threads (MPI_RECEIVE (INT))

23. #pragma omp parallel

c. PRODUCER ()

24. END PROCESS

25. THREAD CONSUMER

26. WHILE V_TERMINATION_SIGNAL NOT RECEIVED

a. V_MPI_SEND (―CONSUME_ITEM‖) TO (0)

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN

i. PRINT ―ITEM CONSUMED‖

c. END IF

27. END WHILE

28. END PROCESS

29. THREAD PRODUCER

30. WHILE V_TERMINATION_SIGNAL NOT RECEIVED

d. V_MPI_SEND (―PRODUCER_ITEM‖) TO (0)

e. IF V_MESSAGE_RESPONSE = ―OK‖ THEN

i. PRINT ―ITEM PRODUCED‖

f. END IF

31. END WHILE

32. END PROCESS

If the number of threads specified is not divisible by the number of processes, the monitor

process will assign a few extra threads to the last slave process in order to match the wanted

number of threads.

6.3 OMP + MPI: SLEEPING BARBER

Similar to the previous tests, this solution involves using a global monitor process that manages

the chair and barber state buffers and acts like an intermediary between the other processes. It

consists of barber processes (N), customer processes (M), number of chairs (C) and number of

customers (T) needed service in order to finish the test, also the number of threads for the

barbers (A) and the number of threads for the customers (B).

1. PROCESS MONITOR

2. P = 1

3. THREADS = A / N

4. TOTAL = A

5. FOR I = 1 TO N

a. IF TOTAL > THREADS THEN

Code Listing 6c

Spring 2011 - Computer Science – SJSU 36

i. M = THREADS

b. ELSE

i. M = TOTAL

c. END IF

d. MPI_SEND (M) TO (P)

e. TOTAL = TOTAL - M

f. P = P + 1

6. NEXT

7. THREADS = B / M

8. TOTAL = B

9. FOR I = 1 TO M

a. IF TOTAL > THREADS THEN

i. M = THREADS

b. ELSE

ii. M = TOTAL

c. END IF

d. MPI_SEND (M) TO (P)

e. TOTAL = TOTAL - M

f. P = P + 1

10. NEXT

11. SERVICED = 0

12. CHAIRS_USED = 0

13. WHILE SERVICED < T

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE

b. SWITCH MPI_MESSAGE_TAG

i. CASE ―SIT_AND_WAIT‖

1. IF CHAIRS_USED >= C THEN

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

b. CONTINUE

2. END IF

3. CHAIRS_USED++

4. MPI_SEND (―YES‖) TO (MPI_SENDER_PROCESS)

ii. CASE ―WAKE_SOMEBODY_UP‖

1. FOR I = 0 TO N – 1

a. IF BARBER_STATE[I] = ―SLEEPING‖ THEN

i. BARBER_STATE[I] = ―CUTTING‖

ii. SERVICED++

iii. MPI_SEND (―OK‖) TO

(MPI_SENDER_PROCESS)

iv. EXIT SWITCH

Spring 2011 - Computer Science – SJSU 37

b. END IF

2. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

iii. CASE ―SLEEP‖

1. BARBER_STATE [MPI_SENDER_PROCESS] = ―SLEEPING‖

iv. CASE ―CHECK_WAITING_ROOM‖

1. IF BARBER_STATE[MPI_SENDER_PROCESS] = ―SLEEPING‖

THEN

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

b. EXIT SWITCH

2. END IF

3. IF CHAIRS_USED >= 0 THEN

a. BARBER_STATE[MPI_SENDER_PROCESS] =

―CUTTING‖

b. SERVICED++, CHAIRS_USED—

c. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS)

4. ELSE

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

5. END IF

c. END SWITCH

14. END WHILE

15. SEND SIGNAL TO TERMINATE PROCESSES

16. END PROCESS

17. PROCESS BARBER_CONTROLLER

18. omp_set_num_threads (MPI_RECEIVE (INT))

19. #pragma omp parallel

a. BARBER ()

20. END PROCESS

21. PROCESS CUSTOMER_CONTROLLER

22. omp_set_num_threads (MPI_RECEIVE (INT))

23. #pragma omp parallel

a. CUSTOMER ()

24. END PROCESS

25. THREAD BARBER

26. WHILE V_TERMINATION_SIGNAL NOT RECEIVED

a. V_MPI_SEND (―CHECK_WAITING_ROOM‖) TO (0)

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN

i. PRINT ―CUSTOMER SERVICED‖

c. ELSE

i. V_MPI_SEND (―SLEEPING‖) TO (0)

d. END IF

Spring 2011 - Computer Science – SJSU 38

27. END WHILE

28. END THREAD

29. THREAD CUSTOMER

30. WHILE V_TERMINATION_SIGNAL NOT RECEIVED

a. V_MPI_SEND (―WAKE_SOMEBODY_UP‖) TO (0)

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN

i. PRINT ―CUSTOMER SERVICED‖

c. ELSE

ii. V_MPI_SEND (―SIT_AND_WAIT‖) TO (0)

d. END IF

31. END WHILE

32. END THREAD

Spring 2011 - Computer Science – SJSU 39

PTHREADS+MPI 7.0

Similar to the previous test case when OMP was combined with MPI, one is able to make

another hybrid resulting from merging PThreads multithreading library with MPI. One will

require the same items that were mentioned in the PThreads and MPI sections, respectively.

The same principle will apply, that is, using a primary monitor process that will act like a shared

resources manager.

In order to compile this type of code, one needs OpenMPI and PThreads installed on one's

system, for more information refer to the proper sections. To compile, one will have to use

mpicc and the linker option –pthread (i.e. mpicc –pthread program.c).

7.1 PTHREADS + MPI: DINING PHILOSOPHERS

Again, the brief description of this solution might be somewhat redundant, as it is the same as

the one used for the previous test (when OMP and MPI was combined). Skipping over to the

pseudo-code listing for this code, K is the number of philosophers to use, remember that K must

be an odd number, or else an error will be issued and N is the number of threads to assign for

the purpose of this problem.

1. PROCESS MONITOR

2. NUM_EATS = 0

3. THREADS = N / K

4. TOTAL = N

5. FOR I = 1 TO K

a. IF TOTAL > THREADS THEN

i. M = THREADS

b. ELSE

i. M = TOTAL

c. END IF

d. MPI_SEND (M) TO (I)

e. TOTAL = TOTAL - M

6. NEXT

7. WHILE NUM_EATS < M

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE

b. SWITCH MPI_MESSAGE_TAG

i. CASE ―GRAB_FORKS‖

1. L = MPI_SENDER_PROCESS - 1

2. R = MPI_SENDER_PROCESS MOD N

3. IF FORKS[L] = 0 AND FORKS[R] = 0 THEN

a. FORKS[L] = 1

Code Listing 7a

Spring 2011 - Computer Science – SJSU 40

b. FORKS[R] = 1

c. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS)

d. NUM_EATS++

4. ELSE

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

5. END IF

ii. CASE ―RELEASE_FORKS‖

1. L = MPI_SENDER_PROCESS - 1

2. R = MPI_SENDER_PROCESS MOD N

3. FORKS[L] = 0

4. FORKS[R] = 0

5. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS)

c. END SWITCH

8. END WHILE

9. SEND SIGNAL TO TERMINATE PROCESSES 1 TO N

10. END PROCESS

11. PROCESS PHILOSOPHER_CONTROLLER

12. INT THREADS = MPI_RECEIVE (INT)

13. FOR I = 1 TO THREADS

a. PTHREAD_ALLOC_THREAD (&PHILOSOPHER)

14. NEXT

15. END PROCESS

16. FUNCTION PHILOSOPHER

17. STATE = ―THINKING‖

18. WHILE V_TERMINATION_SIGNAL NOT RECEIVED

a. IF STATE = ―THINKING‖ THEN

i. STATE = ―HUNGRY‖

b. ELIF STATE = ―HUNGRY‖ THEN

i. V_MPI_SEND (―GRAB_FORKS‖) TO (0)

ii. IF V_MESSAGE_RESPONSE = ―OK‖ THEN

1. DELAY FOR RANDOM TIME

2. V_MPI_SEND (―RELEASE_FORKS‖) TO (0)

iii. END IF

iv. STATE = ―THINKING‖

c. END IF

19. END WHILE

20. END FUNCTION

Spring 2011 - Computer Science – SJSU 41

The function named ―PTHREAD_ALLOC_THREAD‖ encapsulates the thread initialization,

i.e. creating a handle for the thread, initializing the handle with the appropriate attributes and

then setting the entry point to the provided address of the function.

7.2 PTHREADS + MPI: PRODUCER AND CONSUMER

The overall functionality of this solution is incredibly similar to the OMP+MPI solution. For

these problems, the main and only difference is the use of the PThreads library to allocate

threads, whereas the other solution used OMP. The variables used here are npProds and

npCons. These specify the number of producers and consumers (processes), and ntProds and

ntCons which tell the number of threads for each entity.

1. PROCESS MONITOR

2. P = 1

3. THREADS = ntProds / npProds

4. TOTAL = ntProds

5. FOR I = 1 TO npProds

a. IF TOTAL > THREADS THEN

i. M = THREADS

b. ELSE

i. M = TOTAL

c. END IF

d. MPI_SEND (M) TO (P)

e. TOTAL = TOTAL - M

f. P = P + 1

6. NEXT

7. THREADS = ntCons / npCons

8. TOTAL = ntCons

9. FOR I = 1 TO npCons

a. IF TOTAL > THREADS THEN

i. M = THREADS

b. ELSE

ii. M = TOTAL

c. END IF

d. MPI_SEND (M) TO (P)

e. TOTAL = TOTAL - M

f. P = P + 1

10. NEXT

11. PRODUCED = 0, CONSUMED = 0

12. P_INDEX = 0, C_INDEX = 0, COUNT = 0

13. WHILE (PRODUCED < T) AND (CONSUMED < T)

Code Listing 7b

Spring 2011 - Computer Science – SJSU 42

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE

b. SWITCH MPI_MESSAGE_TAG

i. CASE ―PRODUCE_ITEM‖

1. IF COUNT >= K THEN

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

b. CONTINUE

2. END IF

3. BUFFER [P_INDEX] = RANDOM ()

4. COUNT ++, PRODUCED++

5. P_INDEX = ++P_INDEX MOD K

ii. CASE ―CONSUME_ITEM‖

1. IF COUNT = 0 THEN

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

b. CONTINUE

2. END IF

3. COUNT--, CONSUMED++

4. C_INDEX = ++C_INDEX MOD K

5. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS)

c. END SWITCH

14. END WHILE

15. SEND SIGNAL TO TERMINATE PROCESSES

16. END PROCESS

17. PROCESS CONSUMER_CONTROLLER

18. INT THREADS = MPI_RECEIVE (INT)

19. FOR I = 1 TO THREADS

a. PTHREAD_ALLOC_THREAD (&CONSUMER)

20. NEXT

21. END PROCESS

22. PROCESS PRODUCER_CONTROLLER

23. INT THREADS = MPI_RECEIVE (INT)

24. FOR I = 1 TO THREADS

a. PTHREAD_ALLOC_THREAD (&PRODUCER)

25. END PROCESS

26. FUNCTION CONSUMER

27. WHILE V_TERMINATION_SIGNAL NOT RECEIVED

a. V_MPI_SEND (―CONSUME_ITEM‖) TO (0)

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN

Spring 2011 - Computer Science – SJSU 43

i. PRINT ―ITEM CONSUMED‖

c. END IF

28. END WHILE

29. END FUNCTION

30. FUNCTION PRODUCER

31. WHILE V_TERMINATION_SIGNAL NOT RECEIVED

a. V_MPI_SEND (―PRODUCER_ITEM‖) TO (0)

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN

i. PRINT ―ITEM PRODUCED‖

c. END IF

32. END WHILE

33. END FUNCTION

7.3 PTHREADS + MPI: SLEEPING BARBER

The variables used for these solutions are: N: Number of Barber processes; M: Number of

Customer processes; C: Number of chairs in the waiting room and T: Number of customers

serviced to reach in order to finish the test; A: Number of threads for barbers and B: Number of

threads for customers.

1. PROCESS MONITOR

2. P = 1

3. THREADS = A / N

4. TOTAL = A

5. FOR I = 1 TO N

a. IF TOTAL > THREADS THEN

iii. M = THREADS

b. ELSE

iv. M = TOTAL

c. END IF

d. MPI_SEND (M) TO (P)

e. TOTAL = TOTAL - M

f. P = P + 1

6. NEXT

7. THREADS = B / M

8. TOTAL = B

9. FOR I = 1 TO M

a. IF TOTAL > THREADS THEN

i. M = THREADS

b. ELSE

i. M = TOTAL

Code Listing 7c

Spring 2011 - Computer Science – SJSU 44

c. END IF

d. MPI_SEND (M) TO (P)

e. TOTAL = TOTAL - M

f. P = P + 1

10. NEXT

11. SERVICED = 0

12. CHAIRS_USED = 0

13. WHILE SERVICED < T

a. IF MPI_MESSAGE_AVAILABLE = 0 THEN CONTINUE

b. SWITCH MPI_MESSAGE_TAG

i. CASE ―SIT_AND_WAIT‖

1. IF CHAIRS_USED >= C THEN

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

b. CONTINUE

2. END IF

3. CHAIRS_USED++

4. MPI_SEND (―YES‖) TO (MPI_SENDER_PROCESS)

ii. CASE ―WAKE_SOMEBODY_UP‖

1. FOR I = 0 TO N – 1

a. IF BARBER_STATE[I] = ―SLEEPING‖ THEN

i. BARBER_STATE[I] = ―CUTTING‖

ii. SERVICED++

iii. MPI_SEND (―OK‖) TO

(MPI_SENDER_PROCESS)

iv. EXIT SWITCH

b. END IF

2. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

iii. CASE ―SLEEP‖

1. BARBER_STATE [MPI_SENDER_PROCESS] = ―SLEEPING‖

iv. CASE ―CHECK_WAITING_ROOM‖

1. IF BARBER_STATE[MPI_SENDER_PROCESS] = ―SLEEPING‖

THEN

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

b. EXIT SWITCH

2. END IF

3. IF CHAIRS_USED >= 0 THEN

a. BARBER_STATE[MPI_SENDER_PROCESS] =

―CUTTING‖

b. SERVICED++, CHAIRS_USED—

c. MPI_SEND (―OK‖) TO (MPI_SENDER_PROCESS)

Spring 2011 - Computer Science – SJSU 45

4. ELSE

a. MPI_SEND (―NO‖) TO (MPI_SENDER_PROCESS)

5. END IF

c. END SWITCH

14. END WHILE

15. SEND SIGNAL TO TERMINATE PROCESSES

16. END PROCESS

17. PROCESS BARBER_CONTROLLER

18. INT THREADS = MPI_RECEIVE (INT)

19. FOR I = 1 TO THREADS

a. PTHREAD_ALLOC_THREAD (&BARBER)

20. NEXT

21. END PROCESS

22. PROCESS CUSTOMER_CONTROLLER

23. INT THREADS = MPI_RECEIVE (INT)

24. FOR I = 1 TO THREADS

a. PTHREAD_ALLOC_THREAD (&CUSTOMER)

25. NEXT

26. END PROCESS

27. FUNCTION BARBER

28. WHILE V_TERMINATION_SIGNAL NOT RECEIVED

a. V_MPI_SEND (―CHECK_WAITING_ROOM‖) TO (0)

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN

i. PRINT ―CUSTOMER SERVICED‖

c. ELSE

i. V_MPI_SEND (―SLEEPING‖) TO (0)

d. END IF

e. END IF

29. END WHILE

30. END FUNCTION

31. FUNCTION CUSTOMER

32. WHILE V_TERMINATION_SIGNAL NOT RECEIVED

a. V_MPI_SEND (―WAKE_SOMEBODY_UP‖) TO (0)

b. IF V_MESSAGE_RESPONSE = ―OK‖ THEN

i. PRINT ―CUSTOMER SERVICED‖

c. ELSE

Spring 2011 - Computer Science – SJSU 46

ii. V_MPI_SEND (―SIT_AND_WAIT‖) TO (0)

f. END IF

33. END WHILE

34. END FUNCTION

Spring 2011 - Computer Science – SJSU 47

TEST SCENARIO 8.0

 Single Core Dual Core Quad Core MTL

Hardware Intel®

Pentium® 4

Processor (2.60

GHz, 512K

Cache, 800

MHz FSB)

2 GB RAM

Intel® Core™2

Duo Processor

E4700

(2M Cache, 2.60

GHz, 800 MHz

FSB)

2 GB RAM

 Intel® Core™2

Quad Processor

Q6700

(8M Cache, 2.66

GHz, 1066 MHz

FSB)

2 GB RAM

Intel 32 Core

Processor

Operating System

and Software

Packages.

Linux Ubuntu

10.4

OpenMPI 1.4.3

OpenMP 3.0

Linux Ubuntu

10.4

OpenMPI 1.4.3

OpenMP 3.0

Linux Ubuntu

10.4

OpenMPI 1.4.3

OpenMP 3.0

N/A

Hardware and Software configuration used for Testing

 Case 1 Case 2 Case 3

Dining Philosopher M1 = 3-257

N1 = 100

M1 = 3-257

N1 = 1000

M1 = 3-257

N1 = 10000

Producer Consumer M2 = 2-256

N2 = 2-256

O2 = 2000

P2 = 2000

M2 = 2-256

N2 = 2-256

O2 = 20000

P2 = 2000

M2= 2-256

N2 = 2-256

O2 = 200000

P2 = 2000

Sleeping Barber M3 = 150

N3 = 2-256

O3 = 200

P3 = 2-256

M3 = 150

N3 = 2-256

O3 = 2000

P3 = 2-256

M3 = 150

N3 = 2-256

O3 = 20000

P3 = 2-256

Test Cases for Inter-Process Communication Problems

 M1 - Philosopher Threads / Processes, N1 - Total Eats

 M2 - Producer Threads / Processes, N2 - Consumer Threads / Processes, O2 - Total

Packets, P2 - Buffer Size

 M3 - Chairs in Barber Shop, N3 - Barber Threads / Processes, O3 - Total Haircuts, P3 -

Client Threads / Processes

Table 8a

Table 8b

Spring 2011 - Computer Science – SJSU 48

RESULTS 9.0

9.1 DINING PHILOSOPHERS

Dining Philosophers execution time in Seconds vs. Threads / Processes (Quad Core – Test Case 2)

Dining Philosophers memory consumption in MiB vs. Threads / Processes (Quad Core – Test Case 2)

*The MiB or mebibyte is a multiple of the unit byte for quantities of digital information. The binary prefix

mebi means 2
20

, therefore 1 mebibyte is 1048576bytes.

Graph 9.1b

Graph 9.1a

Spring 2011 - Computer Science – SJSU 49

9.2 PRODUCER AND CONSUMER

Producer Consumer execution time in Seconds vs. Threads / Processes (Quad Core – Test Case 2)

Producer Consumer memory consumption in MiB vs. Threads / Processes (Quad Core – Test Case 2)

*The MiB or mebibyte is a multiple of the unit byte for quantities of digital information. The binary prefix

mebi means 2
20

, therefore 1 mebibyte is 1048576bytes.

Graph 9.2a

Graph 9.2b

Spring 2011 - Computer Science – SJSU 50

9.3 SLEEPING BARBER

Sleeping Barber execution time in Seconds vs. Threads / Processes (Quad Core – Test Case 2)

Sleeping Barber memory consumption in MiB vs. Threads / Processes (Quad Core – Test Case 2)

*The MiB or mebibyte is a multiple of the unit byte for quantities of digital information. The binary prefix

mebi means 2
20

, therefore 1 mebibyte is 1048576bytes.

Graph 9.3a

Graph 9.3b

Spring 2011 - Computer Science – SJSU 51

9.4 MTL RESULTS

Dining Philosophers execution time in Seconds vs. Threads (32 Core MTL – Test Case 2)

Producer Consumer execution time in Seconds vs. Threads (32 Core MTL – Test Case 2)

Sleeping Barber execution time in Seconds vs. Threads (32 Core MTL – Test Case 2)

Graph 9.4b

Graph 9.4c

Graph 9.4a

Spring 2011 - Computer Science – SJSU 52

9.5 PERFORMANCE STATISTICS

 OpenMP OpenMPI PThreads
OpenMP +

OpenMPI

PThreads +

OpenMPI

Dual Core Vs.

Single Core 10% 4% 9% 8% 7%

Quad Core Vs.

Single Core 22% 9% 17% 16% 15%

Performance Gain by decrease in execution time

Performance Gain

 OpenMP OpenMPI PThreads
OpenMP +

OpenMPI

PThreads +

OpenMPI

Dual Core Vs.

Single Core
3% 10% 4% 6% 7%

Quad Core Vs.

Single Core
6% 22% 9% 14% 15%

Increase in memory consumption by decrease in execution time

Memory Consumption

Table 9a

Table 9b

Graph 9.5a

Graph 9.5b

Spring 2011 - Computer Science – SJSU 53

ANALYSES 10.0

From the analyses of graphs and performance matrices, it can be concluded that due to context

switching and OS scheduling policies, a CPU can run several threads concurrently over a

system. But with an increase in the number of threads, the performance can rise up to a certain

limit, rather than increasing infinitely. After that, if we increase more threads the performance

starts degrading. This is due to the fact that as more threads are created, the kernel management

modules become too overloaded to handle such level of threads, resulting in a noticeable

degradation of the performance. This saturation of kernel management related to multi-

threading can be seen in the following figure.

For the presented inter-process communication problems, until now, OpenMP has, undoubtedly,

proven to be the best contender in both performance and memory usage. My opinion in this

matter is rather down to earth. OMP is the only one of the libraries used that implement its

functionality completely hidden from the user. In the rest (MPI and PThreads), the user needs

to create and manipulate the threads, causing a certain level of user-library interaction, but OMP

hides all the actual management and provides only very easy-to-use #pragma directives to create

the threads. The actual management is done internally by OMP, providing a much greater

optimization. The kernel is freed from working with so many threads, causing the overall

experience of working with OMP to be a lot more efficient, as shown in the following figure.

Figure 10a

Figure 10b

Spring 2011 - Computer Science – SJSU 54

I have tested my results on single core, dual core and quad core machines manufactured by Intel

Corporation, but the results I got were very close to each other as compared to different APIs

and libraries used in this project. By having more processors and cores the efficiency can be

increased if one uses user level threads because that maintains the kernel a bit less saturated, as

it can be observed in the following figure.

There are some significant facts I came across about all these libraries and API specifications,

which are mentioned in more detail in the table shown below. It explains the limits, learning

time, difficulty to perform certain tasks and overall performance.

Features OpenMP OpenMPI PThreads
OpenMP +

OpenMPI

PThreads +

OpenMPI

Max Threads /

Processes

380 252 Tested up to

50,000.

95,760 Tested up to

50,000.

Synchronization Easy Tough Easy Toughest Toughest

Lock Structure Easy Medium Easy Hard Hard

Learning Curve Low High Medium Highest Highest

Memory Usage Less More Less Lesser than

MPI

Lesser than

MPI

Performance High in

shared

memory

architecture.

High in

distributed

memory

architecture.

Moderate in

shared

memory

architecture.

Highest in

distributed

memory

architecture.

Highest in

distributed

memory

architecture.

Lines of Code Less More More than

OpenMP.

More than

MPI.

More than

MPI.

Significant Facts about libraries and API specifications

In case of hybrid memory, I faced a problem. MPI messages are quite slow as compared to

threads. I am getting non-deterministic bugs in my code such as deadlocks and race conditions,

due to lack of synchronization, so for this I have come up with a solution. What I did was

Figure 10c

Table 10a

Spring 2011 - Computer Science – SJSU 55

simple. I didn't send MPI calls from the threads; instead, I used the main process to send the

messages. This way each thread sends and receives messages to a virtual message queue, and

then the main process takes that queue and processes it one message at a time. This is how I am

able to achieve proper synchronization in hybrid memory architecture. The slower performance

of MPI is due to its message passing through the network interface, causing a very unpleasant

and long latency when several messages are sent, because the internal message queues become

very full as it can be seen in the following figure.

While running my code on Quad-Core machines, I found several non-deterministic bugs in one

of my IPC problems, so I had to modify the code and test the results again over a different

platform including MTL. Now I can say that my code is scalable over N number of Cores as I

tested it on Intel 32 Core Machine. This work was made possible because of machine time

provided by Intel on their Manycore Testing Lab (MTL).

Here both white box and black box testing is done effectively by using extensive test cases and

the codes are highly optimized in so that I can achieve the best performance from them.

This project is helpful for future programmers because it explains the problems that they will

face when using any of these libraries; tricky problems such as the MPI passing interface

working only from the main-thread; or that the OMP has a limited amount of threads that can be

created. Using this information, a programmer will be able to decide if the library will actually

be of use for his project.

The code written for the test cases has been tested for correctness in several ways, first by

checking that the output of each IPC problem was indeed correct. Each problem was done by

Figure 10d

Spring 2011 - Computer Science – SJSU 56

hand, one at a time. Val grind along with the Memcheck utility for MPI and the rest of the

libraries has been used in order to detect any kind of misuse of memory pointers, corrupted

memory, null-pointer assignments and memory leaks. This was necessary because

multithreading applications are very susceptible to memory corruption and one small corruption

will create an enormous amount of errors. No more than the standard C-libraries were used in

order to maintain the code as clean and as optimized as possible.

Spring 2011 - Computer Science – SJSU 57

CONCLUSIONS 11.0

The results show that much better efficiency is obtained with higher number of data items due

to the divide-and-conquer technique used. Larger sizes of input data are ideally tackled by

parallel programming as more elements will be easily divided between threads/processors.

Since these are multiprocessing techniques, single-core, dual-core, and even quad-core

machines always show a slow performance for all the three test cases. This is because these

types of processors do not run processes and threads in symmetrical fashion. This causes the

directly-proportional relation between the increase in the number of processes and the execution

time. This indicates that an X cored machine is not enough for true multiprocessing.

In terms of speed and memory usage, we can say that the performance of OpenMP is slightly

better than PThreads in most cases, as mentioned earlier. This might be due to the fact that

OpenMP hides the functionality and provides a rather simple interface, taking care of the

initialization and manipulation internally by the library.

The performance and memory usage of OpenMPI + OpenMP are also much better than when

using OpenMPI + PThreads, again, due to the better performance of OpenMP over PThreads.

Furthermore, last but not least, The MPI, which despite its amazing power, when it comes down

to writing distributed applications easily, still runs very slow, uses a large amount of memory,

and has overall poor performance in all the test cases. The MPI can be used for distributed

applications such as server-clusters or clusters in general. The primary rule when using MPI is

to maintain the global communications between each process at a minimum whenever it might

be possible, since reducing communications will reduce the overhead caused by the message

passing, improving the application performance to a great extent.

In this later case (MPI library), the memory usage increased significantly when the number of

processes was incremented. Another problem is that MPI message passing is very slow due to

usage of the network protocol to communicate. Messages are very slow and cannot be sent

from threads. Only the master thread of the process is able to transmit and receive messages.

This reminds me of the previously mentioned rule: ―MPI is great, but please reduce the global

process communication to attain a much better performance‖ [6].

The performance of a multithreaded application is mutually inclusive with the amount of

processing cores available to it; i.e. the more cores that are free, the higher the performance our

application will be able to reach.

Spring 2011 - Computer Science – SJSU 58

REFERENCES

1. Arun Kejariwal, Alexander V. Veidenbaum, Alexandru Nicolau, Milind Girkar, Xinmin

Tian, Hideki Saito, On the Exploitation of Loop-level Parallelism in Embedded

Applications, ACM, New York, NY, USA, 2009, ISSN: 1539-9087.

2. Barbara Chapman, Gabriele Jost, Juud Van De Pas, Using OpenMP: Portable Shared

Memory Parallel Programming, 978-0-262-53302-7, Massachusetts Institute of

Technology, 2008.

3. Berkeley University of California (2009), 2009 Par Lap Boot Camp – Short Course on

Parallel Programming, Available at: http://parlab.eecs.berkeley.edu/bootcampagenda

4. Banerjee, U., B. Bliss, Z. Ma, and P. Petersen, ―A Theory of Data Race Detection.‖

Proc. Of Workshop on Parallel and Distributed Systems: Testing and Debugging

(PADTAD), pp. 69-78, ACM, Portland, USA, July 2006.

5. Billard, T. 2001. Resource allocation graph, Available at the following source web

site: http://www.sci.csueastbay.edu/~billard/cs4560/node10.html

6. Blaise Barney. (2010). Message Passing Interface (MPI). Available at the source web

site: https://computing.llnl.gov/tutorials/mpi/#Abstract. Last accessed 19 May 2010.

7. Blaise Barney. (2010). OpenMP. Available:

https://computing.llnl.gov/tutorials/openMP/. Last accessed 19 May 2010.

8. Chapman, Barbara, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP: Portable

Shared Memory Parallel Programming. Cambridge, Massachusetts: The MIT Press,

2008.

9. Dagum, L., Menon, R., ―OpenMP: An Industry-Standard API for Shared Memory

Programming,‖ Computational Science and Engineering, 5(1): 46-55, IEEE, January-

March 1998.

10. Detecting and Ending Deadlocks - SQL Server 2008 Books Online. Nov. 2009

http://technet.microsoft.com/en-us/library/ms178104.aspx

11. Faculty of Computational & Cybernetics - University of Nizhni Novgorod (2006),

Introduction to Parallel Programming. Available at the source web site:

http://www.software.unn.ru/ccam/mskurs/ENG/HTML/cs338_pp_materials.htm

12. Geraud Krawezik, Franck Cappello, Performance Comparison of MPI and three

Programming Styles on Shared Memory Multiprocessors, ACM Symposium on Parallel

Algorithms and Architectures, San Diego, California, USA, 2003, ISBN: 1-58113-661-

7.

13. Hsin-Chu Chen, Alvin Lim, Nazir A. Warsi, Multilevel master-slave parallel

programming models, Clark Atlanta University, DAAL-O3-G-92-0377, 2006.

14. Jorge Luis Ortega Arjona, Architectural Patterns for Parallel Programming – Models

for Performance Estimation, Department of Computer Science, University College

London, November 2006.

Spring 2011 - Computer Science – SJSU 59

15. Luis Moura E Silvay, Rajkumar Buyyaz, Parallel Programming Models and

Paradigms, Monash Univerity, Melbourne, Australia 2000.

16. Michael J, Quynn, Parallel Programming in C with MPI and OpenMP, 0-07-282256-2,

McGraw-Hill, New York 2004.

17. Ryan Eccles, Deborah A. Stacey, Understanding the Parallel Programmer, University

of Guelph, HPCS’ 06, 0-7695-2582-2/06, IEEE Xplore, 2006.

18. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T. Eraser: A

Dynamic Data Race Detector for Multi-threaded Programs. ACM Transactions on

Computer Systems, 15(4), 391–411, 1997.

19. Static code analysis - Wikipedia, the free encyclopedia. 30 Aug. 2009. 30 Aug. 2009.

Available at: http://en.wikipedia.org/wiki/static_code_analysis.

20. Timothy Mattson, Beverly Sanders, Berna Massingill, (2004) Patterns for Parallel

Programming, Addison-Wesley Professional.

21. Yu, Y., Rodeheffer, T., and Chen, W. 2005. RaceTrack: efficient detection of data race

conditions via adaptive tracking. In Proceedings of the Twentieth ACM Symposium on

Operating Systems Principles (Brighton, United Kingdom, October 23 - 26, 2005).

SOSP '05. ACM, New York, NY, 221-234. DOI=

http://doi.acm.org/10.1145/1095810.1095832

	EVALUATION OF CLASSICAL INTER-PROCESS COMMUNICATION PROBLEMS IN PARALLEL PROGRAMMING LANGUAGES
	Recommended Citation

	tmp.1306433384.pdf.5LXfB

