
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2011

Association Rule Mining -- Geometry and Parallel Computing Association Rule Mining -- Geometry and Parallel Computing

Approach Approach

Dongyi Jia
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Jia, Dongyi, "Association Rule Mining -- Geometry and Parallel Computing Approach" (2011). Master's
Projects. 174.
DOI: https://doi.org/10.31979/etd.stmg-pfp3
https://scholarworks.sjsu.edu/etd_projects/174

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/174?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Association Rule Mining
------ Geometry and Parallel Computing Approach

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Dongyi Jia

May 2011

 2

Approved by: Department of Computer Science

College of Science

San Jose State University

San Jose, CA

Dr. Tsau Young Lin

Dr. Soon Tee Teoh

Dr. Howard Ho, IBM Almaden Research Center

 3

© 2011

Dongyi Jia

All RIGHTS RESERVED

 4

Acknowledgements

I would like to sincerely thank my advisor Dr. Tsau Young Lin for his great

guidance and support to my project. The project would not be possible without Dr.

Lin’s thoughtful enlightening and patiently encouragement. I would also like to

thank Dr. Soon Tee Teoh and Dr. Howard Ho for their valuable suggestions to

my project.

I would further like to thank my families to give me endless love and

encouragement throughout my graduate studies.

 5

Abstract

Mining association rules is a very important aspect in data mining fields. The

process to mine association rules not only take much time, but also take huge

computing source. How to fast and efficiently find the large itemsets is a crucial

point in the association rule algorithms. This paper will focus on two algorithms

research and implementation in parallel computing environments. One is Bitmap

Combination algorithm, the other is Bitmap FP-Growth algorithm. Compared to

Apriori algorithm, both Bitmap Combination and Bitmap FP-Growth algorithms

don’t need generate candidate items, avoids costly database scans. Both

algorithms need to translate the original database to Bitmap format, analyze bit

distribution to reduce database size and apply high-speed bit calculation to

improve the algorithms. The divide-and-conquer replace generation-and-test idea

as the basic strategy. Bitmap Combination Algorithm shows the quick

combination skills between any two, three, four and more rows, then screening

the qualified itemsets. Bitmap FP-Growth Algorithm apply special bit calculation

to recursively mine association rules. Based on the experimental results in this

paper, both algorithms greatly improve the efficiency and performance of mining

association rules, especially provide the possibility to mine association rules in

highly parallel computing environments.

Keywords: Data mining, Association Rule, Bitmap Combination, Bitmap FP-

Growth, Algorithms

 6

TABLE OF CONTENTS

1. Introduction ...10

2. Frequent Itemsets and Association Rule Mining.....................................11

3. Bitmap-Combination Algorithm ...13

3.1 Bitmap Indexes Application ..13

3.2 Bitmap-Combination Algorithms ...14

3.2.1 Conversion from Original Database to Bitmap Tables......................14

3.2.2 Logical Operation(AND, OR, NOT, SHIFT) and Count on Bitmap

Tables..16

3.2.3 Bitmap-Combination Basic Algorithm Description16

3.3 Bitmap-Combination Algorithms Implementation17

3.3.1 Overview...17

3.3.2 Executable and Output ...18

3.3.3 Results Explanations and Analysis...20

4. FP-Growth Tree Algorithm ..21

4.1 Frequent Pattern Tree Construction..22

4.2 Get Frequent Pattern by FP-growth Tree..30

4.2.1 The definition of Conditional FP Base and FP-Tree30

4.2.2 The Algorithm to Mining Frequency Pattern by FP-Tree...................34

5. Bitmap FP-Growth Algorithm ..37

5.1 Overview...37

5.2 Bitmap FP-growth Algorithm Description ..38

5.3 Bitmap FP-growth Algorithm Implementation ...41

5.4 Skills of Speeding up Mining by Bitmap ..42

6. Experiment Results and Analysis ...43

 7

6.1 Program Running Results...43

6.2 Result Analysis ...46

7. Conclusion and Future Work ..47

8. Reference ...48

9. Appendix- Running Result of Bitmap FP-Growth Algorithm....................49

9.1 Example3. dat(part) ..49

9.2 Example3. out(part) ..51

9.3 Example3. log(part) ..54

9.4 Example3. idx(part)...56

9.5 Example3. trans(part) ...57

 8

LIST OF TABLES

Table 1 - Purchase Relation (Same Transid, Same Purchase)...........................12

Table 2 - Bitmap Indexes on printers in store ...13

Table 3 - Original Input Data Format...15

Table 4 - Change Original Input Data to Bitmap ...15

Table 5 - Bitmap Table 90 degree conversion ..15

Table 6 - Transaction Examples ...23

Table 7 - Frequency Count of Items..23

Table 8 - Conditional FP-tree Table ..33

Table 9 - Frequent Patterns Header Table ...36

Table 10 - Final Result of Using Conditional Frequent Pattern Table to Mine

Frequent Pattern ...37

Table 11 - Bitmap Table of All Items ...39

Table 12 - Whole Structure of Bitmap FP-Growth Algorithm...............................40

 9

LIST OF FIGURES

Figure 1 - Frequent Pattern Tree Construct Process 124

Figure 2 - Frequent Pattern Tree Construct Process 225

Figure 3 - Frequent Pattern Tree Construct Process 326

Figure 4 - Frequent Pattern Tree Construct Process 427

Figure 5 - Frequent Pattern Construct Process 5..28

Figure 6 - Complete FP-TREE..29

Figure 7 - Node_Link ..30

Figure 8 - Construct Conditional FP-tree ..31

Figure 9 - 38’s Tree Branch of Conditional Frequent Pattern..............................32

Figure 10 - Simplify 38’s conditional FP-Tree ...32

Figure 11 - Translate conditional FP-base to conditional FP-tree33

Figure 12 - 46’s Tree Branch of Conditional Frequent Pattern Tree35

 10

1. Introduction

In recent years, the researches on data mining have become a focused topic in
databases fields with large datasets coming up. Finding interesting trends or
patterns hidden in the huge data is aiming to guide decisions about future
activities. Research on association rule is important part of data mining research.
In a transaction database, an association rule is an expression to show the
relationships of two sets of items. For example, {X} -> {Y}, we can explain the
rules as follows: if x is purchased in a transaction, it is possible that y is also
purchased in the same transaction. The possibility of X and Y happen together in
the future transaction will be forecasted. There are two kinds of association rules:
support and confidence. The problem of mining association rules is to generate
all the association rules whose support and confidence are more than the user-
specific minimum value.

Generally, the problem of data mining can be divided into two sub-problems: (a).
search all the items whose transaction support is more than the minimum value,
combine all the items. (b). generate the association rules from larger item sets. A
lot of algorithms were belongs to these two categories. The classic Apriori
algorithm takes method (a), mainly by candidate-generation-test method. The
usual pattern-growth approach need to scan transaction database, is one of
methods belong to method (b).

In my paper, I research two new data mining algorithms research in highly
parallel computing environments. One is Bitmap-Combination algorithm; the
other is Bitmap FP-Growth approach. Bitmap-Combination and Bitmap FP-
Growth tree algorithm are different from most traditional data mining algorithms
which usually use candidate-generation-and-test approach. Bitmap-Combination
algorithm is mainly based on bitmap computing, in the meaning time, applies
granular computing approach. And Bitmap FP-Growth tree algorithm is applying
Bitmap technology to improve the traditional pattern-growth approach. Both
algorithms avoid full database tables scan and multiple passes of all the itemsets
to search association rules from very huge database. Bit operation is a kind of
fast and effective operation to reduce the time-consuming multiple scans. It is
more like granular computing between database itemsets. By bitmap method, we
greatly improve the efficiency of association rule mining approaches, and create
the improved association rule algorithms.

The structure of this paper is: we first generally introduce frequent itemsets and
association rule, then present bitmap technology which applies to improve
association rule algorithms. Then we introduce Bitmap-Combination and Bitmap

 11

FP-Growth tree technologies in the second part. The third part we discuss the
implementation of the Bitmap-Combination algorithm. The fourth part we discuss
what the classic FP-Growth tree algorithm is and understand its kernel. The fifth
part we discuss the implementation of Bitmap FP-growth tree algorithm. In the
meaning time, we detailed analyze how and why Bitmap technologies can prune
FP-growth tree and greatly optimize FP-growth algorithm. The sixth part is our
experiments result and analysis. The last part is the resolution and the prospect
for the future research work.

2. Frequent Itemsets and Association Rule Mining

The statistic of frequent itemsets intends to calculate purchase relation. For
example, when we check the transaction sets in purchases tables, we often
observe how likely a pen and a sharper are purchased together, or more items,
such as ink, paper. An itemset is such a set of items: pen, sharper, ink, paper.
We always try to find the biggest itemset with most high frequent items.

The support of an itemset is “a measure of what fraction of the population
satisfies both the antecedent and the consequent of the true” [1]. Confidence is
“a measure of how often the consequent is true when the antecedent is true” [1].
The calculation formula is written as follows:

“Let I = { 1i , 2i ,… mi } be a total set of items, D is a set of transactions, d is one

transaction consists of a set of items d  I, Association rule X -> Y where X  I ,Y
 I and X  Y = , support=(#of transactions contain X  Y) /D; confidence =
(#of transactions contain X  Y) / #of transactions contain X. “ [1]

In the above example, we continue observe itemset {pen, sharper}, If we see that
the support of this itemset was 60 percent in purchase, we will conclude that pen
and sharper are often purchased at the same time. If we see the support is only
10 percent. We will make conclusion that pen and sharper are not purchased
together frequently. Generally, the percent of sets of items is relatively small,
especially when the size of the itemsets is very huge. If all itemsets whose
support are higher than user-specified minimum support, we call the itemsets as
frequent itemsets. For example, if the minimum support is 20 percent, the
frequent itemsets in this example are {pen}, {sharper}, {ink}, {pen, ink}, and {pen,
sharper}.

 12

transid item qty
1 pen 2
1 sharper 1
1 ink 3
1 paper 6
2 pen 1
2 sharper 1
2 ink 1
3 pen 1
3 sharper 1
4 pen 2
4 sharper 2
4 paper 4

Table 1 - Purchase Relation (Same Transid, Same Purchase)

Just like the purchase relation shown in Table1. A set of tuples presents one
transaction. When we retrieve the values in the item column, we get the items
purchased in that transaction. Thus, the sequence of transactions naturally
corresponds to the sequence of itemsets which are purchased by the customer.
And a subsequence of itemsets is also a sequence which qualifies this condition.
We can obtain more frequent itemsets by listing its subsequence combination.

Just as “a sequence { 1a ,….. ma } is contained in another sequence S if S has a

subsequence { 1b ,….. mb } such that ii ba  , for 1 im.”[2] For example, {pen},

{ink, sharper}, {pen, paper} can be contained from the following sequent itemsets:
{pen, ink}, {paper, ink, sharper}, {paper, pen, ink, sharper}. Itemsets determine
sequent pattern, no matter the order of items. “The problem of identifying
sequential patterns is to find all sequences that have a user-specified minimum
support. “[2]

Mining association rule is a scientific method for prediction, but this prediction
must be based on related background knowledge and additional analysis. On the
contrary, improperly applying association rules will mislead people. So we must
take it seriously. For example, the rule {pen}->{paper}, the confidence associated
rule extracted from this database maybe is based on the conditional probability
that a customer purchased a pen together with the purchase of a box of paper.
Only based on the similar situation, this rule might be used to guide future sales
promotions. Store can offer a discount on pens in order to increase the sales of
paper or put the two merchandises nearby to make purchase easier. The

 13

association relation is a good indicator for future customer transactions. And this
cause link between two purchases is justified. Of course, most purchase relation
between two merchandises has not clear cause link, mining association rule will
do great help to identify the kind of relation.

3. Bitmap-Combination Algorithm

3.1 Bitmap Indexes Application
After accumulating the experience of using large scale database, we may have
some thinking about index. Index will directly influence the database access
efficiency. A simple index will shorten the running time of the same program
greatly. Current most databases apply B-tree as index method. Traditional B-tree
technology cannot greatly improve the access efficiency, so we consider bitmap
index. Bitmap technique has been widely used since it was proposed in 1960’s.
Bitmap index is a special kind of technique which applied bitmap to database.
Bulk of data can be expressed and stored as bit arrays and most database
operation can be replaced by bitwise logical operations. Bitmap technique has
more advantages than traditional B-Tree structure. 0 and 1 replace true or false
to answer questions and are showed on the point of intersection of row and
column in the table. So any distinct values in database can be simply expressed
by 0 and 1. For example, an office store has five different kinds of printers, A, B,
C, D, E. F.

 Table 2 - Bitmap Indexes on printers in store

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

A B C D E F

 14

When building bitmap index, we should firstly scan the whole table to create a bit
stream. Every bit of stream corresponds to an intersection of single row and
column. Based on the column number and properties to decide how many bitmap
indexes will be built. Bitmap indexes do not repeat or repeat a relatively low
number of times. In contrast, the bitmap index is designed for cases where
number of distinct values is low, in other words, the values repeat very frequently.
For example, when we represent “gender” in a staff database, only three values
can be the answer: male, female or unknown. For such variables, the bitmap
index can have a significant space and performance advantage over the
commonly used trees.

Bitmap indexes are a structure derived from original tables. The first step to build
bitmap index is to determine the exact quantities of those discrete values in the
table. The following rules should be followed: if some rows include a special
value, then the value on this bit is 1, else it is 0.

When the quantities of discrete value are low, bitmap can be represented very
smaller. We can use the an example to illustrate: Suppose there are one hundred
million rows in office product sale table, and each index in B-tree is ten bytes,
then a B-tree index will take 100MB, but a bitmap index only takes 6.25MB(one
million row * one bit per row * 5 bitmap)/ 8 bit per byte. Bitmap not only save
memory, the read and write speed is much faster than B-tree. By the logical
operation (such as AND, OR, NOT, XOR), one bitmap can easily calculate with
other bitmap tables in the related groups. We also see the above example,
suppose there are 20 local office stores, we build a Store_ID bitmap. And we also
have a product “A” bitmap. We “AND” product ‘A’ and store_ID, then count ‘1’ in it.
We can easily know how many ‘A’ products have been sold in store 15. Because
computer has great advantages on calculating logical AND, OR and NOT, bitmap
can greatly improve information retrieval efficiency.

3.2 Bitmap-Combination Algorithms

3.2.1 Conversion from Original Database to Bitmap Tables

The following table is the original data format. Each attribute has different values.
It is very difficult to calculate numbers of distinct values in a huge datasets with
thousands of rows and columns, and these tables will take up huge memory
storage.

Item# Fruits Package Size
F1 Apple Big
F2 Pear Small
F3 Peach Medium

 15

F4 Peach Big
F5 Banana Medium
F6 Orange Big

Table 3 - Original Input Data Format

Based on the description of the part of 3.1, we can convert the original data
format to bitmap pattern. Not only save memory storage space, but also easily
improve the calculation speed. Bit pattern is to decide how to use 0’s or 1’s to
represent the original database and make data to bit-streams.

 Fruits Package Size
LINE# Apple Pear Peach Banana Orange Big Small Medium

1 1 0 0 0 0 1 0 0
2 0 1 0 0 0 0 1 0
3 0 0 1 0 0 0 0 1
4 0 0 1 0 0 1 0 0
5 0 0 0 1 0 0 0 1
6 0 0 0 0 1 1 0 0

Table 4 - Change Original Input Data to Bitmap

After knowing the bit pattern for individual value in columns we want to make the
bit-stream for the consistent. So we convert bitmap Table 90 degree to make the
data more clear. After converting, we can count 1’s number to get the sum. This
method is very simple, especially when the database is very huge. This
preprocessing make the counting speed improve greatly.

 1 2 3 4 5 6
(Fruits, Apple) 1 0 0 0 0 0
(Fruits, Pear) 0 1 0 0 0 0

(Fruits, Peach) 0 0 1 1 0 0
(Fruits, Banana) 0 0 0 0 1 0
(Fruits, Orange) 0 0 0 0 0 1

(Package Size, Big) 1 0 0 1 0 1
(Package Size, Small) 0 1 0 0 0 0

(Package Size,
Medium)

0 0 1 0 1 0

Table 5 - Bitmap Table 90 degree conversion

 16

The preprocessing makes it easier to calculate the common itemset numbers.
This number is very useful in the tree construction. For example, when we
calculate how many common itemsets in transaction A and transaction B, we just
did AND and count operation for transaction A and B. Bitmap operation greatly
improve the calculating speed.

3.2.2 Logical Operation(AND, OR, NOT, SHIFT) and Count on Bitmap Tables

Now it is time to compare the two rows of bits sequentially. If the same positions
at different rows are both 1, it means there is associate relationship between the
two attributes. When do two rows AND operation, bit presents in bit-stream style.
If the result equals to 1, we will increase the counter 1. After scanning the two
rows, the counter will tell us the total associated item numbers. This quotient of
counter divided by columns number is the certain attribute’s association rule. If
the quotient is very high, it means these two rows have high relative for each
other. We can apply the same reason to three tuples, four tuples and so on, after
ANDing, 1’s quantities are more, the rows have higher association rules.

So, the aim behind the comparison and AND operation was to get the
Association Rule between the attributes of data table. If there are more number
of match after AND operation, more the chances for the rows that have high
Association Rule.

3.2.3 Bitmap-Combination Basic Algorithm Description

From mathematics views, this computational process is a combination. Each
combination contains two attributes values: one is from the first attribute; the
other is from the second. There are C(n, k) possible ways to choose k attributes
from n attributes.[3] If two rows do AND, k is 2, n is the column numbers. If we
calculate many attributes relations, the number of combinations can be very huge.
Especially, when the dataset is huge and support threshold is very low, the result
is so huge. So the key part to improve the program running speed is how to
create k-combinations using the k-1 combinations results.

Combination is the basic mathematics theory in this algorithm. How many times
of combinations decides the running speed. At the same of combination, the
counted result will be get. So AND, SHIFT and COUNT is the very frequent
action. For bitmap, we do not need to worry the speed of bit operation. They are
very fast. Some combination can be ignored if the potential combination result
will not create a huge frequent pattern.

 17

Suppose a List is L= {a, b, c, d, e, f, g , h, i, j, k, l, m}, if d, f, k are not in any 3-
itemsets, they must no show in 4-itemsets. So d, f, k can be deleted from the List
L, any other values’ 4-combinations make up the 4-itemsets[3]. This is the
process of creating k-itemsets from k-1itemsets. Same reason, 3-itemsets can be
created by 2-itemsets. Using this method, much calculation work can be saved.

3.3 Bitmap-Combination Algorithms Implementation

3.3.1 Overview

First, I do some preprocessing work. Because the dataset is translated from other
file formats. There are some unnecessary comma and sum between 0 and 1. It is
not pure bitmap expression. And the dataset is very huge, so I have to divide the
file into hundreds of small files. Data of each row in original file is stored into a
separate text file. I remove all the commas and unnecessary attribute number
between data. Only 1s and 0s are shown in each file. And I transfer the 0 and 1
txt file to .bin file. When program directly use binary file format, its running time
also is shortened.

Functions of Read_file(), bit_and(), bit_count(), read_all_files() implement some
basic operation during processing. Bit_and() realizes two bits from different files
doing “AND” operation; bit_count() realizes counting 1’s number for the whole
row. Core functions are count1(), count2(), count3(), count4(). Please see the
appendix to check the detail of functions.

For the “AND” function, I first spit the bitmap file into several files and then read
them into main memory separately. The iteration of the AND loop use these files
to reduce the time for the disk I/O’s. All operations related to reading and writing
files, we all use binary mode to reduce unnecessary conversion between binary
and decimal expression.

For the “COUNT” function, I use the parallel bit count algorithm to increase the
efficiency of the bit count. It separates the input bit stream into some smaller
blocks, and count these block simultaneously. In this way, we can count millions
of bits in a few seconds.

The databset is like huge table of data that contained 136 columns and 150432
rows, so we can say that it is in the form of 136 * 150432 matrixes of data.
Although the dataset is very huge, all the running time of any combinations of 2-
tuple, 3-tuple and 4-tuple are very good. For example, 2-tuple, set support
threshold to 0.1, calculating all the qualified pairs results only take a few seconds;
3-tuple, set support threshold to 0.1, calculating all the qualified pairs results only

 18

take 9 minutes and 24 second; 3-tuple, set support threshold to 0.7, calculating
all the qualified pairs results only take 12 minutes and 17 second. Of course, all
the support thresholds are set very low. If improve the threshold value, the
program running time must be much shorter. Generally 3-tuple and 4-tuple
combinations usually take a few hours. Comparing with this regular running time
data of similar scale datasets, our experience result is very good.

In my program, I store the entire Bitmap in to a huge array of characters, and
then do loops to begin calculation. It is not necessary to open and close the file
million times. Just pick one row with any other row from the big file, then do AND
operation. It will firstly compare the first row with every other row in bitmap table
except the first one. So it will take total numbers of rows minus one times
iterations. Then in outer level of loops, change the first row to all the other rows,
repeat the same process. After ANDing, all the 1s will be counted. The quotient
of this number divided by the whole bit number in one row is the ratio of support
threshold.

Calculating 3-tuple combination based on 2-tuple results can save much time. 3-
tuple combinations must come from the combinations which are greater than 2–
tuple threshold. Same reason, 4-tuple calculation should based on 3-tuple‘s
results.

3.3.2 Executable and Output

We run “AND” and “COUNT” on all possible pairs of rows of bitmap files. Set
threshold as 50% for association rule, and selected all pairs that satisfy this rule.
And based on the result of the result, we run “AND” and “COUNT” on all possible
3-tuple, using 50% to select triples. And then run “AND” and “COUNT” on all
possible 4-tuple, using 80% to select 4-tupls. When execute these programs, you
should input exe command, source file directory, file number, tuple number and
support threshold.

The output of the calculation in the form as:

For pair: (file_name1_line# vs. file_name2 line#) = count_result (percentage)
For triples: (file_name1_ line# vs. file_name2_ line# vs. file_name3_ line#) =
count_result (percentage)
For 4-tuple: (file_name1_ line# vs. file_name2_ line# vs. file_name3_ line# vs.
file_name4_ line#) = count_result (percentage)

 19

The result of previous step will be maintained in main memory, and the following
steps will use this result to complete the calculation.

Bitmap-Combination Implementation Output files (part).

Pairs:
(40, 14 vs. 112, 1) = 101018 (67.1519%)
(40, 14 vs. 113, 1) = 101086 (67.1971%)
(40, 14 vs. 114, 1) = 101869 (67.7176%)
(40, 14 vs. 115, 1) = 101704 (67.6080%)
(40, 14 vs. 116, 1) = 99058 (65.8490%)
(40, 14 vs. 117, 9) = 99050 (65.8437%)
(40, 14 vs. 118, 4) = 92314 (61.3659%)
(40, 14 vs. 119, 1) = 98639 (65.5705%)
(41, 1 vs. 42, 2) = 94811 (63.0258%)
(41, 1 vs. 43, 1) = 93009 (61.8279%)
(41, 1 vs. 44, 2) = 92997 (61.8200%)
(41, 1 vs. 45, 1) = 93890 (62.4136%)
(41, 1 vs. 46, 22) = 93879 (62.4063%)
(41, 1 vs. 47, 2) = 93370 (62.0679%)

Triples:
(59, 1 vs. 100, 4 vs. 103, 1) = 124824 (82.9770%)
(59, 1 vs. 100, 4 vs. 104, 1) = 126068 (83.8040%)
(59, 1 vs. 100, 4 vs. 105, 1) = 125631 (83.5135%)
(59, 1 vs. 100, 4 vs. 106, 1) = 125492 (83.4211%)
(59, 1 vs. 100, 4 vs. 107, 1) = 123286 (81.9546%)
(59, 1 vs. 100, 4 vs. 108, 1) = 122765 (81.6083%)
(59, 1 vs. 100, 4 vs. 112, 1) = 124007 (82.4339%)
(59, 1 vs. 100, 4 vs. 113, 1) = 123951 (82.3967%)
(59, 1 vs. 100, 4 vs. 114, 1) = 126158 (83.8638%)
(59, 1 vs. 100, 4 vs. 115, 1) = 125765 (83.6026%)
(59, 1 vs. 100, 4 vs. 119, 1) = 122184 (81.2221%)
(59, 1 vs. 100, 4 vs. 126, 13) = 122740 (81.5917%)
(59, 1 vs. 100, 4 vs. 128, 6) = 127218 (84.5684%)

4-tuple:
 (72, 1 vs. 77, 1 vs. 114, 1 vs. 119, 1) = 133273 (88.5935%)
(72, 1 vs. 77, 1 vs. 114, 1 vs. 126, 13) = 134108 (89.1486%)
(72, 1 vs. 77, 1 vs. 114, 1 vs. 128, 6) = 139068 (92.4458%)

 20

(72, 1 vs. 77, 1 vs. 114, 1 vs. 133, 2) = 132005 (87.7506%)
(72, 1 vs. 77, 1 vs. 115, 1 vs. 116, 1) = 127114 (84.4993%)
(72, 1 vs. 77, 1 vs. 115, 1 vs. 117, 9) = 127101 (84.4907%)
(72, 1 vs. 77, 1 vs. 115, 1 vs. 119, 1) = 132841 (88.3063%)
(72, 1 vs. 77, 1 vs. 115, 1 vs. 126, 13) = 133719 (88.8900%)
(72, 1 vs. 77, 1 vs. 115, 1 vs. 128, 6) = 138595 (92.1313%)
(72, 1 vs. 77, 1 vs. 115, 1 vs. 133, 2) = 131614 (87.4907%)
(72, 1 vs. 77, 1 vs. 116, 1 vs. 117, 9) = 128644 (85.5164%)
(72, 1 vs. 77, 1 vs. 116, 1 vs. 119, 1) = 123627 (82.1813%)
(72, 1 vs. 77, 1 vs. 116, 1 vs. 126, 13) = 124681 (82.8820%)
(72, 1 vs. 77, 1 vs. 116, 1 vs. 128, 6) = 128317 (85.2990%)

Of course, we can continue to calculate 5-tuples, 6 tuples and so on base on the
above algorithms. The combinations with the count greater than the minimal
support are association rules[3]. So we get all the 4-combinations and counted all
of their bitmaps. All the 4-combinations bitmap counters are greater or equal to
the minimum support becomes a 4 large itemset, and all the other 4-candidates
will be deleted.

3.3.3 Results Explanations and Analysis

Bitmap-Combination algorithm is much faster than traditional Apriori algorithm.
From the theory, traditional Apriori algorithm is based on the counting of
attributes in different tuples. The comparisons between attributes take much time.
A dataset with m candidates and n tuples need m*n comparisons to get all the
counts of m candidates, then deleted the candidates whose support value is less
than thresholds. For bitmap-Combination algorithm, bit value has presented the
combination of attributes and tuples, the number of AND operation decides the
algorithm running time. When the dataset is become bigger, the running time
difference of Bitmap-Combination and Apriori is much bigger, even include
printing association rule result time. Bitmap-Combination algorithm is much faster
than Apriori algorithm.

Of course, Bitmap-Combination algorithm need some time to do preprocessing
work, such as use bitmap to represent the combination of attributes and tuples,
and bitmap 90 degree transpose. But once finishing the preprocess work, the
AND operation is significant faster than Apriori algorithm.

Bitmap-Combination algorithm doesn’t need to generate a huge number of
candidate sets. It belongs to divide-and-conquer methods. From the bitmap
technology, bit operation is a kind of high efficiency operation. Bitmap-

 21

Combination algorithm doesn’t need to repeatedly scan the database. Parallel bit
operation between blocks greatly shorten running time. Bitmap also have great
advantage on storage. Frequent items are stored as bitmap format. This format
greatly reduces the dataset scale.

4. FP-Growth Tree Algorithm

Currently most data mining methods focus on generating frequent patterns,
Apriori method is a famous one. But Apriori algorithm has the following
disadvantages. Frist, Apriori algorithm will generate a huge candidate sets during
the calculating process. Second, Apriori algorithm will scan the database
repeatedly. These disadvantages decided Aprioir’s processing speed is very low.
A novel data mining method called frequent pattern tree proposed by Dr. Jiawei
Han created to solve these problems[4]. FP-growth algorithm has many
advantages than traditional Apriori algorithm: a condensed tree structure is
developed to represent a large dataset; avoid dataset multi-scans; no need to
create and maintain huge candidate sets; use divide-and-conquer method to do
data mining in partitioned smaller datasets. These advantages make FP-growth
algorithm achieve better performance than Apriori algorithm.

FP-growth tree take a set of prefix trees as the children of root. The root node is
null. A related item-frequency table works as an assistant table. Every node is
composed by three parts: itemname, quantities and pointer—itemname
represents which item in the database, quantities are the number of transitions
related to the items, pointer points to the next node in the tree structure.

There are 2 very important parts using FP-growth tree algorithm to mining
frequent pattern. The first part is frequent pattern tree construction; the second
part is mining complete set of frequent patterns by the constructed FP-tree in the
first step. But FP-growth tree algorithm also has some problems during
implementation. Because FP-tree is a tree structure; it is difficult to code. And
FP-growth tree is an algorithm based on main memory mining. If the dataset is
very huge or the threshold is very low, it is almost impossible to put the whole
datasets into main memory. So many disk-based optimization strategies were
created to solve main memory problem: divide the whole dataset into smaller
ones and do FP-tree mining in each smaller datasets; prune FP-growth tree to
reduce the size, remove less than threshold items to build sub-datasets; optimize
single path of FP-tree to reduce the calculation time and so on. Although there
are optimization strategies to help solve FP–tree main memory problems, FP-
growth algorithm still has the limitation to mining huge scale datasets and its tree
structure also is the source to difficultly implement on actual code. So we

 22

propose bitmap technology to solve these problems. Bitmap FP-growth algorithm
use bitmap to express dataset, apply FP-growth tree’s thoughts but not use tree
as data structure, utilize bit operation to shorten calculation time. And during the
implementation of Bitmap FP-growth tree algorithm, I also apply some necessary
optimization strategies with bit operation traits to shorten running time.

Let us first introduce the FP-growth algorithm and its tree construction.

4.1 Frequent Pattern Tree Construction

Frequent Pattern Tree is a compact data structure.

1) The transaction database will be scanned from the beginning to the end.
Calculate and record the frequent pattern itemsets and their support
values. The frequent itemsets will be sorted by support values in
descending order.

2) The itemset of each transaction will be stored in compact data structure –
an extended prefix tree structure. The function of this informative tree
structure will replace the whole dataset to be the mining object.

3) Merging the common sets can save multiple time and space costs. When
much transactions share a set of frequent set, this advantage is more
obvious. And all the frequent items are sorted in descending order, the
more prefix strings will be shared.

Following is an example of the processing to construct FP-growth Tree [4]. The
10 transactions are picked from multiple data sets. And minimum support value is
3.

ID Items in Basket (Ordered) frequent items

1 5,10,14,16,17,19, 34,38,39 5, 19, 38, 17,10

2 5,7, 23, 26, 31, 40, 47, 59, 63 5, 7, 40

3 5,13,19,23,26,29,36, 40,75 5,19,13,40

4 5,19,27,29,30,33,36,38,54 5,19,38

5 5, 7, 10, 12,13, 20, 54, 59, 90 5, 7,13,10

6 5,13,14,24,27,30,32,43,48 5,13

 23

7 6, 7,14, 17,19,21,34,38,46 7,19, 38,17,21,46

8 6,10,21,22,24,28,29,35,39 21,10

9 7,16,17,21,40,43,46,53,70 7,17,21,40,46

10 7,13,34,35,38,46,48,54,68 7,13,38,46

Table 6 - Transaction Examples

From above figure, we get the head table about frequency count. Table7 shows
the items in descending order.

Item ID Frequency Count

5 6
7 5
19 4
13 4
38 4
17 3
21 3
40 3
46 3
10 3

Table 7 - Frequency Count of Items

The following is the whole process to gradually construct FP-tree based on the
above tables: ((5:6), (7:5), (19:4), (13:4), (38:4), (17:3), (21,3), (40:3),(46:3), (10:
3)) The number after colon is support and support >=minimum. All the branches
of tree follow the same order - descending order. The root is set to “NULL”. By
scanning the dataset second time, we can build the each branch one by one.

 24

Figure 1 - Frequent Pattern Tree Construct Process 1

For 2nd transaction, it also follows the descending order, (5, 7, 40) share same
prefix 2 with (5, 19, 38, 17, 10). So the second branch will extend from the node
(5), and the same time, the count after 2 is increased by 1, (5:1) change to (5 : 2).

Root

5 : 1

19 : 1

38 : 1

17 : 1

10 : 1

 25

Figure 2 - Frequent Pattern Tree Construct Process 2

Root

5 : 2

19 : 1

38 : 1

17 : 1

10 : 1

7 : 1

40 : 1

 26

Figure 3 - Frequent Pattern Tree Construct Process 3

For 3rd transaction, (5, 19, 13, 40) share the common prefix (5,19) with the 1st
transaction, so a branch created from the first branch, and both 5 and 19 counts
are increased by 1. Figure 3 shows the tree structure.

With the same method, after scanning the fourth transaction, we construct the
fourth branch, but the fourth transaction (5,19,38) is exactly one part of first
transaction(5, 19, 38, 17,10), so the tree will not increase one branch, all the
count of items in (5, 19, 38) are increased by 1. The figure4 is formed.

Root

5 : 3

19 : 2

38 : 1

17 : 1

10 : 1

7 : 1

40 : 113 : 1

40 : 1

 27

Figure 4 - Frequent Pattern Tree Construct Process 4

In the following, we continue to construct the transaction 5, transaction 6 and so
on. We get the part of FP-growth tree (one step in the constructing process,
Figure 5) and complete FP-tree (final step in constructing FP-tree, Figure 6)

Root

5 : 4

19 : 3

38 : 2

17 : 1

10 : 1

7 : 1

40 : 1 13 : 1

40 : 1

 28

Figure 5 - Frequent Pattern Construct Process 5

Root

5 : 6

1616
15 3

38 : 2

1144 :
1

7 :
7:11

13 : 1

40 : 1

10 : 1

10 :

4 : 1

10 : 1

37 : 1 14 : 1

7:2

19 : 1

38 : 1

40 : 1 17 : 1
13 : 1

17 : 1

10 : 1

19 : 3

 7 : 1

13:1

 21:1

46:1

 29

Figure 6 - Complete FP-TREE

FP-growth tree has great advantages to mining data. First, there are only 2 times
scans during FP-growth Tree Construction. First scan gets all the qualified
transaction items, second scan sorts items, inserts and creates FP-growth Tree.
Second, this data structure of FP-growth Tree greatly reduces the size of
datasets. Let we analyze the relationship between FP-tree and transaction
datasets. Every piece of transaction at most produces one branch of FP-growth
Tree. Many transactions will share common items with other transactions, so this
kind of prefix tree structure reduces the width of tree. And branch depth is also
not unlimited. It is decided by the item numbers in one transaction. FP-growth
tree is a kind of highly compact data structure to store and retrieve data than the
original transaction sets.

Root

5 : 6

38 : 2 13 : 1

40 : 1

4 : 1

10 : 1

7:2

19: 1

38 : 1

 17 : 1

19 : 3

 7 : 3

 21:1

46:1

17 :

10 : 1

40 : 1

13: 1

13 : 1

17 : 1

21 : 1

 40 : 1

 46:1

13 : 1

38 : 1

 46:1

21 : 1

10 : 1

 30

4.2 Get Frequent Pattern by FP-growth Tree

4.2.1 The definition of Conditional FP Base and FP-Tree

Figure 7 - Node_Link

There is a special point, which is helpful to mine frequent pattern by FP-growth
Tree, in the constructing process. In FP- tree, each node includes item-name,
count and node-link. Item-name and count have clear explanations in the 3.1 part.
Node-link is a special pointer points the other node in the same FP-tree with the
same item-name. If no same item-name in the other branches, the pointer is set
to null. This node-link pointer builds a width-relationship between same items.
For example, the dotted line from (19 : 3) to (19 : 1) indicate the node-link
between them because they have same item name: 19. The concept of
Conditional Frequent Pattern based on Node-link relationships.

Root

5 : 6

1616
15 3

38 : 2

1144 :
1

7 :
7:11

13 : 1

40 : 1

10 : 1

10 :

4 : 1

10 : 1

37 : 1 14 : 1

7:2

19 : 1

38 : 1

40 : 1 17 : 1
13 : 1

17 : 1

10 : 1

19 : 3

 7 : 1

13:1

 21:1

46:1

 31

Figure 8 - Construct Conditional FP-tree

There are 3 paths including item 38. on path (5, 19, 38, 17, 10), path (7, 19, 38,
17, 21, 46) and (7, 13, 38, 46); from 38’s prefix and 38’s count, we know the
string (5: 2, 19 : 2) have relationship with 38, write it as (5 19: 2), same reason,
from path (7:1, 19:1) has relationship with 38, write it as(7 19:1), and (7:1, 13:1)
has relationship with 38, write it as(7 13:1), so 38’s conditional pattern base is {5 :
2, 19 : 2}, {7 :1, 19 : 1}, {7 :1,13 :1} or write it as (5 19 : 2, 7 19 :1, 7 13 :1). Based
on FP-tree construction algorithm, after getting conditional pattern base, we
continue to construct its conditional FP-tree. We get the following sub-tree
structure:

Root

5 : 6

38 : 13 : 1

40 : 1

4 : 1

10 : 1

7:2

19: 1

38 :

 17 : 1

19 : 3

 7 : 3

 21:1

46:1

17 :

10 : 1

40 : 1

13: 1

13 : 1

17 : 1

21 : 1

 40 : 1

 46:1

13 : 1

38 :

 46:1

21 : 1

10 : 1

 32

 Figure 9 - 38’s Tree Branch of Conditional Frequent Pattern

 Figure 10 - Simplify 38’s conditional FP-Tree

We take 2 as the threshold. 5,19 and 7’s count bigger than support value(2), so
38’s conditional FP-tree is (5:2,19:2,7:2), because 19:2 and 19:1 are in different
branches, we can’t simply add them to 19:3. We write it as {(5 : 2, 19 : 2), (7:2)} |
38 to express its 38’s conditional FP-tree. From figure 10, we generate frequent
pattern: 2 35:2, 16 35:2, 4 35:2, 2 16 35:2. Two numbers in same branch can do
combination; two numbers in different branches cannot do combination. Mining
FP-tree to get frequent patterns is a recursive process. This is the key point of
mining algorithm.

Null

5:2

19:2

7:2

Null

5:2

19:2

7:2

19:1 13:1

 33

Figure 11 - Translate conditional FP-base to conditional FP-tree

Item Conditional pattern-

base
Conditonal FP-tree Frequent patterns

results
38 {5 : 2,19 : 2}, {7:1,

19:1}, {7:1,13:1}

{(5 : 2, 19 : 2), (7:2)} |
38

5 38:2, 19 38:2, 7 38:2,
5 19 38:2

Table 8 - Conditional FP-tree Table

From the above description, we know “the set of transformed prefix paths of a
forms a small database of patterns which co-occur with a. Such a database of
pattern occurring with is called a’s conditional pattern-base, and is denoted as
‘pattern_base | a’. Then one can computer all the frequent patterns associated
with a in this a-conditional pattern by creating a small FP-tree, called a’s
conditional FP-tree and denoted as ‘FP-tree | a’. Subsequent mining can be
performed on this small conditional FP-tree. The process is performed recursively
[4].

The sequence of getting conditional pattern base is from the number with low
frequency to the number with higher one. Base on the Table7 Frequency count of
items by ID, we should get the conditional pattern base from 10 to 5.

{(5 : 2, 19 : 2), (7:2)} | 38

5 38:2, 19 38:2, 7 38:2, 5 19 38:2

38-conditional FP base : {5 : 2,19 : 2}, {7:1, 19:1}, {7:1,13:1}
38-conditional FP tree : {(5 : 2, 19 : 2), (7:2)} | 38
38-Frequent pattern generated : 2 35:2, 16 35:2, 4 35:2, 2 16
35:2

{5 : 2,19 : 2}, {7:1, 19:1}, {7:1,13:1}

Translate from conditional FP-tree to
frequent pattern

Translate from conditional FP-base to
conditional FP-tree

 34

4.2.2 The Algorithm to Mining Frequency Pattern by FP-Tree

Algorithm [5]:
Procedure FP-growth(Tree,){

For each header a i , in the head of Tree do {

Generate pattern aai  with

support= ia .support;

Construct  ’s conditional pattern base and

Then  ’s conditional FP-tree Tree 

If Tree? <> null

Then call FP-growth (Tree  , )}

}

There are 4 steps to mining FP-tree. In the above paragraphs, we know what the
conditional frequent pattern tree is. We will continue use Figure8-complete FP
growth tree structure to explain the mining process.

1) Constructing Frequent Pattern
The last item in the Table7 Frequency count of items by ID is 10. We should get
the conditional pattern base from low frequency number to high frequency
number, so we first try 10, then go up till 5. There are 3 branches include item 10.
The 3 branches are
(5:6, 19:3, 38:2, 17:1, 10:1), (5:6, 7:2, 13:1,10:1) and (21:1, 10:1)

2) Analyze and build conditional FP Base
Now we see 10’s prefix part in the three branches. In the first branch, 10’s count
is 1, so the prefix related to 10 is (5:1, 19:1, 38:1, 17:1). In the second branch,
10’s count is also 1, so the prefix in this branch related to 10 is (5; 1, 7:1, 13:1).
Same reason, the prefix in third branch related to 10 is (21:1). Write them as
follows: (5:1, 19:1, 38:1, 17:1), (5:1, 7:1, 13:1), (21:1). They are 10’s conditional
FP base.

3) Construct Conditional Frequent Pattern Tree
Now we add all the same item count together from above 3 branches. We get
(5:2, 19:1, 38:1, 17:1, 7:1, 13:1, 21:1). Because except 5, all the other items only

 35

show once, and less than support value 2, so only (5:2) is kept. The conditional
frequent pattern is {(5:2)}| 10, the frequent pattern is (5, 10:2).

We use the same method to get 46’s frequent pattern. In the Figur8 complete FP
growth tree structure, there are 3 46s in this tree. (7:1, 19:1, 38:1, 17:1, 21:1,
46:1), (7:1, 17:1, 21:1, 40:1, 46:1) and (7:1, 13:1, 38:1, 46:1). Consider 46’s
prefix and the item count related to 46, the three branches turn to (7:1, 19:1, 38:1,
17:1, 21:1), (7:1, 17:1, 21:1, 40:1), (7:1, 13:1, 38:1). We calculate the common
item counts and delete those items whose counts are less than support value. 19,
40 and 13 are deleted. The three branches turn to (7:1, 38:1, 17:1, 21:1), (7:1,
17:1, 21:1), (7:1, 38:1). We construct new Frequent Pattern Tree based on these
3 branches, it shows on the below:

 Figure 12 - 46’s Tree Branch of Conditional Frequent Pattern Tree

Root

7:3

17:1

38:2

21:1

17:1

21:1

 36

Table 9 - Frequent Patterns Header Table

The following steps are that we use recursive method to mine frequent patterns,
produce all combinations. Because all the numbers in two branches are more
than threshold 2, so the tree does not need to be simplified. And write them as 7
46:3, 38 46:2, 17 46:2, 21 46:2, 7 38 46:2, 7 17 46:2, 7 21 46:2, 17 21 46:2, 7 17
21 46:2. Generated frequent patterns are the final results we want to get.

ITEM Conditional pattern

base
Conditional FP-Tree frequent

patterns
generated

10 {(5:1, 19:1, 38:1, 17:1),
(5:1, 7:1, 13:1), (21:1)}

{(5:2)}| 10 5 10:2

46 {(7:1,19:1,38:1,17:1,21:1),
(7:1,17:1,21:1,40:1),

(7:1,13:1,38:1)}

{(7:1,38:1,17:1,21:1),
(7:1,17:1,21:1), (7:1,

38:1)} | 46

7 46: 3, 38 46:2,
17 46:2, 21

46:2, 7 38 46:2,
7 17 46:2, 7 21

46:2, 17 21 46:2,
 7 17 21 46:2

40 {5:1,19:1,13:1}, {5:1,7:1},
{7:1,17:1,21:1}

{(5:2, 7:1), (7:1)} |40 5 40:2, 7 40:2

21 {7:1,19:1,38:1,17:1},
{7:1,17:1}

{(7:2,17:2)}|21 7 21:2,17 21:2,7
17 21:2

17 {5:1,19:1,18:1}, {7:1,19:1,
38:1}, {7:1}

{(7:2)} |17 7 17:2, 7,17:2,
19,17:2, 38,17:2

19,38,17:2,
38 {5 : 2,19 : 2}, {7:1, 19:1},

{7:1,13:1}

{(5 : 2, 19 : 2), (7:2)} |
38

5 38:2, 19 38:3,
7 38:2, 5 19 38:2

13 {5:1,19:1},{5:1,7:1},{7:1} {(5:2,7:1), (7:1)}|13 5 13:2, 7 13:2

Item support

7 3

38 2

17 2

21 2

 37

19 {5:3,{7:1}} {(5:3)}|19 5 19:3

7 {5:2} {5:2}| 7 7 5:2

5 0 0 --------

 Table 10 - Final Result of Using Conditional Frequent Pattern Table to
Mine Frequent Pattern

5. Bitmap FP-Growth Algorithm

5.1 Overview
Applying bitmap technology to optimize FP-growth algorithm is a novel
technology. Refining and mining database through very fast bit operation greatly
improve the efficiency of FP-growth algorithm. Bitmap table is like a rectangular
matrix with great adaptive character to do the further bit calculation. After
applying bitmap technology and analyzing database specialty, we can largely
shrink the size of original database and speed the mining computation.

Although FP-growth is an order of magnitude faster than Aprior, but it has the
following disadvantages:1) FP-growth tree algorithm is based on sequential
computing and is not fit for parallel computing. Every step is based on its
previous results. 2) FP-growth tree algorithm is a complicated algorithm. Building
and mining FP-growth tree are complex processes. And it is difficult to implement
FP-Tree on actual coding because of its tree structure. 3)FP-tree is expensive to
build. Many pointers are used to record the linkage between nodes, and some
extra storage units are used to record the counters.

We use Bitmap technology to improve FP-Growth Algorithm - Bitmap FP-Growth
Algorithm. This algorithm is of the following advantages compared to the original
FP-Growth tree algorithm: 1. The mining part of new algorithm can work in
parallel environments. A single computer computing resource is limited. If many
computers can work on a task simultaneously, the improved efficiency will be ten,
even hundreds times of the original one, which depends on the numbers of
paralleled computers. 2. The new Bitmap FP-growth algorithm cuts tree building
steps of the old algorithm, directly mine frequent patterns. In fact, the relationship
of items expressed by tree is hidden in Bitmap table. We can say that the
simplified table is a well-built tree. 3. Bit calculation has much specialties. We can
improve computing speed by bitmap specialties. For example, we divide one

 38

column into many groups and each group is a 32-bit integer. We use integer to
calculate. We simplify frequent itemsets calculation by bitmap specialities. When
we mine “c a f e”, only AND all the itemsets of “caf” and “cae”. The clustered
bitmap is adequate to mine the corresponding frequent itemsets. We reorder and
group the dataset. Reordering rows will not change the bit 1’s total number.
Dividing database into groups may make easily mine. 4. Bitmap FP-Growth
algorithm can get the same correct results with FP-Growth tree algorithm. We
have confirmed this by programming results. The program of Bitmap FP-growth
algorithm submitted with the report is a C++ code. Now, let us explain the
detailed Bitmap FP-Growth Algorithm.

5.2 Bitmap FP-growth Algorithm Description
Most database design is irregular, the compare and marching from any two
transactions is very tedious. Bitmap representation is more standard and well-
organized, which fits for large scale scientific computing. After the database
translating to bitmap, all the logical operations at the bit level (AND, NOT, OR,
SHIFT…) with their constant execution time has the specific application.

The merge sorting in the FP-growth program can be replaced by logical AND
operation. Bit operation need less memory and calculate very fast. So we use
intensive bit operation to simulate FP-growth process. Using a bit array to replace
the behavior of an itemset can easily produce the possibility of combining
itemsets[8]. Any logical operator becomes possible to represent association rules,
for example, paper => pen  eraser. The relation between pen and eraser can
be connected by OR. Similarly, NOT is also important in representing association
rules. So using bitmap to represent and mine association rule is a natural
consideration.

The whole programs obey the following rules:
Bitmap FP-growth Tree Algorithm:
Sort items by their frequency decreasing;

Call FP-growth-Bitmap(TS, ) TS: transaction set

FP-Growth-Bitmap(TS, IS){

 If TS is  then return IS;

 I = { # items in TS >= Threshold}
 foreach i in I:
 call FP-Growth-Bitmap (STS, IS U { i })
 where STS = subsets of TS and item i contained
}

 39

5 7 19 13 38 17 21 40 46 10
1 0 1 0 1 1 0 0 0 1
1 1 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0
0 1 1 0 1 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1
0 1 0 0 0 1 1 1 1 0
0 1 0 1 1 0 0 0 1 0

Table 11 - Bitmap Table of All Items

But we have many innovations based on bitmap characters. Base on the
example on last chapter, we write down the bitmap table of all items(Table11).
The table can be looked as the well-built tree in the FP-Growth algorithm. It is
very necessary to get the longest branch firstly, then get shorter one, then get
more shorter ones. The process is mining frequent patterns. During bitmap
implementation, it is useful to put the longest branch here. All the other items did
“AND” operation with the longest one by one. From bottom (FP-tree lowest
leaves) to up(higher item), item itself AND any other higher item. Use lowest
frequent item as the first one can cut most unqualified results

I conclude the Bitmap FP-growth tree implementation process includes the
following steps:
 1. read items file
 2. run from bottom to up
 3. for each condition (a bitmap) and equivalent class set,
 1) compute AND of itself and any other higher item bitmap (only one from one
equivalent item class)
 2) Count 1's in each AND result (by 16-bit -> 1 to speed it up)
 3) Drop underwater items by the count
 4) Sort the counts
 5) Find equal counts as candidates to check/predict AND bitmap equivalent
classes
 6) Consider one equivalent class as one item
 7) For each item, add it to the condition, then use its AND bitmap and
equivalent classes to repeat 3

The implementation can be simply expressed as the following table(table-12).

 40

5 7 19 13 38 17 21 40 46
1 1 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0
5 7 19 13 38 17 21 40
0 1 1 0 1 1 1 0
0 1 0 1 1 0 0 0
0 1 0 0 0 1 1 1
5 7 19 13 38 17 21
1 1 0 0 0 0 0
1 0 1 1 0 0 0
0 1 0 0 0 1 1
5 7 19 13 38 17
0 1 1 0 1 1
0 1 0 0 0 1
5 7 19 13 38
1 0 1 0 1
0 1 1 0 1
0 1 0 0 0
5 7 19 13
1 0 1 0
1 0 1 0
0 1 1 0
0 1 0 1
5 7 19
1 1 0
1 0 1
1 0 0
0 1 0
5 7
1 0
1 0
1 0
5
1

Table 12 - Whole Structure of Bitmap FP-Growth Algorithm

Each branches can individually compute their results. If the data set is very huge,
many calculations based on different branches can be carried out simultaneously
on different computers. Operating on the large problem can be divided into
smaller ones. The bitmap FP-Growth algorithm can realize mining association

 41

rule in parallel computing environments. Computation efficiency will be 10 times,
even 100 hundred times of the original one, which depends on how much
computers join the computations.

5.3 Bitmap FP-growth Algorithm Implementation
The following c++ files are main part of implementation: main.cpp, util.cpp,
bitmap.cpp, fpgrowther.cpp. The following header files are also important:
bitmap.h, fpgrowther.h, utils.h

bitmap.cpp does bit calculation, including the following functions:
bool Set(int i)
Bitmap* AND(const Bitmap* src)
int Count()
float Frequency()

util.cpp reads and parses initial file, including the following functions:
ParseDescFile(const char* filename, vector<ItemInfo>* items, vector<vector<int>
>* transactions);
PrintItemInfo(const char* outfile, const vector<ItemInfo>& items);
void PrintTransactions(const char* outfile, const vector<vector<int> >&
transactions)

fpgrowther.cpp is a very important part. It realizes the core part of Bitmap FP-
Growth Algorithm.
bool Init(const char* filename);
bool Run(const float threshold) { return Run(threshold, NULL); }
void Compute(vector<ItemInfo>* candidate_items);
void FilterAndSortItems(vector<ItemInfo>* candidate_items,
vector<ItemInfo>* selected_items);
void PrintOneResult(FILE *fp, const int i);
void PrintConditionItems(const int candidate_size);
void PrintItemPick(const ItemInfo& item, const bool last_candidate);
void PrintFrequencyAndAction(const ItemInfo& item, const char* action);
void PrintSortedSelectedCandidates(const vector<ItemInfo>& selected_items);

bool Set() will set the ith bit.

Init() will call this function to filter out unqualified single items and sort the
qualified items by their frequency.

 42

ParseDescFile() will get all the initial items from the original file. The original file
includes plenty of mess information. This function will pick up the item information
from original files.

void SelectEligibleItems(const unsigned long* bitmap, const
vector<int>& items, vector<int>* eligible_items) choose eligible items from item
file. Only frequency equal to or more than threshold items will be kept.

sort(eligible_items_count.begin(), eligible_items_count.end(), CompAsc), and
ReadSortedItems() realize sorted these eligible items by their decreasing
frequency, built new file to store eligible items and read sorted items to the
program.

void BitmapAND(const unsigned long* a, const unsigned long* b, unsigned long*
c) and void CountAllOnes(const int itemno) realize doing AND operation between
two bitmap lines and count 1’s quantities. After AND operation, recalculate 1’s
counts. Not qualified items will be deleted.

Void PrepareBitmaps(map<int, vector<int> >* eligible_items), void
CreateBitmaps() realize create bitmap files. The original database is not bitmap
file, so I need to do plenty of work to translate the old file to bitmap files. And
because the dataset is so huge, I divide them into a few hundreds files and label
them.

void StartFPGrowthBitmap() and void FpGrowthBitmap(const bool
heuristic_selection, FILE* fp, const unsigned long* bitmap, const vector<int>&
items, const vector<int>& condition, int* single_path) are the key functions. They
realize FP_Growth algorithm using bitmap idea. The whole mining process is
based on FP_Growth technology.

Also there are other functions realize many very necessary work. Such as, void
GetAllOneBitmap(unsigned long* bitmap), int GetFirstNumber(char* str), void
CountInputAll() and so on.

void CsvStringSplit(char* str, vector<int>* a), int StripLine(char* str, char*
stripped_line, int* ones) realize single prefix branch speed up process.

5.4 Skills of Speeding up Mining by Bitmap
During bitmap computation, I also apply some skills to speed up mining
according to bitmap and database specialty. For example, I removed most
sparse bits which cannot reach the threshold and rearrange the data to

 43

rectangular integer matrices. This 2-dimensional matrix can easily operated using
bit computing. And if we represent each column by dividing them into many
groups and each group is a 32-bit integer. Using integer to calculate is more fast
and convenient.

Here is another good rule to simply frequent itemsets calculation. When we mine
“c a f e”, we can only AND all the itemsets of “caf” and “cae”. “The clustered
bitmap is adequate to mine the corresponding frequent itemsets. If we collect all
such clusters into a cluster tree, the join of frequent itemsets from a parent
cluster to a child directly maps to the bit-wise AND of the corresponding bits”[7].
So clustering corresponding frequent itemsets is a good way to save computation.
And I also apply some other skills to save computation. If we reorder rows, the bit
1’s total number will not be changed. And the total number of bit 1 corresponds to
the support value. So we can divide database into many groups to make the
group easily mine. For example, we put all the empty rows into one group, so that
the group can be easily erased. Reordering and grouping bitmap are good ways
to improve bitmap calculation efficiency. For some special case, a few bit 1s in
one row, though these 1 will contribute support value, after AND operation, these
rows will turn into empty rows. So it is not necessary to do AND operation for
these special rows, just recording 1’s counts and erase these rows.

6. Experiment Results and Analysis

6.1 Program Running Results
After applying bitmap technology to improve FP-growth algorithm, our algorithm
is shown to be more efficient and scalable than the original FP-growth algorithm.
Especially, the new bitmap FP-Growth algorithm provides parallel computing
solution for mining association rule. Our experiments are performed on Intel
Core2 Quad CPU Q6600 2.4GHz Desktop machine with 3GB main memory. The
machine operating system is Microsoft WindowsXP. Program running
environments are Microsoft/Visual C++6.0. We do not choose a database with
special attributes, such as spanning too sparse or dense, or there are some
requirements on size.

Program execution order: "fpgrowth.exe infile(input file name)
threshold(between 0 and 1)". When printing log file to see the detailed process,
use order "fpgrowth.exe infile threshold print". idx and .trans file will be
produced no matter if inputting "print".

 44

filename. dat: Input file
filename. out: Output file
filename. log: print detailed middle steps
filename. idx: print item ID, description and translated bitmap expression
filename. trans: translate item name to item ID
Programming solution will print out item quantities, transaction quantities,
frequency pattern quantities and computing time. Printing log file will influence
computation speed.

I did experiments to confirm the correctness of program and algorithm, and also
measured its performance. Experiment1 is a short example. Original table only
has 7 items and 10 transaction. The result is 19 association rules. This solution is
easily to be confirmed. The running time of computing part(no printing log file) is
nearly immediate.

Input data(example1):
a b
b c d
a c d e f
a d e
a b c
a b c d
a g
a b c g
a b d
b c e

output data(example1):

[g]: 0.200
[g, a]: 0.200
[e]: 0.300
[e, a]: 0.200
[e, a, d]: 0.200
[e, c]: 0.200
[e, d]: 0.200
[d]: 0.500
[d, b]: 0.300
[d, b, a]: 0.200
[d, b, c]: 0.200

 45

[d, c]: 0.300
[d, c, a]: 0.200
[d, a]: 0.400
[c]: 0.600
[c, a]: 0.400
[c, a, b]: 0.300
[c, b]: 0.500
[b]: 0.700
[b, a]: 0.500
[a]: 0.800

The experiment2 data is comes from Jiawei Han’s presentation. This example is
not a perfect example to confirm the correctness of our program, because in that
presentation report, Dr. Han use 2 different thresholds in FP-Growth tree building
and mining parts in order to limit the size of results. In fact, only one threshold in
the whole algorithm is more reasonable. No matter we use either 2 or 3 as our
threshold, we will get different results. So we have to use the ordered and
selected items as input file and use 2 as threshold to confirm the rightness of
mining part. In fact, experiment1 has confirmed the correctness of the whole
program. The running time of computing part(no printing log file) is also nearly
immediate.

Input data(example2):

5 19 38 17 10
5 7 40
5 19 13 40
5 19 38
5 7 13 10
5 13
7 19 38 17 21 46
21 10
7 17 21 40 46
7 13 38 46

output data(example2, not include single item):

[17, 7]: 0.200
[17, 7, 21]: 0.200
[17, 7, 21, 46]: 0.200
[17, 7, 46]: 0.200

 46

[17, 38]: 0.200
[17, 38, 19]: 0.200
[17, 19]: 0.200
[17, 46]: 0.200
[17, 46, 21]: 0.200
[17, 21]: 0.200
[10, 5]: 0.200
[40, 5]: 0.200
[40, 7]: 0.200
[21, 7]: 0.200
[21, 7, 46]: 0.200
[21, 46]: 0.200
[46, 38]: 0.200
[46, 38, 7]: 0.200
[46, 7]: 0.300
[19, 5]: 0.300
[19, 5, 38]: 0.200
[19, 38]: 0.300
[38, 5]: 0.200
[38, 7]: 0.200
[13, 7]: 0.200
[13, 5]: 0.300
[7, 5]: 0.200

The input file of Example3 is a standard database that coming from the UCI ML
repository with 48823 records, around 13.1MB. The running time of computing
part(no printing log file) is only 48 millisecond. The original database, running
result and log file are partly listed in the appendix.

6.2 Result Analysis
During the experiments, I set different support thresholds from 90% to 10% to
measure the program running time, including database preprocessing, computing
part and so on. If printing results, program running will take much time. Larger
database, lower efficiency FP-growth shows; sparser database, lower efficiency
FP-growth shows; lower support threshold, lower efficiency FP-growth shows. In
conclusion, Bitmap FP-growth algorithm shows great advantage on more huge,
sparse database, especially when calculating low support threshold. The main
reason is that bit calculation time is super short.

 47

There are the listed reasons to explain Bitmap FP-growth algorithm‘s good result:
1) After original database changing to bitmap format, it is more easily to master
the rule of data, then reduce a large database into a set of smaller ones. And the
database is pruned substantially. After unnecessary data are deleted and
rearranged, the smaller database usually is 1/5 to 1/100 of the size of original
database. 2) During the calculation, the algorithm cut off much of unqualified data,
which ensure the candidate set is close to the real result and reduce the later
amount of computation. Although FP – growth algorithm also has this process,
bitmap format is more easily to carry out this step. 3) Bit calculation saves much
time in computing. AND, OR, NOT and SHIFT operations replace the regular
counting to do calculation. Longer the row is, the effect is more obvious. Although
in the beginning Bitmap FP-Growth takes extra time to transfer the original file to
bitmap file, later bit operations are significant faster than FP-growth algorithm.
4)Bitmap technology make association rule mining in parallel computing
environments possible. In Bitmap FP-Growth Algorithm, each branches can
individually compute their results. If the data set is very huge, many calculations
based on different branches can be carried out simultaneously on different
computers.

Applying bitmap to FP-growth algorithm is not only a general concept, the key
part is how to organize the bitmap, decide which bitmap representation is most
effective, how to utilize bitmap computing characters, how to optimize bitmap
matrices and mine frequent items.We cannot delete the useful information, and
cannot waste computing resource to useless information once and again.
Reducing the frequency to open and close database is another detail. We can
accumulate many actions to do one-time database load, such as bitmap
translation, Bitmap table construction, transaction sorting etc. We should try to
reducing the database scanning times, no matter the original or bitmap one. Any
huge database scan will take very long time. I/O issue should always be paid
more attention. We follow FP-Growth algorithm to avoid many Apriori’s problems,
such as multiple database scans, data size of exponentially growing in the
intermediate steps.

7. Conclusion and Future Work

In this paper, I first implemented Bitmap Combination Algorithm to mining
association rule, then applied bitmap technology to FP-Growth algorithm,
creating Bitmap FP-Growth Algorithm and achieve very good experiment results.
Translating the original database to the bitmap format, analyzing bit distribution,
reducing database size, and using quick bit computing are a few key steps.
Bitmap Combination algorithm shows the quick combination skills between any

 48

two, three, four and more rows, then screening the qualified itemsets; Bitmap FP-
Growth algorithm is a new algorithm to mine association rule correctly and
quickly, and provide the possibility to parallel mining. The two algorithms
research and implementation indicate that applying Bitmap technology to
compute association rule is a very promising research area. Our experiments
results shows great successful in applying bitmap technology in association rule
mining working in parallel computing environments.

Bitmap technology has many other special characters to speed up the data
mining algorithms, such as bit compression. Although I did not try bit
compression/decompression in my experiments, I believe it is a good direction to
store and mine database. Some new method will be considered to
compress/decompress bitmap database when applying bitmap to do association
rule computing. Bitmap technology enables large scale problems solved by the
independent, parallel smaller size problems. Bitmap technology will get more
widely application in the future association rule mining.

8. Reference

 [1]. Silberschatz, Korth, Sudarshan, “Database System Concepts”, 5th Edition,
Mc Graw Hill, 2005

 [2]. Raghu Ramakrishnan, Johannes Gehrke, “Database Management
Systems”, 2nd Edition, Mc Graw Hill, 2002

 [3]. T.Y.Lin, Xiaohua Hu, Eric Louie, “A Fast Association Rule Algorithm Based
on Bitmap and Granular Computing”, Journal of Applied Intelligence, Oct.2000

 [4] Jiawei Han, Jian Pei, Yiwen Yin, Runying Mao, “Mining Frequent Patterns
without Candidate Generation: A Frequent-Pattern Tree Approach”, Data mining
and knowledge discovery, 8,53-87,2004

 [5] Jiawei Han, Jian Pei and Yiwen Yin Presentation Summery, “Mining
Frequent Patterns without Candidate Generation”

 [6] Christian Borgelt, “An Implementation of the FP-growth Algorithm”

 [7] Jianwei Li, Alok Choudhary, Nan Jiang, Wei-keng Liao, “Mining Frequent
Patterns by Differential Refinement of Clustered Bitmaps”

 49

 [8] Georges Gardarin, Philippe Pucheral, Fei wu, “Bitmap Based Algorithms for
Mining Association Rules”

 [9] Usama M.”Advances in Knowledge Discovery and Data Mining”

 [10] T.Y.Lin, “Data Mining and Machine Oriented Modeling: A Granular
Computing Apporach”

 [11] Agarwal, R. Aggarwal C., “A Tree Projection Algorithm for Generation of
Frequent Itemsets”, Journal of Parallel and Distributed Computing, 2002

 [12] Ryszad S., “Machine Learning and Data Mining: Methods and Applications”

 [13] Peter C. “Discovering Data Mining: From Concept to Implementation”

 [14] Zaki, M.J. and Hsiao, C.J. CHARM: An efficient algorithm for closed itemset
mining.” 2002

 [15] Pei, J. Han, H.Lu, “Hyper-structure Mining of Frequent Patterns in Large
Databases”, The 2001 IEEE Int’s Conference on Data Mining

9. Appendix- Running Result of Bitmap FP-Growth Algorithm

9.1 Example3. dat(part)
age=young workclass=Private education=Bachelors edu_num=13 marital=Married-civ-spouse

occupation=Prof-specialty relationship=Wife race=Black sex=Female gain=none loss=none

hours=full-time country=Cuba salary<=50K

age=middle-aged workclass=Private education=Masters edu_num=14 marital=Married-civ-spouse

occupation=Exec-managerial relationship=Wife race=White sex=Female gain=none loss=none

hours=full-time country=United-States salary<=50K

age=middle-aged workclass=Private education=9th edu_num=5 marital=Married-spouse-absent

occupation=Other-service relationship=Not-in-family race=Black sex=Female gain=none loss=none

hours=half-time country=Jamaica salary<=50K

age=senior workclass=Self-emp-not-inc education=HS-grad edu_num=9 marital=Married-civ-spouse

occupation=Exec-managerial relationship=Husband race=White sex=Male gain=none loss=none

hours=overtime country=United-States salary>50K

age=middle-aged workclass=Private education=Masters edu_num=14 marital=Never-married

occupation=Prof-specialty relationship=Not-in-family race=White sex=Female gain=high loss=none

hours=overtime country=United-States salary>50K

 50

age=middle-aged workclass=Private education=Bachelors edu_num=13 marital=Married-civ-spouse

occupation=Exec-managerial relationship=Husband race=White sex=Male gain=high loss=none

hours=full-time country=United-States salary>50K

age=middle-aged workclass=Private education=Some-college edu_num=10 marital=Married-civ-

spouse occupation=Exec-managerial relationship=Husband race=Black sex=Male gain=none

loss=none hours=too-many country=United-States salary>50K

age=middle-aged workclass=State-gov education=Bachelors edu_num=13 marital=Married-civ-

spouse occupation=Prof-specialty relationship=Husband race=Asian-Pac-Islander sex=Male

gain=none loss=none hours=full-time country=India salary>50K

age=young workclass=Private education=Bachelors edu_num=13 marital=Never-married

occupation=Adm-clerical relationship=Own-child race=White sex=Female gain=none loss=none

hours=full-time country=United-States salary<=50K

age=middle-aged workclass=Private education=Assoc-acdm edu_num=12 marital=Never-married

occupation=Sales relationship=Not-in-family race=Black sex=Male gain=none loss=none

hours=overtime country=United-States salary<=50K

age=middle-aged workclass=Private education=Assoc-voc edu_num=11 marital=Married-civ-spouse

occupation=Craft-repair relationship=Husband race=Asian-Pac-Islander sex=Male gain=none

loss=none hours=full-time country=? salary>50K

age=middle-aged workclass=Private education=7th-8th edu_num=4 marital=Married-civ-spouse

occupation=Transport-moving relationship=Husband race=Amer-Indian-Eskimo sex=Male gain=none

loss=none hours=overtime country=Mexico salary<=50K

age=young workclass=Self-emp-not-inc education=HS-grad edu_num=9 marital=Never-married

occupation=Farming-fishing relationship=Own-child race=White sex=Male gain=none loss=none

hours=full-time country=United-States salary<=50K

age=middle-aged workclass=Private education=HS-grad edu_num=9 marital=Never-married

occupation=Machine-op-inspct relationship=Unmarried race=White sex=Male gain=none loss=none

hours=full-time country=United-States salary<=50K

age=middle-aged workclass=Private education=11th edu_num=7 marital=Married-civ-spouse

occupation=Sales relationship=Husband race=White sex=Male gain=none loss=none hours=overtime

country=United-States salary<=50K

age=middle-aged workclass=Self-emp-not-inc education=Masters edu_num=14 marital=Divorced

occupation=Exec-managerial relationship=Unmarried race=White sex=Female gain=none loss=none

hours=overtime country=United-States salary>50K

age=middle-aged workclass=Private education=Doctorate edu_num=16 marital=Married-civ-spouse

occupation=Prof-specialty relationship=Husband race=White sex=Male gain=none loss=none

hours=overtime country=United-States salary>50K

age=senior workclass=Private education=HS-grad edu_num=9 marital=Separated occupation=Other-

service relationship=Unmarried race=Black sex=Female gain=none loss=none hours=half-time

country=United-States salary<=50K

 51

age=middle-aged workclass=Federal-gov education=9th edu_num=5 marital=Married-civ-spouse

occupation=Farming-fishing relationship=Husband race=Black sex=Male gain=none loss=none

hours=full-time country=United-States salary<=50K

age=middle-aged workclass=Private education=11th edu_num=7 marital=Married-civ-spouse

occupation=Transport-moving relationship=Husband race=White sex=Male gain=none loss=medium

hours=full-time country=United-States salary<=50K

age=senior workclass=Private education=HS-grad edu_num=9 marital=Divorced occupation=Tech-

support relationship=Unmarried race=White sex=Female gain=none loss=none hours=full-time

country=United-States salary<=50K

age=senior workclass=Local-gov education=Bachelors edu_num=13 marital=Married-civ-spouse

occupation=Tech-support relationship=Husband race=White sex=Male gain=none loss=none

hours=full-time country=United-States salary>50K

9.2 Example3. out(part)
[edu_num=9, salary<=50K]: 0.272

[edu_num=9, salary<=50K, race=White]: 0.227

[edu_num=9, salary<=50K, race=White, country=United-States]: 0.213

[edu_num=9, salary<=50K, race=White, country=United-States, gain=none]: 0.203

[edu_num=9, salary<=50K, race=White, country=United-States, loss=none]: 0.206

[edu_num=9, salary<=50K, race=White, gain=none]: 0.217

[edu_num=9, salary<=50K, race=White, gain=none, loss=none]: 0.210

[edu_num=9, salary<=50K, race=White, loss=none]: 0.220

[edu_num=9, salary<=50K, country=United-States]: 0.250

[edu_num=9, salary<=50K, country=United-States, gain=none]: 0.239

[edu_num=9, salary<=50K, country=United-States, gain=none, loss=none]: 0.232

[edu_num=9, salary<=50K, country=United-States, loss=none]: 0.243

[edu_num=9, salary<=50K, gain=none]: 0.260

[edu_num=9, salary<=50K, gain=none, loss=none]: 0.252

[edu_num=9, salary<=50K, loss=none]: 0.264

[edu_num=9, race=White]: 0.274

[edu_num=9, race=White, gain=none]: 0.255

[edu_num=9, race=White, gain=none, country=United-States]: 0.240

[edu_num=9, race=White, gain=none, country=United-States, loss=none]: 0.230

[edu_num=9, race=White, gain=none, loss=none]: 0.245

[edu_num=9, race=White, country=United-States]: 0.258

[edu_num=9, race=White, country=United-States, loss=none]: 0.248

[edu_num=9, race=White, loss=none]: 0.264

[edu_num=9, country=United-States]: 0.298

[edu_num=9, country=United-States, gain=none]: 0.279

[edu_num=9, country=United-States, gain=none, loss=none]: 0.267

[edu_num=9, country=United-States, loss=none]: 0.287

 52

[edu_num=9, gain=none]: 0.302

[edu_num=9, gain=none, loss=none]: 0.290

[edu_num=9, loss=none]: 0.311

[marital=Never-married]: 0.330

[marital=Never-married, workclass=Private]: 0.251

[marital=Never-married, workclass=Private, race=White]: 0.207

[marital=Never-married, workclass=Private, race=White, loss=none]: 0.202

[marital=Never-married, workclass=Private, country=United-States]: 0.223

[marital=Never-married, workclass=Private, country=United-States, gain=none]: 0.214

[marital=Never-married, workclass=Private, country=United-States, gain=none, loss=none]: 0.208

[marital=Never-married, workclass=Private, country=United-States, gain=none, loss=none,

salary<=50K]: 0.202

[marital=Never-married, workclass=Private, country=United-States, gain=none, salary<=50K]: 0.208

[marital=Never-married, workclass=Private, country=United-States, salary<=50K]: 0.214

[marital=Never-married, workclass=Private, country=United-States, salary<=50K, loss=none]: 0.209

[marital=Never-married, workclass=Private, country=United-States, loss=none]: 0.217

[marital=Never-married, workclass=Private, gain=none]: 0.241

[marital=Never-married, workclass=Private, gain=none, salary<=50K]: 0.233

[marital=Never-married, workclass=Private, gain=none, salary<=50K, loss=none]: 0.227

[marital=Never-married, workclass=Private, gain=none, loss=none]: 0.234

[marital=Never-married, workclass=Private, salary<=50K]: 0.241

[marital=Never-married, workclass=Private, salary<=50K, loss=none]: 0.235

[marital=Never-married, workclass=Private, loss=none]: 0.244

[marital=Never-married, race=White]: 0.271

[marital=Never-married, race=White, country=United-States]: 0.249

[marital=Never-married, race=White, country=United-States, salary<=50K]: 0.237

[marital=Never-married, race=White, country=United-States, salary<=50K, gain=none]: 0.230

[marital=Never-married, race=White, country=United-States, salary<=50K, gain=none, loss=none]:

0.223

[marital=Never-married, race=White, country=United-States, salary<=50K, loss=none]: 0.230

[marital=Never-married, race=White, country=United-States, gain=none]: 0.239

[marital=Never-married, race=White, country=United-States, gain=none, loss=none]: 0.231

[marital=Never-married, race=White, country=United-States, loss=none]: 0.241

[marital=Never-married, race=White, salary<=50K]: 0.257

[marital=Never-married, race=White, salary<=50K, gain=none]: 0.250

[marital=Never-married, race=White, salary<=50K, gain=none, loss=none]: 0.243

[marital=Never-married, race=White, salary<=50K, loss=none]: 0.250

[marital=Never-married, race=White, gain=none]: 0.259

[marital=Never-married, race=White, gain=none, loss=none]: 0.251

[marital=Never-married, race=White, loss=none]: 0.262

[marital=Never-married, country=United-States]: 0.296

 53

[marital=Never-married, country=United-States, salary<=50K]: 0.283

[marital=Never-married, country=United-States, salary<=50K, gain=none]: 0.274

[marital=Never-married, country=United-States, salary<=50K, gain=none, loss=none]: 0.266

[marital=Never-married, country=United-States, salary<=50K, loss=none]: 0.275

[marital=Never-married, country=United-States, gain=none]: 0.284

[marital=Never-married, country=United-States, gain=none, loss=none]: 0.275

[marital=Never-married, country=United-States, loss=none]: 0.287

[marital=Never-married, salary<=50K]: 0.315

[marital=Never-married, salary<=50K, gain=none]: 0.306

[marital=Never-married, salary<=50K, gain=none, loss=none]: 0.297

[marital=Never-married, salary<=50K, loss=none]: 0.306

[marital=Never-married, gain=none]: 0.316

[marital=Never-married, gain=none, loss=none]: 0.306

[marital=Never-married, loss=none]: 0.320

[sex=Female]: 0.332

[sex=Female, hours=full-time]: 0.213

[sex=Female, hours=full-time, gain=none]: 0.201

[sex=Female, hours=full-time, loss=none]: 0.206

[sex=Female, workclass=Private]: 0.237

[sex=Female, workclass=Private, country=United-States]: 0.213

[sex=Female, workclass=Private, country=United-States, gain=none]: 0.202

[sex=Female, workclass=Private, country=United-States, loss=none]: 0.206

[sex=Female, workclass=Private, salary<=50K]: 0.215

[sex=Female, workclass=Private, salary<=50K, gain=none]: 0.208

[sex=Female, workclass=Private, salary<=50K, gain=none, loss=none]: 0.202

[sex=Female, workclass=Private, salary<=50K, loss=none]: 0.209

[sex=Female, workclass=Private, gain=none]: 0.225

[sex=Female, workclass=Private, gain=none, loss=none]: 0.218

[sex=Female, workclass=Private, loss=none]: 0.230

[sex=Female, race=White]: 0.267

[sex=Female, race=White, salary<=50K]: 0.235

[sex=Female, race=White, salary<=50K, country=United-States]: 0.217

[sex=Female, race=White, salary<=50K, country=United-States, gain=none]: 0.209

[sex=Female, race=White, salary<=50K, country=United-States, gain=none, loss=none]: 0.203

[sex=Female, race=White, salary<=50K, country=United-States, loss=none]: 0.211

[sex=Female, race=White, salary<=50K, gain=none]: 0.226

[sex=Female, race=White, salary<=50K, gain=none, loss=none]: 0.220

[sex=Female, race=White, salary<=50K, loss=none]: 0.229

[sex=Female, race=White, country=United-States]: 0.247

[sex=Female, race=White, country=United-States, gain=none]: 0.231

[sex=Female, race=White, country=United-States, gain=none, loss=none]: 0.222

 54

[sex=Female, race=White, country=United-States, loss=none]: 0.238

[sex=Female, race=White, gain=none]: 0.250

[sex=Female, race=White, gain=none, loss=none]: 0.241

[sex=Female, race=White, loss=none]: 0.257

[sex=Female, salary<=50K]: 0.295

[sex=Female, salary<=50K, country=United-States]: 0.266

[sex=Female, salary<=50K, country=United-States, gain=none]: 0.256

[sex=Female, salary<=50K, country=United-States, gain=none, loss=none]: 0.249

[sex=Female, salary<=50K, country=United-States, loss=none]: 0.259

[sex=Female, salary<=50K, gain=none]: 0.285

[sex=Female, salary<=50K, gain=none, loss=none]: 0.276

[sex=Female, salary<=50K, loss=none]: 0.287

[sex=Female, country=United-States]: 0.299

[sex=Female, country=United-States, gain=none]: 0.281

[sex=Female, country=United-States, gain=none, loss=none]: 0.271

[sex=Female, country=United-States, loss=none]: 0.289

[sex=Female, gain=none]: 0.312

[sex=Female, gain=none, loss=none]: 0.301

[sex=Female, loss=none]: 0.320

[relationship=Husband]: 0.404

[relationship=Husband, hours=full-time]: 0.215

[relationship=Husband, hours=full-time, loss=none]: 0.203

[relationship=Husband, hours=full-time, loss=none, marital=Married-civ-spouse]: 0.203

[relationship=Husband, hours=full-time, loss=none, marital=Married-civ-spouse, sex=Male]: 0.203

[relationship=Husband, hours=full-time, loss=none, sex=Male]: 0.203

[relationship=Husband, hours=full-time, marital=Married-civ-spouse]: 0.215

[relationship=Husband, hours=full-time, marital=Married-civ-spouse, sex=Male]: 0.215

[relationship=Husband, hours=full-time, sex=Male]: 0.215

[relationship=Husband, salary<=50K]: 0.223

[relationship=Husband, salary<=50K, gain=none]: 0.210

[relationship=Husband, salary<=50K, gain=none, loss=none]: 0.203

9.3 Example3. log(part)
Pick loss=none (Frequency 0.110).

New Result [occupation=Craft-repair, gain=none, loss=none]: 0.110

Tried all candidates. Go back to a higher level.

Pick sex=Male (Frequency 0.119).

New Result [occupation=Craft-repair, sex=Male]: 0.119

Create new candidate items:

 loss=none: Frequency 0.113, Selected.

 55

Sort 1 selected candidate items:

 loss=none: Frequency 0.113

Pick loss=none (Frequency 0.113).

New Result [occupation=Craft-repair, sex=Male, loss=none]: 0.113

Tried all candidates. Go back to a higher level.

Pick loss=none (Frequency 0.120).

New Result [occupation=Craft-repair, loss=none]: 0.120

Tried all candidates. Go back to a higher level.

Pick occupation=Prof-specialty (Frequency 0.126).

New Result [occupation=Prof-specialty]: 0.126

Create new candidate items:

 loss=none: Frequency 0.117, Selected.

 gain=none: Frequency 0.109, Selected.

 country=United-States: Frequency 0.113, Selected.

 race=White: Frequency 0.111, Selected.

 salary<=50K: Frequency 0.069, Filtered.

 workclass=Private: Frequency 0.070, Filtered.

 sex=Male: Frequency 0.080, Filtered.

 hours=full-time: Frequency 0.066, Filtered.

 age=middle-aged: Frequency 0.073, Filtered.

 marital=Married-civ-spouse: Frequency 0.065, Filtered.

 relationship=Husband: Frequency 0.055, Filtered.

 sex=Female: Frequency 0.046, Filtered.

 marital=Never-married: Frequency 0.038, Filtered.

 edu_num=9: Frequency 0.007, Filtered.

 education=HS-grad: Frequency 0.007, Filtered.

 age=young: Frequency 0.025, Filtered.

 hours=overtime: Frequency 0.044, Filtered.

 relationship=Not-in-family: Frequency 0.039, Filtered.

 salary>50K: Frequency 0.057, Filtered.

 edu_num=10: Frequency 0.013, Filtered.

 education=Some-college: Frequency 0.013, Filtered.

 age=senior: Frequency 0.026, Filtered.

 edu_num=13: Frequency 0.046, Filtered.

 education=Bachelors: Frequency 0.046, Filtered.

 relationship=Own-child: Frequency 0.010, Filtered.

 marital=Divorced: Frequency 0.016, Filtered.

 56

Sort 4 selected candidate items:

 loss=none: Frequency 0.117

 country=United-States: Frequency 0.113

 race=White: Frequency 0.111

 gain=none: Frequency 0.109

Condition Items: occupation=Prof-specialty

4 candidate items under this condition(threshold 0.10)

Pick gain=none (Frequency 0.109).

New Result [occupation=Prof-specialty, gain=none]: 0.109

Create new candidate items:

 loss=none: Frequency 0.100, Selected.

 country=United-States: Frequency 0.097, Filtered.

 race=White: Frequency 0.096, Filtered.

Sort 1 selected candidate items:

 loss=none: Frequency 0.100

Pick loss=none (Frequency 0.100).

New Result [occupation=Prof-specialty, gain=none, loss=none]: 0.100

Tried all candidates. Go back to a higher level.

Pick race=White (Frequency 0.111).

New Result [occupation=Prof-specialty, race=White]: 0.111

Create new candidate items:

 loss=none: Frequency 0.103, Selected.

 country=United-States: Frequency 0.103, Selected.

9.4 Example3. idx(part)
Id, GroupId, Desc, Bitmap

100, 2, education=Preschool,

0001000000000000000000

00

0000000000000000000000000000000000000010000000000000000010000000000000000000000000

0000000000100100000000000000

00100000000000

00100000000000000000

000100

 57

00

001000000000000000

00010000000000000000000000000000000000

000000000000000000000000000000000000001000

0001000000000000000000

000000000000000000001000

00

000100000000000000

000000000000000100

000100000000000000000000000000000000000000

00000000000000000000000000001000

000000000000000000000000000000000000000100

001000

00

00000000000000100010000000

00

000100

0000001000

000000000001000100000000000000000000

0000000000000000000000000000000000001000

0000000000100000000000000000000000000000000100000000000000000000000000000000000000

0000000000000000000000000000000100

000000000000000000000000001000

00

000000000000000000000000010000000000000100

0000000000000000000000001000

0000000100

000

9.5 Example3. trans(part)
0 21 36 37 38 39 6 28 32 19 10 20 40 13

14 15 22 23 16 17 18 7 8 19 10 41 12 42

0 21 34 35 4 30 6 7 32 43 10 41 12 42

0 21 2 3 16 17 18 7 8 43 10 11 12 42

0 21 44 45 16 17 18 28 8 19 10 46 12 42

0 1 2 3 16 30 18 47 8 19 10 11 48 42

29 21 2 3 4 5 49 7 32 19 10 11 12 13

0 21 50 51 4 52 6 28 8 19 10 41 12 13

0 21 53 54 16 55 18 47 8 19 10 11 56 42

0 21 57 58 16 59 18 60 8 19 10 41 61 13

29 15 22 23 4 62 49 7 8 19 10 11 12 13

 58

0 21 22 23 4 63 64 7 8 19 10 11 12 13

0 21 26 27 16 52 18 7 8 19 10 41 12 13

0 15 34 35 24 17 64 7 32 19 10 41 12 42

0 21 65 66 16 30 18 7 8 19 10 41 12 42

14 21 22 23 67 39 64 28 32 19 10 20 12 13

0 68 36 37 16 62 18 28 8 19 10 11 12 13

0 21 26 27 16 59 18 7 8 19 69 11 12 13

14 21 22 23 24 70 64 7 32 19 10 11 12 13

14 71 2 3 16 70 18 7 8 19 10 11 12 42

29 21 22 23 4 55 49 7 8 19 10 11 12 13

14 72 44 45 16 73 18 47 8 19 10 41 74 42

0 21 22 23 24 17 6 7 8 19 10 46 12 13

0 21 22 23 16 55 18 7 8 19 10 11 12 13

29 71 50 51 4 75 6 7 8 19 10 41 12 13

29 21 44 45 4 52 49 28 8 19 10 41 12 13

0 21 2 3 24 17 49 7 8 19 76 11 12 13

0 68 44 45 16 5 49 7 8 19 10 11 12 13

29 1 44 45 16 39 18 28 8 19 10 20 12 13

0 21 26 27 4 63 64 7 8 19 10 11 77 13

29 21 44 45 4 63 49 7 8 19 10 11 12 13

29 21 22 23 78 5 31 7 32 19 10 20 12 13

0 21 44 45 16 52 18 7 8 19 10 11 56 42

0 15 50 51 16 30 18 7 8 19 10 11 12 13

0 21 36 37 16 63 18 7 8 19 10 41 12 13

	Association Rule Mining -- Geometry and Parallel Computing Approach
	Recommended Citation

	Microsoft Word - cs298report-DongyiJia.doc

