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Abstract 

Mining association rules is a very important aspect in data mining fields. The 

process to mine association rules not only take much time, but also take huge 

computing source. How to fast and efficiently find the large itemsets is a crucial 

point in the association rule algorithms. This paper will focus on two algorithms 

research and implementation in parallel computing environments. One is Bitmap 

Combination algorithm, the other is Bitmap FP-Growth algorithm. Compared to 

Apriori algorithm, both Bitmap Combination and Bitmap FP-Growth algorithms 

don’t need generate candidate items, avoids costly database scans. Both 

algorithms need to translate the original database to Bitmap format, analyze bit 

distribution to reduce database size and apply high-speed bit calculation to 

improve the algorithms. The divide-and-conquer replace generation-and-test idea 

as the basic strategy. Bitmap Combination Algorithm shows the quick 

combination skills between any two, three, four and more rows, then screening 

the qualified itemsets. Bitmap FP-Growth Algorithm apply special bit calculation 

to recursively mine association rules. Based on the experimental results in this 

paper, both algorithms greatly improve the efficiency and performance of mining 

association rules, especially provide the possibility to mine association rules in 

highly parallel computing environments.    

 

Keywords: Data mining, Association Rule, Bitmap Combination, Bitmap FP-

Growth, Algorithms   
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1. Introduction 

In recent years, the researches on data mining have become a focused topic in 
databases fields with large datasets coming up. Finding interesting trends or 
patterns hidden in the huge data is aiming to guide decisions about future 
activities. Research on association rule is important part of data mining research. 
In a transaction database, an association rule is an expression to show the 
relationships of two sets of items. For example, {X} -> {Y}, we can explain the 
rules as follows: if x is purchased in a transaction, it is possible that y is also 
purchased in the same transaction. The possibility of X and Y happen together in 
the future transaction will be forecasted. There are two kinds of association rules: 
support and confidence. The problem of mining association rules is to generate 
all the association rules whose support and confidence are more than the user-
specific minimum value. 
 
Generally, the problem of data mining can be divided into two sub-problems: (a). 
search all the items whose transaction support is more than the minimum value, 
combine all the items. (b). generate the association rules from larger item sets. A 
lot of algorithms were belongs to these two categories. The classic Apriori 
algorithm takes method (a), mainly by candidate-generation-test method. The 
usual pattern-growth approach need to scan transaction database, is one of 
methods belong to method (b). 
 
In my paper, I research two new data mining algorithms research in highly 
parallel computing environments. One is Bitmap-Combination algorithm; the 
other is Bitmap FP-Growth approach. Bitmap-Combination and Bitmap FP-
Growth tree algorithm are different from most traditional data mining algorithms 
which usually use candidate-generation-and-test approach. Bitmap-Combination 
algorithm is mainly based on bitmap computing, in the meaning time, applies 
granular computing approach. And Bitmap FP-Growth tree algorithm is applying 
Bitmap technology to improve the traditional pattern-growth approach. Both 
algorithms avoid full database tables scan and multiple passes of all the itemsets 
to search association rules from very huge database. Bit operation is a kind of 
fast and effective operation to reduce the time-consuming multiple scans. It is 
more like granular computing between database itemsets. By bitmap method, we 
greatly improve the efficiency of association rule mining approaches, and create 
the improved association rule algorithms. 
 
The structure of this paper is: we first generally introduce frequent itemsets and 
association rule, then present bitmap technology which applies to improve 
association rule algorithms. Then we introduce Bitmap-Combination and Bitmap 
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FP-Growth tree technologies in the second part. The third part we discuss the 
implementation of the Bitmap-Combination algorithm. The fourth part we discuss 
what the classic FP-Growth tree algorithm is and understand its kernel. The fifth 
part we discuss the implementation of Bitmap FP-growth tree algorithm. In the 
meaning time, we detailed analyze how and why Bitmap technologies can prune 
FP-growth tree and greatly optimize FP-growth algorithm. The sixth part is our 
experiments result and analysis. The last part is the resolution and the prospect 
for the future research work.            

2. Frequent Itemsets and Association Rule Mining 

The statistic of frequent itemsets intends to calculate purchase relation. For 
example, when we check the transaction sets in purchases tables, we often 
observe how likely a pen and a sharper are purchased together, or more items, 
such as ink, paper. An itemset is such a set of items: pen, sharper, ink, paper. 
We always try to find the biggest itemset with most high frequent items.   

 

The support of an itemset is “a measure of what fraction of the population 
satisfies both the antecedent and the consequent of the true” [1]. Confidence is 
“a measure of how often the consequent is true when the antecedent is true” [1]. 
The calculation formula is written as follows: 

“Let I = { 1i , 2i ,… mi } be a total set of items, D is a set of transactions, d is one 

transaction consists of a set of items d  I, Association rule X -> Y where X  I ,Y 
 I and X  Y = , support=(#of transactions contain X  Y ) /D; confidence = 
(#of transactions contain X  Y ) / #of transactions contain X. “ [1] 

 

In the above example, we continue observe itemset {pen, sharper}, If we see that 
the support of this itemset was 60 percent in purchase, we will conclude that pen 
and sharper are often purchased at the same time. If we see the support is only 
10 percent. We will make conclusion that pen and sharper are not purchased 
together frequently. Generally, the percent of sets of items is relatively small, 
especially when the size of the itemsets is very huge. If all itemsets whose 
support are higher than user-specified minimum support, we call the itemsets as 
frequent itemsets. For example, if the minimum support is 20 percent, the 
frequent itemsets in this example are {pen}, {sharper}, {ink}, {pen, ink}, and {pen, 
sharper}.   
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transid item qty 
1 pen 2 
1 sharper 1 
1 ink 3 
1 paper 6 
2 pen 1 
2 sharper 1 
2 ink 1 
3 pen 1 
3 sharper 1 
4 pen 2 
4 sharper 2 
4 paper 4 

  
Table 1 - Purchase Relation (Same Transid, Same Purchase) 
 
Just like the purchase relation shown in Table1. A set of tuples presents one 
transaction. When we retrieve the values in the item column, we get the items 
purchased in that transaction. Thus, the sequence of transactions naturally 
corresponds to the sequence of itemsets which are purchased by the customer. 
And a subsequence of itemsets is also a sequence which qualifies this condition. 
We can obtain more frequent itemsets by listing its subsequence combination. 

Just as “a sequence { 1a ,….. ma } is contained in another sequence S if S has a 

subsequence { 1b ,….. mb } such that ii ba  , for 1 im.”[2] For example, {pen}, 

{ink, sharper}, {pen, paper} can be contained from the following sequent itemsets: 
{pen, ink}, {paper, ink, sharper}, {paper, pen, ink, sharper}. Itemsets determine 
sequent pattern, no matter the order of items. “The problem of identifying 
sequential patterns is to find all sequences that have a user-specified minimum 
support. “[2] 

 

Mining association rule is a scientific method for prediction, but this prediction 
must be based on related background knowledge and additional analysis. On the 
contrary, improperly applying association rules will mislead people. So we must 
take it seriously. For example, the rule {pen}->{paper}, the confidence associated 
rule extracted from this database maybe is based on the conditional probability 
that a customer purchased a pen together with the purchase of a box of paper. 
Only based on the similar situation, this rule might be used to guide future sales 
promotions. Store can offer a discount on pens in order to increase the sales of 
paper or put the two merchandises nearby to make purchase easier. The 
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association relation is a good indicator for future customer transactions. And this 
cause link between two purchases is justified. Of course, most purchase relation 
between two merchandises has not clear cause link, mining association rule will 
do great help to identify the kind of relation.     

3. Bitmap-Combination Algorithm  

3.1 Bitmap Indexes Application 
After accumulating the experience of using large scale database, we may have 
some thinking about index. Index will directly influence the database access 
efficiency. A simple index will shorten the running time of the same program 
greatly. Current most databases apply B-tree as index method. Traditional B-tree 
technology cannot greatly improve the access efficiency, so we consider bitmap 
index. Bitmap technique has been widely used since it was proposed in 1960’s. 
Bitmap index is a special kind of technique which applied bitmap to database.  
Bulk of data can be expressed and stored as bit arrays and most database 
operation can be replaced by bitwise logical operations. Bitmap technique has 
more advantages than traditional B-Tree structure. 0 and 1 replace true or false 
to answer questions and are showed on the point of intersection of row and 
column in the table. So any distinct values in database can be simply expressed 
by 0 and 1. For example, an office store has five different kinds of printers, A, B, 
C, D, E. F.    

    

 

       
       Table 2 - Bitmap Indexes on printers in store 
 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

1 0 0 0 0 0 

A       B       C        D       E       F 
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When building bitmap index, we should firstly scan the whole table to create a bit 
stream. Every bit of stream corresponds to an intersection of single row and 
column. Based on the column number and properties to decide how many bitmap 
indexes will be built. Bitmap indexes do not repeat or repeat a relatively low 
number of times. In contrast, the bitmap index is designed for cases where 
number of distinct values is low, in other words, the values repeat very frequently. 
For example, when we represent “gender” in a staff database, only three values 
can be the answer: male, female or unknown. For such variables, the bitmap 
index can have a significant space and performance advantage over the 
commonly used trees. 

Bitmap indexes are a structure derived from original tables. The first step to build 
bitmap index is to determine the exact quantities of those discrete values in the 
table. The following rules should be followed: if some rows include a special 
value, then the value on this bit is 1, else it is 0.   

When the quantities of discrete value are low, bitmap can be represented very 
smaller. We can use the an example to illustrate: Suppose there are one hundred 
million rows in office product sale table, and each index in B-tree is ten bytes, 
then a B-tree index will take 100MB, but a bitmap index only takes 6.25MB(one 
million row * one bit per row * 5 bitmap)/ 8 bit per byte. Bitmap not only save 
memory, the read and write speed is much faster than B-tree. By the logical 
operation (such as AND, OR, NOT, XOR), one bitmap can easily calculate with 
other bitmap tables in the related groups. We also see the above example, 
suppose there are 20 local office stores, we build a Store_ID bitmap. And we also 
have a product “A” bitmap. We “AND” product ‘A’ and store_ID, then count ‘1’ in it. 
We can easily know how many ‘A’ products have been sold in store 15. Because 
computer has great advantages on calculating logical AND, OR and NOT, bitmap 
can greatly improve information retrieval efficiency.  

3.2 Bitmap-Combination Algorithms  

3.2.1 Conversion from Original Database to Bitmap Tables 

The following table is the original data format. Each attribute has different values. 
It is very difficult to calculate numbers of distinct values in a huge datasets with 
thousands of rows and columns, and these tables will take up huge memory 
storage.       
 

Item# Fruits Package Size 
F1 Apple Big 
F2 Pear Small 
F3 Peach Medium 
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F4 Peach Big 
F5 Banana Medium 
F6 Orange Big 

 
Table 3 - Original Input Data Format 

 
Based on the description of the part of 3.1, we can convert the original data 
format to bitmap pattern. Not only save memory storage space, but also easily 
improve the calculation speed. Bit pattern is to decide how to use 0’s or 1’s to 
represent the original database and make data to bit-streams.     
   
      

 Fruits Package Size 
LINE# Apple Pear Peach Banana Orange Big Small Medium 

1 1 0 0 0 0 1 0 0 
2 0 1 0 0 0 0 1 0 
3 0 0 1 0 0 0 0 1 
4 0 0 1 0 0 1 0 0 
5 0 0 0 1 0 0 0 1 
6 0 0 0 0 1 1 0 0 

 
Table 4 - Change Original Input Data to Bitmap 

 
After knowing the bit pattern for individual value in columns we want to make the 
bit-stream for the consistent. So we convert bitmap Table 90 degree to make the 
data more clear. After converting, we can count 1’s number to get the sum. This 
method is very simple, especially when the database is very huge. This 
preprocessing make the counting speed improve greatly.   
  
 

 1 2 3 4 5 6 
(Fruits, Apple) 1 0 0 0 0 0 
(Fruits, Pear) 0 1 0 0 0 0 

(Fruits, Peach) 0 0 1 1 0 0 
(Fruits, Banana) 0 0 0 0 1 0 
(Fruits, Orange) 0 0 0 0 0 1 

(Package Size, Big) 1 0 0 1 0 1 
(Package Size, Small) 0 1 0 0 0 0 

(Package Size, 
Medium) 

0 0 1 0 1 0 

 
Table 5 - Bitmap Table 90 degree conversion 
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The preprocessing makes it easier to calculate the common itemset numbers. 
This number is very useful in the tree construction. For example, when we 
calculate how many common itemsets in transaction A and transaction B, we just 
did AND and count operation for transaction A and B. Bitmap operation greatly 
improve the calculating speed. 

3.2.2 Logical Operation(AND, OR, NOT, SHIFT) and Count on Bitmap Tables 

Now it is time to compare the two rows of bits sequentially. If the same positions 
at different rows are both 1, it means there is associate relationship between the 
two attributes. When do two rows AND operation, bit presents in bit-stream style. 
If the result equals to 1, we will increase the counter 1. After scanning the two 
rows, the counter will tell us the total associated item numbers. This quotient of 
counter divided by columns number is the certain attribute’s association rule. If 
the quotient is very high, it means these two rows have high relative for each 
other. We can apply the same reason to three tuples, four tuples and so on, after 
ANDing, 1’s quantities are more, the rows have higher association rules.  

So, the aim behind the comparison and AND operation was to get the 
Association Rule between the attributes of data table. If there are more number 
of match after AND operation, more the chances for the rows that have high 
Association Rule. 
 

3.2.3 Bitmap-Combination Basic Algorithm Description 

From mathematics views, this computational process is a combination. Each 
combination contains two attributes values: one is from the first attribute; the 
other is from the second. There are C(n, k) possible ways to choose k attributes 
from n attributes.[3] If two rows do AND, k is 2, n is the column numbers. If we 
calculate many attributes relations, the number of combinations can be very huge. 
Especially, when the dataset is huge and support threshold is very low, the result 
is so huge. So the key part to improve the program running speed is how to 
create k-combinations using the k-1 combinations results.  

Combination is the basic mathematics theory in this algorithm. How many times 
of combinations decides the running speed. At the same of combination, the 
counted result will be get. So AND, SHIFT and COUNT is the very frequent 
action. For bitmap, we do not need to worry the speed of bit operation. They are 
very fast. Some combination can be ignored if the potential combination result 
will not create a huge frequent pattern.  
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Suppose a List is L= {a, b, c, d, e, f, g , h, i, j, k, l, m}, if d, f, k are not in any 3-
itemsets, they must no show in 4-itemsets. So d, f, k can be deleted from the List 
L, any other values’ 4-combinations make up the 4-itemsets[3]. This is the 
process of creating k-itemsets from k-1itemsets. Same reason, 3-itemsets can be 
created by 2-itemsets. Using this method, much calculation work can be saved.                 

3.3 Bitmap-Combination Algorithms Implementation 

3.3.1 Overview 

First, I do some preprocessing work. Because the dataset is translated from other 
file formats. There are some unnecessary comma and sum between 0 and 1. It is 
not pure bitmap expression. And the dataset is very huge, so I have to divide the 
file into hundreds of small files. Data of each row in original file is stored into a 
separate text file. I remove all the commas and unnecessary attribute number 
between data. Only 1s and 0s are shown in each file. And I transfer the 0 and 1 
txt file to .bin file. When program directly use binary file format, its running time 
also is shortened.    

Functions of Read_file(), bit_and(), bit_count(), read_all_files() implement some 
basic operation during processing. Bit_and() realizes two bits from different files 
doing “AND” operation; bit_count() realizes counting 1’s number for the whole 
row. Core functions are count1(), count2(), count3(), count4(). Please see the 
appendix to check the detail of functions. 

For the “AND” function, I first spit the bitmap file into several files and then read 
them into main memory separately. The iteration of the AND loop use these files 
to reduce the time for the disk I/O’s. All operations related to reading and writing 
files, we all use binary mode to reduce unnecessary conversion between binary 
and decimal expression.   
 
For the “COUNT” function, I use the parallel bit count algorithm to increase the 
efficiency of the bit count. It separates the input bit stream into some smaller 
blocks, and count these block simultaneously. In this way, we can count millions 
of bits in a few seconds.  

The databset is like huge table of data that contained 136 columns and 150432 
rows, so we can say that it is in the form of 136 * 150432 matrixes of data. 
Although the dataset is very huge, all the running time of any combinations of 2-
tuple, 3-tuple and 4-tuple are very good. For example, 2-tuple, set support 
threshold to 0.1, calculating all the qualified pairs results only take a few seconds; 
3-tuple, set support threshold to 0.1, calculating all the qualified pairs results only 
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take 9 minutes and 24 second; 3-tuple, set support threshold to 0.7, calculating 
all the qualified pairs results only take 12 minutes and 17 second. Of course, all 
the support thresholds are set very low. If improve the threshold value, the 
program running time must be much shorter. Generally 3-tuple and 4-tuple 
combinations usually take a few hours. Comparing with this regular running time 
data of similar scale datasets, our experience result is very good.        

In my program, I store the entire Bitmap in to a huge array of characters, and 
then do loops to begin calculation. It is not necessary to open and close the file 
million times. Just pick one row with any other row from the big file, then do AND 
operation. It will firstly compare the first row with every other row in bitmap table 
except the first one. So it will take total numbers of rows minus one times 
iterations. Then in outer level of loops, change the first row to all the other rows, 
repeat the same process. After ANDing, all the 1s will be counted. The quotient 
of this number divided by the whole bit number in one row is the ratio of support 
threshold.           

Calculating 3-tuple combination based on 2-tuple results can save much time. 3-
tuple combinations must come from the combinations which are greater than 2–
tuple threshold. Same reason, 4-tuple calculation should based on 3-tuple‘s 
results.   

3.3.2 Executable and Output 

 
We run “AND” and “COUNT” on all possible pairs of rows of bitmap files. Set 
threshold as 50% for association rule, and selected all pairs that satisfy this rule. 
And based on the result of the result, we run “AND” and “COUNT” on all possible 
3-tuple, using 50% to select triples. And then run “AND” and “COUNT” on all 
possible 4-tuple, using 80% to select 4-tupls. When execute these programs, you 
should input exe command, source file directory, file number, tuple number and 
support threshold.       
 
The output of the calculation in the form as: 
 
For pair: (file_name1_line# vs. file_name2 line#) = count_result (percentage) 
For triples: (file_name1_ line# vs. file_name2_ line# vs. file_name3_ line#) = 
count_result (percentage) 
For 4-tuple: (file_name1_ line# vs. file_name2_ line# vs. file_name3_ line# vs. 
file_name4_ line#) = count_result (percentage) 
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The result of previous step will be maintained in main memory, and the following 
steps will use this result to complete the calculation. 
 
Bitmap-Combination Implementation Output files (part). 
 
Pairs:  
(40, 14 vs. 112, 1) = 101018 (67.1519%) 
(40, 14 vs. 113, 1) = 101086 (67.1971%) 
(40, 14 vs. 114, 1) = 101869 (67.7176%) 
(40, 14 vs. 115, 1) = 101704 (67.6080%) 
(40, 14 vs. 116, 1) = 99058 (65.8490%) 
(40, 14 vs. 117, 9) = 99050 (65.8437%) 
(40, 14 vs. 118, 4) = 92314 (61.3659%) 
(40, 14 vs. 119, 1) = 98639 (65.5705%) 
(41, 1 vs. 42, 2) = 94811 (63.0258%) 
(41, 1 vs. 43, 1) = 93009 (61.8279%) 
(41, 1 vs. 44, 2) = 92997 (61.8200%) 
(41, 1 vs. 45, 1) = 93890 (62.4136%) 
(41, 1 vs. 46, 22) = 93879 (62.4063%) 
(41, 1 vs. 47, 2) = 93370 (62.0679%) 
 
 
Triples: 
(59, 1 vs. 100, 4 vs. 103, 1) = 124824 (82.9770%) 
(59, 1 vs. 100, 4 vs. 104, 1) = 126068 (83.8040%) 
(59, 1 vs. 100, 4 vs. 105, 1) = 125631 (83.5135%) 
(59, 1 vs. 100, 4 vs. 106, 1) = 125492 (83.4211%) 
(59, 1 vs. 100, 4 vs. 107, 1) = 123286 (81.9546%) 
(59, 1 vs. 100, 4 vs. 108, 1) = 122765 (81.6083%) 
(59, 1 vs. 100, 4 vs. 112, 1) = 124007 (82.4339%) 
(59, 1 vs. 100, 4 vs. 113, 1) = 123951 (82.3967%) 
(59, 1 vs. 100, 4 vs. 114, 1) = 126158 (83.8638%) 
(59, 1 vs. 100, 4 vs. 115, 1) = 125765 (83.6026%) 
(59, 1 vs. 100, 4 vs. 119, 1) = 122184 (81.2221%) 
(59, 1 vs. 100, 4 vs. 126, 13) = 122740 (81.5917%) 
(59, 1 vs. 100, 4 vs. 128, 6) = 127218 (84.5684%) 
 
4-tuple:  
 (72, 1 vs. 77, 1 vs. 114, 1 vs. 119, 1) = 133273 (88.5935%) 
(72, 1 vs. 77, 1 vs. 114, 1 vs. 126, 13) = 134108 (89.1486%) 
(72, 1 vs. 77, 1 vs. 114, 1 vs. 128, 6) = 139068 (92.4458%) 
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(72, 1 vs. 77, 1 vs. 114, 1 vs. 133, 2) = 132005 (87.7506%) 
(72, 1 vs. 77, 1 vs. 115, 1 vs. 116, 1) = 127114 (84.4993%) 
(72, 1 vs. 77, 1 vs. 115, 1 vs. 117, 9) = 127101 (84.4907%) 
(72, 1 vs. 77, 1 vs. 115, 1 vs. 119, 1) = 132841 (88.3063%) 
(72, 1 vs. 77, 1 vs. 115, 1 vs. 126, 13) = 133719 (88.8900%) 
(72, 1 vs. 77, 1 vs. 115, 1 vs. 128, 6) = 138595 (92.1313%) 
(72, 1 vs. 77, 1 vs. 115, 1 vs. 133, 2) = 131614 (87.4907%) 
(72, 1 vs. 77, 1 vs. 116, 1 vs. 117, 9) = 128644 (85.5164%) 
(72, 1 vs. 77, 1 vs. 116, 1 vs. 119, 1) = 123627 (82.1813%) 
(72, 1 vs. 77, 1 vs. 116, 1 vs. 126, 13) = 124681 (82.8820%) 
(72, 1 vs. 77, 1 vs. 116, 1 vs. 128, 6) = 128317 (85.2990%) 
 
Of course, we can continue to calculate 5-tuples, 6 tuples and so on base on the 
above algorithms. The combinations with the count greater than the minimal 
support are association rules[3]. So we get all the 4-combinations and counted all 
of their bitmaps. All the 4-combinations bitmap counters are greater or equal to 
the minimum support becomes a 4 large itemset, and all the other 4-candidates 
will be deleted.     

3.3.3 Results Explanations and Analysis  

 

Bitmap-Combination algorithm is much faster than traditional Apriori algorithm. 
From the theory, traditional Apriori algorithm is based on the counting of 
attributes in different tuples. The comparisons between attributes take much time. 
A dataset with m candidates and n tuples need m*n comparisons to get all the 
counts of m candidates, then deleted the candidates whose support value is less 
than thresholds. For bitmap-Combination algorithm, bit value has presented the 
combination of attributes and tuples, the number of AND operation decides the 
algorithm running time. When the dataset is become bigger, the running time 
difference of Bitmap-Combination and Apriori is much bigger, even include 
printing association rule result time. Bitmap-Combination algorithm is much faster 
than Apriori algorithm. 
  
Of course, Bitmap-Combination algorithm need some time to do preprocessing 
work, such as use bitmap to represent the combination of attributes and tuples, 
and bitmap 90 degree transpose. But once finishing the preprocess work, the 
AND operation is significant faster than Apriori algorithm. 
 
Bitmap-Combination algorithm doesn’t need to generate a huge number of 
candidate sets. It belongs to divide-and-conquer methods. From the bitmap 
technology, bit operation is a kind of high efficiency operation. Bitmap-
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Combination algorithm doesn’t need to repeatedly scan the database. Parallel bit 
operation between blocks greatly shorten running time. Bitmap also have great 
advantage on storage. Frequent items are stored as bitmap format. This format 
greatly reduces the dataset scale.     

4. FP-Growth Tree Algorithm  

Currently most data mining methods focus on generating frequent patterns, 
Apriori method is a famous one. But Apriori algorithm has the following 
disadvantages. Frist, Apriori algorithm will generate a huge candidate sets during 
the calculating process. Second, Apriori algorithm will scan the database 
repeatedly. These disadvantages decided Aprioir’s processing speed is very low. 
A novel data mining method called frequent pattern tree proposed by Dr. Jiawei 
Han created to solve these problems[4]. FP-growth algorithm has many 
advantages than traditional Apriori algorithm: a condensed tree structure is 
developed to represent a large dataset; avoid dataset multi-scans; no need to 
create and maintain huge candidate sets; use divide-and-conquer method to do 
data mining in partitioned smaller datasets. These advantages make FP-growth 
algorithm achieve better performance than Apriori algorithm.    
      
FP-growth tree take a set of prefix trees as the children of root. The root node is 
null. A related item-frequency table works as an assistant table. Every node is 
composed by three parts: itemname, quantities and pointer—itemname 
represents which item in the database, quantities are the number of transitions 
related to the items, pointer points to the next node in the tree structure. 
 
There are 2 very important parts using FP-growth tree algorithm to mining 
frequent pattern. The first part is frequent pattern tree construction; the second 
part is mining complete set of frequent patterns by the constructed FP-tree in the 
first step. But FP-growth tree algorithm also has some problems during 
implementation. Because FP-tree is a tree structure; it is difficult to code. And 
FP-growth tree is an algorithm based on main memory mining. If the dataset is 
very huge or the threshold is very low, it is almost impossible to put the whole 
datasets into main memory. So many disk-based optimization strategies were 
created to solve main memory problem: divide the whole dataset into smaller 
ones and do FP-tree mining in each smaller datasets; prune FP-growth tree to 
reduce the size, remove less than threshold items to build sub-datasets; optimize 
single path of FP-tree to reduce the calculation time and so on. Although there 
are optimization strategies to help solve FP–tree main memory problems, FP-
growth algorithm still has the limitation to mining huge scale datasets and its tree 
structure also is the source to difficultly implement on actual code. So we 
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propose bitmap technology to solve these problems. Bitmap FP-growth algorithm 
use bitmap to express dataset, apply FP-growth tree’s thoughts but not use tree 
as data structure, utilize bit operation to shorten calculation time. And during the 
implementation of Bitmap FP-growth tree algorithm, I also apply some necessary 
optimization strategies with bit operation traits to shorten running time. 
 
Let us first introduce the FP-growth algorithm and its tree construction. 
   
4.1 Frequent Pattern Tree Construction 
 
Frequent Pattern Tree is a compact data structure.  
 

1) The transaction database will be scanned from the beginning to the end. 
Calculate and record the frequent pattern itemsets and their support 
values. The frequent itemsets will be sorted by support values in 
descending order.  

2) The itemset of each transaction will be stored in compact data structure – 
an extended prefix tree structure. The function of this informative tree 
structure will replace the whole dataset to be the mining object. 

3) Merging the common sets can save multiple time and space costs. When 
much transactions share a set of frequent set, this advantage is more 
obvious. And all the frequent items are sorted in descending order, the 
more prefix strings will be shared. 

 
Following is an example of the processing to construct FP-growth Tree [4]. The 
10 transactions are picked from multiple data sets. And minimum support value is 
3. 
 

ID  Items in Basket (Ordered) frequent items 

1 5,10,14,16,17,19, 34,38,39  5, 19, 38, 17,10 

2 5,7, 23, 26, 31, 40, 47, 59, 63 5, 7, 40 

3 5,13,19,23,26,29,36, 40,75 5,19,13,40 

4 5,19,27,29,30,33,36,38,54 5,19,38 

5 5, 7, 10, 12,13, 20, 54, 59, 90 5, 7,13,10 

6 5,13,14,24,27,30,32,43,48 5,13 
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7 6, 7,14, 17,19,21,34,38,46 7,19, 38,17,21,46 

8 6,10,21,22,24,28,29,35,39 21,10 

9 7,16,17,21,40,43,46,53,70 7,17,21,40,46 

10 7,13,34,35,38,46,48,54,68 7,13,38,46 

 
Table 6 - Transaction Examples 

 
 
From above figure, we get the head table about frequency count. Table7 shows 
the items in descending order. 
 
 

Item ID Frequency Count 

5 6 
7 5 
19 4 
13 4 
38 4 
17 3 
21 3 
40 3 
46 3 
10 3 

              
Table 7 - Frequency Count of Items  

 
The following is the whole process to gradually construct FP-tree based on the 
above tables: ((5:6), (7:5), (19:4), (13:4), (38:4), (17:3), (21,3), (40:3),(46:3), (10: 
3)) The number after colon is support and support >=minimum. All the branches 
of tree follow the same order - descending order. The root is set to “NULL”. By 
scanning the dataset second time, we can build the each branch one by one.   
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Figure 1 - Frequent Pattern Tree Construct Process 1 

 
For 2nd transaction, it also follows the descending order, (5, 7, 40) share same 
prefix 2 with (5, 19, 38, 17, 10). So the second branch will extend from the node 
(5), and the same time, the count after 2 is increased by 1, (5:1) change to (5 : 2).   
 

Root 

5 : 1 

19 : 1

38 : 1

17 : 1

10 : 1



 25

 
            

Figure 2 - Frequent Pattern Tree Construct Process 2 

Root 

5 : 2 

19 : 1 

38 : 1 

17 : 1 

10 : 1 

7 : 1 

40 : 1
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Figure 3 - Frequent Pattern Tree Construct Process 3 

 
For 3rd transaction, (5, 19, 13, 40) share the common prefix (5,19) with the 1st 
transaction, so a branch created from the first branch, and both 5 and 19 counts 
are increased by 1. Figure 3 shows the tree structure.  
 
With the same method, after scanning the fourth transaction, we construct the 
fourth branch, but the fourth transaction (5,19,38) is exactly one part of first 
transaction(5, 19, 38, 17,10), so the tree will not increase one branch, all the 
count of items in (5, 19, 38) are increased by 1. The figure4 is formed.  

Root 

5 : 3 

19 : 2 

38 : 1 

17 : 1 

10 : 1 

7 : 1 

40 : 113 : 1

40 : 1
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Figure 4 - Frequent Pattern Tree Construct Process 4 
 
In the following, we continue to construct the transaction 5, transaction 6 and so 
on. We get the part of FP-growth tree (one step in the constructing process, 
Figure 5) and complete FP-tree (final step in constructing FP-tree, Figure 6)  
 
 
 
 
 

 

Root 

5 : 4 

19 : 3 

38 : 2 

17 : 1 

10 : 1 

7 : 1 

40 : 1 13 : 1 

40 : 1 
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Figure 5 - Frequent Pattern Construct Process 5 

 

Root 

5 : 6 

1616 
15 3

38 : 2 

1144 : 
1

7 : 
7:11

13 : 1 

40 : 1 

10 : 1 

10 : 

4 : 1 

 

 

10 : 1 

37 : 1 14 : 1 

7:2 

19 : 1 

38 : 1 

40 : 1  17 : 1 
13 : 1 

17 : 1 

10 : 1 

19 : 3 

  7 : 1 

13:1 

 21:1 

46:1 
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Figure 6 - Complete FP-TREE 
 

FP-growth tree has great advantages to mining data. First, there are only 2 times 
scans during FP-growth Tree Construction. First scan gets all the qualified 
transaction items, second scan sorts items, inserts and creates FP-growth Tree. 
Second, this data structure of FP-growth Tree greatly reduces the size of 
datasets. Let we analyze the relationship between FP-tree and transaction 
datasets. Every piece of transaction at most produces one branch of FP-growth 
Tree. Many transactions will share common items with other transactions, so this 
kind of prefix tree structure reduces the width of tree. And   branch depth is also 
not unlimited. It is decided by the item numbers in one transaction. FP-growth 
tree is a kind of highly compact data structure to store and retrieve data than the 
original transaction sets.         
 
 
 
 
 
 

Root 

5 : 6 

38 : 2 13 : 1 

40 : 1 

4 : 1 

 

 

10 : 1 

7:2 

19: 1 

38 : 1

 17 : 1 

19 : 3 

 7 : 3 

 21:1 

46:1 

17 : 

10 : 1 

40 : 1 

13: 1 

13 : 1

17 : 1

21 : 1

 40 : 1 

 46:1 

13 : 1 

38 : 1 

 46:1 

21 : 1 

10 : 1 
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4.2 Get Frequent Pattern by FP-growth Tree 

4.2.1 The definition of Conditional FP Base and FP-Tree  

 
Figure 7 - Node_Link 

 

There is a special point, which is helpful to mine frequent pattern by FP-growth 
Tree, in the constructing process. In FP- tree, each node includes item-name, 
count and node-link. Item-name and count have clear explanations in the 3.1 part. 
Node-link is a special pointer points the other node in the same FP-tree with the 
same item-name. If no same item-name in the other branches, the pointer is set 
to null. This node-link pointer builds a width-relationship between same items. 
For example, the dotted line from (19 : 3) to (19 : 1) indicate the node-link 
between them because they have same item name: 19. The concept of 
Conditional Frequent Pattern based on Node-link relationships.   

Root 

5 : 6 

1616 
15 3

38 : 2 

1144 : 
1

7 : 
7:11

13 : 1 

40 : 1 

10 : 1 

10 : 

4 : 1 

 

 

10 : 1 

37 : 1 14 : 1 

7:2 

19 : 1 

38 : 1 

40 : 1  17 : 1 
13 : 1 

17 : 1 

10 : 1 

19 : 3 

  7 : 1 

13:1 

 21:1 

46:1 
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Figure 8 - Construct Conditional FP-tree 
 

There are 3 paths including item 38. on path (5, 19, 38, 17, 10), path (7, 19, 38, 
17, 21, 46) and (7, 13, 38, 46); from 38’s prefix and 38’s count, we know the 
string (5: 2, 19 : 2) have relationship with 38, write it as (5 19: 2), same reason, 
from path (7:1, 19:1) has relationship with 38, write it as(7 19:1), and (7:1, 13:1) 
has relationship with 38, write it as(7 13:1), so 38’s conditional pattern base is {5 : 
2, 19 : 2}, {7 :1, 19 : 1}, {7 :1,13 :1} or write it as (5 19 : 2, 7 19 :1, 7 13 :1). Based 
on FP-tree construction algorithm, after getting conditional pattern base, we 
continue to construct its conditional FP-tree. We get the following sub-tree 
structure: 
 

Root 

5 : 6 

38 : 13 : 1 

40 : 1 

4 : 1 

 

 

10 : 1 

7:2 

19: 1 

38 : 

 17 : 1 

19 : 3 

 7 : 3 

 21:1 

46:1 

17 : 

10 : 1 

40 : 1 

13: 1 

13 : 1

17 : 1

21 : 1

 40 : 1 

 46:1 

13 : 1 

38 : 

 46:1 

21 : 1 

10 : 1 
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 Figure 9 - 38’s Tree Branch of Conditional Frequent Pattern 
 

 

     Figure 10 - Simplify 38’s conditional FP-Tree  
 
We take 2 as the threshold. 5,19 and 7’s count bigger than support value(2), so 
38’s conditional FP-tree is (5:2,19:2,7:2), because 19:2 and 19:1 are in different 
branches, we can’t simply add them to 19:3. We write it as {(5 : 2, 19 : 2), (7:2)} | 
38 to express its 38’s conditional FP-tree. From figure 10, we generate frequent 
pattern: 2 35:2, 16 35:2, 4 35:2, 2 16 35:2. Two numbers in same branch can do 
combination; two numbers in different branches cannot do combination. Mining 
FP-tree to get frequent patterns is a recursive process. This is the key point of 
mining algorithm.     

Null 

5:2 

19:2 

7:2 

Null 

5:2 

19:2 

7:2 

19:1 13:1 
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Figure 11 - Translate conditional FP-base to conditional FP-tree  

 
Item Conditional pattern-

base 
Conditonal FP-tree Frequent patterns  

results 
38 {5 : 2,19 : 2}, {7:1, 

19:1}, {7:1,13:1} 
 

{(5 : 2, 19 : 2), (7:2)} | 
38 

 

5 38:2, 19 38:2, 7 38:2, 
5 19 38:2   

 
  

Table 8 - Conditional FP-tree Table 
 
From the above description, we know “the set of transformed prefix paths of a 
forms a small database of patterns which co-occur with a. Such a database of 
pattern occurring with is called a’s conditional pattern-base, and is denoted as 
‘pattern_base | a’. Then one can computer all the frequent patterns associated 
with a in this a-conditional pattern by creating a small FP-tree, called a’s 
conditional FP-tree and denoted as ‘FP-tree | a’. Subsequent mining can be 
performed on this small conditional FP-tree. The process is performed recursively 
[4].       
 
The sequence of getting conditional pattern base is from the number with low 
frequency to the number with higher one. Base on the Table7 Frequency count of 
items by ID, we should get the conditional pattern base from 10 to 5.    

{(5 : 2, 19 : 2), (7:2)} | 38 

5 38:2, 19 38:2, 7 38:2, 5 19 38:2   

38-conditional FP base : {5 : 2,19 : 2}, {7:1, 19:1}, {7:1,13:1} 
38-conditional FP tree : {(5 : 2, 19 : 2), (7:2)} | 38 
38-Frequent pattern generated : 2 35:2, 16 35:2, 4 35:2, 2 16 
35:2   

{5 : 2,19 : 2}, {7:1, 19:1}, {7:1,13:1} 

Translate from conditional FP-tree to 
frequent pattern  

Translate from conditional FP-base to 
conditional FP-tree 
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4.2.2 The Algorithm to Mining Frequency Pattern by FP-Tree 

Algorithm [5]: 
Procedure FP-growth(Tree, ){ 

For each header a i , in the head of Tree do { 

Generate pattern aai  with 

support= ia .support; 

Construct  ’s conditional pattern base and  

Then  ’s conditional FP-tree Tree    

If Tree? <> null 

Then call FP-growth (Tree  ,  )} 

} 
 
There are 4 steps to mining FP-tree. In the above paragraphs, we know what the 
conditional frequent pattern tree is. We will continue use Figure8-complete FP 
growth tree structure to explain the mining process. 
 
1) Constructing Frequent Pattern 
The last item in the Table7 Frequency count of items by ID is 10. We should get 
the conditional pattern base from low frequency number to high frequency 
number, so we first try 10, then go up till 5. There are 3 branches include item 10. 
The 3 branches are 
(5:6, 19:3, 38:2, 17:1, 10:1), (5:6, 7:2, 13:1,10:1) and (21:1, 10:1) 
 
2) Analyze and build conditional FP Base    
Now we see 10’s prefix part in the three branches. In the first branch, 10’s count 
is 1, so the prefix related to 10 is (5:1, 19:1, 38:1, 17:1). In the second branch, 
10’s count is also 1, so the prefix in this branch related to 10 is (5; 1, 7:1, 13:1). 
Same reason, the prefix in third branch related to 10 is (21:1). Write them as 
follows: (5:1, 19:1, 38:1, 17:1), (5:1, 7:1, 13:1), (21:1). They are 10’s conditional 
FP base. 
 
3) Construct Conditional Frequent Pattern Tree 
Now we add all the same item count together from above 3 branches. We get 
(5:2, 19:1, 38:1, 17:1, 7:1, 13:1, 21:1). Because except 5, all the other items only 
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show once, and less than support value 2, so only (5:2) is kept. The conditional 
frequent pattern is {(5:2)}| 10, the frequent pattern is (5, 10:2). 
 
We use the same method to get 46’s frequent pattern. In the Figur8 complete FP 
growth tree structure, there are 3 46s in this tree. (7:1, 19:1, 38:1, 17:1, 21:1, 
46:1), (7:1, 17:1, 21:1, 40:1, 46:1) and (7:1, 13:1, 38:1, 46:1). Consider 46’s 
prefix and the item count related to 46, the three branches turn to (7:1, 19:1, 38:1, 
17:1, 21:1), (7:1, 17:1, 21:1, 40:1), (7:1, 13:1, 38:1). We calculate the common 
item counts and delete those items whose counts are less than support value. 19, 
40 and 13 are deleted. The three branches turn to (7:1, 38:1, 17:1, 21:1), (7:1, 
17:1, 21:1), (7:1, 38:1). We construct new Frequent Pattern Tree based on these 
3 branches, it shows on the below: 
 

 
 
   Figure 12 - 46’s Tree Branch of Conditional Frequent Pattern Tree 
 
 
 
 
 
 
 

Root 

7:3 

17:1 

38:2 

21:1 

17:1 

21:1 
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Table 9 - Frequent Patterns Header Table 
 
The following steps are that we use recursive method to mine frequent patterns, 
produce all combinations. Because all the numbers in two branches are more 
than threshold 2, so the tree does not need to be simplified. And write them as 7 
46:3, 38 46:2, 17 46:2, 21 46:2, 7 38 46:2, 7 17 46:2, 7 21 46:2, 17 21 46:2, 7 17 
21 46:2. Generated frequent patterns are the final results we want to get. 
 
 
ITEM  Conditional pattern 

base 
Conditional FP-Tree frequent 

patterns 
generated 

10  {(5:1, 19:1, 38:1, 17:1), 
(5:1, 7:1, 13:1), (21:1)} 

{(5:2)}| 10 5 10:2 

46  {(7:1,19:1,38:1,17:1,21:1), 
(7:1,17:1,21:1,40:1), 

(7:1,13:1,38:1)} 

{(7:1,38:1,17:1,21:1), 
(7:1,17:1,21:1), (7:1, 

38:1)} | 46 

7 46: 3, 38 46:2, 
17 46:2,  21 

46:2, 7 38 46:2, 
7 17 46:2, 7 21 

46:2, 17 21 46:2,
 7 17 21 46:2 

40  {5:1,19:1,13:1}, {5:1,7:1}, 
{7:1,17:1,21:1}  

{(5:2, 7:1), (7:1)} |40 5 40:2, 7 40:2 

21  {7:1,19:1,38:1,17:1}, 
{7:1,17:1} 

{(7:2,17:2)}|21 7 21:2,17 21:2,7 
17 21:2 

17  {5:1,19:1,18:1}, {7:1,19:1, 
38:1}, {7:1} 

{(7:2)} |17 7 17:2, 7,17:2, 
19,17:2, 38,17:2

19,38,17:2,  
38  {5 : 2,19 : 2}, {7:1, 19:1}, 

{7:1,13:1} 
 

{(5 : 2, 19 : 2), (7:2)} | 
38 

 

5 38:2, 19 38:3, 
7 38:2, 5 19 38:2  

 
13  {5:1,19:1},{5:1,7:1},{7:1} {(5:2,7:1), (7:1)}|13 5 13:2, 7 13:2 

Item support 

7 3 

38 2 

17 2 

21 2 
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19  {5:3,{7:1}} {(5:3)}|19 5 19:3 

7  {5:2} {5:2}| 7 7 5:2 

5  0 0 -------- 

 
 

          Table 10 - Final Result of Using Conditional Frequent Pattern Table to 
Mine Frequent Pattern 

5. Bitmap FP-Growth Algorithm  

5.1 Overview 
Applying bitmap technology to optimize FP-growth algorithm is a novel 
technology. Refining and mining database through very fast bit operation greatly 
improve the efficiency of FP-growth algorithm. Bitmap table is like a rectangular 
matrix with great adaptive character to do the further bit calculation. After 
applying bitmap technology and analyzing database specialty, we can largely 
shrink the size of original database and speed the mining computation.     

 

Although FP-growth is an order of magnitude faster than Aprior, but it has the 
following disadvantages:1) FP-growth tree algorithm is based on sequential 
computing and is not fit for parallel computing. Every step is based on its 
previous results.  2) FP-growth tree algorithm is a complicated algorithm. Building 
and mining FP-growth tree are complex processes. And it is difficult to implement 
FP-Tree on actual coding because of its tree structure. 3)FP-tree is expensive to 
build. Many pointers are used to record the linkage between nodes, and some 
extra storage units are used to record the counters.     
 
We use Bitmap technology to improve FP-Growth Algorithm - Bitmap FP-Growth 
Algorithm. This algorithm is of the following advantages compared to the original 
FP-Growth tree algorithm: 1. The mining part of new algorithm can work in 
parallel environments. A single computer computing resource is limited. If many 
computers can work on a task simultaneously, the improved efficiency will be ten, 
even hundreds times of the original one, which depends on the numbers of 
paralleled computers. 2. The new Bitmap FP-growth algorithm cuts tree building 
steps of the old algorithm, directly mine frequent patterns. In fact, the relationship 
of items expressed by tree is hidden in Bitmap table. We can say that the 
simplified table is a well-built tree. 3. Bit calculation has much specialties. We can 
improve computing speed by bitmap specialties. For example, we divide one 
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column into many groups and each group is a 32-bit integer. We use integer to 
calculate. We simplify frequent itemsets calculation by bitmap specialities. When 
we mine “c a f e”, only AND all the itemsets of “caf” and “cae”. The clustered 
bitmap is adequate to mine the corresponding frequent itemsets. We reorder and 
group the dataset. Reordering rows will not change the bit 1’s total number. 
Dividing database into groups may make easily mine. 4. Bitmap FP-Growth 
algorithm can get the same correct results with FP-Growth tree algorithm. We 
have confirmed this by programming results. The program of Bitmap FP-growth 
algorithm submitted with the report is a C++ code. Now, let us explain the 
detailed Bitmap FP-Growth Algorithm.    

5.2 Bitmap FP-growth Algorithm Description 
Most database design is irregular, the compare and marching from any two 
transactions is very tedious. Bitmap representation is more standard and well-
organized, which fits for large scale scientific computing. After the database 
translating to bitmap, all the logical operations at the bit level (AND, NOT, OR, 
SHIFT…) with their constant execution time has the specific application.     
 
The merge sorting in the FP-growth program can be replaced by logical AND 
operation. Bit operation need less memory and calculate very fast. So we use 
intensive bit operation to simulate FP-growth process. Using a bit array to replace 
the behavior of an itemset can easily produce the possibility of combining 
itemsets[8]. Any logical operator becomes possible to represent association rules, 
for example, paper => pen   eraser. The relation between pen and eraser can 
be connected by OR. Similarly, NOT is also important in representing association 
rules. So using bitmap to represent and mine association rule is a natural 
consideration.          
    
The whole programs obey the following rules: 
Bitmap FP-growth Tree Algorithm: 
Sort items by their frequency decreasing; 

Call FP-growth-Bitmap(TS,  )  TS: transaction set 

FP-Growth-Bitmap(TS, IS){ 

  If TS is   then return IS; 

     I = { # items in TS >= Threshold} 
  foreach i in I: 
     call FP-Growth-Bitmap (STS, IS U { i }) 
     where STS = subsets of TS and item i contained 
}  
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5 7 19 13 38 17 21 40 46 10 
1 0 1 0 1 1 0 0 0 1 
1 1 0 0 0 0 0 1 0 0 
1 0 1 1 0 0 0 1 0 0 
1 0 1 0 1 0 0 0 0 0 
1 1 0 1 0 0 0 0 0 1 
1 0 0 1 0 0 0 0 0 0 
0 1 1 0 1 1 1 0 1 0 
0 0 0 0 0 0 1 0 0 1 
0 1 0 0 0 1 1 1 1 0 
0 1 0 1 1 0 0 0 1 0 

 
Table 11 - Bitmap Table of All Items  

 
But we have many innovations based on bitmap characters. Base on the 
example on last chapter, we write down the bitmap table of all items(Table11). 
The table can be looked as the well-built tree in the FP-Growth algorithm. It is 
very necessary to get the longest branch firstly, then get shorter one, then get 
more shorter ones. The process is mining frequent patterns. During bitmap 
implementation, it is useful to put the longest branch here. All the other items did 
“AND” operation with the longest one by one. From bottom (FP-tree lowest 
leaves) to up(higher item), item itself AND any other higher item. Use lowest 
frequent item as the first one can cut most unqualified results 
 
I conclude the Bitmap FP-growth tree implementation process includes the 
following steps:  
  1. read items file  
  2. run from bottom to up 
  3. for each condition (a bitmap) and equivalent class set, 
     1) compute AND of itself and any other higher item bitmap (only one from one 
equivalent item class) 
     2) Count 1's in each AND result (by 16-bit -> 1 to speed it up) 
     3) Drop underwater items by the count 
     4) Sort the counts 
     5) Find equal counts as candidates to check/predict AND bitmap equivalent 
classes 
     6) Consider one equivalent class as one item 
     7) For each item, add it to the condition, then use its AND bitmap and 
equivalent classes to repeat 3 
 
The implementation can be simply expressed as the following table(table-12).  
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5 7 19 13 38 17 21 40 46
1 1 0 1 0 0 0 0 0 
1 0 1 0 1 1 0 0 0 
0 0 0 0 0 0 1 0 0 
5 7 19 13 38 17 21 40  
0 1 1 0 1 1 1 0  
0 1 0 1 1 0 0 0  
0 1 0 0 0 1 1 1  
5 7 19 13 38 17 21   
1 1 0 0 0 0 0   
1 0 1 1 0 0 0   
0 1 0 0 0 1 1   
5 7 19 13 38 17    
0 1 1 0 1 1    
0 1 0 0 0 1    
5 7 19 13 38     
1 0 1 0 1     
0 1 1 0 1     
0 1 0 0 0     
5 7 19 13      
1 0 1 0      
1 0 1 0      
0 1 1 0      
0 1 0 1      
5 7 19       
1 1 0       
1 0 1       
1 0 0       
0 1 0       
5 7        
1 0        
1 0        
1 0        
5         
1         

 
Table 12 - Whole Structure of Bitmap FP-Growth Algorithm 

 
Each branches can individually compute their results. If the data set is very huge, 
many calculations based on different branches can be carried out simultaneously 
on different computers. Operating on the large problem can be divided into 
smaller ones. The bitmap FP-Growth algorithm can realize mining association 
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rule in parallel computing environments. Computation efficiency will be 10 times, 
even 100 hundred times of the original one, which depends on how much 
computers join the computations.  

5.3 Bitmap FP-growth Algorithm Implementation 
The following c++ files are main part of implementation: main.cpp, util.cpp, 
bitmap.cpp, fpgrowther.cpp. The following header files are also important: 
bitmap.h, fpgrowther.h, utils.h  
 
bitmap.cpp does bit calculation, including the following functions:  
bool Set(int i) 
Bitmap* AND(const Bitmap* src) 
int Count() 
float Frequency()  
 
util.cpp reads and parses initial file, including the following functions: 
ParseDescFile(const char* filename, vector<ItemInfo>* items, vector<vector<int> 
>* transactions); 
PrintItemInfo(const char* outfile, const vector<ItemInfo>& items); 
void PrintTransactions(const char* outfile, const vector<vector<int> >& 
transactions) 
 
fpgrowther.cpp is a very important part. It realizes the core part of Bitmap FP-
Growth Algorithm.  
bool Init(const char* filename); 
bool Run(const float threshold) { return Run(threshold, NULL); } 
void Compute(vector<ItemInfo>* candidate_items); 
void FilterAndSortItems(vector<ItemInfo>* candidate_items,                          
vector<ItemInfo>* selected_items); 
void PrintOneResult(FILE *fp, const int i); 
void PrintConditionItems(const int candidate_size); 
void PrintItemPick(const ItemInfo& item, const bool last_candidate); 
void PrintFrequencyAndAction(const ItemInfo& item, const char* action); 
void PrintSortedSelectedCandidates(const vector<ItemInfo>& selected_items);      
 
bool Set() will set the ith bit. 
 
Init() will call this function to filter out unqualified single items and sort the 
qualified items by their frequency. 
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ParseDescFile() will get all the initial items from the original file. The original file 
includes plenty of mess information. This function will pick up the item information 
from original files.    
 
void SelectEligibleItems(const unsigned long* bitmap,               const 
vector<int>& items, vector<int>* eligible_items) choose eligible items from item 
file. Only frequency equal to or more than threshold items will be kept.  
 
sort(eligible_items_count.begin(), eligible_items_count.end(), CompAsc), and 
ReadSortedItems() realize sorted these eligible items by their decreasing 
frequency, built new file to store eligible items and read sorted items to the 
program.    
 
void BitmapAND(const unsigned long* a, const unsigned long* b, unsigned long* 
c) and void CountAllOnes(const int itemno) realize doing AND operation between 
two bitmap lines and count 1’s quantities. After AND operation, recalculate 1’s 
counts. Not qualified items will be deleted. 
 
Void PrepareBitmaps(map<int, vector<int> >* eligible_items), void 
CreateBitmaps() realize create bitmap files. The original database is not bitmap 
file, so I need to do plenty of work to translate the old file to bitmap files. And 
because the dataset is so huge, I divide them into a few hundreds files and label 
them.  
 
void StartFPGrowthBitmap() and void FpGrowthBitmap(const bool 
heuristic_selection, FILE* fp, const unsigned long* bitmap, const vector<int>& 
items, const vector<int>& condition, int* single_path) are the key functions. They 
realize FP_Growth algorithm using bitmap idea. The whole mining process is 
based on FP_Growth technology.  
 
Also there are other functions realize many very necessary work. Such as, void 
GetAllOneBitmap(unsigned long* bitmap), int GetFirstNumber(char* str), void 
CountInputAll() and so on.    
 
void CsvStringSplit(char* str, vector<int>* a), int StripLine(char* str, char* 
stripped_line, int* ones) realize single prefix branch speed up process.  
 
5.4 Skills of Speeding up Mining by Bitmap 
During bitmap computation, I also apply some skills to speed up mining 
according to bitmap and database specialty. For example, I removed most 
sparse bits which cannot reach the threshold and rearrange the data to 
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rectangular integer matrices. This 2-dimensional matrix can easily operated using 
bit computing. And if we represent each column by dividing them into many 
groups and each group is a 32-bit integer. Using integer to calculate is more fast 
and convenient. 
 
Here is another good rule to simply frequent itemsets calculation. When we mine 
“c a f e”, we can only AND all the itemsets of “caf” and “cae”. “The clustered 
bitmap is adequate to mine the corresponding frequent itemsets. If we collect all 
such clusters into a cluster tree, the join of frequent itemsets from a parent 
cluster to a child directly maps to the bit-wise AND of the corresponding bits”[7]. 
So clustering corresponding frequent itemsets is a good way to save computation. 
And I also apply some other skills to save computation. If we reorder rows, the bit 
1’s total number will not be changed. And the total number of bit 1 corresponds to 
the support value. So we can divide database into many groups to make the 
group easily mine. For example, we put all the empty rows into one group, so that 
the group can be easily erased. Reordering and grouping bitmap are good ways 
to improve bitmap calculation efficiency. For some special case, a few bit 1s in 
one row, though these 1 will contribute support value, after AND operation, these 
rows will turn into empty rows. So it is not necessary to do AND operation for 
these special rows, just recording 1’s counts and erase these rows.     

6. Experiment Results and Analysis  

6.1 Program Running Results 
After applying bitmap technology to improve FP-growth algorithm, our algorithm 
is shown to be more efficient and scalable than the original FP-growth algorithm. 
Especially, the new bitmap FP-Growth algorithm provides parallel computing 
solution for mining association rule. Our experiments are performed on Intel 
Core2 Quad CPU Q6600 2.4GHz Desktop machine with 3GB main memory. The 
machine operating system is Microsoft WindowsXP. Program running 
environments are Microsoft/Visual C++6.0. We do not choose a database with 
special attributes, such as spanning too sparse or dense, or there are some 
requirements on size.  
 
Program execution order: "fpgrowth.exe  infile(input file name)  
threshold(between 0 and 1)". When printing log file to see the detailed process, 
use order "fpgrowth.exe  infile  threshold  print". idx and .trans file will be 
produced no matter if inputting "print".  
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filename. dat: Input file 
filename. out: Output file  
filename. log: print detailed middle steps   
filename. idx: print item ID, description and translated bitmap expression 
filename. trans: translate item name to item ID 
Programming solution will print out item quantities, transaction quantities, 
frequency pattern quantities and computing time. Printing log file will influence 
computation speed.       
 
I did experiments to confirm the correctness of program and algorithm, and also 
measured its performance. Experiment1 is a short example. Original table only 
has 7 items and 10 transaction. The result is 19 association rules. This solution is 
easily to be confirmed. The running time of computing part(no printing log file) is 
nearly immediate.   
 
Input data(example1):   
a b 
b c d 
a c d e f 
a d e 
a b c 
a b c d 
a g 
a b c g 
a b d 
b c e 
 
output data(example1): 
 
[g]: 0.200 
[g, a]: 0.200 
[e]: 0.300 
[e, a]: 0.200 
[e, a, d]: 0.200 
[e, c]: 0.200 
[e, d]: 0.200 
[d]: 0.500 
[d, b]: 0.300 
[d, b, a]: 0.200 
[d, b, c]: 0.200 
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[d, c]: 0.300 
[d, c, a]: 0.200 
[d, a]: 0.400 
[c]: 0.600 
[c, a]: 0.400 
[c, a, b]: 0.300 
[c, b]: 0.500 
[b]: 0.700 
[b, a]: 0.500 
[a]: 0.800 
 

The experiment2 data is comes from Jiawei Han’s presentation. This example is 
not a perfect example to confirm the correctness of our program, because in that 
presentation report, Dr. Han use 2 different thresholds in FP-Growth tree building 
and mining parts in order to limit the size of results. In fact, only one threshold in 
the whole algorithm is more reasonable. No matter we use either 2 or 3 as our 
threshold, we will get different results. So we have to use the ordered and 
selected items as input file and use 2 as threshold to confirm the rightness of 
mining part. In fact, experiment1 has confirmed the correctness of the whole 
program. The running time of computing part(no printing log file) is also nearly 
immediate. 
 
Input data(example2): 
 
5 19 38 17 10 
5 7 40 
5 19 13 40 
5 19 38 
5  7 13 10 
5 13 
7 19 38 17 21 46 
21 10 
7 17 21 40 46 
7 13 38 46 
 
output data(example2, not include single item): 
 
[17, 7]: 0.200 
[17, 7, 21]: 0.200 
[17, 7, 21, 46]: 0.200 
[17, 7, 46]: 0.200 
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[17, 38]: 0.200 
[17, 38, 19]: 0.200 
[17, 19]: 0.200 
[17, 46]: 0.200 
[17, 46, 21]: 0.200 
[17, 21]: 0.200 
[10, 5]: 0.200 
[40, 5]: 0.200 
[40, 7]: 0.200 
[21, 7]: 0.200 
[21, 7, 46]: 0.200 
[21, 46]: 0.200 
[46, 38]: 0.200 
[46, 38, 7]: 0.200 
[46, 7]: 0.300 
[19, 5]: 0.300 
[19, 5, 38]: 0.200 
[19, 38]: 0.300 
[38, 5]: 0.200 
[38, 7]: 0.200 
[13, 7]: 0.200 
[13, 5]: 0.300 
[7, 5]: 0.200 
 
The input file of Example3 is a standard database that coming from the UCI ML 
repository with 48823 records, around 13.1MB. The running time of computing 
part(no printing log file) is only 48 millisecond. The original database, running 
result and log file are partly listed in the appendix. 
   

6.2 Result Analysis 
During the experiments, I set different support thresholds from 90% to 10% to 
measure the program running time, including database preprocessing, computing 
part and so on. If printing results, program running will take much time. Larger 
database, lower efficiency FP-growth shows; sparser database, lower efficiency 
FP-growth shows; lower support threshold, lower efficiency FP-growth shows. In 
conclusion, Bitmap FP-growth algorithm shows great advantage on more huge, 
sparse database, especially when calculating low support threshold. The main 
reason is that bit calculation time is super short.  
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There are the listed reasons to explain Bitmap FP-growth algorithm‘s good result: 
1) After original database changing to bitmap format, it is more easily to master 
the rule of data, then reduce a large database into a set of smaller ones. And the 
database is pruned substantially. After unnecessary data are deleted and 
rearranged, the smaller database usually is 1/5 to 1/100 of the size of original 
database. 2) During the calculation, the algorithm cut off much of unqualified data, 
which ensure the candidate set is close to the real result and reduce the later 
amount of computation. Although FP – growth algorithm also has this process, 
bitmap format is more easily to carry out this step. 3) Bit calculation saves much 
time in computing. AND, OR, NOT and SHIFT operations replace the regular 
counting to do calculation. Longer the row is, the effect is more obvious. Although 
in the beginning Bitmap FP-Growth takes extra time to transfer the original file to 
bitmap file, later bit operations are significant faster than FP-growth algorithm. 
4)Bitmap technology make association rule mining in parallel computing 
environments possible. In Bitmap FP-Growth Algorithm, each branches can 
individually compute their results. If the data set is very huge, many calculations 
based on different branches can be carried out simultaneously on different 
computers. 
 
Applying bitmap to FP-growth algorithm is not only a general concept, the key 
part is how to organize the bitmap, decide which bitmap representation is most 
effective, how to utilize bitmap computing characters, how to optimize bitmap 
matrices and mine frequent items.We cannot delete the useful information, and 
cannot waste computing resource to useless information once and again. 
Reducing the frequency to open and close database is another detail. We can 
accumulate many actions to do one-time database load, such as bitmap 
translation, Bitmap table construction, transaction sorting etc. We should try to 
reducing the database scanning times, no matter the original or bitmap one. Any 
huge database scan will take very long time. I/O issue should always be paid 
more attention. We follow FP-Growth algorithm to avoid many Apriori’s problems, 
such as multiple database scans, data size of exponentially growing in the 
intermediate steps.                

7. Conclusion and Future Work 

In this paper, I first implemented Bitmap Combination Algorithm to mining 
association rule, then applied bitmap technology to FP-Growth algorithm, 
creating Bitmap FP-Growth Algorithm and achieve very good experiment results. 
Translating the original database to the bitmap format, analyzing bit distribution, 
reducing database size, and using quick bit computing are a few key steps. 
Bitmap Combination algorithm shows the quick combination skills between any 
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two, three, four and more rows, then screening the qualified itemsets; Bitmap FP-
Growth algorithm is a new algorithm to mine association rule correctly and 
quickly, and provide the possibility to parallel mining. The two algorithms 
research and implementation indicate that applying Bitmap technology to 
compute association rule is a very promising research area. Our experiments 
results shows great successful in applying bitmap technology in association rule 
mining working in parallel computing environments.  
 
Bitmap technology has many other special characters to speed up the data 
mining algorithms, such as bit compression. Although I did not try bit 
compression/decompression in my experiments, I believe it is a good direction to 
store and mine database. Some new method will be considered to 
compress/decompress bitmap database when applying bitmap to do association 
rule computing. Bitmap technology enables large scale problems solved by the 
independent, parallel smaller size problems. Bitmap technology will get more 
widely application in the future association rule mining.     
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9. Appendix- Running Result of Bitmap FP-Growth Algorithm  

9.1 Example3. dat(part)   
age=young workclass=Private education=Bachelors edu_num=13 marital=Married-civ-spouse 

occupation=Prof-specialty relationship=Wife race=Black sex=Female gain=none loss=none 

hours=full-time country=Cuba salary<=50K 

age=middle-aged workclass=Private education=Masters edu_num=14 marital=Married-civ-spouse 

occupation=Exec-managerial relationship=Wife race=White sex=Female gain=none loss=none 

hours=full-time country=United-States salary<=50K 

age=middle-aged workclass=Private education=9th edu_num=5 marital=Married-spouse-absent 

occupation=Other-service relationship=Not-in-family race=Black sex=Female gain=none loss=none 

hours=half-time country=Jamaica salary<=50K 

age=senior workclass=Self-emp-not-inc education=HS-grad edu_num=9 marital=Married-civ-spouse 

occupation=Exec-managerial relationship=Husband race=White sex=Male gain=none loss=none 

hours=overtime country=United-States salary>50K 

age=middle-aged workclass=Private education=Masters edu_num=14 marital=Never-married 

occupation=Prof-specialty relationship=Not-in-family race=White sex=Female gain=high loss=none 

hours=overtime country=United-States salary>50K 
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age=middle-aged workclass=Private education=Bachelors edu_num=13 marital=Married-civ-spouse 

occupation=Exec-managerial relationship=Husband race=White sex=Male gain=high loss=none 

hours=full-time country=United-States salary>50K 

age=middle-aged workclass=Private education=Some-college edu_num=10 marital=Married-civ-

spouse occupation=Exec-managerial relationship=Husband race=Black sex=Male gain=none 

loss=none hours=too-many country=United-States salary>50K 

age=middle-aged workclass=State-gov education=Bachelors edu_num=13 marital=Married-civ-

spouse occupation=Prof-specialty relationship=Husband race=Asian-Pac-Islander sex=Male 

gain=none loss=none hours=full-time country=India salary>50K 

age=young workclass=Private education=Bachelors edu_num=13 marital=Never-married 

occupation=Adm-clerical relationship=Own-child race=White sex=Female gain=none loss=none 

hours=full-time country=United-States salary<=50K 

age=middle-aged workclass=Private education=Assoc-acdm edu_num=12 marital=Never-married 

occupation=Sales relationship=Not-in-family race=Black sex=Male gain=none loss=none 

hours=overtime country=United-States salary<=50K 

age=middle-aged workclass=Private education=Assoc-voc edu_num=11 marital=Married-civ-spouse 

occupation=Craft-repair relationship=Husband race=Asian-Pac-Islander sex=Male gain=none 

loss=none hours=full-time country=? salary>50K 

age=middle-aged workclass=Private education=7th-8th edu_num=4 marital=Married-civ-spouse 

occupation=Transport-moving relationship=Husband race=Amer-Indian-Eskimo sex=Male gain=none 

loss=none hours=overtime country=Mexico salary<=50K 

age=young workclass=Self-emp-not-inc education=HS-grad edu_num=9 marital=Never-married 

occupation=Farming-fishing relationship=Own-child race=White sex=Male gain=none loss=none 

hours=full-time country=United-States salary<=50K 

age=middle-aged workclass=Private education=HS-grad edu_num=9 marital=Never-married 

occupation=Machine-op-inspct relationship=Unmarried race=White sex=Male gain=none loss=none 

hours=full-time country=United-States salary<=50K 

age=middle-aged workclass=Private education=11th edu_num=7 marital=Married-civ-spouse 

occupation=Sales relationship=Husband race=White sex=Male gain=none loss=none hours=overtime 

country=United-States salary<=50K 

age=middle-aged workclass=Self-emp-not-inc education=Masters edu_num=14 marital=Divorced 

occupation=Exec-managerial relationship=Unmarried race=White sex=Female gain=none loss=none 

hours=overtime country=United-States salary>50K 

age=middle-aged workclass=Private education=Doctorate edu_num=16 marital=Married-civ-spouse 

occupation=Prof-specialty relationship=Husband race=White sex=Male gain=none loss=none 

hours=overtime country=United-States salary>50K 

age=senior workclass=Private education=HS-grad edu_num=9 marital=Separated occupation=Other-

service relationship=Unmarried race=Black sex=Female gain=none loss=none hours=half-time 

country=United-States salary<=50K 
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age=middle-aged workclass=Federal-gov education=9th edu_num=5 marital=Married-civ-spouse 

occupation=Farming-fishing relationship=Husband race=Black sex=Male gain=none loss=none 

hours=full-time country=United-States salary<=50K 

age=middle-aged workclass=Private education=11th edu_num=7 marital=Married-civ-spouse 

occupation=Transport-moving relationship=Husband race=White sex=Male gain=none loss=medium 

hours=full-time country=United-States salary<=50K 

age=senior workclass=Private education=HS-grad edu_num=9 marital=Divorced occupation=Tech-

support relationship=Unmarried race=White sex=Female gain=none loss=none hours=full-time 

country=United-States salary<=50K 

age=senior workclass=Local-gov education=Bachelors edu_num=13 marital=Married-civ-spouse 

occupation=Tech-support relationship=Husband race=White sex=Male gain=none loss=none 

hours=full-time country=United-States salary>50K 

9.2 Example3. out(part)   
[edu_num=9, salary<=50K]: 0.272 

[edu_num=9, salary<=50K, race=White]: 0.227 

[edu_num=9, salary<=50K, race=White, country=United-States]: 0.213 

[edu_num=9, salary<=50K, race=White, country=United-States, gain=none]: 0.203 

[edu_num=9, salary<=50K, race=White, country=United-States, loss=none]: 0.206 

[edu_num=9, salary<=50K, race=White, gain=none]: 0.217 

[edu_num=9, salary<=50K, race=White, gain=none, loss=none]: 0.210 

[edu_num=9, salary<=50K, race=White, loss=none]: 0.220 

[edu_num=9, salary<=50K, country=United-States]: 0.250 

[edu_num=9, salary<=50K, country=United-States, gain=none]: 0.239 

[edu_num=9, salary<=50K, country=United-States, gain=none, loss=none]: 0.232 

[edu_num=9, salary<=50K, country=United-States, loss=none]: 0.243 

[edu_num=9, salary<=50K, gain=none]: 0.260 

[edu_num=9, salary<=50K, gain=none, loss=none]: 0.252 

[edu_num=9, salary<=50K, loss=none]: 0.264 

[edu_num=9, race=White]: 0.274 

[edu_num=9, race=White, gain=none]: 0.255 

[edu_num=9, race=White, gain=none, country=United-States]: 0.240 

[edu_num=9, race=White, gain=none, country=United-States, loss=none]: 0.230 

[edu_num=9, race=White, gain=none, loss=none]: 0.245 

[edu_num=9, race=White, country=United-States]: 0.258 

[edu_num=9, race=White, country=United-States, loss=none]: 0.248 

[edu_num=9, race=White, loss=none]: 0.264 

[edu_num=9, country=United-States]: 0.298 

[edu_num=9, country=United-States, gain=none]: 0.279 

[edu_num=9, country=United-States, gain=none, loss=none]: 0.267 

[edu_num=9, country=United-States, loss=none]: 0.287 
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[edu_num=9, gain=none]: 0.302 

[edu_num=9, gain=none, loss=none]: 0.290 

[edu_num=9, loss=none]: 0.311 

[marital=Never-married]: 0.330 

[marital=Never-married, workclass=Private]: 0.251 

[marital=Never-married, workclass=Private, race=White]: 0.207 

[marital=Never-married, workclass=Private, race=White, loss=none]: 0.202 

[marital=Never-married, workclass=Private, country=United-States]: 0.223 

[marital=Never-married, workclass=Private, country=United-States, gain=none]: 0.214 

[marital=Never-married, workclass=Private, country=United-States, gain=none, loss=none]: 0.208 

[marital=Never-married, workclass=Private, country=United-States, gain=none, loss=none, 

salary<=50K]: 0.202 

[marital=Never-married, workclass=Private, country=United-States, gain=none, salary<=50K]: 0.208 

[marital=Never-married, workclass=Private, country=United-States, salary<=50K]: 0.214 

[marital=Never-married, workclass=Private, country=United-States, salary<=50K, loss=none]: 0.209 

[marital=Never-married, workclass=Private, country=United-States, loss=none]: 0.217 

[marital=Never-married, workclass=Private, gain=none]: 0.241 

[marital=Never-married, workclass=Private, gain=none, salary<=50K]: 0.233 

[marital=Never-married, workclass=Private, gain=none, salary<=50K, loss=none]: 0.227 

[marital=Never-married, workclass=Private, gain=none, loss=none]: 0.234 

[marital=Never-married, workclass=Private, salary<=50K]: 0.241 

[marital=Never-married, workclass=Private, salary<=50K, loss=none]: 0.235 

[marital=Never-married, workclass=Private, loss=none]: 0.244 

[marital=Never-married, race=White]: 0.271 

[marital=Never-married, race=White, country=United-States]: 0.249 

[marital=Never-married, race=White, country=United-States, salary<=50K]: 0.237 

[marital=Never-married, race=White, country=United-States, salary<=50K, gain=none]: 0.230 

[marital=Never-married, race=White, country=United-States, salary<=50K, gain=none, loss=none]: 

0.223 

[marital=Never-married, race=White, country=United-States, salary<=50K, loss=none]: 0.230 

[marital=Never-married, race=White, country=United-States, gain=none]: 0.239 

[marital=Never-married, race=White, country=United-States, gain=none, loss=none]: 0.231 

[marital=Never-married, race=White, country=United-States, loss=none]: 0.241 

[marital=Never-married, race=White, salary<=50K]: 0.257 

[marital=Never-married, race=White, salary<=50K, gain=none]: 0.250 

[marital=Never-married, race=White, salary<=50K, gain=none, loss=none]: 0.243 

[marital=Never-married, race=White, salary<=50K, loss=none]: 0.250 

[marital=Never-married, race=White, gain=none]: 0.259 

[marital=Never-married, race=White, gain=none, loss=none]: 0.251 

[marital=Never-married, race=White, loss=none]: 0.262 

[marital=Never-married, country=United-States]: 0.296 
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[marital=Never-married, country=United-States, salary<=50K]: 0.283 

[marital=Never-married, country=United-States, salary<=50K, gain=none]: 0.274 

[marital=Never-married, country=United-States, salary<=50K, gain=none, loss=none]: 0.266 

[marital=Never-married, country=United-States, salary<=50K, loss=none]: 0.275 

[marital=Never-married, country=United-States, gain=none]: 0.284 

[marital=Never-married, country=United-States, gain=none, loss=none]: 0.275 

[marital=Never-married, country=United-States, loss=none]: 0.287 

[marital=Never-married, salary<=50K]: 0.315 

[marital=Never-married, salary<=50K, gain=none]: 0.306 

[marital=Never-married, salary<=50K, gain=none, loss=none]: 0.297 

[marital=Never-married, salary<=50K, loss=none]: 0.306 

[marital=Never-married, gain=none]: 0.316 

[marital=Never-married, gain=none, loss=none]: 0.306 

[marital=Never-married, loss=none]: 0.320 

[sex=Female]: 0.332 

[sex=Female, hours=full-time]: 0.213 

[sex=Female, hours=full-time, gain=none]: 0.201 

[sex=Female, hours=full-time, loss=none]: 0.206 

[sex=Female, workclass=Private]: 0.237 

[sex=Female, workclass=Private, country=United-States]: 0.213 

[sex=Female, workclass=Private, country=United-States, gain=none]: 0.202 

[sex=Female, workclass=Private, country=United-States, loss=none]: 0.206 

[sex=Female, workclass=Private, salary<=50K]: 0.215 

[sex=Female, workclass=Private, salary<=50K, gain=none]: 0.208 

[sex=Female, workclass=Private, salary<=50K, gain=none, loss=none]: 0.202 

[sex=Female, workclass=Private, salary<=50K, loss=none]: 0.209 

[sex=Female, workclass=Private, gain=none]: 0.225 

[sex=Female, workclass=Private, gain=none, loss=none]: 0.218 

[sex=Female, workclass=Private, loss=none]: 0.230 

[sex=Female, race=White]: 0.267 

[sex=Female, race=White, salary<=50K]: 0.235 

[sex=Female, race=White, salary<=50K, country=United-States]: 0.217 

[sex=Female, race=White, salary<=50K, country=United-States, gain=none]: 0.209 

[sex=Female, race=White, salary<=50K, country=United-States, gain=none, loss=none]: 0.203 

[sex=Female, race=White, salary<=50K, country=United-States, loss=none]: 0.211 

[sex=Female, race=White, salary<=50K, gain=none]: 0.226 

[sex=Female, race=White, salary<=50K, gain=none, loss=none]: 0.220 

[sex=Female, race=White, salary<=50K, loss=none]: 0.229 

[sex=Female, race=White, country=United-States]: 0.247 

[sex=Female, race=White, country=United-States, gain=none]: 0.231 

[sex=Female, race=White, country=United-States, gain=none, loss=none]: 0.222 
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[sex=Female, race=White, country=United-States, loss=none]: 0.238 

[sex=Female, race=White, gain=none]: 0.250 

[sex=Female, race=White, gain=none, loss=none]: 0.241 

[sex=Female, race=White, loss=none]: 0.257 

[sex=Female, salary<=50K]: 0.295 

[sex=Female, salary<=50K, country=United-States]: 0.266 

[sex=Female, salary<=50K, country=United-States, gain=none]: 0.256 

[sex=Female, salary<=50K, country=United-States, gain=none, loss=none]: 0.249 

[sex=Female, salary<=50K, country=United-States, loss=none]: 0.259 

[sex=Female, salary<=50K, gain=none]: 0.285 

[sex=Female, salary<=50K, gain=none, loss=none]: 0.276 

[sex=Female, salary<=50K, loss=none]: 0.287 

[sex=Female, country=United-States]: 0.299 

[sex=Female, country=United-States, gain=none]: 0.281 

[sex=Female, country=United-States, gain=none, loss=none]: 0.271 

[sex=Female, country=United-States, loss=none]: 0.289 

[sex=Female, gain=none]: 0.312 

[sex=Female, gain=none, loss=none]: 0.301 

[sex=Female, loss=none]: 0.320 

[relationship=Husband]: 0.404 

[relationship=Husband, hours=full-time]: 0.215 

[relationship=Husband, hours=full-time, loss=none]: 0.203 

[relationship=Husband, hours=full-time, loss=none, marital=Married-civ-spouse]: 0.203 

[relationship=Husband, hours=full-time, loss=none, marital=Married-civ-spouse, sex=Male]: 0.203 

[relationship=Husband, hours=full-time, loss=none, sex=Male]: 0.203 

[relationship=Husband, hours=full-time, marital=Married-civ-spouse]: 0.215 

[relationship=Husband, hours=full-time, marital=Married-civ-spouse, sex=Male]: 0.215 

[relationship=Husband, hours=full-time, sex=Male]: 0.215 

[relationship=Husband, salary<=50K]: 0.223 

[relationship=Husband, salary<=50K, gain=none]: 0.210 

[relationship=Husband, salary<=50K, gain=none, loss=none]: 0.203 

9.3 Example3. log(part) 
Pick loss=none (Frequency 0.110). 

New Result [occupation=Craft-repair, gain=none, loss=none]: 0.110 

Tried all candidates. Go back to a higher level. 

 

Pick sex=Male (Frequency 0.119). 

New Result [occupation=Craft-repair, sex=Male]: 0.119 

Create new candidate items: 

  loss=none: Frequency 0.113, Selected. 
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Sort 1 selected candidate items: 

  loss=none: Frequency 0.113 

 

Pick loss=none (Frequency 0.113). 

New Result [occupation=Craft-repair, sex=Male, loss=none]: 0.113 

Tried all candidates. Go back to a higher level. 

 

Pick loss=none (Frequency 0.120). 

New Result [occupation=Craft-repair, loss=none]: 0.120 

Tried all candidates. Go back to a higher level. 

 

Pick occupation=Prof-specialty (Frequency 0.126). 

New Result [occupation=Prof-specialty]: 0.126 

Create new candidate items: 

  loss=none: Frequency 0.117, Selected. 

  gain=none: Frequency 0.109, Selected. 

  country=United-States: Frequency 0.113, Selected. 

  race=White: Frequency 0.111, Selected. 

  salary<=50K: Frequency 0.069, Filtered. 

  workclass=Private: Frequency 0.070, Filtered. 

  sex=Male: Frequency 0.080, Filtered. 

  hours=full-time: Frequency 0.066, Filtered. 

  age=middle-aged: Frequency 0.073, Filtered. 

  marital=Married-civ-spouse: Frequency 0.065, Filtered. 

  relationship=Husband: Frequency 0.055, Filtered. 

  sex=Female: Frequency 0.046, Filtered. 

  marital=Never-married: Frequency 0.038, Filtered. 

  edu_num=9: Frequency 0.007, Filtered. 

  education=HS-grad: Frequency 0.007, Filtered. 

  age=young: Frequency 0.025, Filtered. 

  hours=overtime: Frequency 0.044, Filtered. 

  relationship=Not-in-family: Frequency 0.039, Filtered. 

  salary>50K: Frequency 0.057, Filtered. 

  edu_num=10: Frequency 0.013, Filtered. 

  education=Some-college: Frequency 0.013, Filtered. 

  age=senior: Frequency 0.026, Filtered. 

  edu_num=13: Frequency 0.046, Filtered. 

  education=Bachelors: Frequency 0.046, Filtered. 

  relationship=Own-child: Frequency 0.010, Filtered. 

  marital=Divorced: Frequency 0.016, Filtered. 
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Sort 4 selected candidate items: 

  loss=none: Frequency 0.117 

  country=United-States: Frequency 0.113 

  race=White: Frequency 0.111 

  gain=none: Frequency 0.109 

 

Condition Items:  occupation=Prof-specialty 

4 candidate items under this condition(threshold 0.10) 

 

Pick gain=none (Frequency 0.109). 

New Result [occupation=Prof-specialty, gain=none]: 0.109 

Create new candidate items: 

  loss=none: Frequency 0.100, Selected. 

  country=United-States: Frequency 0.097, Filtered. 

  race=White: Frequency 0.096, Filtered. 

 

Sort 1 selected candidate items: 

  loss=none: Frequency 0.100 

 

Pick loss=none (Frequency 0.100). 

New Result [occupation=Prof-specialty, gain=none, loss=none]: 0.100 

Tried all candidates. Go back to a higher level. 

 

Pick race=White (Frequency 0.111). 

New Result [occupation=Prof-specialty, race=White]: 0.111 

Create new candidate items: 

  loss=none: Frequency 0.103, Selected. 

  country=United-States: Frequency 0.103, Selected. 

 

9.4 Example3. idx(part) 
Id, GroupId, Desc, Bitmap 

100, 2, education=Preschool, 

0000000000000000000000000000000000000000000000000000000000000001000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000010000000000000000010000000000000000000000000

0000000000100000000000000000000000000000000000000000000000000000000100000000000000

0000000000000000000000000000000000000000000000000000000000000000000000100000000000

0000000000000000000000000000000000000000000000000000000000000000100000000000000000

0000000000000000000000000000000000000000010000000000000000000000000000000000000000



 57

0000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000001000000000000000

0000000000000000000000000000000000000000000000010000000000000000000000000000000000

0000000000000000000000000000000000000010000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000001000000000000000000

0000000000000000000010000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000100000000000000

0000000000000001000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000100000000000000000000000000000000000000

0000000000000000000000000000100000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000001000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000001000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000010000000000000000000000000000000000000000000000000000000000010000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000010000000000000000000000000000000000000000

0000001000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000010000000000000000000000000000000000000000000000000100000000000000000000

0000000000000000000000000000000000001000000000000000000000000000000000000000000000

0000000000100000000000000000000000000000000100000000000000000000000000000000000000

0000000000000000000000000000000100000000000000000000000000000000000000000000000000

0000000000000000000000000010000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000100000000000001000000000000000000000000000000000000000000

0000000000000000000000001000000000000000000000000000000000000000000000000000000000

0000000100000000000000000000000000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000 

9.5 Example3. trans(part) 
0 21 36 37 38 39 6 28 32 19 10 20 40 13 

14 15 22 23 16 17 18 7 8 19 10 41 12 42 

0 21 34 35 4 30 6 7 32 43 10 41 12 42 

0 21 2 3 16 17 18 7 8 43 10 11 12 42 

0 21 44 45 16 17 18 28 8 19 10 46 12 42 

0 1 2 3 16 30 18 47 8 19 10 11 48 42 

29 21 2 3 4 5 49 7 32 19 10 11 12 13 

0 21 50 51 4 52 6 28 8 19 10 41 12 13 

0 21 53 54 16 55 18 47 8 19 10 11 56 42 

0 21 57 58 16 59 18 60 8 19 10 41 61 13 

29 15 22 23 4 62 49 7 8 19 10 11 12 13 
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0 21 22 23 4 63 64 7 8 19 10 11 12 13 

0 21 26 27 16 52 18 7 8 19 10 41 12 13 

0 15 34 35 24 17 64 7 32 19 10 41 12 42 

0 21 65 66 16 30 18 7 8 19 10 41 12 42 

14 21 22 23 67 39 64 28 32 19 10 20 12 13 

0 68 36 37 16 62 18 28 8 19 10 11 12 13 

0 21 26 27 16 59 18 7 8 19 69 11 12 13 

14 21 22 23 24 70 64 7 32 19 10 11 12 13 

14 71 2 3 16 70 18 7 8 19 10 11 12 42 

29 21 22 23 4 55 49 7 8 19 10 11 12 13 

14 72 44 45 16 73 18 47 8 19 10 41 74 42 

0 21 22 23 24 17 6 7 8 19 10 46 12 13 

0 21 22 23 16 55 18 7 8 19 10 11 12 13 

29 71 50 51 4 75 6 7 8 19 10 41 12 13 

29 21 44 45 4 52 49 28 8 19 10 41 12 13 

0 21 2 3 24 17 49 7 8 19 76 11 12 13 

0 68 44 45 16 5 49 7 8 19 10 11 12 13 

29 1 44 45 16 39 18 28 8 19 10 20 12 13 

0 21 26 27 4 63 64 7 8 19 10 11 77 13 

29 21 44 45 4 63 49 7 8 19 10 11 12 13 

29 21 22 23 78 5 31 7 32 19 10 20 12 13 

0 21 44 45 16 52 18 7 8 19 10 11 56 42 

0 15 50 51 16 30 18 7 8 19 10 11 12 13 

0 21 36 37 16 63 18 7 8 19 10 41 12 13 
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