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Abstract

SUBSTITUTION CIPHER WITH NON-PREFIX CODES
by
Rashmi Bangalore Muralidhar

Substitution ciphers normally use prefix free codes - there is no code word which is the prefix of
some other code word. Prefix free codes are used for encryption because it makes the decryption
process easier at the receiver's end.

In this project, we study the feasibility of substitution ciphers with non-prefix codes. The advantage
of using non-prefix codes is that extracting statistical information is more difficult. However, the
ciphertext is nontrivial to decrypt.

We present a dynamic programming technique for decryption and verify that the plaintext can be
recovered. This shows that substitution ciphers with non-prefix codes are feasible. Finally, we view the
cipher from the attacker's perspective and experimentally study various attacks. We show that a limited

attack is possible in the case of known plaintext. However, the ciphertext-only attack appears to be very

challenging, which is in stark contrast to substitution ciphers with prefix free codes.
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SUBSTITUTION CIPHER WITH NON-PREFIX CODES

1.0 Introduction

A communication network is full of hackers, eavesdroppers, and malware, which are threats to
information security [11]. To protect data from these threats, it is necessary to send the data in a form
which can be correctly decoded only by the receiver. To ensure that the data is sent correctly to the
intended recipient, all the three security goals namely confidentiality, integrity, and authentication must
be met. We must prevent any unauthorized reading (confidentiality) [12], unauthorized manipulation
(integrity), and confirm the identity of the sender and the receiver (authentication) [13]. Cryptography

refers to the art of protecting data by meeting all the security goals.

1.1 Cryptography terms

The word “cryptography” is derived from the two Greek words “krypto” and “grafo”, which means
hidden writing. The original information to be sent is the plaintext. Figure 1 shows an end-to-end
process. The plaintext is transformed into an unreadable format known as the ciphertext, using the
special knowledge 'key' known to the sender and the receiver. This process of converting the plaintext

to ciphertext is encryption. This ciphertext is sent across the network to the receiver.

key key

| |

plaintext —— encrypt ~ "\ "\ "\~ decrypt —— plaintext

ciphertext

Figure 1: Cryptography process [4]
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The receiver performs the reverse process, known as decryption, to recover the plaintext from the

ciphertext using the key.

A cipher is used to perform encryption and decryption based on the key. A cipher which uses the
same key for encryption and decryption is referred to as a Symmetric cipher. Public key cryptography is
also possible, in which two different keys are used for encryption and decryption. The decryption is

performed using a private key and a public key is used for encryption.

1.2 Classic Cryptography

Classic cryptography refers to the earliest form of hidden writing. Confidentiality was the major
concern, the communication had to be performed in a way that the information was protected from the
eavesdroppers. According to the Kerckhoff's principle, even if the ciphertext and the algorithm are
public knowledge, the system should be secure [4]. The only unknown is the key, which is known only

by the sender and the receiver.

The main types of classic ciphers are substitution ciphers and transposition ciphers. Substitution
ciphers are based on the Shannon's property of confusion. The letters in the plaintext are replaced with
the other letters to obtain the ciphertext. The main idea is to obscure the relationship between the
plaintext and the ciphertext. For example, the plaintext 'hello' becomes the ciphertext 'uryyb' with the
ROT13 algorithm. Transposition ciphers are based on the Shannon's property of diffusion. The
ciphertext is obtained by rearranging the letters in the plaintext. The ciphertext is a random permutation

of the plaintext letters.

In our project, we work on substitution ciphers. In this section, we briefly explain the working of

substitution ciphers.

11



1.2.1 Substitution cipher

The idea behind a substitution cipher is to substitute a unit in the plaintext with the ciphertext, based

on the pre-determined key [2]. Here, the “units” can be a single character or a set of characters.

The sender and the receiver agree upon a key mapping [14. Based on the plaintext and the key, the
sender generates the ciphertext by replacing each plaintext unit. This ciphertext, which is in an
unreadable form is sent to the receiver. The receiver performs the reverse mapping and recovers the

plaintext.

Assuming an English character set, the key can be as simple as a shift-by-n operation, where the
ciphertext is a character 'n' positions down the alphabet. A well known cipher, Caesar cipher based on

the shift-by-3 concept.

Table 1 shows the mapping between the plaintext (Pt) and the ciphertext (Ct) used in Caeser cipher.

PPABCDEV FGHTIJKLMNOPQRSTUVWXYZ
CtDEF GHI JKLMNOP QRSTUVWXYZAIBC

Table 1: Caeser Cipher
Given this key mapping, suppose that the sender wishes to send the message “WE ARE SAFE” to
the receiver. He has to generate the ciphertext by substituting each letter in the plaintext with its

equivalent ciphertext. Table 2 shows the substitution of plaintext letter (Pt) and the ciphertext (Ct).

Pt \\ E A R E S A F

ws}

Ct Z H D U H \" D I H

Table 2: Caeser Cipher Encryption

The receiver has to perform the inverse mapping on the obtained ciphertext to recover the plaintext.

12



Table 3 shows the decryption process.

Ct Z H D U H

)
T

Pt W E A R E S A F E

Table 3: Caeser Cipher Decryption
One disadvantage of the shift-by-n technique is that, there are only 26 possible keys in the English
text. From the attacker's point of view, he can try them all the possible shifts to know the key. To avoid
this situation, substitution ciphers use a key which is a random permutation of letters. Table 4 shows

one such possible permutation.

Pt A /B |[C D E F |G |H|I

_
A~
=
<
Z
o
2,

e
~
05]
-
=
<
3
~
<
N

CtK|F /A|Z|S R|O B C|W

o
z
c
™
.
—
T
Q
=
<
-
=
<
>

Table 4: Random substitution

In this case, there are 26! number of keys possible [15] and hence, the attacker has to try 2% keys [5].
The substitution ciphers we have seen until now are the ones operating on single letters. In this project,
we work on the substitution cipher which operates on single plaintext letters. Instead of replacing letters
with other letters, we replace letters with binary codes. There are other variants of the substitution
ciphers namely, the polygraphic, monoalphabetic and polyalphabetic ciphers. A polygraphic cipher
operates on a group of characters [17]. A monoalphabetic cipher uses a fixed substitution throughout
the message, whereas a polyalphabetic cipher uses a different substitution at different times in the
message.

One special type of substitution ciphers is the one time pad cipher. The one-time pad is a type of
encryption which is proven to be secure [8]. The idea is to avoid reuse of the keys. The key is generated
at random and used only once. The key length is same as that of message. Every message has a

different key.
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Suppose that there are only eight letters in the character set. Figure 2 shows a possible mapping from

character to binary codes.

Letter W E A R S F I M
Binary 000 001 010 011 100 101 110 111

Figure 2: One time pad mapping
If the sender wishes to send the message “WEARESAFE”, he has to first convert the message into a

string of bits. Figure 3 shows the message in binary.

Pt W E A R E S A F E
Binary 000 001 010 011 001 100 010 101 001

Figure 3: Message in Binary
A key which is of same length of the binary message is generated. Suppose that the key is
001100010101001000001010011, the encryption is a XOR operation of the plaintext with the key.

Figure 4 shows the encryption process and the ciphertext.

Pt W E A R E S A F E
Pt Binary 000 001 010 011 001 100 010 101 001
Key 001 100 010 101 001 000 001 010 011
Ct Binary 001 101 000 110 000 100 011 111 010
Ct E F W I W S R M A

Figure 4: One-time pad Encryption
The ciphertext in binary form is converted back to letters and the resulting output is sent to the
receiver. The decryption process is also a XOR operation performed with the ciphertext and the key.

Figure 5 shows the decryption process.

Ct E F W I W S R M A
Ct Binary 001 101 000 110 000 100 011 111 010
Key 001 100 010 101 001 000 001 010 011
Pt Binary 000 001 010 011 001 100 010 101 001
Pt W E A R E S A F E

Figure 5: One-time pad Decryption

14



Although the one-time pad is secure, there is a disadvantage that the key length is same as that
of the message, which must be securely transmitted for each message.

In the next section, we will discuss the common attacks on substitution ciphers.

1.3 Cryptanalysis

Cryptanalysis refers to the study of methods to obtain meaningful information from the ciphertext.
The attacker knows the algorithm and the ciphertext. In performing cryptanalysis, the attacker can get
partial plaintext or if lucky, can get the secret key. Trying all possible keys, known as exhaustive key
search is the worst case option for an attacker. In most cases, the key space is large enough that an
exhaustive search is not possible. The attacker has to find a short-cut attack based on the weaknesses in
the system. If a short-cut attack is not possible, then the cipher is said to be secure. In this section, we

discuss some of the common cryptanalysis attacks.

1.3.1 Ciphertext-only attack

In this case, the attacker knows only the ciphertext and the algorithms used. This is the most
difficult scenario for an attacker. Based on the ciphertext, techniques such as the frequency analysis can

be used to gain information about the plaintext.

If a simple substitution was used on an English plaintext of reasonable length, the attacker can
perform a frequency analysis. This is because the statistical information in the plaintext leaks through a
simple substitution. Figure 6 shows the letter frequency counts in the English language. From the
statistics, the letter 'E' is the most common letter. The attacker can compute frequency counts in the
obtained ciphertext. Based on this frequency counts, the most commonly seen letter in the ciphertext is
an 'E'. So, the attacker can try to guess a few letters based on frequency until some words are

recognized.
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0.14
0.12
0.101
0.08
0.06
0.04
0.02 -
0.00

ABCDEFGHI JKLMNOPQRSTUVWXYZ

Figure 6: English letter frequency [5]

In some cases, the first word is easy to predict. Further, bigram and trigram statistics can be used to

aid the attack.

This attack is very difficult in cases where the key mapping is such that the ciphertext does not
provide any useful frequency information. In other words, when there is no one-to-one plaintext letter to
ciphertext mapping, this attack is very hard. For example, one letter in the plaintext can be substituted

with a set of letters or binary codes. In such cases, the frequency analysis becomes harder.

1.3.2 Known Plaintext Attack

In a known plaintext attack, the attacker also knows some plaintext along with the ciphertext and the
algorithms [6]. This increases the probability of success of the attack, compared to the ciphertext only
case. In general, the complete plaintext is not known and only a part of the plaintext is known. The
attacker probably knows some words or letters and their the corresponding ciphertexts. The goal is to

attack the system using these known plaintext-ciphertext mapping.

This is a practical attack, because in the real world situations the attacker is likely to know some
plaintext. For example, the encrypted email header. As email uses a stereotypical header, the attacker

can guess some plaintext corresponding to come ciphertext [5].
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As some of the plaintext is known, the attacker need not perform an exhaustive key search as in the

ciphertext-only case. The work factor is lesser than an exhaustive search.

1.3.3 Chosen plaintext attack

This is an attack possible when the attacker has an option to use the plaintext of his choice to be
encrypted and observe the corresponding ciphertexts. This provides more information to the attacker
and hence, reduces the security of the cryptosystem. It is the best case from the attacker's perspective to

figure the key.

This type of attack is feasible in real world. A variant of the chosen-plaintext attack is the lunch time
attack. Suppose that an authorized user forgets to log out of the system during a break, the attacker can

gain access to a system and conduct this attack.

An adaptively chosen-plaintext attack is also possible, in which the attacker selects the current
plaintext based on the previous ciphertext. This would make the attacking the cipher much more

simpler.
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2.0 Algorithm Design

An algorithm is a step-by-step approach to solve a given problem. A given problem can be solved in
various ways. Algorithm design are techniques which provide an effective method to solve a problem. It
can be broadly classified into four techniques, namely the greedy, divide-and-conquer, dynamic

programming, and branch-and-bound. In this section, we discuss the techniques used in this project —

a) Divide-and-conquer and b) Dynamic programming.

2.1 Divide-and-conquer

The idea in divide-and-conquer is to divide the given problem into smaller problems and solving
them. The first step is to identify and divide the problem into smaller subproblems of the same type.
Each of these subproblems are solved independently in a recursive manner. If the subproblems are
small enough, they are solved in a straightforward manner. The solutions of all the subproblems are
combined, which is the solution to the overall problem [7].

Divide-and-conquer technique is used in several use cases. One such example is merge sort. Given
an unordered list with 'n' elements, the goal is sort them in an efficient way.

If the list has only one element, then it is already sorted. Otherwise, the list is divided into two
sublists of about equal size. Each of these sublists are sorted by applying the merge sort recursively.
The two sublists are merged to form one sorted list.

Figure 7 shows the merge sort psuedo code. Figure 8 presents a merge sort example of an unordered
seven element list. The first four levels represent the division process, where each of the lists are
divided into sub lists and recursively sorted. This division process is continued until the sub lists are

composed of single elements. At this stage, no more further division is possible and the combining

18



process begins. The results of two sub lists are combined and sorted at each step. The merging process
is continued until all the sub lists are merged and results in only one list. This final list is an ordered list,

which is the answer to the original problem.

MergeSortiList[], leftIndex, rightIndex)
Begin:
if leftIndex < rightIndex then
mid = {leftIndex + rightIndex) / 2
MergeSort(List[]. leftlndex, mid) //f split left sublist
MergeSort(List[]. mid + L. rightIndex) /f split right sublist
Merge(List[], leftIindex, mid, rightlndex)  /f merge sorted sublists
endif
End

Figure 7: Merge sort Psuedo code [3]

|33|2T d3|3|9|32|10|

|33l2?‘d3 3| |9 82|10
|33 27 |-'13|3| |5|32| | 1|:||
R ] \\‘ |
/ ¥ r u r 1
EXER N RN ENRICER T
Ej\ sﬁ 4
li? 33|d3| |9 1|:||EZ|

|3|5|1IZI 2?|38|d3|82|

Figure 8: Merge sort example [1]
Considering an unordered list with 'n' elements, the worst case performance of the merge sort is

O(n logn), which is efficient compared to brute force technique which takes O(n?).
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2.2 Dynamic Programming

Dynamic Programming is a technique used for solving a complex problem by recursively breaking
down it into several sub problems. These sub problems are solved and the solutions are combined to
obtain the solution to the original problem. Each of the sub problems is solved only once and the results
are reused [9].

Dynamic Programming is applicable to problems that exhibit an optimal substructure and are
composed of several overlapping sub problems. A given problem is said to have overlapping sub
problems if it can be broken down into sub problems which can be reused many times. If the final
optimal solution to the problem can be obtained only by combining the optimal solutions of the sub
problems, the problem is said to exhibit an optimal substructure.

A top-down or bottom-up approach can be followed to solve a problem. In a top-down approach,
also known as memorization, a problem is recursively formulated into sub problems and their solutions
are stored in a table. If the same sub problem has to be solved again, a table look up is made and the
result is reused. In a bottom-up case, a problem is broken down into sub problems, whose solutions are
combined to arrive at a solution to the bigger problem.

Let us consider a simple problem and solve it using Dynamic Programming. Suppose that x and y are
two strings and we want to find the longest common subsequence (LCS) in them. For example the LCS
of ‘ggcaccacg’ and ‘acggcggatacg’ is ‘ggcaacg’.

Let the length of the string x be M and the length of the string y be N. We start with the LCS length
of 0. We compare the last characters in both the strings, g in this case. If they are the same, we have
reduced our problem of x[0...M] and y[0...N] to x[0...M-1] and y[0O,N-1] respectively. We increment the

LCS length. We proceed by dividing the problem into subproblems at each step. If a mismatch is found,
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we must remove a character from x or from y, depending on the resulting score. In either case, we are
reducing the problem space at each step. After both the strings are compared, the best LCS length gives
us the best possible common subsequence length of these strings. The problem can be recursively

formulated as in Figure 9.

0 fi=Morj=N
Cli,j) =4 Ci +1,j+1)+1 if z; = y;
max { C(¢,7+ 1), C(i +1,7)} otherwise

Figure 9: Recursive LCS [16]
We maintain a 2D-matrix of size M*N, to store the results of all the sub-problems, which finally

lead to an optimal solution. For the given strings x and y, the result matrix C[i][j] is as in figure 10.
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Figure 10: LCS Result matrix [16]

After solving all the sub-problems, the value in C[0][0] represents the length of the best LCS. In this
case, the longest common subsequence is seven characters long. To get the actual subsequence, we have
to retrace the steps backwards, to get the path taken to obtain the best solution. For this problem, the
best path is shown in red. If we have made a choice to move along the diagonal, then it is a matching
character considered in the common subsequence. The longest common subsequence is composed of all

the characters along the diagonal choices.
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By taking this dynamic programming approach, we are computing each of the subproblems once

and reusing the result. Hence, it reduces the space and time complexity taken to solve this problem.
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3.0 Related Work

A closely related problem to our project is the Huffman based encryption [18,19]. The Huffman
codes are of variable length binary codes which are prefix-free in nature. That is, no code is a prefix of
any other valid code [10]. For example, the set {1010, 1000, 11000} are prefix-free binary codes of
variable length.

The codes for characters are chosen based on the frequency of occurrence of characters. The letter
with higher frequencies are assigned codes of fewer bits and the letters with lower frequencies are given
codes of more bits. By doing so, the compression is achieved.

Suppose that the plaintext contains 25 characters “s2 s3 s2 s1 s2 s1 s4 s3 s1 s2 s1 s3 s1 s4 sl s4 sl

s2 sl s2s1 sl sl s2s1”. Table 5 shows the frequency of plaintext characters.

Symbol | Freguency
5, 12
5a 7
5y 3
5, ' 3

Table 5: Frequency count for Huffman encryption [18]
A prefix-free Huffman tree is constructed based on these frequencies. The tree is as shown in Figure
11. The letters with the least frequencies are considered at the lowest level and the tree is constructed

bottom-up by combining letters in the increasing order of their frequencies.

."'.. ...\.
I, -j_.
1] 1
f s, i \
W) ,
[ (s,
L) \53 y
a 1
i, 3_,I i_.‘?_.‘:/

Figure 11: Prefix-free Huffman tree [18]

23



Each character is represented as nodes in the tree. The binary code for a character is the string of
codes encountered while navigating to that node in the tree starting from the root. For example, the

code for the character 's3'is '100'. Table 6 shows the mapping for this example plaintext.

Symboel | Frequency Codeword
5 12 0
55 7 11
5y | 3 100
4 3 101

Table 6: Huffman code mapping [18]

The codes are of variable lengths and prefix-free. Also, all the characters are at the leaf level.
Depending on the depth of the tree constructed, the length of the code words vary. Also, the code
length for letters with higher frequencies is lesser than the letters with lesser frequencies.

Based on this mapping, our plaintext of 25 characters will result in 44 characters of ciphertext —
11100110110101100011010001010101011011000110. This ciphertext is sent to the receiver, who has to
decrypt based on the mapping.

The receiver constructs a similar tree based on the known character to binary code mapping. The
receiver parses the ciphertext and walks down the tree until he reaches a leaf. The character in the leaf
node represents the plaintext letter. This process is performed until all of the ciphertext are decoded.

Due to the prefix-free property of the binary codes, there are no ambiguous decryption outcomes.
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4.0 Project Overview

We consider a substitution cipher on English text. Each plaintext letter is substituted with a random
binary code of variable length. Normally used binary codes are prefix-free, meaning, the code for one
letter does not share a prefix with the code for any other letter. The binary codes that we consider in this
project do not have this property. For example, {10,11} are prefix free, where as, {10,101} are non-
prefix code words, because “10” is a prefix of “101” and they can be code words of two different
plaintext letters. The advantage of a prefix-free code is that, when a prefix-free code is used, the
receiver can uniquely identify each word. In case of non-prefix codes, the decryption is ambiguous due
to the various possible outcomes.

In this project, we consider two cases of non-prefix cipher, with a change in the key space. In the
first case, we consider the character set consists of 26 english alphabets only, which are mapped to a
variable length non-prefix code words. The plaintext is a contiguous sequence of english letters without
any delimiters. In the second case, we add two non-dictionary characters — space and period to our
character set. The key consists of 28 characters and their corresponding code words. Even the non-
dictionary characters have a random binary mapping.

Encryption is performed by the sender by substituting each character in the plaintext with its binary
code, to obtain the ciphertext. This ciphertext will be a long sequence of 0's and 1's, without any
word/sentence delimiters.

Decryption is performed by the receiver, who has to decrypt this binary pattern, using the key, to
obtain the plaintext. The receiver will have to decide upon the sentence boundaries, and the word
boundaries. He can then start decrypting word by word, by using the key. It is possible that a sequence

of ciphertext yield multiple possible plaintext equivalents. The receiver has to use a smart technique to
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select the best plaintext. He should then combine these decrypted words to form a sentence and
construct a paragraph with these sentences.

In this project, we prove that the encryption and decryption can be performed correctly on a
ciphertext of reasonable length using this cipher. Taking a step forward, we see the cipher from the
attacker's point of view. Not only is the decryption more challenging compared to the prefix-free codes,
attacks are also harder since frequency analysis is harder when only the ciphertext is given. We check
the feasibility of conducting a ciphertext-only attack. We try to perform a limited known plaintext
attack on this system. We prove that the attack succeeds and the attacker is able to reveal the secret key

based on some known plaintext.
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5.0 Data Collection and Probabilistic Model Construction

Encryption is performed by the sender and the ciphertext is sent to the receiver. As the key is non-
prefix-free and is of variable length, a given ciphertext may yield many possible plaintext equivalents
on decryption. A mistake in choosing the correct word out of the various possibilities in any of the
intermediate steps can lead to an incorrect decryption outcome at the end. It is very important to use a

technique to identify appropriate words to proceed with decryption.

The first step is to eliminate invalid possibilities at the word level. On eliminating the invalid words,
fewer number of valid possibilities will remain for the overall text. To aid the decryption process in
identifying the best possibilities at each step, we build a dictionary to eliminate invalid words and

several probabilistic models to identify the best word in the context.

To eliminate invalid words, we maintain a dictionary of words. We build a dictionary by parsing a
collection of a large corpus of English books. We wrote a perl program to parse individual words in the
text file, clean them to eliminate special characters, and eliminate duplicates. The dictionary so built
consists of all unique valid English words found in the corpus. As a large corpus of books are used in
building the dictionary, it consists of most of the English words found in any standard dictionary. Since
we are using a big corpus, there is also a possibility of having picked up spelling mistakes or other
erroneous words from the corpus. We prune these by looking at the number of occurrences of the
words. These words are sorted in ascending order for faster search operations. The size and quality of

the dictionary can be controlled by the size of the corpus and the thresholds.

To address the second problem of selecting the best word from all the valid choices, we build a
probabilistic model. This model is responsible for determining the probability that a word appears given

the previous word which was decrypted. This model was trained with the same corpus of English
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books which was used to build the dictionary. The output of this model is a set of all possible bigrams
found in this input collection, along with their probabilities of occurrence. Given a word, the model
gives the probabilities of co-occurrence for the next word. This bigram collection consists of about a

million entries.

It is also possible that the ciphertext corresponding to the first word or the last word yield many
possibilities. To ease our selection in these cases, we build probabilistic models for the first word and
the last words of sentences. We use the same corpus of books and extract all the words which begin and
end a sentence. We compute the frequencies that a word starts/ends a sentence. This first and last word

collections consists of about a 15,000 and 30,000 entries respectively.

At any point, if we are to select one word out of a set of possibilities, we can use the built dictionary
and the probabilistic models. In case of the probabilistic approach, given multiple word possibilities,
the word with a higher probability is the winner. For example, if the previous word was decrypted as 'it'
and the next word possibilities are 'was', 'our', and 'of’. We need to select only one of them to proceed
with. We query our model with all bigram possibilities 'it was', 'it our', and 'it of . Based on the score
returned for each of them, the word 'was' is most likely to occur following 'it', compared to 'our' and 'of".

In such a case, we select 'was' as the best possible plaintext word and proceed.
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6.0 Cipher Implementation

In this project, the sender constructs the messages in English. The sender and the receiver agree
upon a key using some other secure key exchange mechanism. The sender encrypts the message using
the key and sends the ciphertext to the receiver. The receiver, with the knowledge of the key decrypts

the ciphertext to obtain the plaintext.

We have considered two variants of the key space to check the feasibility of encryption and
decryption. In the first case, the key space consists of only the 26 English letters and their non-prefix
binary code mapping. In the second case, we add non-dictionary characters, a space and a period to our
character set. In this case, the key space consists of 28 characters and their binary code mapping. In
this section, we present the implementation details of both the variants — 1) Key space with the

dictionary characters only and 2) Key space with dictionary and non-dictionary characters.

6.1 Key space with dictionary characters only

In this case, a plaintext message is composed of English alphabets, without any delimiters. A key is
generated, which consists of the letters and their non-prefix variable length binary codes. This key is
known to the sender and the receiver The sender encrypts the plaintext message to be sent by using the
key to obtain the ciphertext. This ciphertext is a binary sequence without any word boundaries. The
receiver has to derive the plaintext from the ciphertext with the help of the key. The entire process can
be divided into three phases, namely the 1) Key generation, 2) Encryption, and 3) Decryption. The next

section provides details of each of the three phases.
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6.1.1 Key generation

The sender and the receiver must agree upon a key prior to exchanging messages. In this case, the
key must consist of binary codes for each letter. These binary codes are substituted for each of the
plaintext letters to get the ciphertext.

As we know, the messages are in English. The messages have to be composed from the 26 letters in
the English alphabet set. Hence, the key consists of these 26 letters and their binary mapping. We need
26 codes to assign to our character set. These codes can vary in length. For example, if we choose a
maximum code length of five bits, there are 25 or 32 possibilities for each character. We have to
choose a unique code for each letter in the alphabet. Similarly, for a maximum code length of 8 bits,
there are 256 possible codes for each letter. Out of these possible codes, 26 unique codes have to be
chosen to map to each of the letters.

In our use case, we consider a maximum of five bit code to start with. We have 32 choices and 26
have to be selected. We randomly pick a number between zero and 31, convert it into binary and assign
to a plaintext letter. The binary codes so generated need not be prefix-free. For example, 10, 101, 1010,
10100 can be chosen to represent different letters. The codes vary from a single bit to five bits in length.
This mapping between the characters to the assigned binary codes is the key. The same key is used for
performing encryption at the sender's end and for performing decryption at the receiver's end. We
assume that the sender and the receiver have the exchanged the generated key using a secure key
sharing protocol such as the Diffie Hellmann key exchange protocol.

We can choose a set of 26 codes from a set of 32 codes in ¥*Cy different ways. Once a set of binary

codes are generated, it is assigned to an alphabet. There are 26! keys possible based on a 26 binary code

set. Overall, there are *C,s*26! keys, which is 3.65459496 x 1032, which is around 100 bits.
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We use the binary codes between one and five bits in length for illustrations throughout this report.

Table 7 shows one possible key we have generated.

1001
10100
1100
101
11001
1101
10
10000
11011
11
11111
10101
1010
10111
100
1011
1110

11000
1111

10010

10001
1000

111
10110

N |[X|S|<|c|l~|v| =s|lQ|lg|O0|5|3|—|X|—|—|TjQ|=w0d|al0o|lc|w

Table 7: Key for Dictionary Encryption case
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6.1.2 Encryption

The sender has a plaintext message to be sent to the receiver in an encrypted manner. This plaintext
message is formed from the 26 characters in the English language. The sender has to encrypt this
plaintext message by using the key which he shares with the receiver. This is a substitution cipher, the
sender generates the ciphertext by substituting each plaintext character with its corresponding binary
code in the key mapping.

For example, if the plaintext word 'cryptography' has to be encrypted. We substitute individual
letters in the word with its corresponding binary code in the key mapping to frame the ciphertext. The
ciphertext for this word will be 7110001101111111001001001101110000111. Similarly, a
sentence/paragraph can be encrypted by substituting individual characters with the binary codes. Figure

12 shows five plaintext sentences and their ciphertexts on separate lines.

hehadnoideaatall
hepickeduphisbooks
healmostjumpedoutofhisskin
thelaughterstoppedsuddenly
hewishedhewasbackatthehouse

10000110011000016601101101111601101116111001160116011111160110160110101
10000110011011116111106011111116011011600101611100001101111060010106010016601111111600
10000110011001101011010160116001111111001010101011110601101100160101111160011011600011611116600110060111111161110111
111110000110011016011001160101010000111111001611060011111600101110111100110111000100101611011100116111101681111
10000110011000116111100010000110011011000011601100010011100010106010011160011111100111111111100600110601100001001601011600011001

Figure 12: Dictionary case Encryption
The output of the encryption process is a sequence of 0's and 1's, without any delimiters. The length
of the ciphertext depends on the number of characters in the plaintext and their binary code lengths.
Table shows the number of plaintext characters in the message and the resulting ciphertext length. This

is based on a random sample from the encrypted data file.
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Plaintext length | Ciphertext length
22 90
38 157
35 144
23 88
17 70
20 82
27 113
27 108
18 124
44 178

Table 8: Plaintext and Ciphertext lengths

For a code length of five, the average number of bits per character in the ciphertext is around four.

6.1.3 Decryption
The receiver has the knowledge of the ciphertext and the shared key. The goal has to perform the

decryption and extract the plaintext using the key. The receiver knows that a substitution cipher with
non-prefix codes was used to encrypt the plaintext message without any delimiters. The receiver also

knows that the character set consists of the English alphabets and the key.

We follow a dynamic programming approach to solve this problem. Given an encrypted plaintext
message, we identify and divide the problem into several subproblems of decrypting a word. We solve
each of the word decryption sub-problems to get the best possible word. We then combine the results
of all the subproblems to get the solution to our original problem. In doing so, we get the plaintext of

the entire ciphertext.

Using the key, we try to decrypt the ciphertext from the beginning. Based on the words in our
dictionary, all the words are within a certain length, say k characters. In our case, from our dictionary,
we expect that all words are less than 25 characters in length. This number is dependent on the

dictionary. Based on the key, we know that a code length ranges from one to five bits. Hence, the
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maximum length of the ciphertext for a word is 125 bits. We maintain a moving window of at most 125

bits starting from the end of the last decrypted word.

Let E be the encrypted ciphertext. Each of the sub-problems can be represented as a tuple {e, d}
where e is a suffix of the input E and d is the decrypted plaintext for the prefix of E excluding e. The
initial problem state is {E, ' '} and the solution set contains tuples of the form {'', D}, where D is a

sequence of valid words.

Given a {e, d}, eliminating all prefixes of e occurring within the moving window boundary that can
be decodes as words in the dictionary lead to a valid sub-problem. There can be many valid sub-
problems for a given {e, d}. We maintain a list of all the valid sub-problems. We remove sub-problems
from the head of the list and add back smaller sub-problems to the tail of the list. We keep repeating

this process till we reach {'', D}.

For a particular ciphertext, there can be many possible plaintext words. For example, the ciphertext
1000100111000 can yield plaintexts 'was', 'xrrroyrrr', 'wrxrrjw', and so on. At this point, we make use of
our dictionary to eliminate invalid words from these decryption possibilities. As and when we identify
the plaintext words, we are left with a smaller problem to solve. We proceed further only after
identifying valid words. This is because of the optimal substructure in our sub-problems. The sub-

problems which do not have an optimal score do not yield an optimal solution to our overall problem.

It is also possible that the entire ciphertext yield multiple plaintext equivalents. These final possible
plaintexts are composed of valid words only. Hence, we need a different mechanism to select the best
one. To aid this decision, we use a scoring mechanism based on our probabilistic model while
decrypting the words. We start with a score of zero. As and when a word is decrypted, we query our

model to get the bigram frequencies depending on the previous word. We add this frequency score to
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our decryption score.

Result of decryption........

itorasreallymostextraordinaryyoushutthedoorheorisorredheorasbackatthehousehelookedupintothet reeandsawabeautifulparrotyougavemeanawfulfright
?Eg::;rggfigﬁgziextraurdinaryynushutthednnrhenrisnrredhewashackatthehnusehelnnkedupintnthetreeandsawaheautifulparrmtynugavemeanawfulfright
?Eg::;rzgiiiizz:extraordinaryyoushutthedoorhewishedheorasbackatthehuusehelookedupintothetreeandsawabeautifulparrotyougauemeanawfulfright
?ig::;rigﬁigiggiextraurdinaryyuushuttheduurhewishedhewasbackatthehﬂuseheluukedupintuthetreeandsawabeautifulparrutyuugavemeanawfulfright
?i:;z;ezisiiégggxtraﬂrdinaryyuushutthedourheurisurredheurasbacKatthehuuseheluukedupintothetreeandsawabeautifulparrutyuugavemeanawfulfright
?E:gg;esisgigiigxtraordinaryyoushutthedoorheorisorredhewasbackatthehousehelookedupintothetreeandsawabeautifulparrotyougavemeanawfulfright
?izgg;eiisgﬁigizxtraordinaryyoushutthedoorhewishedheorasbackatthehouseheluokedupintothetreeandsawabeautifulparrotyouqavemeanawfulfriqht
iiggg;egisiégggzxtraordinaryyoushutthedoorhewishedhewasbackatthehouseheloaKedupintothetreeandsawabeautifulparrotyouqavemeanawfulfright
Score: 256724416

Best possible plaintext is:
itwasreallymostextraordinaryyoushutthedoorhewishedhewasbackatthehousehelookedupintothetreeandsawabeautifulparrotyougavemeanawfulfright 256724416

Figure 13: Dictionary case Decryption

Once the decryption of the ciphertext is complete, out of all the possible outcomes, the plaintext
with the highest score is declared as the original plaintext. For example, in Figure 13, a ciphertext of
544 bits is decrypted into 8 possible plaintext equivalents of five sentences each. Based on this scoring

mechanism, we are able to uniquely identify the plaintext.

Table 9 is illustrative of the number of possible plaintext results given the number of words in the

input.
Plaintext length (words) # of possible results
18 4
8 2
33 8
24 4
32 4

Table 9: Ambiguous plaintext in Dictionary case

We have verified our algorithm by encrypting a hundreds of plaintext messages to obtain the
ciphertext and performing decryption on these ciphertexts. In all the cases, we are able to uniquely

recover the plaintext. Based on the encryption and decryption, we think it is feasible to use this cipher
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to perform encryption of a message and decrypted to obtain the message.

Now that we know the encryption and decryption work based on dictionary characters, we want to
add non-dictionary characters to our alphabet. In our experiments, we add a space and a period to our
character set and check the feasibility of such a cipher. In the next section, we discuss the details of this

cipher.
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6.2 Key space with dictionary and non-dictionary characters

In this case, there are non-dictionary characters in the plaintext which are also encrypted as part of
the ciphertext. The ciphertext is still a sequence of binary bits without any delimiters. The key consists
of all the dictionary and non-dictionary characters. For illustration, we use a space and a period as the
non-dictionary characters. The receiver is aware about this fact and also has the key. As the key is non-
prefix free and of variable length, the exact positions of the spaces or periods are not known. The
receiver has to use techniques to first identify and eliminate these characters. The receiver can then try

to perform the decryption.

We also make use of the dictionary and the probabilistic models built earlier. In this scenario, we
implement this cipher in three phases 1) Key generation, 2) Encryption, and 3) Decryption. In this

section, we explain each the phases.

6.2.1 Key generation

This is a substitution cipher, we need a mapping between each character in the plaintext space to the
corresponding code in the ciphertext space. The sender needs this key to perform encryption and the

receiver needs it to perform decryption. The key must be generated and shared in advance.

There are 26 letters and two non-dictionary characters in the plaintext space. The substitution cipher
is based on non-prefix codes. Hence, we need 28 non-prefix binary codes which compose the key. The
key can be chosen in several ways depending on the maximum bit length of a code. For a code length of
up to five bits, there are 32 possible codes and for a code length of up to six bits, there are 64 valid
codes. Higher the code length, longer will be the ciphertext messages which have to be transmitted.
Based on the security requirements, different code lengths can be used. We consider codes with a
maximum length of five bits for illustration purposes.
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From a code space of 32 codes, we have to select 28 of them, which can be done in *C,; ways. We
generate the binary codes up to five bits in random and assign to each of the plaintext characters.

Hence, for a set of selected 28 codes, 28! keys are possible. The total number of keys possible out of the

32 code space is 1.09637849 x 10°*, which is around 100 bits in length.

This mapping between the plaintext letters to the ciphertext equivalents constitutes the key. The
sender and the receiver should share the key in advance. We use the key in Table 10 for explaining the
encryption, decryption, and the attacks on this cipher. Note that the key is non-prefix in nature and is of

variable length.

Characters | Binary Codes
space 10110
period 1101

101

11001

10000

1010

110

1000

10001

1111
0

10011

10100

100

1001

11010

11000

111

1100

10

10010

10111
1

1011

10101

11

11011

1110

N |X|[S|<|lc|~un|=|lolTc|0|5|3|—|X|—|—|TjQ|=wdjajo|T|lw

Table 10: Key for non-Dictionary case
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6.2.2 Encryption

The sender has to perform encryption of the plaintext message he has to send to the receiver. The
sender and the receiver have the key, which consists of 28 character set and their binary code mappings
in this case. A substitution cipher is used. To encrypt the plaintext message, the sender substitutes each
of the letters in the message (both dictionary and non-dictionary characters) with their corresponding
non-prefix codes in the key. The resulting ciphertext is a long sequence of binary bits without any

delimiters although there are delimiters in the plaintext message.

For example, if a sentence 'he picked up his books.' is encrypted by using the key in Table ,
111111010110111010000101001101010101101111101101111010010101101100111000110001010010010 is
the resulting ciphertext. A message of 23 characters has resulted in 87 bits in the ciphertext form.
Depending on the number of bits for the binary codes in the key and the number of characters in the
plaintext message, the ciphertext length varies. Similarly, encryption can be performed on a plaintext
message ranging from a single word to a set of paragraphs. Figure 14 shows a sample paragraph of four

sentences and its ciphertext equivalent.

there was no answer.he felt very puzzled.he shouted again.he picked up his books.

181111111118101161011616161101160101011011010811000108110108111010160010108108111010811
@1111111@lelleleeelleleelellllellelellllelellelllellelllllllelllelesllelelellell
111118161161661081111116601161111161616161161081100011016110108116811111116816811681116
logpololenllelelelellelllllellelllloleslelellelleollloeellooeleoleoolools

Figure 14: Paragraph Encryption for non-Dictionary case

The binary codes vary from one to five bits in length. On an average, each letter is represented in
four bits. Hence, for a plaintext message of 'k' characters, the resulting ciphertext is approximately 4%k

bits in length.
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6.2.3 Decryption

The receiver is given a ciphertext. The receiver knows the key. From the key, the receiver knows
that there are two non-dictionary characters, a space and a period in the plaintext space and are
encrypted to obtain the ciphertext. The receiver does not know the sentence or word boundaries based
on the ciphertext and the key. He has to algorithmically determine them. The goal of the decryption

process is to uniquely recover the plaintext.

The problem is do decrypt the ciphertext to obtain the original paragraph. We follow a dynamic
programming approach to solve this problem. We start by dividing the paragraph decryption problem
into several subproblems of decrypting sentences. Each of the sentence decryption problems are further
divided into word decryption subproblems. These word level sub-problems are solved using the key
and the results of the word sub-problems are combined to get the solution to the sentence decryption
problem. The results of the sentence decryption is collectively gives the solution to our original
problem. The main step lies in identifying periods in the paragraph level ciphertext to divide the
problem into sentence level sub-problems and identifying space positions to further divide into word

decryption sub-problems.

Each of the word decryption sub-problems may result in multiple possible plaintexts. Our algorithm
should consider all these possibilities and select the best solution at any step. This is necessary because
the solution to our overall problem depends on the solution of each of the sub-problems. Only the best
solution for the sub-problems yield the best solution to our original problem due to their optimal
substructure. To aid our decision in selecting the best solution, we make use of the dictionary, the

bigram, first word, and the last word models which were built and trained earlier.

We implement this cipher in a bottom-up fashion. Once the problem is broken down into sub-
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problems, they are solved first and the results are combined. The implementation is carried out in two
stages namely — 1) Elimination of the non-dictionary characters and 2) Decryption of the words. In the

next section, we discuss both the stages in detail.

6.2.3.1 Elimination of the non-dictionary characters

The receiver has the ciphertext and the key. The basic underlying sub-problems are the word
decryption problems. The receiver has to identify the word level ciphertexts by recursively dividing the
paragraph level ciphertext into sentence level ciphertexts and then dividing each of them into individual
word level ciphertexts. The receiver does not have the knowledge of the number sentences or the

number words in the plaintext message.

The first step is to eliminate the periods and identify sentence level ciphertexts using the key. With
the binary code for a period in the key, we start with identifying the “possible” positions for a period in
the ciphertext. Each of the sub-problems have to be solved by decrypting the individual words. Once

the sentence decryption is solved, the result is combined to solve the original problem.

For each of the possible period positions, we try to decrypt the sentence. If the decryption yields a
valid sentence, it is considered for the possible plaintext. On the other hand, if the decryption does not
yield a valid text, it means that the identified period was wrong. We do not consider this possibility for

further decryption.

For performing the sentence decryption, we have to identify the spaces in the sentence ciphertext.
We do not have knowledge of the number of words in the ciphertext. Given an encrypted sentence, we
identify all “possible” spaces in the ciphertext. We make use of the word decryption algorithm to
decrypt the possible individual words. At this point, we do not know the exact locations of spaces in the
ciphertext.
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To decrypt a sentence, we first need to decrypt the individual words. The current state of the
decryption algorithm is specified by the following — the yet to be decoded ciphertext 'C' and the already
decoded plaintext 'P'. We assume we are decrypting from left to right. The yet to be decoded ciphertext

contains the remaining words of the sentence. The algorithm proceeds as follows:

We maintain a queue of all current valid states to aid in navigating the solution space. The queue
initially contains {C;,,' '} and we need to reach a state where all the elements of the queue are of the
form {'",P..}. In each step, we remove the first element of the queue and process it. We look for the
first possible occurrence of the binary code for space in it. If the binary sequence occurring before this
space decodes to a valid word using the word decryption algorithm, we push the node {C',P'} on to the
queue, where C' is the remaining ciphertext after the space and P' is the plaintext got after adding the
decoded word to the current plaintext. If the possible space did not lead to a valid word, we move to the
next possible space and consider the word between the start and that position. If we could not find a
valid word at the beginning of the ciphertext, we do not push back anything to the queue. This is
effectively pruning all the invalid possibilities. We iterate the process until none of the nodes in the
queue have no ciphertext to decode. For any word position, if we get more than one possible word, we
use the probabilistic models to decide the best word in the context. We then combine the decrypted
words to form the sentence. As we are only combining the correct solutions at each step, we obtain a

final correct solution at the end of decryption.

6.2.3.2 Decryption of words

The goal of word decryption is to recover the plaintext word from its ciphertext equivalent. We try to
decrypt character by character. After each character is decoded, we continue with the next character

only when the decrypted characters yield a “valid” prefix. A valid prefix is a prefix of a word in the
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dictionary. In doing so, we prune all the invalid possibilities immediately and eliminate them from

further decryption. Only the valid words make through till the end of the word decryption process.

Let E be the encrypted ciphertext. Each of the sub-problems can be represented as a tuple {e, d}
where e is a suffix of the input E and d is the decrypted plaintext for the prefix of E excluding e. The
initial problem state is {E, ' '} and the solution set contains tuples of the form {'', D}, where D is a

sequence of valid words.

Given a {e, d}, eliminating all prefixes of e occurring between the two consecutive spaces within the
125 bit window that decodes as words in the dictionary lead to a valid sub-problem. There can be many
valid sub-problems for a given {e, d}. We maintain a vector of all the valid sub-problems. We remove
sub-problems from the tail of the vector and add back smaller sub-problems. We keep repeating this

process till we reach {'', D}.

When the decryption yields only one word, there is no further processing required. But, when a
decryption of word yields many possible words, we make use of the constructed models to compare the
probabilities and proceed with the best word. We make use of the first word model for selecting the best

first word and the last word model for selecting the best last word.

We have collected some sample statistics of the word decryption program with a set of 875
encrypted words. Figure 15 shows the outcome. Two runs were conducted. In the first run, 859 words
were exactly decrypted (no ambiguity) and 16 yielded two possible valid words. The program was run
again with a different key. This run yielded 863 words which were exactly decrypted and 12 words
giving two possible valid words. Considering both the runs, there were no cases yielding more than

two possible valid words.
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Figure 15: Word Decryption for non-Dictionary case
One example of a ciphertext yielding more than one possible valid words would be
10001101011001010010. Both the valid words “grass” and “mass” have this ciphertext. These kinds of

ambiguities are resolved by using the probabilistic models as discussed in the previous section.

6.2.3.3 Results

We have verified the correctness of our algorithm with a few hundreds of paragraphs, which in turn
are composed of several hundreds of sentences and thousands of words. We encrypted all these chosen

paragraphs and stored the ciphertext outcome in to a text file.

We provided this text file as input to our decryption program. We were able to uniquely decrypt the
ciphertexts to obtain the correct plaintext. Figures 16-19 show some of the encrypted

paragraphs/sentences and their decryption results.
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lgllelleleceleleleelellelelellelleelolelleellelelellelelllllllllelelleleeellellolelellellolellel
glelleleeeleleellelellelleeleleleleleelelellelellllleeelleeallel
1g11el1elleellleeellelllelleleeee1011601110161161111160116160111111111601611011110116011111111161
18111111111e@11@111611601601011106611111116016016016011010011000110101001160111161
1g111111111ellelllellelelelllecelleelelelellelleelllelelleleceleellellelelololeelellol

Figure 16: Ciphertext example

a girl was in the garden
1 like birds too

a boy came up the path
they laughed loudly

they would be friends

Figure 17: Decryption outcome

16111111111010110110001010111010110101011011000100010110101111111110101101011116
PE010000110101101001110010101111011011001110101101000011000100111110011010111110
16011011161101661101101611611111110101101010111060110010101011010161101111111118
10101101000111000101101111110001001110101101010101011111111100011611110110100101
1011601101010001101101111610011101

11111101011010011000110001010011010101011010000101101101000110010011011101101011
00011101010101101111111010110111110110101011011010110001011001010110101101101011
911119110101l0010011081

11111161011011161000010100110101610118111110118111101001010110110011100011000101
009100101101111111010110101100100111000100101011110110100111100111111010101011011
000110111101101100010001011011110100101011010010101000110101101

161111111110101101001011106001111116011111010101101601016011111000111111110610610610611
01001011010101011011010100110111101111111010110101010100101111110101010110111111
01011910101101100101011011001101100001010010110101101111011010111111111018110111
l11lggellenlellellel

11111101011010011000110001010011010101011011111011001101010111110001011010111111
11161011010111101101101011010111010101010110100101011010110110101101101100111016

11161110100011001011011110110101100010111110111011110001101101000110110111101011
010011191011010111010101101011010110001100101101000100100011111101111101

Figure 18: Paragraph ciphertext example
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the owner of the voice must be completely mad.he would rather go home without seeing him.
he looked carefully round.he had no idea at all.

he picked up his books.he almost jumped out of his skin.

the laughter stopped suddenly.he wished he was back at the house.

he looked up into the tree and saw a beautiful parrot.you gave me an awful fright.

Figure 19: Paragraph decryption outcome
Based on the results of our experiment, we can conclude that a unique decryption is possible even

when non-dictionary characters are added to the plaintext space.
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7.0 Known Plaintext Attack Implementation

Now that we know this cipher with non-dictionary characters can be used for encryption and
decryption, we want to try to attack the cipher. We will attempt to break the ciphertext to obtain a
partial message or in the best case, to crack the key.

The attacker can only see the ciphertext messages exchanged by the sender and the receiver. In this
case, the ciphertext is only a binary sequence, without any delimiters. The attacker also knows the
algorithm used in this cipher, only the key is unknown.

A straightforward approach for an attacker is to conduct an exhaustive search based on the
ciphertext-only case. With only a ciphertext in hand, an attacker can generate all the possible keys and
try them all. For each possible key, decryption has to be performed on the ciphertext. The combination
for which the decryption outcome yields a readable english message is the correct key. If the attacker
does not have the knowledge about the type of or length of the key, this attack is even more harder just
based on the ciphertext.

Suppose that the attacker knows that non-prefix codes of up to five bits per character was used for
encryption. In that case, the character set consists of 28 characters and hence 28 binary codes form the
key. As 28 codes were selected from a set of 32 keys, there are *Cys*28! possible keys for encryption
and decryption. So, to conduct an exhaustive search, on an average, an attacker has to try half of them

to find a match, which is 5481892436118615211817041920000000 keys or around 100 bits. Similarly, if

8 bit codes were used, the attacker's work is in the order of 1066, which is around 220 bits. Even if one
trial takes one millisecond to complete, the attack takes an enormous time to complete.
In most of the practical cases, a ciphertext only attack is successful because of the statistical analysis

in the ciphertext. We have collected statistical information of the various possible binary codes within a
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five bit limit and their frequencies in our ciphertext. Table 11 shows the frequency counts captured

using two sets of ciphertext.

Binary code | Frequency - setl | Frequency - set2
0 76 63
1 108 99
10 52 46
11 38 35
100 14 11
101 26 26
110 27 23
111 13 15
1000 0 0
1001 0 0
1010 16 12
1011 17 12
1100 0 0
1101 18 15
1110 9 9
1111 8 8
10000 0 0
10001 0 0
10010 0 0
10011 0 0
10100 0 0
10101 11 9
10110 10 9
10111 0 0
11000 0 0
11001 0 0
11010 14 10
11011 0 0
11100 0 0
11101 0 0
11110 0 0
11111 0 0

Table 11: Frequency counts of non-prefix codes
If we try to identify letters in the plaintext based on the frequency counts, we do not get any
breakthrough. This attack is very difficult due to the variable length as well as the non-prefix property
of the binary codes. Not being able to identify letter boundaries means there is no significant statistical
information available. Even the length of the plaintext message is not determinable due to the variable
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length binary code in the key. Hence, a ciphertext-only attack is very hard to perform in this case.

In real world scenarios, the attacker not only knows the ciphertext but also has some of the plaintext
information. So, an exhaustive search is not necessary. The attacker has to use a smart technique based
on the cipher algorithm used, inorder to ease his work. A known plaintext attack is a cryptanalytic
attack in which the attacker is aware of some plaintext and its corresponding ciphertext [8]. In our case,
we make an assumption that, the attacker knows a few sentences and their corresponding ciphertexts.
The codes for the individual characters are not known. The goal is to extract the key based on the
known plaintext and ciphertext.

We follow a bottom up dynamic programming approach to solve this problem . We divide our
implementation into two stages 1) Identify word boundaries and 2) Extract key.

We know a set of plaintext sentences and their ciphertext equivalents. We also assume the
knowledge of the code for one of the characters — the space. The goal of the first stage is to identify the
possible space positions in the ciphertext and find the word level ciphertexts. These word level
ciphertexts are then passed to the second stage for key extraction.

For each of the sentences, we try to find the possible delimiter positions. We try to eliminate the
invalid combinations. For each of the remaining delimiter combinations, the sentence level ciphertexts
are divided into word level ciphertexts. In this section, we describe the implementation details of each

of them.
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7.1 Identify word boundaries

The first step is to identify code for the non-dictionary characters based on the given sentences and
their ciphertexts. For example, the code for the period can possibly be got by comparing the last few
bits in the ciphertext across all the sentences. If the last character before the period is not the same
across all the sentences, the longest common subsequence is likely the code for the period. By doing
this, we may be able to narrow down the number of possibilities for the period character.

Based on the frequency of occurrence and positions of the non-dictionary characters in the known
plaintext, we identify the possible occurrences of these in the ciphertext. With these, if the attacker is
able to get the mapping for all the non-dictionary characters, then it is reasonably easy for the attacker
to decode the rest of the key. In the rest of this section, we assume that the attacker is already aware of
the key for the non-dictionary characters and discuss the ways in which he can proceed from there
onwards.

For illustration, in Table 12, we show the possible number of combinations that have to be tried to
identify the rest of the words in a set of sentences that has space as the only non-dictionary character

and assuming the mapping for the character space is known.

Sentence # # word combinations Actual # words
7920 (*C,)
24 (4'C)
24 (*C,)
42 ('C)
1(C)
56 (°C,)
24 (*C)
6 (‘C)
15 (°C))
210 (*°C))

H
N

O IOoNoOO|~ I W|IN

DININWWRFLNWW

[N
o

Table 12: Possible word combinations
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Let us say, we have a sentence 'it was really most extraordinary' and its ciphertext is
0101111011010101101100101011010110101100100110111011010011100010010101111011011011101111010
11100010101001101010110110111101. In this encoding, given the fact that the encoding for space is
10110, there are 11 occurrences of it in the ciphertext. But, only four occurrences of it in the original
text. To identify the word boundaries, we need to try "'C, combinations. From each of these
combinations, we get five ciphertexts which possibly correspond to each of the words in the sentence.

The amount of information available in each sentence is not sufficient to be able to unambiguously
decode the key. In our attack, we need many such sentences to be able to extract common information
across different sentences to prune away the incorrect possibilities.

Individual sentences can produce thousands of combinations of possible words. The number of
combinations that need to be considered across sentences is multiplicative. For example, in the
paragraph used in the table above, the total number of possible word combinations across the paragraph
is 4866962817024000. To reduce this huge number of combinations, we will prune the invalid
combinations right at the beginning.

To eliminate invalid combinations, we make use of the length properties of the plaintext and its
possible ciphertext. We know the maximum number of bits in a binary code for a character. Based on
the calculated minimum and maximum lengths for a given plaintext word, we eliminate the space
positions which do not qualify to this criteria. For example, if the third word of a sentence is of length
five characters and the ciphertext between the second and the third occurrence of the binary code for
space is five bits long, then either of the second or the third occurrence is not a space. By avoiding such
invalid combinations, the problem space can be pruned drastically. Table 13 shows the total number of
combinations if we were to use brute force vs the number of combinations after eliminating invalid
combinations from our program. We notice that the final number of combinations to be tried is very
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less compared to the original number of combinations.

Original #combinations | Pruned #combinations
4866962817024000 864

86207193662782800000000 1152
9414601612416000 768
370039154284800000 119808

Table 13: Space combinations
Only one of the combinations yield a valid key. For each of these combinations, we try to extract the
key based on our key extraction algorithm (explained in the next section). The combination with the
highest score returned by our underlying algorithm is the best combination. It means that all/most of the
key was extracted based on the given input.

Table 14 shows the number of combinations which had to be tried to extract the key and the actual

iteration at which the key was obtained.

#combinations to try | #combinations tried
864 50
1152 328
768 1

119808 60
55296 27692
4096 474
4608 2790
16 8
288 158
6145 100

Table 14: Combinations tried
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7.2 Extract the key

The input to this stage is a series of pairs of plaintext words and their possible ciphertexts. The
ciphertext supplied may not be the correct ciphertext. Multiple possible ciphertexts for the same word
can be given. Of these, only one of them is a valid plaintext-ciphertext combination. The goal is to
extract the key for all the letters present in the plaintext.

The algorithm has to be capable of pruning the invalid combinations quickly as numerous trials have
to be tried. In order to eliminate the invalid combinations, before attempting to extract the key, we
perform many checks.

To start with, we perform a word-ciphertext consistency check. That is, if the same word occurs
more than once in the plaintext, its possible ciphertext must also match. In case of any mismatch, we
send an invalid signal indicating that the combination was wrong and proceed with the next one. Once
this check is cleared, we start with the key extraction.

A series of iterations are performed on the given set of words and ciphertexts to extract the key. At
each iteration, we try to extract as many as letter mappings as possible. Each iteration is scored based
on the number of letter-code mappings found till this iteration. To begin with, the best score is zero.
After each iteration, the current score is compared with the score of the previous iteration. If the score
improves, we continue the process. On the other hand, if the score does not improve, we stop the trial
because no further extraction is possible. We indicate to the higher level that this combination does not
appear to be valid or that the key generated is incomplete.

At each iteration, we try to find the key by using the plaintext words and their ciphertexts. We use
several string comparison techniques to narrow down our problem. To begin with, we target the words

which have only one unknown letter. This can consist of a single letter word or a result after prefix and
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suffix replacements based on other known words.

For example, consider the original sentences 'you shut the door' and 'he roared back'. Given a
possible ciphertext for 'the' and a possible ciphertext for 'he', if the code for 'he' is not a suffix in the
code for 'the', then this combination is not a valid combination. If it is indeed a valid suffix in the code
for 'the’, then the remaining prefix is a possible code for the letter 't'. This can again be cross verified
with some other words in other sentences.

We maintain all the letter-code mappings extracted. After each letter mapping is decoded, we
perform a key consistency check. That is, we confirm that two different letters do not have the same
code or the same letter has not resulted in two different codes. If the consistency check fails, we stop
processing this key. If the checks have passed, we continue the process using substring comparisons
across multiple words. Several iterations are performed until the best score is reached and the key is
fully extracted. Upon successful key generation, we conduct a few more checks to confirm if the key is
valid. The combination which has made through all these checks is the final key.

Depending on the number of letters in the plaintext, several iterations have to be performed on the
words to extract the key. Table 15 shows the number of letters present in the plaintext and the number of
iterations needed to obtain the key with our program. The value corresponding to each iteration is the
cumulative number of letter codes found at the end of the iteration. In the examples considered, the key
was extracted by performing two-five iterations. On an average, it takes three iterations to extract the

key.
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# unique letters | #words | Iteration #1 | Iteration #2 | Iteration #3 | Iteration #4 | Iteration #5 | Total # iterations
21 45 9 20 21 3
23 47 7 8 20 23 4
23 42 6 10 14 22 23 5
23 56 20 23 2
22 54 10 21 22 3
23 54 13 22 23 3
23 42 7 17 23 3
22 32 4 6 18 23 24 5
24 32 2 6 18 23 24 5
23 52 18 23 2

Table 15:Key Extraction

8.0 Conclusions and Future Work

In this project, we explored the feasibility of using a substitution cipher with non-prefix codes.
Encryption using non-prefix codes is very similar to any other substitution cipher. It was also possible
to correctly decrypt using the key to obtain the plaintext.

The cipher was quite secure in our experimental analysis. Frequency analysis of ciphertexts do not
give away much meaningful information. We were not able to perform a ciphertext-only attack.
However, with a few assumptions, we could perform a limited known plaintext attack on the system.

In this project, we considered encryption and decryption of English text. Future extensions of this
work can be to try encryption and decryption with other languages and a bigger character set.

Another possible extension to this project would be to consider attacks on the cipher with only
dictionary characters. In the case with non-dictionary characters, we were able to divide the problem
based on “possible” spaces and try to extract the key from the ciphertext. It is an interesting problem to
identify sub-problems and extract the key in the case without any non-dictionary characters.

Another interesting problem would be to look at the ciphertext-only attack from a different

perspective other than the frequency analysis.
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