
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Summer 2011

Improving Performance of BitTorrent Network through Incentive Improving Performance of BitTorrent Network through Incentive

Mechanism Mechanism

Mingzhe Li
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the OS and Networks Commons

Recommended Citation Recommended Citation
Li, Mingzhe, "Improving Performance of BitTorrent Network through Incentive Mechanism" (2011).
Master's Projects. 188.
DOI: https://doi.org/10.31979/etd.447g-cg4g
https://scholarworks.sjsu.edu/etd_projects/188

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/188?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

 v

Improving Performance of BitTorrent Network through

Incentive Mechanism

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Mingzhe Li

Spring 2011

 vi

Copyright 2011

Mingzhe Li

All Rights Reserved

 vii

Abstract

 Content Distribution via Internet has become increasingly popular right now.

Compared with centralized file distribution system using FTP and HTTP protocols, P2P

(Peer to Peer) is more cost-effective. Furthermore, it could help save on bandwidth costs

and to handle pick demands. Among many P2P protocols, BitTorrent is one of the most

popular protocols right now. The BitTorrent network uses tit-for-tat as a method of

seeking Pareto efficiency. However, seeders who contribute more to BitTorrent network

than leechers are not incentivized to stay online and upload to others. This paper

discusses an incentive mechanism which rewards seeder, who stays in a BitTorrent

network and uploads to other peers, with better download speed in its further download

process. Experimental results with the incentive mechanism and an analysis of the result

are also discussed in this paper.

 viii

 Acknowledgements

I thank my advisor, Dr. Robert Chun, whose support and dedication guide me

finish the writing project. Dr. Chun is always there to listen and to give technical and

editorial advice. I also thank him for giving me the freedom to choose my own research

topics.

A very special thank to my committee member, Dr. Xiao Su, who gives me the

access to PlanetLab. I also like to thank Dr. T.Y. Lin for participation as my thesis

member and a role for me being lively, enthusiastic, and energetic.

It has been a challenging, yet rewarding journey which I could not have

completed alone and am grateful for your support.

Thank you.

 ix

Table of Contents

1.0 Introduction
 1.1 The case for Peer-To-Peer
 1.2 BitTorrent Introduction
 1.3 Problem and Solution

1
1
3
4

2.0 BitTorrent Background
 2.1 Overview of Piece Selection Mechanism
 2.2 Rarest Piece First
 2.3 Random Piece First
 2.4 End Game
 2.5 Pipelining
 2.6 Strict Priority
 2.7 Seeder’s Peer Selection
 2.8 Tit-for-Tat
 2.9 Optimistic Unchoke
 2.10 Anti-Snubbing

5
6
7
7

 8
8
9

10
10
11

 11 12

3.0 Related Work
 3.1 Dandelion
 3.2 Team Incentives
 3.3 Buddy Incentives
 3.4 Multitorrent Solution

4.0 New Incentive Mechanism
 4.1 Problem with BitTorrent
 4.2 Design

12
12
14
14
16

16
16
17

 4.3 Deluge
 4.4 Counter
 4.5 Server
 4.6 Client
 4.7 Usuage

18
20
20
22
24

5.0 Software Tools, Development Kits Used 24

 x

6.0 Experimental Results
 6.1 Experiment Design
 6.2.1 Experiment 1
 6.2.2 Experiment 2
 6.2.3 Experiment 3
 6.2.4 Experiment 4
 6.3 Verification Experiment
 6.4 Security

25
25
25
29
33
36
39
40

7.0 Conclusion

41

8.0 Future Work 42

Appendices
 Appendix A. Source Code

43

References

75

 xi

List of Tables

Table 1. Experiments In This Section. ...25

Table 2. G1T1 Nodes' Online Time. ..26

Table 3. G1T2 Nodes' Online Time. ..27

Table 4. G1T3 Nodes' Online Time ...28

Table 5. G2T1 Nodes' Online Time. ..29

Table 6. G2T2 Nodes' Online Time. ..30

Table 7. G2T3 Nodes' Online Time. ..32

Table 8. G3T1 Nodes' Online Time. ..33

Table 9. G3T2 Nodes' Online Time. ..34

Table 10. G3T3 Nodes' Online Time ...35

Table 11. Verification Test Nodes' Online Time. ..40

 xii

List of Figures

Figure 1. Centralized File Distribution System. ..1

Figure 2. File Distribution System with Peer-to-Peer. ...2

Figure 3. BitTorrent Download Process. ...5

Figure 4. Mechanism to Select Piece. ..6

Figure 5. Schema of Non-Pipelined Connection VS Pipelined Connection.9

Figure 6. Dandelion System. ..13

Figure 7. Team Formation. ..14

Figure 8. Buddy Formation. ...15

Figure 9. Volume Uploaded by Seeds and Leechers. ..17

Figure 10. Deluge and Libtorrent...19

Figure 11. Structure of Deluge Core. ...20

Figure 12. Pseudo Code of Server Component ..22

Figure 13. Client Structure. ..23

Figure 14. Function Graph. ..24

Figure 15. Download Completion Time of Nodes' in G1T1. ..26

Figure 16. Download Completion Time of Nodes' in G1T2. ..27

Figure 17. Download Completion Time of Nodes' in G1T3. ..28

Figure 18. Download Completion Time of Nodes' in G2T1 . ..30

Figure 19. Download Completion Time of Nodes' in G2T2 31

Figure 20. Download Completion Time of Nodes' in G2T3 32

Figure 21. Download Completion Time of Nodes' in G3T1 34

Figure 22. Download Completion Time of Nodes' in G3T2. ..35

Figure 23. Download Completion Time of Nodes' in G3T3. ..36

Figure 24. Download Completion Time of Nodes' in G4T1 . ..37

Figure 25. Download Completion Time of Nodes' in G4T2 38

Figure 26. Download Completion Time of Nodes' in G4T3 39

Figure 27. Download Completion time of Nodes in Verification 40

 1

1.0 Introduction

 This section argues the advantages of P2P network and gives brief introductions

of BitTorrent protocol. The problem with regular BitTorrent network and the solution to

this problem are discussed in section 1.3.

1.1 The Case for Peer-To-Peer

Peer-to-peer network is a system with elements that both provide services to and

request services from other elements. There are various areas which Peer-to-peer

architecture could work better than other architectures. For example, content distribution

system that uses client-server model always needs strong central servers and enormous

bandwidth to ensure client’s download speed. Illustrated in Figure 1, the burden on the

server will increase with the number of clients because the server is sending one copy to

each client.

Figure 1: Centralized File Distribution System.

Figure source: (bittorrent.org 2006)

 2

In contrary with centralized file distribution system, P2P(Peer-toPeer) file

distribution system enables the network to increase indefinitely without investing costly

central resource because of extra processing power and bandwidth brought by new users

to the network. It enables nodes to download resources from others and upload resources

to others simultaneously, illustrated in figure2.

Figure 2: File Distribution System with Peer-to-Peer.

Another advantage of P2P is robustness of the network. In traditional centralized

file distribution system, if one component of the server fails, the whole network will

collapse. However, in P2P file distribution system, if components of nodes fail, the whole

network is still robust.

1.2 BitTorrent Introduction

BitTorrent is a peer-to-peer file sharing protocol used for distributing large

amount of data. It is one of most commonly used protocols for transferring large files,

 3

and it has been estimated that it accounted for 27% to 55% of all Internet traffic as of

February 2009[1]. One major advantage of BitTorrent protocol is distributing large files

without adding heavy load on the source computer and network.

The basic idea of BitTorrent is to divide the file into equal-sized blocks and have

nodes download blocks from multiple peers concurrently [2]. Nodes in BitTorrent

network are either seeder or leecher. A seeder refers to a client that uploads to its peers

after it has completed its download. A leecher is a client that has not completed its

download [2]. In order to establish connections between nodes in BitTorrent network,

tracker, a central server of BitTorrent network that keeps record of nodes currently in the

system, is necessary. An example is given to briefly introduce the complete download

process in BitTorrent network. Assumed there are one seeder and three leechers in this

example. A BitTorrent client AAA wants to share a novel named “Gone with the Wind”

of 2 Megabyte. AAA first needs to create a .torrent file which contains metadata

(assuming AAA set the piece size to be 512 KB) of the file and the tracker to use.

Secondly, AAA could upload the torrent file to a public domain site which enables for

others to download the torrent file. Another BitTorrent client BBB, who is interested in

the novel, needs to obtain the .torrent file created by AAA from that public domain site.

After BBB gets the torrent file and run on its BitTorrent client, information in the .torrent

file will help establish connection between AAA and BBB, illustrated in Figure 3. Once

the connection between AAA and BBB is established, BBB could start download piece1

to piece4 from AAA. Suppose another client CCC begins to download “Gone with the

Wind” after BBB finishes downloading piece1. Since AAA and BBB both have piece1 of

that novel at this moment, CCC could download piece1 from BBB and get piece 2, 3 and

 4

4 from AAA. When new user DDD comes to the network, DDD could connect with

AAA, BBB and CCC. Because AAA, BBB and CCC all have pieces of the novel, DDD

could download four pieces from 3 different nodes. In this way, the seeder AAA’s

network and performance will not decrease as a result of the increasing number of users.

If more users join the network, the download completion time will decrease significantly.

Compared to traditional Internet hosting, BitTorrent network reduces great burden

imposed on the original distributor’s hardware and bandwidth.

Figure 3: BitTorrent Download Process. Source [3]

1.3 Problem and Solution

In contrast with traditional file distribution techniques’ enduring availability, a

source for the file shared in a BitTorrent network is generally temporary and therefore

harder to trace. To illustrate the problem, let’s consider the previous section’s example.

Assuming BBB is the only seeder who completed downloading the novel “Gone with the

Wind”. If AAA is not in the network anymore and BBB exits the network right after it

 5

finishes downloading, other clients will have no other choice but to wait for BBB’s return

to the network to finish downloading. This is one of challenges of BitTorrent network.

Because of lacking incentives for seeders to upload resources for others, BitTorrent

seeders choose to exit the network right after they finish downloading.

 To enable leechers in BitTorrent network completing download process, seeders

need to stay online and share resources. If there are more seeders available in the

network, leecher’s download completion time will be decreased significantly. In order to

solve this problem, we propose to add an incentive mechanism for seeders. Not only will

the incentive mechanism incentivize seeder to stay online, but it will also increase the

performance of the whole network. This paper discusses the design, implementation of

the incentive mechanism. Furthermore, we conducted experiments on PlanetLab to test

performance of the incentive mechanism.

2.0 BitTorrent Background

 This section describes known algorithms for BitTorrent system to work

efficiently. A description of piece selection mechanism, peer selection mechanism, and

pipelining is presented. Moreover, two limitations of current BitTorrent system are

discussed at the end of this section.

2.1 Overview of Piece Selection Mechanism

 BitTorrent protocol transfers files piece by piece. Different from traditional

network protocols which download files from start to end, BitTorrent first allocates space

for a download process and then gets pieces from peers. An inefficient piece selection

 6

mechanism can lead to low performance of the whole BitTorrent network. For example,

if a leecher is not interested in pieces its associated nodes have to offer, this leecher could

stop uploading any piece to its associated nodes. If most of the nodes in a BitTorrent

network stop uploading any piece to others, the whole network will collapse. So, an

efficient piece selection mechanism not only helps the system work properly but also

enables it to reach its optimal performance.

 In a download process of BitTorrent network, there are three different stages.

BitTorrent implies three separate algorithms in these stages. These three algorithms are

illustrated in Figure 4.

Figure 4: Mechanism to Select Piece

2.2 Rarest Piece First

 Rarest piece is the least amount of copies of one particular piece in a swarm of

nodes [3]. Nodes in a downloading process store a table containing a list of pieces

existing in the swarm and the number of each piece. With the rarest piece first algorithm,

the next piece for a peer to download is always the rarest missing piece. In some cases,

 7

there will be more than one piece which is the rarest piece. If this happens, a random

piece for those will be selected by the peer to download.

 Advantages of rarest piece first algorithm are:

1. Each peer always has piece that its associated peers want to download.

2. Increase the possibility of finishing downloading all pieces by starting

downloading the rarest piece first. Furthermore, if only one seeder is available for

system, this algorithm is necessary for download completion.

2.3 Random Piece First

 When a new peer starts a download process, it should get pieces as soon as possible

in order to reciprocate for others. As to get pieces faster, peers should randomly select

pieces to download. Compared with rarest first piece algorithm, random piece first

algorithm that downloads from more than one peer at the same time is more likely to

download faster. After it has downloaded I pieces(I is a constant which is different in

different BitTorrent client implementations), it will stop using the random piece first

algorithm and start to apply the rarest first strategy.

2.4 End Game

 Sometimes a peer will download a piece at a very low download rate. If this

happens in the middle of a download process, it’s not a problem. However, if it happens

at the end of a download process, it will delay the process of finishing downloading.

BitTorrent prevents this condition by applying end game piece selection algorithm. This

algorithm is applied once a peer has requested every piece of the file. In that situation, the

 8

peer will send requests for all sub pieces which are missing to all its peers who have

those corresponding sub pieces. If a sub piece is downloaded in the end game phase, the

peer sends “cancel” messages to its associated peers that have the corresponding

appending requests. In this way, bandwidth could be saved from redundant sends.

 Advantages of end game algorithm are:

1. Downloading the end of the file at a faster rate

2. The possibility of finishing a download process is increased

2.5 Pipelining

 Normally, HTTP requests are issued sequentially, with the next request being

issued only after the response to previous requests have been received. Depending on the

network latencies and bandwidth limitations, this can result in significant delay before the

next request is seen by the server[2]. Pipelining enables HTTP requests to be written out

to a single socket without waiting for the corresponding responses, illustrated in Figure 5.

Figure 5: Schema of Non-Pipelined Connection VS Pipelined Connection

 9

 BitTorrent which depends on TCP enables the mechanism of Pipelining. In order to

maximize the advantage of pipelining, BitTorrent protocol breaks down pieces into sub

pieces the size of which is from 32KB to 1MB. In order to decrease the latency between

pieces in a BitTorrent download process, a peer always has five requests pending at one

time. In this way, the peer could send out five requests for sub pieces simultaneously.

Furthermore, in a good network environment, all five sub pieces will be returned

sequentially. With pipelining, BitTorrent helps peers decrease download completion time

significantly.

2.6 Strict Priority

 Different from the previous three algorithms which are used at separate phases,

strict priority is used from the beginning of a download process to its end. BitTorrent

applies the strict priority policy for sub piece selection. As we have explained in the

pipelining, when BitTorrent protocol transfers pieces over the network, it breaks pieces

into sub pieces. Strict Priority is that once a sub piece of a piece has been requested, the

remaining sub pieces of that piece will be requested before sub-pieces from any other

piece [2]. With this mechanism, a peer could always get the copy of a piece as soon as

possible. Furthermore, it’s the crucial algorithm which enables rarest piece first, random

piece first and end game piece selection working efficiently to finish downloading.

2.7 Seeder’s Peer Selection

 Different from peers who upload to and download from others, who only upload

content to others apply different peer selection algorithms. Generally, seeds try to

distribute data uniformly to peers, so they imply the algorithm in a round-robin manner.

 10

2.8 Tit-for-Tat

 In BitTorrent protocol, peers download from whom they can, and upload

simultaneously to a constant number of peers. Because of TCP congestion control

behavior which prevent sending data over too many connections at the same time, a peer

only uploads to a limited number of associated nodes. Thus, peers need to select peers

from a swarm of peers to upload to. In BitTorrent, this behavior is named unchoke. The

default number of peers to unchoke is four. A peer makes the decision regarding whom to

unchoke and whom to choke every 10 seconds. Since each peer needs to follow the choke

algorithm, an efficient choking algorithm will influence the performance of the whole

system.

 BitTorrent incorporates a tit-for-tat(TFT) peer selection mechanism which nodes

preferentially upload to peers from whom they are able to download at a fast rate in

return[2]. Although seeds don’t download anything, they follow the same algorithm

policy which enables them to upload to up to 5 nodes that have the highest download

rate.

 Advantages of this mechanism are:

1. Motivate peers to contribute to the network.

2. Utilize all available bandwidth of the system.

2.9 Optimistic Unchoke

Tit-for-Tat works well in the middle of downloading. But, when a peer starts to

download, it doesn’t have anything to upload to others. Based on the Tit-for-Tat

algorithm, the new peer will never be unchoked. In order to avoid this problem,

 11

optimistic unchoke mechanism is applied in BitTorrent protocol to work together with tit-

for-tat algorithm. Optimistic unchoke mechanism could boost a new peer who does not

have any piece of content. This mechanism chooses to unchoke a peer randomly

regardless of its current upload rate. It is applied every optimistic unchoke period

(typically 30 seconds). Optimistic unchoke mechanism is to unchoke one connection,

while tit-for-tat is to unchoke the resulting 4 connections. With the optimistic unchoke

algorithm, new peers joining the BitTorrent network could get resources as soon as

possible.

2.10 Anti-Snubbing

 In BitTorrent, one important rule is that total download speed should be

approximately equal to the total upload speed. So, each peer should be encouraged to

contribute to the system and get the same amount in return. However, there are some

peers who only download resources from others. To prevent this problem, BitTorrent

implies the anti-snubbing mechanism.

 If a peer has not received anything from a specific peer for a certain amount of time

(typically 60 seconds), it will mark the particular peer’s connection as snubbed. In this

case, the peer will continue to get poor download speed until the optimistic unchoke

mechanism finds better peers.

 12

3.0 Related Work

 This section describes known solutions to solve seeder promotion problem. A

description of single torrent incentive mechanism and multi-torrent incentive mechanism

is presented.

3.1 Dandelion

 Dandelion is a system which provides robust (provably non-manipulable)

incentives for nodes to upload to others in a paid content distribution system [18]. Based

on Dandelion, a client who honestly uploads to its associated peers is rewarded with

credit, which is a kind of monetary reward. A client that does not upload or uploads

garbage to its peers cannot claim credit. A client cannot download resources from selfish

(rational) peers without the client being charged and the peers rewarded. Based on the

Dandelion system, peers are incentivized to upload to its peers even if they do not have

content that interests the client. Figure 6 shows the Dandelion system:

Figure 6: Dandelion System

 13

 In Figure 6, the numbers on the arrows corresponds to the download process of

Dandelion system. Message in each arrow is show:

1. Request for content from server

2. Send Back a list of peers and tickets

3. Chunk Announcements

4. Request for chunk

5. Encrypted chunk, encrypted key and commitment

6. Request for decryption key

7. Decryption key

 Each client’s credit is managed by the Dandelion server. Also, each client has

a shared symmetric key with the server. In this way, the system could prevent known

attacks such as Sybil attack.

3.2 Team Incentives

 Although Dandelion could incentivize peers to upload resources to others, it

sacrifices the scalability of P2P system. Team-Enhanced BitTorrent protocol enables

peers with similar upload bandwidth to form a team which will collaborate for mutual

benefit. Figure 7 shows the steps for team formation.

 14

Figure 7: Team Formation

 Based on team-enhanced protocol, the total number of optimistic unchoke will be

reduced. Furthermore, In a team of symmetric peers, each one will make its prioirity to

serve other team members as a replacement to the optimistic unchokes. In this way, a

peer will get improved download rates compared to being independent.

3.3 Buddy Incentives

 Team incentive mechanism could improve the performance of BitTorrent, but it

requires revisions to the tracker of a BitTorrent system. Buddy incentives which adopt the

similar idea as team incentive does not require revisions to the central tracker. The notion

of buddy means pairs of peers having similar upload capacity, collaborating for mutual

benefit. Buddy incentives could significantly reduce the number of optimistic unchokes

which may force high capacity node to work with low capacity node. Figure 8 illustrates

the formation of buddy incentive:

 15

Figure 8: Buddy Formation

 In Buddy incentives, a leecher P is willing to maximize the number of buddies

that have a similar upload rate as itself. Leecher P reserves an unchoked slot for each

buddy to which it can upload data to in order to minimize buddy chokes, which can lead

to the termination of buddy relations. Based on the buddy incentives, peers will save

bandwidth previously used for optimistic unchoke for their buddies. In this way, peer’s

download completion time will be decreased.

3.4 Multitorrent Solution

 Most BT studies focus on single torrent solution, while measurements in [19]

suggest that 85% of users participate in multiple torrents. In [19], it proposes a solution to

solve the seeder promotion problem in a multitorrent environment. Multitorrent means

 16

that a node participating as a leecher in a particular torrent is willing to serve as a seed in

a torrent in which it has participated some time earlier in its lifetime. In [19], when node

chooses peers to unchoke, it will base its choice on total contribution of each peer.

Contribution of each peer is computed in formula (1): D�(x, Y) is the downloading rate of

node N	 from Node N
 and w�(y) is the weight we assign to that downloading rate. If N

is not a seeder in torrent I, then w�(y) = 1, otherwise, w�(y) can be set to a value that is

larger than one. Based on the formula, the node that is seeding files in one torrent file will

get more contributions which are computed in the formula. Based on the multitorrent

solution, more contributions mean more bandwidth. So, seeder could be incentivized to

stay online and upload to others.

∑ w�
#��������
��� (y) ∗ D�(x, y) (1)

4.0 New Incentive Mechanism

 This section discusses a new incentive mechanism which aims to incentivize

seeders stay in the network and upload to other peers. A description of design,

implementation of the other incentive mechanisms is presented.

4.1 A Problem with BitTorrent

 BitTorrent protocol strives to ensure fairness: peers who contribute data to the

system should be able to achieve high download throughput. However, fairness itself is

not enough to enable the BitTorrent system to get the best system performance. There are

always some peers who contribute more data to the system than others.

 17

 One major incentive mechanism for leechers to upload to other peers is tit-for-tat

incentive mechanism which facilitates the continuous discovery of better peers. However,

the TFT peer selection mechanism could not incentivize seeders uploading to others.

Although the number of seeders is far less than that of leechers in a BitTorrent, a large

proportion of upload bandwidth is from seeders, illustrated in Figure 9. Because of the

seeder promotion problem, a massive proportion of torrents (about 40%) achieve

extremely low performance with few users being able to download the file successfully.

Furthermore, if more seeders are willing to upload to other peers, mean download

completion time of nodes will decrease significantly. In order to incentivize more seeds

to stay online after they finish downloading, we propose an incentive mechanism for

seeders.

Figure 9: Volume Uploaded by Seeders and Leechers

4.2 Design

 The purpose of the incentive mechanism in this paper is to incentivize seeder stay

longer in the BitTorrent network. The incentive works to ensure seeders who stay longer

than others in the BitTorrent network have better download speed than others when it

joins another download process in the future as a leecher. Download bandwidth of a

 18

leecher is the sum of all its associated peers’ upload bandwidth, so redistributions of its

associated peers’ upload bandwidth could manage the leercher’s download bandwidth.

The mechanism consists of three components:

1. Counter component: if a seeder stays in BitTorrent network and uploads to other

peers, the counter component will compue a value for the seeder based on the

number of seeding files and number of minutes uploading for others.

2. Client component: it establishes TCP channels with all associated peers in the

same download process and gets each one’s value returned from server

component. Finally, it will rearrange upload speed for each associated peer based

on the value returned from each client.

3. Server component: it binds to the port 59500 and waits for future requests from

associated peers’ client component. When new request arrives, the server will get

the value computed by counter component and send it back to requested client.

4.3 Deluge

 Deluge [20] is a BitTorrent client selected to test the incentive mechanism.

Advantages of deluge over other BitTorrent clients are:

1. It is a lightweight, cross-platform BitTorrent client, which makes its portable from

one platform to another.

2. Deluge and its dependent library libtorrent[5] are all open source which is able for

us to change the source code.

3. Most functionalities of deluge are achieved by plugins. Also, it provides complete

documentation for API of deluge.

 19

 One crucial part of the incentive mechanism is to manage each peer’s upload

speed. However, in the latest deluge client, that function doesn’t exist. In order to add a

new function to the Deluge client, we need to be familiar with the structure of Deluge,

illustrated in Figure 10. As explained in the former section, deluge depends on libtorrent

to implement the BitTorrent protocol. Since libtorrent has the function to limit peer’s

download and upload speed, we only need to make revisions to source code of Deluge

client. In the Deluge client, there are three components: core, UI and plug-in. In this

paper, we only make revision to the core section of Deluge client. Structure of the core

section is illustrated in Figure 11. Torrent.py and Torrentmanager.py contains functions

to limit speed of torrent. So, we add the function to limit upload speed of peers in these

two files.

Figure 10: Deluge and Libtorrent

 20

Figure 11: Structure of Deluge Core

4.4 Counter

 The counter component works to count the number of seconds a seeder has stayed

in BitTorrent network. Generally, one seeder may be seeding multiple files to others. In

order to provide fairness for those seeders who are seeding more than one file in the local

machine, the counter component will not only count the number of seconds it has stayed

in BitTorrent network but also the number of seeding files on the local machine. The

formula used in the counter component is T� = ((F-1) * 0.1 + 1) * S. Parameters used in

this formula are: F: the number of files seeding in local machine. S is the number of

seconds local node has stayed online. The result T� represents the contributions of local

node. The more contributions one node has, the more bandwidth it will get in its next

download process.

4.5 Server

 A node’s server component works to process requests from associated peers’

client components. It binds to the port number of 59500. Once a new request arrives, the

server will get the contribution computed from counter component and send that

 21

information back to that peer. Pseudo Code of server component is illustrated in Figure

12.

1def on_connect_success(result):

2 def on_get_config(result):

3 usertime = result

4 client.myplugin.get_config().addCallback(on_get_config)

5

6def on_connect_fail(result):

7 print "Connection failed!"

8

10def bind(dict):

11 finalstr = ''

12 finalstr = finalstr +'total_time'+ str(dict['total_time']) + 'user_name' + dict['user_name']

13 return finalstr

14

15class EchoProtocol(basic.LineReceiver):

16 d = client.connect()

17 d.addCallback(on_connect_success)

18 d.addErrback(on_connect_fail)

20 def lineReceived(self, line):

21 timestr = bind(usertime)

22 if line == 'quit':

23 self.sendLine(timestr)

24 else:

25 self.sendLine("You said: " + line)

26

28class EchoServerFactory(protocol.ServerFactory):

29 protocol = EchoProtocol

 22

30

31if __name__ == "__main__":

32 host = "localhost"

33 reactor.listenTCP(port, EchoServerFactory())

34 reactor.run()

Figure 12: Pseudo-Code of Server Component

4.6 Client

 The client component is the crucial part of the incentive mechanism. It computes

and sets the upload bandwidth for every associate peer. There are 3 steps in the client ,

illustrated in Figure 13.

1. When a new download process starts, the client component will get the list of

associated peers via BitTorrent protocol.

2. With associated peers’ IP addresses and port number 59500, the client establishes

TCP channels with each of its associated peers.

3. After the client gets each associated peer’s contributions, the client will first

convert each peer’s contribution to its corresponding upload bandwidth. Then, the

client will set the upload bandwidth for each one.

 23

Figure 13: Client Structure

 In order to mange download speed of associated peers, it’s necessary to use an

algorithm which could provide fairness for all peers. In this paper, the algorithm consists

of two formulas (Parameters used in these two formulas are: N represents peers in the

same download process, L represents the upload bandwidth per torrent, �� represents

each peer’s contribution returned from corresponding server.

Y� = (1 +
�

�
)� (2)

!� =
"#

"$%"&%"'…%"#
 * L (3)

 Our Incentive mechanism highly depends on online time which means long time

users who prefer to seeding files to others will get high contribution value. However, for

newcomers to the incentive mechanism, their contributions will be very low. In order to

prevent the local node from distributing too much bandwidth for long time users, we use

the first formula the value of which is between 1 and e, illustrated in Figure 14. Based on

this graph, newcomer to the network will not be severely punished. Furthermore, nodes

who stayed longer in the network will be rewarded.

 24

Figure 14: Function Graph

4.7 Usage

 In this paper, we test the incentive mechanism on PlanetLab. Steps to run the

incentive mechanism:

1. Execute the incentive server component:

zack@ubuntu:~$python server.py

2. Execute the incentive client component:

zack@ubuntu:~$python client.py

3. Execute the incentive client component:

zack@ubuntu:~$python counter.py

5.0 Software Tools, Development Kits Used

 Deluge 1.3.0 is selected to test the incentive mechanism. All components of the

mechanism were developed using Python 2.7 and Twisted network engine. IDE used for

this paper is Eclipse with PyDev plug-in.

 25

6.0 Experimental Results

 In this section, we conducted five groups of experiments to validate the property of

our incentive mechanism and explained their results in detail.

6.1 Experiment Design

 In order to evaluate the performance of the incentive mechanism, several

experiments are conducted on PlanetLab [3]. In PlanetLab, we simulate a BitTorrent

network of 20 nodes which are from 20 different sites. On each node, we install the

Deluge software and all its dependent libraries. Counter script and Client script are

running on each node’s crontab. Server script is running in the OS’s background. Those

five experiments are distinguished by whether selected nodes have incentives installed or

not. Those five groups of experiments are shown in table 1. Y means the incentive

mechanism is installed on that node. N means the incentive mechanism is not installed on

that node.

 Seeder Leecher
Experiment One Y Y
Experiment Two Y N
Experiment Three N Y
Experiment Four N N
Verification Experiment Y Y

Table 1: Experiments in this section

6.2.1 Experiment 1:

 In this experiment, both leechers and seeders have incentive mechanism installed.

We conducted three different test cases:

1. One seeder and 19 leechers.

 26

 In order to prevent hogging limited network bandwidth of nodes in PlanetLab, we

set each node’s upload bandwidth per torrent to 100KB/s and download bandwidth per

torrent to 200KB/s. Each node’s online time in BitTorrent network is illustrated in Table

2.

Node
Number

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Online
Time(day)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Table 2: G1T1 Node Online Time

 Download completion time of all leechers is illustrated in Figure 15. Since only

one seeder is available in the whole BitTorrent network, the upload bandwidth set by the

seeder doesn’t have much influence on others. So, the download completion time of

every node is approximately the same except Node 17 and Node 19. Compared with

other nodes in the BitTorrent network, Node 17 and Node 19 have much slower network

bandwidth. So their download completion time is much longer than others. In summary,

incentive mechanism does not have much influence on each node’s download completion

time. The revised BitTorrent network with one seeder works almost the same as regular

BitTorrent network.

 27

Figure 15: Download completion time of Nodes in G1T1

2. Two seeders and 18 leechers.

 Each node’s upload bandwidth per torrent is set to 100KB/s and download

bandwidth per torrent is set to 200KB/s. Each node’s online time in BitTorrent network is

illustrated in Table 3.

Node
Number

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Online
Time(day)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Table 3: G1T2 Node Online Time

 Figure 16 shows leechers’ download completion time in this test case. Compared

with the previous test case which has one available seeder, download completion time of

each node decreases significantly. Generally, leechers who contribute more to others

could finish their download faster than others. In summary, the incentive mechanism

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 1011121314151617181920

1 Seeder

D
o

w
n

lo
ad

 T
im

e
(s

e
co

nd
s)

 28

works to ensure better download speed for those who stay online longer and contribute

more to others.

Figure 16: Download Completion Time of Nodes in G1T2

3. Three seeders and 17 leechers.

 Each node’s upload bandwidth per torrent is set to 100KB/s and download

bandwidth per torrent is set to 200KB/s. Nodes’ online time is illustrated in Table 4.

Node
Number

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Online
Time(day)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Table 4: G1T3 Node Online Time

 Figure 17 shows leechers’ download completion time in this test case. Comparing

with the test case 2 of this experiment, each node’s download completion time decreases.

More importantly, majority of those nodes who contribute more to others finish their

download faster than others.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 Seeders

D
ow

n
lo

ad
 T

im
e

(s
ec

o
n

d
s)

 29

Figure 17: Download Completion Time of Nodes in G1T3

 In summary, our first experiment prove that the incentive mechanism could help

nodes who contribute more to others get better download speed in a BitTorrent network if

there is more than one seeder from the beginning of the download process. If there is only

one seeder from the beginning of the download process, the performance of the revised

BitTorrent system is almost the same as a regular BitTorrent system.

6.2.2 Experiment 2:

 In this experiment, only seeders have incentive mechanisms installed. Leechers

don’t install incentive mechanisms. Leechers without our incentive mechanism will

follow regular BitTorrent TFT incentive uploading to others. There are also three

different test cases in this experiment:

1. One seeder and 19 leechers.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 Seeders

D
o

w
n

lo
ad

 T
im

e
(s

e
co

nd
s)

 30

 Each node’s upload bandwidth per torrent is set to 100KB/s and download

bandwidth per torrent is set to 200KB/s. Node’ online time is illustrated in Table 5.

Node
Number

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Online
Time(day)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Table 5: G2T1 Node Online Time

 Figure 18 shows leechers’ download completion time. Download completion time

of each node is approximately the same. Since only one node has incentive mechanism

installed and majority of nodes follow regular BitTorrent, the upload bandwidth set by

the seeder will not have much effects on every leecher’s download bandwidth. In

summary, our incentive mechanism almost does not influence the download completion

time of each node in this test case.

Figure 18: Download Completion Time of Nodes in G2T1

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 Seeder

D
o

w
nl

oa
d

 T
im

e
(s

e
co

n
d

s)

 31

2. Two seeders and 18 leechers.

 Each node’s upload bandwidth per torrent is set to 100KB/s and download

bandwidth per torrent is set to 200KB/s. Each node’s online time in BitTorrent network is

illustrated in Table 6.

Node
Number

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Online
Time(day)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Table 6: G2T2 Node Online Time

 Each leecher’s download completion time is illustrated in Figure 19. The result is

similar to the previous test case of this experiment. Since only those two seeders have

incentive installed, majority of the nodes will follow the regular BitTorrent protocol to

upload to others. The upload bandwidth set by minority of nodes in the BitTorrent will

not have many effects on majority of nodes in it. In summary, the incentive mechanism

will not influence much on each node’s download completion time in this test case. But,

each node’s download completion time in this test case decreases significantly compared

to the previous test case with one seeder.

Figure 19: Download Completion Time Nodes in G2T2

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 Seeders

D
o

w
nl

oa
d

 T
im

e
(s

e
co

n
d

s)

 32

3. Three seeders and 17 leechers.

 Each node’s upload bandwidth per torrent is set to 100KB/s and download

bandwidth per torrent is set to 200KB/s. Node’s online time in BitTorrent network is

illustrated in Table 7.

Node
Number

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Online
Time(day)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Table 7: G2T3 Node Online Time

 Each leecher’s download completion is illustrated in Figure 20. In this graph,

nodes who contribute more to others don’t get better download speed, because most

nodes’ download bandwidth will not be influcenced by the upload speed set by three

seeders.

Figure 20: Download Completion Time of Nodes in G2T3

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 Seeders

D
o

w
nl

oa
d

 T
im

e
(s

e
co

n
d

s)

 33

 In summary, if majority of nodes in the BitTorrent network don’t have incentive

mechanism installed, then node who contribute more to others will not be guaranteed to

get better download speed than others.

6.2.3 Experiment 3:

 In this experiment, we install the incentive mechanism on leechers but not on

seeders. There are also three different test cases in this experiment:

1. One seeder and 19 leechers.

 Each node’s upload bandwidth per torrent is set to 100KB/s and download

bandwidth per torrent is set to 200KB/s. Each node’s online time in BitTorrent network is

illustrated in Table 8.

Node
Number

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Online
Time(day)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Table 8: G3T1 Node Online Time

 Figure 21 shows leechers’ download completion time in this test case. The result is

similar to the previous two experiments. Each node’s download completion time in the

revised BitTorrent system is almost the same as that in regular BitTorrent system.

 34

Figure 21: Download Completion Time of Nodes in G3T1

2. Two seeders and 18 leechers.

 Each node’s upload bandwidth per torrent is set to 100KB/s and download

bandwidth per torrent is set to 200KB/s. Each node’s online time in BitTorrent network is

illustrated in Table 9.

Node
Number

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Online
Time(day)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Table 9: G3T2 Node Online Time

 Each leecher’s download completion time is illustrated in Figure 22. Compared

with the previous test case in this experiment, the download completion time for each

node decreases significantly. Furthermore, nodes that stay longer and contribute more to

others will get better download speed than others.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 Seeder

D
o

w
nl

oa
d

 T
im

e
(s

e
co

n
d

s)

 35

Figure 22: Download Completion Time of Nodes in G3T2

3. Three seeders and 17 leechers.

 Each node’s upload bandwidth per torrent is set to 100KB/s and download

bandwidth per torrent is set to to 200KB/s. Each Node’s online time in BitTorrent

network is illustrated in Table 10.

Node
Number

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Online
Time(day)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Table 10: G3T3 Node Online Time

 Each leecher’s download completion time is illustrated in Figure 23. From the

graph, we could see that some nodes who contribute more to others will finish

downloading faster than others. However, some nodes who also contribute more to others

don’t get better download speed. The reason is that the network situation of each node

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 Seeders

D
o

w
n

lo
ad

 T
im

e
(s

e
co

nd
s)

 36

varies a lot in PlanetLab and those three seeders disbtribute resource evenly. In

experiment 2, all of those test cases almost don’t have influence on each leecher’s

download completion time. But in this experiment, generally, nodes who contribute more

to others will get better download speeds. In Summary, this experiment shows that the

number of nodes that have incentive mechanisms installed will influence the final result.

Figure 23: Download Completion Time of Nodes in G3T3

6.2.4 Experiment 4:

 In this experiment, we run a regular BitTorrent test which doesn’t have incentive

mechanisms installed on leerchers nor on seeders. We conducted three different test cases:

1. One seeder and 19 leechers.

 Each node’s upload bandwidth per torrent is set to 100KB/s and download

bandwidth per torrent is set to 200KB/s.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 Seeders

D
o

w
nl

oa
d

 T
im

e
(s

e
co

n
d

s)

 37

 Figure 24 shows each leecher’s download completion time. In regular Bittorrent

networks, the seeder tries to ensure fairness which means to distribute resource evenly to

each client. So, the download completion time for each node is approximately the same.

Figure 24: Download completion time of Nodes in G4T1

2. Two seeders and 18 leechers.

 Each node’s upload bandwidth per torrent is set to 100KB/s and download

bandwidth per torrent is set to 200KB/s.

 Figure 25 shows leecher’s download completion time. In regular BitTorrent, nodes

that have better download bandwidth will complete their downloading process faster than

others. Compared with the previous test case, each node’s download completion time

decreased significantly.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 Seeder

D
ow

n
lo

ad
 T

im
e

(s
e

co
n

d
s)

 38

Figure 25: Download Completion Time of Nodes in G4T2

3. Three seeders and 17 leechers.

 Each node’s upload bandwidth is set to 100KB/s and download bandwidth is set

to 200KB/s.

 Figure 26 shows leechers’ download completion time. Compared with the

previous test case which has two seeders, some nodes’ download completion decreased

significantly. However, most nodes’ download completion time is the same or even

increased a little bit.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 Seeders

D
o

w
n

lo
ad

 T
im

e
(s

e
co

nd
s)

 39

Figure 26: Download Completion Time of Nodes in G4T3

 In summary, in regular BitTorrent, more seeders don’t mean faster download

completion for all nodes.

6.3 Verification Experiment

 In all three experiments for revised BitTorrent system, online time set for each

node is the same. In order to validate that it is the incentive mechanism instead of any

other factors that help nodes stay online longer and contribute more to others getting

better download speeds. In this section, we conducted two test cases which have reversed

order of online time, illustrated in Table 11.

 Node Index 1 2 3 4 5 6 7 8 9 10 11 12 13

Time
Increased(day)

1 2 3 4 5 6 7 8 9 10 11 12 13

Time
Decreased(day)

13 12 11 10 9 8 7 6 5 4 3 2 1

Table 11: Verification Test Online Time

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 Seeders

D
o

w
n

lo
ad

 T
im

e
(s

e
co

nd
s)

 40

 Download completion time of each node of two test cases are illustrated in Figure

27. From the graph, we could see that the download completion time of nodes is an

increasing order from left to right in the time decreased test case. And, the download

completion time of nodes is a decreasing order from left to right in the time increased test

case. From this experiment, we could prove that it is because of the incentive mechanism,

instead of other factors that make those nodes stay longer finish downloading process

faster than others.

Figure 27: Download Completion time of Nodes in Verification Experiment

6.4 Security

 In this paper, we mainly focus on the effects of incentive mechanisms to regular

BitTorrent networks. There are many security problems which may ruin the incentive

mechanism. First, each node who installs the incentive mechanism will create a log.dat

file to store its online time which is vulnerable to malicious attacks. Secondly, the client

component of our incentive mechanism receives unencrypted data from server. There is a

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13

Time Decreased

Regular

Time Increased

D
o

w
n

lo
ad

 T
im

e
(s

e
co

n
d

s)

 41

possibility that some peers may send fake information back to the client in order to to get

better download speeds.

7.0 Conclusion

 This paper proposes an incentive mechanism to incentivize seeders upload to

others and evaluate the performance of the incentive mechanism by comparing the

download completion time in regular BitTorrent networks with three other revised

BitTorrent networks. Experimental results demonstrated that the proposed incentive

mechanism could help those who contributed more to others get better download speed.

Furthermore, if the majority of nodes in a BitTorrent network have incentive mechanisms

installed, the download completion time of each node will decrease with the increasing

number of seeders. However, in regular BitTorrent, the increasing number of seeders will

not result in the decrease of every node’s download completion time.

 Content in BitTorrent is stored in all nodes in the network. The more nodes a

BitTorrent system has, the more available the content in it is. The incentive mechanism

which incentivizes seeders to stay longer in the network could potentially increase the

available content in the BitTorrent network.

 Although the protocol can help those who stay longer in the network get better

download speed, it also has weaknesses. In some situations, it will increase the overall

download completion time. Most importantly, the incentive mechanism needs to be

installed on the majority of nodes in the BitTorrent network in order to work efficiently.

Only small portions of nodes in a BitTorrent network have incentive mechanism

 42

installed, each node’s download completion time will not be managed effectively by the

incentive mechanism.

8.0 Future Work

 This work opens up many directions for future research. One major piece is that

the incentive mechanism couldn’t decrease the overall download completion time of the

BitTorrent network.

 A better algorithm will be able to detect the size of shared content and the quality

of shared content in one node. If the shared content is very rare in the BitTorrent network,

it should be rewarded more than those staying online but only have very commonly

shared content.

 Furthermore, the incentive mechanism needs to run third party scripts and make

revisions to the core portion of Deluge. These changes make Deluge very hard to deploy

in different platforms. Improvements for the installation of incentive mechanism to be

easily deployed on different platforms are necessary.

 43

 Appendix A

File: client.py
from deluge.ui.client import client
from deluge.log import setupLogger
from twisted.internet import reactor, defer, protocol
from twisted.protocols import basic
from collections import defaultdict
from twisted.protocols.basic import LineReceiver
from twisted.internet.protocol import ClientFactory
setupLogger()

#struct of peer_info {{0: {'torrent_id': 'c3dabbfcad23ce50566eac209e004fe9903e35ea',
'ip': '60.181.114.35:12345',
'time': 1,
'speed': 2},

global peer_info
global counter

#number of conections establised to all associated peers
global connection
#sum of associated peers of all torrent files
global total_peer
#upload bandwidth of local pc
global up_bandwidth
up_bandwidth = 100
port = 59500
total_peer = 0
connection = 1
counter = 0

peer_info = defaultdict(dict)

'''
Component to get peers in local pc, Two functions:
1. get_torrent_id will get all torrent ids in current deluge client
2. get_peer will get each torrent's associated peers
'''
def get_torrent_id():
 d = client.connect()
 def on_get_id_success(result):
 print "Connection in get_torrent_id was successful!"
 def on_get_config(result):
 get_peer(result)
 client.core.get_session_state().addCallback(on_get_config)
 d.addCallback(on_get_id_success)

 def on_get_id_fail(result):
 print "Connection in on_get_id_fail failed!"
 print "result:", result

 # We add the callback (in this case it's an errback, for error)
 d.addErrback(on_get_id_fail)

 44

#get every torrent's associated peers in local PC
def get_peer(torrent_id):
 d = client.connect()
 def on_connect_success(result):
 print "Connection in get_peer was successful!"
 def on_get_config(result, torrent_number, m):
 #detect whether a torrent has peer or not
 global counter
 counter = counter + 1
 if(result['peers'] == ()):
 print "torrent id", torrent_id[torrent_number], "doesn't has associated peers"
 else:
 for i in range(0, len(result['peers'])):
 global peer_info, total_peer
 peer_info[total_peer]['ip'] = result['peers'][i]["ip"]
 peer_info[total_peer]['torrent_id'] = torrent_id[torrent_number]
 total_peer = total_peer + 1
 #Get out of the loop and give the dict to connect function
 if((counter == m) & (i == len(result['peers']) - 1)):
 clientconnection()
 for i in range(0, len(torrent_id)):
 client.core.get_torrent_status(torrent_id[i], ["peers"], True).addCallback(on_get_config, i,
len(torrent_id))
 d.addCallback(on_connect_success)

 def on_connect_fail(result):
 print "Connection failed!"
 print "result:", result
 d.addErrback(on_connect_fail)

'''
Component to connect peers and get time
1. client connection. Initialize the connection to each peer
2. class GetTime. Define the behavior if connectMade is success or line received is success
 if lineReceived is success, then computer ip value sent back from server with ip value stored in peer_info
 if these two values are the same, then set the time send back from server to the corresponding ip node
3. clas GetTimefactory. Define the behavior if the connection is lost of failed
4. In this component, if the number of connection is equal to the number of peers, then we go to the
setemptyvalue() funciton
 in the setemptyvalue function, it will set empty time value to 1 which means that specific server doesn't
install
 the incentvie mechanism
'''
#connect to all associated peers in local PC
def clientconnection():
 global peer_info
 factory = GetTimeFactory()
 for i in range(0, len(peer_info)):
 reactor.connectTCP(peer_info[i]['ip'].split(":")[0], port, factory)

class GetTime(LineReceiver):
 def connectionMade(self):
 self.sendLine("online time")
 def lineReceived(self, line):
 global connection

 45

 for i in range(0, len(peer_info)):
 #line.split(":")[0] is the ip address of peer
 #line.split(":")[1] is the online time of peer
 if (peer_info[i]['ip'] == line.split(":")[0]):
 peer_info[i]['time'] = line.split(":")[1]
 print "ipcorrect", "connection:", connection, "peer_info", len(peer_info)
 if(connection == len(peer_info)):
 setemptyvalue()
 connection = connection + 1
 self.transport.loseConnection()

#if the number of connections is equal the number of total peers in local PC.
#total peers means the sum of peers of all torrents
#for example: torrent one has 10 peers. torrent two has 20 peers. Then, the total number of peers is 30
class GetTimeFactory(ClientFactory):
 protocol = GetTime
 def clientConnectionFailed(self, connector, reason):
 global connection
 print 'connection failed:', "connection", connection, "peer_info",
len(peer_info),reason.getErrorMessage()
 if(connection == len(peer_info)):
 setemptyvalue()
 connection = connection + 1
 def clientConnectionLost(self, connector, reason):
 global connection
 print "connectionlost", "connection", connection, "peer_info",
len(peer_info),reason.getErrorMessage()
 if(connection == len(peer_info)):
 setemptyvalue()
 connection = connection + 1

def setemptyvalue():
 global peer_info
 for i in range(0, len(peer_info)):
 try:
 peer_info[i]['time']
 except KeyError:
 peer_info[i]['time'] = 1.0
 speedmanager()

'''
Manage speed has three function:
1. compute. Compute each peer's upload speed bandwidth
2. speedmanager. process the whole peer_info dictionary and use compute function to calculate
3. speedset. set the key"speed" of peer_info dictionary as each peer's upload limit
'''
def compute(min, max):
 sum = 0
 for i in range(min, max):
 sum = sum + int(peer_info[i]['time'])
 for i in range(min, max):
 peer_info[i]['speed'] = float(peer_info[i]['time']) * up_bandwidth / sum

 46

def speedmanager():
 global peer_info
 sum = 0
 j = 0
 #in the for loop, if j is not equal to i, we compute from j to i
 #after we are out of the for loop, the last torrent is not computed, so we use compute function out side the
for
 #to process the last part
 for i in range(0, len(peer_info)):
 if (peer_info[j]['torrent_id']) != peer_info[i]['torrent_id']:
 compute(j, i)
 j = i
 compute(j, len(peer_info))
 speedset()

def speedset():
 global peer_info
 speedcontrol = client.connect()
 #ip = ('150.254.186.34', 80)
 # We create a callback function to be called upon a successful connection
 def speedcontrol_success(result):
 def on_get_config(result, torrent_id, ip, value):
 print "speed set for ",torrent_id, ip ,"value is", value
 for i in range(0, len(peer_info)):
 ip_port = (peer_info[i]['ip'].split(':')[0], int(peer_info[i]['ip'].split(':')[1]))
 client.core.set_peer_max_upload_speed(peer_info[i]['torrent_id'], ip_port,
peer_info[i]['speed']).addCallback(on_get_config, peer_info[i]['torrent_id'], ip_port, peer_info[i]['speed'])

 def speedcontrol_fail(result):
 print "Connection to control speed failed!"
 speedcontrol.addCallback(speedcontrol_success)
 speedcontrol.addErrback(speedcontrol_fail)

def main():
 #peer_connection()
 get_torrent_id()
 reactor.run()

if __name__ == "__main__":

main()

File: server.py
'''
Created on Mar 7, 2011
@author: zack
'''
from deluge.log import setupLogger
from twisted.internet import reactor, defer, protocol
from twisted.protocols import basic
import math
import socket

setupLogger()

 47

#location of the files store online time
global filename
#user's online time
global time
#if the pc doesn't install the incentive mechanism, its default is 1 instead of 0
#because we have a fractional function to compute value
time = 1

port = 59500
filename = "/home/zack/Documents/log3.dat"
######################################
#Get local machine's online time
#structure of data send back to client
#(ip:time) for example:
#(192.168.1.1:1.0034)
######################################
def fileinput(path):
 try:
 global time
 file = open(path,"r")
 inline = file.readline()
 value = inline.split(':')[1]
 time = float(value)
 except IOError:
 pass
 #86400 is the number of seconds of a day, we want the value of time increase by 0.24 per day.
 #we could find the prototype of the funcion in PPT stored in win7 CS298 file
 time = (float(time) / 86400)*0.24
 T = math.pow(1+1/float(time),float(time))
 #get local PC's ip address
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 s.connect(("gmail.com",80))
 finalstr = ''
 finalstr = s.getsockname()[0] + ":" + str(T)
 return finalstr
######################################
#Get usernames and time from each peer
######################################
'''server wait part'''
class EchoProtocol(basic.LineReceiver):
 def lineReceived(self, line):
 if line == 'online time':
 value = fileinput(filename)
 self.sendLine(str(value))
 else:
 self.sendLine("You said: " + line)

class EchoServerFactory(protocol.ServerFactory):
 protocol = EchoProtocol

if __name__ == "__main__":
 reactor.listenTCP(port, EchoServerFactory())
 reactor.run()

 48

File: counter.py
from deluge.ui.client import client
from twisted.internet import reactor
from twisted.internet import task
from deluge.log import setupLogger
setupLogger()

#each user's online time
global time

#number of files seeding in local machine
global seed_number

#value should add for time per second
global adder

#count number of threads in local PC
global counter

#location and name of the file we want to store user's online time
global filename

#initialize value of global variable and file location
counter = 0
seed_number = 0
time = 0
filename = "/home/zack/Documents/log3.dat"
#store user's online time

def fileinput(filename):
 try:
 global time
 file = open(filename,"r")
 inline = file.readline()
 value = inline.split(':')[1]
 time = float(value)
 except IOError:
 pass

def get_torrent_id():
 d = client.connect()
 def on_get_id_success(result):
 print "Connection in get_torrent_id was successful!"
 def on_get_config(result):
 get_progress(result)

 client.core.get_session_state().addCallback(on_get_config)
 d.addCallback(on_get_id_success)

 def on_get_id_fail(result):
 print "Connection in on_get_id_fail failed!"
 print "result:", result

 # We add the callback (in this case it's an errback, for error)
 d.addErrback(on_get_id_fail)

 49

#Get the number of files seeding in local machine
def get_progress(torrent_id):
 d = client.connect()
 global seed_number
 global adder
 global counter
 seed_number = 0
 adder = 0
 counter = 0
 def on_connect_success(result):
 print "Connection in get_progress was successful!"
 def on_get_config(result):
 global seed_number
 global adder
 global counter
 global time
 counter = counter + 1
 if result["progress"] == 100.0:
 seed_number = seed_number + 1
 adder = (seed_number - 1)*0.1 + 1
 time = adder + time
 print "online time is :", time
 FILE = open(filename,"w")
 FILE.write("online time:" + str(time))
 #the if condition loop will return the final adder value
 if counter == len(torrent_id):
 print "seed number:", seed_number, "adder value is:", adder

 for i in range(0, len(torrent_id)):
 client.core.get_torrent_status(torrent_id[i], ["progress"], True).addCallback(on_get_config)

 d.addCallback(on_connect_success)

 def on_connect_fail(result):
 print "Error, get torrent progress"
 print "result:", result
 d.addErrback(on_connect_fail)

l = task.LoopingCall(get_torrent_id)
l.start(1.0) # call every second
fileinput(filename)

reactor.run()

#File: Install
#Install necessary libraries for deluge
su -c 'yum groupinstall "Development Tools"'
su -c 'yum install wget python python-devel twisted pyOpenSSL gettext pyxdg boost boost-devel openssl
openssl-devel zlib zlib-devel libnotify pygame xdg-utils python-mako python-chardet pygtk2 pygtk2-devel
python-setuptools python-setuptools-devel librsvg2-devel'
mkdir ~/deluge && cd ~/deluge && wget http://download.deluge-torrent.org/source/deluge-1.3.0.tar.bz2
&& wget http://libtorrent.googlecode.com/files/libtorrent-rasterbar-0.14.11.tar.gz
gunzip libtorrent-rasterbar-0.14.11.tar.gz

 50

tar -xvjf deluge-1.3.0.tar.bz2 && tar -xvf libtorrent-rasterbar-0.14.11.tar
mv libtorrent-rasterbar-0.14.11 libtorrent
mv libtorrent deluge-1.3.0
cd ~/deluge/deluge-1.3.0 && python setup.py clean -a && python setup.py build && su -c 'python
setup.py install'

#File: CopyLibrary
#Copy simplejson, chardet libraries to nodes of Planetlab.
#!/bin/sh
Rotate procmail log files
node="ds-pl1.technion.ac.il"
cd /home/zack/Downloads
scp -i ~/Documents/id_rsa simplejson.tar.gz
sjsu_jsu_p2p_streaming@$node:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa chardet-1.0.1.tar.gz
sjsu_jsu_p2p_streaming@$node:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa charjson sjsu_jsu_p2p_streaming@$node:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa installfile sjsu_jsu_p2p_streaming@$node:/home/sjsu_jsu_p2p_streaming
#File: UpAllScript

#Upload counter.py, client.py, server.py to 20 nodes of PlanetLab
#!/bin/sh
Rotate procmail log files
node1="planetlab1.cesnet.cz"
node2="planetlab1.cs.stevens-tech.edu"
node3="planetlab-2.imperial.ac.uk"
node4="planetlab1.ucsd.edu"
node5="planetx.scs.cs.nyu.edu"
node6="planetlab2.hiit.fi"
node7="planetlab2.cs.pitt.edu"
node8="planetlab1.cs.pitt.edu"
node9="planetlab2.ucsd.edu"
node10="ricepl-1.cs.rice.edu"
node11="pl1.eecs.utk.edu"
node12="planetlab1.dtc.umn.edu"
node13="planetlab2.cs.stevens-tech.edu"
node14="planetlab-01.bu.edu"
node15="lefthand.eecs.harvard.edu"
node16="agni.iitd.ernet.in"
node17="planetlab-2.cs.uh.edu"
node18="planetlab-2.ssvl.kth.se"
node19="planetlab-2.cse.ohio-state.edu"
node20="righthand.eecs.harvard.edu"
cd /home/zack/workspace/CS298/src
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node1:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node2:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node3:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node4:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node5:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node6:/home/sjsu_jsu_p2p_streaming

 51

scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node7:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node8:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node9:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node10:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node11:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node12:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node13:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node14:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node15:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node16:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node17:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node18:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node19:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa client.py counter.py server.py
sjsu_jsu_p2p_streaming@$node20:/home/sjsu_jsu_p2p_streaming

File: torrent.py
torrent.py

"""Internal Torrent class"""

import os
import time
from urllib import unquote
from urlparse import urlparse

from deluge._libtorrent import lt

import deluge.common
import deluge.component as component
from deluge.configmanager import ConfigManager, get_config_dir
from deluge.log import LOG as log
from deluge.event import *

from time import gmtime, strftime
TORRENT_STATE = deluge.common.TORRENT_STATE

 def set_max_connections(self, max_connections):
 self.options["max_connections"] = int(max_connections)
 self.handle.set_max_connections(max_connections)

 52

 def set_max_upload_slots(self, max_slots):
 self.options["max_upload_slots"] = int(max_slots)
 self.handle.set_max_uploads(max_slots)

 def set_max_upload_speed(self, m_up_speed):
 self.options["max_upload_speed"] = m_up_speed
 if m_up_speed < 0:
 v = -1
 else:
 v = int(m_up_speed * 1024)

 self.handle.set_upload_limit(v)

 def set_max_download_speed(self, m_down_speed):
 self.options["max_download_speed"] = m_down_speed
 if m_down_speed < 0:
 v = -1
 else:
 v = int(m_down_speed * 1024)
 self.handle.set_download_limit(v)

 #add this new function to limit speed of peer
 def set_peer_download_speed(self, ip, value):
 if value < 0:
 v = -1
 else:
 v = int(value * 1024)
 filename = "/home/zack/Documents/log.dat"
 FILE = open(filename,"a")
 FILE.write("pymodules download: " + str(strftime("%a, %d %b %Y %H:%M:%S", gmtime())) + "\n")
 FILE.close()
 self.handle.set_peer_download_limit(ip, v)

 def set_peer_upload_speed(self, ip, value):
 if value < 0:
 v = -1
 else:
 v = int(value * 1024)
 filename = "/home/zack/Documents/log.dat"
 FILE = open(filename,"a")
 FILE.write("pymodules upload:" + str(strftime("%a, %d %b %Y %H:%M:%S", gmtime())) + "\n")
 FILE.close()
 self.handle.set_peer_upload_limit(ip, v)

 def set_stop_ratio(self, stop_ratio):
 self.options["stop_ratio"] = stop_ratio

 def set_stop_at_ratio(self, stop_at_ratio):
 self.options["stop_at_ratio"] = stop_at_ratio

 def set_remove_at_ratio(self, remove_at_ratio):
 self.options["remove_at_ratio"] = remove_at_ratio

 def set_trackers(self, trackers):
 """Sets trackers"""

 53

 if trackers == None:
 trackers = []
 for value in self.handle.trackers():
 tracker = {}
 tracker["url"] = value.url
 tracker["tier"] = value.tier
 trackers.append(tracker)
 self.trackers = trackers
 self.tracker_host = None
 return

 log.debug("Setting trackers for %s: %s", self.torrent_id, trackers)
 tracker_list = []

 for tracker in trackers:
 new_entry = lt.announce_entry(tracker["url"])
 new_entry.tier = tracker["tier"]
 tracker_list.append(new_entry)
 self.handle.replace_trackers(tracker_list)

 # Print out the trackers
 #for t in self.handle.trackers():
 # log.debug("tier: %s tracker: %s", t["tier"], t["url"])
 # Set the tracker list in the torrent object
 self.trackers = trackers
 if len(trackers) > 0:
 # Force a reannounce if there is at least 1 tracker
 self.force_reannounce()

 def get_eta(self):
 """Returns the ETA in seconds for this torrent"""
 if self.status == None:
 status = self.handle.status()
 else:
 status = self.status

 if self.is_finished and self.options["stop_at_ratio"]:
 # We're a seed, so calculate the time to the 'stop_share_ratio'
 if not status.upload_payload_rate:
 return 0
 stop_ratio = self.options["stop_ratio"]
 return ((status.all_time_download * stop_ratio) - status.all_time_upload) /
status.upload_payload_rate

 left = status.total_wanted - status.total_done

 if left <= 0 or status.download_payload_rate == 0:
 return 0

 try:
 eta = left / status.download_payload_rate
 except ZeroDivisionError:
 eta = 0

 return eta

 54

 def get_ratio(self):
 """Returns the ratio for this torrent"""
 if self.status == None:
 status = self.handle.status()
 else:
 status = self.status

 if status.total_done > 0:
 # We use 'total_done' if the downloaded value is 0
 downloaded = status.total_done
 else:
 # Return -1.0 to signify infinity
 return -1.0

 return float(status.all_time_upload) / float(downloaded)

 def get_peers(self):
 """Returns a list of peers and various information about them"""
 ret = []
 peers = self.handle.get_peer_info()

 for peer in peers:
 # We do not want to report peers that are half-connected
 if peer.flags & peer.connecting or peer.flags & peer.handshake:
 continue
 try:
 client = str(peer.client).decode("utf-8")
 except UnicodeDecodeError:
 client = str(peer.client).decode("latin-1")

 # Make country a proper string
 country = str()
 for c in peer.country:
 if not c.isalpha():
 country += " "
 else:
 country += c

 ret.append({
 "client": client,
 "country": country,
 "down_speed": peer.down_speed,
 "ip": "%s:%s" % (peer.ip[0], peer.ip[1]),
 "progress": peer.progress,
 "seed": peer.flags & peer.seed,
 "up_speed": peer.up_speed,
 })

 return ret

 def get_file_progress(self):
 """Returns the file progress as a list of floats.. 0.0 -> 1.0"""
 if not self.handle.has_metadata():
 return 0.0

 55

 file_progress = self.handle.file_progress()
 ret = []
 for i,f in enumerate(self.get_files()):
 try:
 ret.append(float(file_progress[i]) / float(f["size"]))
 except ZeroDivisionError:
 ret.append(0.0)

 return ret

 def pause(self):
 """Pause this torrent"""
 # Turn off auto-management so the torrent will not be unpaused by lt queueing
 self.handle.auto_managed(False)
 if self.handle.is_paused():
 # This torrent was probably paused due to being auto managed by lt
 # Since we turned auto_managed off, we should update the state which should
 # show it as 'Paused'. We need to emit a torrent_paused signal because
 # the torrent_paused alert from libtorrent will not be generated.
 self.update_state()
 component.get("EventManager").emit(TorrentStateChangedEvent(self.torrent_id, "Paused"))
 else:
 try:
 self.handle.pause()
 except Exception, e:
 log.debug("Unable to pause torrent: %s", e)
 return False

 return True

 def resume(self):
 """Resumes this torrent"""

 if self.handle.is_paused() and self.handle.is_auto_managed():
 log.debug("Torrent is being auto-managed, cannot resume!")
 return
 else:
 # Reset the status message just in case of resuming an Error'd torrent
 self.set_status_message("OK")

 if self.handle.is_finished():
 # If the torrent has already reached it's 'stop_seed_ratio' then do not do anything
 if self.options["stop_at_ratio"]:
 if self.get_ratio() >= self.options["stop_ratio"]:
 #XXX: This should just be returned in the RPC Response, no event
 #self.signals.emit_event("torrent_resume_at_stop_ratio")
 return

 if self.options["auto_managed"]:
 # This torrent is to be auto-managed by lt queueing
 self.handle.auto_managed(True)

 try:
 self.handle.resume()
 except:

 56

 pass

 return True

 def connect_peer(self, ip, port):
 """adds manual peer"""
 try:
 self.handle.connect_peer((ip, int(port)), 0)
 except Exception, e:
 log.debug("Unable to connect to peer: %s", e)
 return False
 return True

 def move_storage(self, dest):
 """Move a torrent's storage location"""
 if not os.path.exists(dest):
 try:
 # Try to make the destination path if it doesn't exist
 os.makedirs(dest)
 except IOError, e:
 log.exception(e)
 log.error("Could not move storage for torrent %s since %s does not exist and could not create the
directory.", self.torrent_id, dest)
 return False
 try:
 self.handle.move_storage(dest.encode("utf8"))
 except:
 return False

 return True

 def save_resume_data(self):
 """Signals libtorrent to build resume data for this torrent, it gets
 returned in a libtorrent alert"""
 self.handle.save_resume_data()
 self.waiting_on_resume_data = True

 def write_torrentfile(self):
 """Writes the torrent file"""
 path = "%s/%s.torrent" % (
 os.path.join(get_config_dir(), "state"),
 self.torrent_id)
 log.debug("Writing torrent file: %s", path)
 try:
 self.torrent_info = self.handle.get_torrent_info()
 # Regenerate the file priorities
 self.set_file_priorities([])
 md = lt.bdecode(self.torrent_info.metadata())
 torrent_file = {}
 torrent_file["info"] = md
 open(path, "wb").write(lt.bencode(torrent_file))
 except Exception, e:
 log.warning("Unable to save torrent file: %s", e)

 def delete_torrentfile(self):
 """Deletes the .torrent file in the state"""

 57

 path = "%s/%s.torrent" % (
 os.path.join(get_config_dir(), "state"),
 self.torrent_id)
 log.debug("Deleting torrent file: %s", path)
 try:
 os.remove(path)
 except Exception, e:
 log.warning("Unable to delete the torrent file: %s", e)

 def force_reannounce(self):
 """Force a tracker reannounce"""
 try:
 self.handle.force_reannounce()
 except Exception, e:
 log.debug("Unable to force reannounce: %s", e)
 return False

 return True

 def scrape_tracker(self):
 """Scrape the tracker"""
 try:
 self.handle.scrape_tracker()
 except Exception, e:
 log.debug("Unable to scrape tracker: %s", e)
 return False

 return True

 def force_recheck(self):
 """Forces a recheck of the torrents pieces"""
 try:
 self.handle.force_recheck()
 self.handle.resume()
 except Exception, e:
 log.debug("Unable to force recheck: %s", e)
 return False
 return True

 def cleanup_prev_status(self):
 """
 This method gets called to check the validity of the keys in the prev_status
 dict. If the key is no longer valid, the dict will be deleted.

 """
 for key in self.prev_status.keys():
 if not self.rpcserver.is_session_valid(key):
 del self.prev_status[key]

File: Core.py

core.py

from deluge._libtorrent import lt

 58

import os
import glob
import base64
import shutil
import threading
import pkg_resources
import warnings
import tempfile

from twisted.internet import reactor, defer
from twisted.internet.task import LoopingCall
import twisted.web.client

from deluge.httpdownloader import download_file
from deluge.log import LOG as log

import deluge.configmanager
import deluge.common
import deluge.component as component
from deluge.event import *
from deluge.error import *
from deluge.core.torrentmanager import TorrentManager
from deluge.core.pluginmanager import PluginManager
from deluge.core.alertmanager import AlertManager
from deluge.core.filtermanager import FilterManager
from deluge.core.preferencesmanager import PreferencesManager
from deluge.core.autoadd import AutoAdd
from deluge.core.authmanager import AuthManager
from deluge.core.eventmanager import EventManager
from deluge.core.rpcserver import export

class Core(component.Component):
 def __init__(self, listen_interface=None):
 log.debug("Core init..")
 component.Component.__init__(self, "Core")

 # Start the libtorrent session
 log.info("Starting libtorrent %s session..", lt.version)

 # Create the client fingerprint
 version = [int(value.split("-")[0]) for value in deluge.common.get_version().split(".")]
 while len(version) < 4:
 version.append(0)

 self.session = lt.session(lt.fingerprint("DE", *version), flags=0)

 # Load the session state if available
 self.__load_session_state()

 # Set the user agent
 self.settings = lt.session_settings()
 self.settings.user_agent = "Deluge %s" % deluge.common.get_version()

 # Set session settings

 59

 self.settings.send_redundant_have = True
 self.session.set_settings(self.settings)

 # Load metadata extension
 self.session.add_extension(lt.create_metadata_plugin)
 self.session.add_extension(lt.create_ut_metadata_plugin)
 self.session.add_extension(lt.create_smart_ban_plugin)

 # Create the components
 self.eventmanager = EventManager()
 self.preferencesmanager = PreferencesManager()
 self.alertmanager = AlertManager()
 self.pluginmanager = PluginManager(self)
 self.torrentmanager = TorrentManager()
 self.filtermanager = FilterManager(self)
 self.autoadd = AutoAdd()
 self.authmanager = AuthManager()

 # New release check information
 self.new_release = None

 # Get the core config
 self.config = deluge.configmanager.ConfigManager("core.conf")

 # If there was an interface value from the command line, use it, but
 # store the one in the config so we can restore it on shutdown
 self.__old_interface = None
 if listen_interface:
 self.__old_interface = self.config["listen_interface"]
 self.config["listen_interface"] = listen_interface

 def start(self):
 """Starts the core"""
 # New release check information
 self.__new_release = None

 def stop(self):
 # Save the DHT state if necessary
 if self.config["dht"]:
 self.save_dht_state()
 # Save the libtorrent session state
 self.__save_session_state()

 # We stored a copy of the old interface value
 if self.__old_interface:
 self.config["listen_interface"] = self.__old_interface

 # Make sure the config file has been saved
 self.config.save()

 def shutdown(self):
 pass

 def save_dht_state(self):
 """Saves the dht state to a file"""
 try:

 60

 dht_data = open(deluge.configmanager.get_config_dir("dht.state"), "wb")
 dht_data.write(lt.bencode(self.session.dht_state()))
 dht_data.close()
 except Exception, e:
 log.warning("Failed to save dht state: %s", e)

 def get_new_release(self):
 log.debug("get_new_release")
 from urllib2 import urlopen
 try:
 self.new_release = urlopen(
 "http://download.deluge-torrent.org/version-1.0").read().strip()
 except Exception, e:
 log.debug("Unable to get release info from website: %s", e)
 return
 self.check_new_release()

 def check_new_release(self):
 if self.new_release:
 log.debug("new_release: %s", self.new_release)
 if deluge.common.VersionSplit(self.new_release) >
deluge.common.VersionSplit(deluge.common.get_version()):
 component.get("EventManager").emit(NewVersionAvailableEvent(self.new_release))
 return self.new_release
 return False

 @export
 def pause_torrent(self, torrent_ids):
 log.debug("Pausing: %s", torrent_ids)
 for torrent_id in torrent_ids:
 if not self.torrentmanager[torrent_id].pause():
 log.warning("Error pausing torrent %s", torrent_id)

 @export
 def connect_peer(self, torrent_id, ip, port):
 log.debug("adding peer %s to %s", ip, torrent_id)
 if not self.torrentmanager[torrent_id].connect_peer(ip, port):
 log.warning("Error adding peer %s:%s to %s", ip, port, torrent_id)

 @export
 def move_storage(self, torrent_ids, dest):
 log.debug("Moving storage %s to %s", torrent_ids, dest)
 for torrent_id in torrent_ids:
 if not self.torrentmanager[torrent_id].move_storage(dest):
 log.warning("Error moving torrent %s to %s", torrent_id, dest)

 @export
 def pause_all_torrents(self):
 """Pause all torrents in the session"""
 for torrent in self.torrentmanager.torrents.values():
 torrent.pause()

 @export
 def get_torrent_status(self, torrent_id, keys, diff=False):
 # Build the status dictionary
 status = self.torrentmanager[torrent_id].get_status(keys, diff)

 61

 # Get the leftover fields and ask the plugin manager to fill them
 leftover_fields = list(set(keys) - set(status.keys()))
 if len(leftover_fields) > 0:
 status.update(self.pluginmanager.get_status(torrent_id, leftover_fields))
 return status

 @export
 def get_torrents_status(self, filter_dict, keys, diff=False):
 """
 returns all torrents , optionally filtered by filter_dict.
 """
 torrent_ids = self.filtermanager.filter_torrent_ids(filter_dict)
 status_dict = {}.fromkeys(torrent_ids)

 # Get the torrent status for each torrent_id
 for torrent_id in torrent_ids:
 status_dict[torrent_id] = self.get_torrent_status(torrent_id, keys, diff)

 return status_dict

 @export
 def get_session_state(self):
 """Returns a list of torrent_ids in the session."""
 # Get the torrent list from the TorrentManager
 return self.torrentmanager.get_torrent_list()

 @export
 def get_config(self):
 """Get all the preferences as a dictionary"""
 return self.config.config

 @export
 def get_config_value(self, key):
 """Get the config value for key"""
 try:
 value = self.config[key]
 except KeyError:
 return None

 return value

 @export
 def get_config_values(self, keys):
 """Get the config values for the entered keys"""
 config = {}
 for key in keys:
 try:
 config[key] = self.config[key]
 except KeyError:
 pass
 return config
 @export
 def set_torrent_max_connections(self, torrent_id, value):
 """Sets a torrents max number of connections"""
 return self.torrentmanager[torrent_id].set_max_connections(value)

 62

 @export
 def set_torrent_max_upload_slots(self, torrent_id, value):
 """Sets a torrents max number of upload slots"""
 return self.torrentmanager[torrent_id].set_max_upload_slots(value)

 @export
 def set_torrent_max_upload_speed(self, torrent_id, value):
 """Sets a torrents max upload speed"""
 return self.torrentmanager[torrent_id].set_max_upload_speed(value)

 @export
 def set_torrent_max_download_speed(self, torrent_id, value):
 """Sets a torrents max download speed"""
 return self.torrentmanager[torrent_id].set_max_download_speed(value)

 #add the speed limit function for peer
 @export
 def set_peer_max_download_speed(self, torrent_id, ip, value):
 return self.torrentmanager[torrent_id].set_peer_download_speed(ip, value)

 @export
 def set_peer_max_upload_speed(self, torrent_id, ip, value):
 return self.torrentmanager[torrent_id].set_peer_upload_speed(ip, value)

 63

References

1. BitTorrent Specification Wiki.
http://wiki.theory.org/BitTorrentSpecification/.

2. B. Cohen. Incentives Build Robustness in BitTorrent. In Proc. Of the Workshop on
Economics of Peer-to-Peer Systems(P2PEcon’03), Berkeley, CA, June 2003.

3. PlanetLab platform. http://www.planet-lab.org.

4. N.Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu. Influences on
Cooperation in BitTorrent Communities. In Proc. Of the Workshop on Economics of
Peer-to-Peer Systems(P2PEcon’ 05), Philadelphia, PA, August 2005.

5. A.R. Bharambe, C. Herley, and V.N.Padmanabhan. Analyzing and Improving a
BitTorrent Network’s Performance Mechanisms. In Proc. Of Infocom’06, Barcelona,
Spain, April 2006.

6. L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang. Measurements, Analysis,
and Modeling of BitTorrent-like System. In Proc. Of IMC’05, Berkeley, CA, October
2005.

7. M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A. Hamra, and L. Garces-
Erice. Dissecting BitTorrent: Five Monthes in a Torrent’s Lifetime. In Proc. of PAM’s
04. Antibes Juan-les-Pins, France, April 2004.

8. S. Jun and M. Ahamad. Incentives in BitTorrent Induce Free Riding. In Proc. of the
Workshop on Economics of Peer-to-Peer Systems(P2PEcon’05), Philadelphia, PA,
August 2005.

9. T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free Riding in BitTorrent is
Cheap. In Proc. of HotNets-V, Irvine, CA, November 2006.

10. J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The BitTorrent P2P file-sharing
system: Measurements and Analysis. In Proc. of IPTPS’ 05, Ithaca, NY, February 2005.

11. D. Qiu and R. Srikant. Modeling and Performance Analysis of BitTorrent-Like Peer-
to-Peer Networks. In Proc. of SIGCOMM’04, Portland, OR, August 30-September 3,
2004.

12. J. Shneidman, D. Parkes, and L. Massoulie. Faithfulness in Internet Algorithms. In
Proc. of the Workshop on Practice and Theory of Incentives and Game Theory in
Networked Systems(PINS’ 04), Portland, OR, September 2004.

 64

13. Ashwin R. Bharambe, Cormac Herley, and Venkata N. Padmanabhan. Analyzing and
improving BitTorrent performance. Technical Report MSR-TR-2005-03, Microsoft
Research, February 2005.

13. Y. Tian, D. Wu, and K. W. Ng. Modeling, Analysis and Improvements for
BitTorrent-Like File Sharing Networks. In Proc. of Infocom’06, Barcelona, Spain, April
2006.

14. M. Izal, G. Urvory-Keller, E.W. Biersack, P.A. Felber, A. Al Hamra, and L. Garces-
Erice. Dissecting BitTorrent: Five Monthes in a Torrent’s Lifetime.

15. Libtorrent. Retrieved from http://www.rasterbar.com/products/libtorrent/ on March
17, 2011.

16. Deluge. Retrieved from http://www.deluge.com. on March 16, 2011.

7. A. Fettig. Twisted Network Programming Essentials. O’Reilly, October 2005.

8. Feldman, M., Lai, K. Stoica, Ion. Chuang, John. Robust Incentive Techniques for Peer-
to-Peer Networks. EC’04, May 17-20, 2004, New York, USA.

9. The Internet Engineering Task Force Request for Comments 5694. Retrieved from
http://tools.ietf.org/search/rfc5694 on February 23, 2011.

12. Isdal, Tomas. Using BitTorrent for Measuring End-To-End Internet Path Characters.
Trita-CSC-E 2006:148, ISSN-1653-5715, 2006.

13. Jiajun Wang, Chuohao Yeo, Vinod Prabhakaran, and Kanna Ramchandran. “On the
role of helpers in peer-to-peer file download systems: design, analysis and simulation.” In
IPTPS, 2007.

14. M. Sirivianos, J. H. P. X. Yang, and S. Jarecki. “Dandelio: Cooperative Content
Distribution with Robust Incentives.” In USENIX, 2007.

15. Jeffrey Shneidman and David C. Parkes. “Rationality and Self-Interest in Peer to Peer
Networks. “ In IPTPS, 2003.

17. L.Cherkasova and J.Lee, “FastReplica: Efficient Large File Distribution within
Content Delivery Networks (USITS 2003)”, In Proceedings of the 4th USENIX
Symposium on Internet Technologies and Systems, March 2003.

18. M. Sirivianos, J. H. Park, X. Yang and S. Jarecki. “Dandelion: Cooperative Content
Distribution with Robust Incentive. “. In USENIX, 2007.

 65

19. Kaune, S.; Tyson, G.; Pussep, K.; Mauthe, A.; Steinmetz, R.; “The Seeder Promotion
Problem: Measurements, Analysis and Solution Space”. ICCCN, 2010 Proceedings of
19th Internaiontla on Digital Object Identifier.

20. Deluge Software. http://www.deluge.com.

	Improving Performance of BitTorrent Network through Incentive Mechanism
	Recommended Citation

	/var/tmp/StampPDF/PrOMO9zwR_/tmp.1308673783.pdf.N0OsW

