San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Summer 2011

Improving Performance of BitTorrent Network
through Incentive Mechanism

Mingzhe Li
San Jose State University

Follow this and additional works at: http://scholarworks.sjsu.edu/etd projects
b Part of the OS and Networks Commons

Recommended Citation

Li, Mingzhe, "Improving Performance of BitTorrent Network through Incentive Mechanism" (2011). Master’s Projects. 188.
http://scholarworks.sjsu.edu/etd_projects/188

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact

scholarworks@sjsu.edu.

http://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sjsu.edu/etd_projects/188?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Improving Performance of BitTorrent Network through

Incentive Mechanism

A Writing Project
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Mingzhe Li
Spring 2011

Copyrightd 2011
Mingzhe Li

All Rights Reserved

Vi

Abstract

Content Distribution via Internet has become iasnegly popular right now.
Compared with centralized file distribution systesing FTP and HTTP protocols, P2P
(Peer to Peer) is more cost-effective. Furthermidreguld help save on bandwidth costs
and to handle pick demands. Among many P2P pratp8iiTorrent is one of the most
popular protocols right now. The BitTorrent netwankes tit-for-tat as a method of
seeking Pareto efficiency. However, seeders wharibore more to BitTorrent network
than leechers are not incentivized to stay onlind apload to others. This paper
discusses an incentive mechanism which rewardsese&atho stays in a BitTorrent
network and uploads to other peers, with betterrdoad speed in its further download
process. Experimental results with the incentivelmaism and an analysis of the result

are also discussed in this paper.

vii

Acknowledgements

| thank my advisor, Dr. Robert Chun, whose suppod dedication guide me
finish the writing project. Dr. Chun is always theto listen and to give technical and
editorial advice. | also thank him for giving mestireedom to choose my own research
topics.

A very special thank to my committee member, DradXBu, who gives me the
access to PlanetLab. | also like to thank Dr. TL¥h for participation as my thesis
member and a role for me being lively, enthusiastntl energetic.

It has been a challenging, yet rewarding journeyiclwvhl could not have
completed alone and am grateful for your support.

Thank you.

viii

Table of Contents

1.0 Introduction
1.1 The case for Peer-To-Peer
1.2 BitTorrent Introduction
1.3 Problem and Solution

2.0 BitTorrent Background

2.1 Overview of Piece Selection Mechanism

2.2 Rarest Piece First

2.3 Random Piece First

2.4 End Game

2.5 Pipelining

2.6 Strict Priority

2.7 Seeder’s Peer Selection
2.8 Tit-forTat

2.9 Optimistic Unchoke
2.10 Anti-Snubbing

3.0 Related Work
3.1 Dandelion
3.2 Team Incentives
3.3 Buddy Incentives
3.4 Multitorrent Solution

4.0 New Incentive Mechanism
4.1 Problem with BitTorrent
4.2 Design
4.3 Deluge
4.4 Counter
4.5 Server
4.6 Client
4.7 Usuage

5.0 Software Tools, Development Kits Used

AWER R

16
16
17
18
20
20
22
24

24

6.0 Experimental Results
6.1 Experiment Design
6.2.1 Experiment 1
6.2.2 Experiment 2
6.2.3 Experiment 3
6.2.4 Experiment 4
6.3 Verification Experiment
6.4 Security

7.0 Conclusion
8.0 Future Work

Appendices
Appendix A. Source Code

References

25
25
25
29
33
36
39
40

41

42

43

75

List of Tables

Table 1. Experiments In ThiS SECLION.o eerrerrrureiiiiieiiiiiriieiieiieneneeeee e 25
Table 2. G1T1 Nodes' OnliNe TIME.uu et eeeenn e e e 26
Table 3. G1T2 Nodes' ONliNe TIME.uu et e et eeeenn e e 27
Table 4. G1T3 Nodes' ONliNE TIME.........uu et e e eeeeen e e e 28
Table 5. G2T1 Nodes' ONlINE TIME. e e e e 29
Table 6. G2T2 NOdes' ONlINE TIME. e 30
Table 7. G2T3 NOdes' ONlINE TIME.u. e e e 32
Table 8. G3T1 Nodes' ONlINE TIME. e e 33
Table 9. G3T2 Nodes' ONliNE TIME.uu et eenn e e e 34
Table 10. G3T3 NOdes' ONIINE TIME e ee et e e ee et e e e e e eeennna e 35
Table 11. Verification Test Nodes' Online TiMEu.......ccooiviiiiiiiiiiieeeeee e, 40

Xi

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.

List of Figures

Centralized File Distribution SYStem........coooeviiiiiiiiie e 1
File Distribution System with Peer-to-Pee.........cccccvvvvviiiiiiiiiiiiiiiiiiieieeee, 2
BitTorrent DOWNIOAd PrOCESS. ... eeieeiiiiiiiieiei ettt 5
Mechanism to Select PIeCe. ... 6
Schema of Non-Pipelined Connection V&IRipd Connection...........c.ccc........ 9
Dandelion SYSEEIM..........ooii i s e s nsnenennnene 13
TEAM FOIMALION. ...eiiiiiiiiiiiteeeeemr et e e e e e e 14
Buddy FOrMatioN.coeoeeiee e e e 15
Volume Uploaded by Seeds and Leechers.........cccooovvvvviviiin e 17
Deluge and LibtOrment. e 19
Structure Of Deluge COre.coaemeeuieiiiiiiiiiiiiiiiii it mnemne e eeeeee e 20
Pseudo Code of Server CoOmMPONENTt o, 22
ClENT STIUCTUIE. ... eeeeee e e e 23
FUNCLION Graph.ccooiiiiiiiiiieeeeees s 24
Download Completion Time of Nodes' inTGL.........ccooeviiiiiieiieiiineeieeeeeeeen, 26
Download Completion Time of Nodes' inT@L.........cccoeviiiiiiiiiiiiiieieeeeeeeeen, 27
Download Completion Time of Nodes' inTGL........cccoooiiiiiiiiieiieeeeeeeeeeeeen 28
Download Completion Time of Nodes' inT&2.cccooeeeeiieneieeeeeeeeeeeeeeen 30
Download Completion Time of Nodes' inT@2ccccooeiiiiiiiiiiieieeeeeeen 31
Download Completion Time of Nodes' inTB2cccoovvviiiiiiiiiiiiieeeeeeeee, 32
Download Completion Time of Nodes' inT&3cccoovvviiiiiiiiiiireeeeee e, 34
Download Completion Time of Nodes' inT@3........cccooeviiiiiiiiiiiiiiiieeeeeeeeenn 35
Download Completion Time of Nodes' inTB3........cccooeviiiiiiiiiiiiiiiieeeeeeeeen, 36
Download Completion Time of Nodes' inTG4.ccoooeeieiiieieeeieeeeeeee e, 37
Download Completion Time of Nodes' inT@4ccoooiiiiiiieieieeeeeeeee, 38
Download Completion Time of Nodes' inTB4, 39
Download Completion time of Nodes iniffeationcccccccviinninnnnns 40

Xii

1.0 Introduction
This section argues the advantages of P2P netaratkgives brief introductions
of BitTorrent protocol. The problem with regulartBorrent network and the solution to

this problem are discussed in section 1.3.

1.1 The Case for Peer-To-Peer

Peer-to-peer network is a system with elementshibtt provide services to and
request services from other elements. There areugrareas which Peer-to-peer
architecture could work better than other architesd. For example, content distribution
system that uses client-server model always netedsgscentral servers and enormous
bandwidth to ensure client's download speed. itatsd in Figure 1, the burden on the
server will increase with the number of clientsdese the server is sending one copy to

each client.

e

Figure 1: Centralized File Distribution System.

Figure source: (bittorrent.org 2006)

In contrary with centralized file distribution sgst, P2P(Peer-toPeer) file
distribution system enables the network to incraadefinitely without investing costly
central resource because of extra processing pameebandwidth brought by new users
to the network. It enables nodes to download ressufrom others and upload resources

to others simultaneously, illustrated in figure2.

Figure 2: File Distribution System with Peer-to-Pee
Another advantage of P2P is robustness of the mktvi traditional centralized
file distribution system, if one component of therer fails, the whole network will
collapse. However, in P2P file distribution systéncomponents of nodes fail, the whole

network is still robust.

1.2 BitTorrent Introduction
BitTorrent is a peer-to-peer file sharing protoaded for distributing large

amount of data. It is one of most commonly usedquas for transferring large files,

and it has been estimated that it accounted for 8B¥%5% of all Internet traffic as of
February 2009[1]. One major advantage of BitTorgnotocol is distributing large files
without adding heavy load on the source computdrraatwork.

The basic idea of BitTorrent is to divide the fildo equal-sized blocks and have
nodes download blocks from multiple peers conculyef2]. Nodes in BitTorrent
network are either seeder or leecher. A seedersrédea client that uploads to its peers
after it has completed its download. A leecher isliant that has not completed its
download [2]. In order to establish connectionsMeein nodes in BitTorrent network,
tracker, a central server of BitTorrent networkt tkeeps record of nodes currently in the
system, is necessary. An example is given to Briefiroduce the complete download
process in BitTorrent network. Assumed there are s#eder and three leechers in this
example. A BitTorrent client AAA wants to share aval named “Gone with the Wind”
of 2 Megabyte. AAA first needs to create a .torréilg which contains metadata
(assuming AAA set the piece size to be 512 KB) le# file and the tracker to use.
Secondly, AAA could upload the torrent file to abfioc domain site which enables for
others to download the torrent file. Another Bitfiemt client BBB, who is interested in
the novel, needs to obtain the .torrent file crédiy AAA from that public domain site.
After BBB gets the torrent file and run on its Bitfent client, information in the .torrent
file will help establish connection between AAA aB8B, illustrated in Figure 3. Once
the connection between AAA and BBB is establisi&8IB could start download piecel
to piece4 from AAA. Suppose another client CCC bedb download “Gone with the
Wind” after BBB finishes downloading piecel. Sink&A and BBB both have piecel of

that novel at this moment, CCC could download gigcem BBB and get piece 2, 3 and

4 from AAA. When new user DDD comes to the netwddD could connect with
AAA, BBB and CCC. Because AAA, BBB and CCC all hayeces of the novel, DDD
could download four pieces from 3 different nodks.this way, the seeder AAA’s
network and performance will not decrease as dtrekthe increasing number of users.
If more users join the network, the download cortipfetime will decrease significantly.
Compared to traditional Internet hosting, BitTotremetwork reduces great burden

imposed on the original distributor's hardware aaddwidth.

The
Data

Content]
A web pé%e links tof
o the torrent
divids ingh pieces o

The Tracker

creates 4.10rrem file Original
{ Content
Provider

torrent
Metainfo
File

An End User Peer

Figure 3: BitTorrent Download Process. Source [3]

1.3 Problem and Solution

In contrast with traditional file distribution tesigues’ enduring availability, a
source for the file shared in a BitTorrent netw@lgenerally temporary and therefore
harder to trace. To illustrate the problem, letmsider the previous section’s example.
Assuming BBB is the only seeder who completed doadling the novel “Gone with the

wind”. If AAA is not in the network anymore and BB&Xits the network right after it

finishes downloading, other clients will have nbestchoice but to wait for BBB'’s return
to the network to finish downloading. This is orfecballenges of BitTorrent network.
Because of lacking incentives for seeders to uplesburces for others, BitTorrent
seeders choose to exit the network right after fimesh downloading.

To enable leechers in BitTorrent network compketitownload process, seeders
need to stay online and share resources. If thezenwre seeders available in the
network, leecher’s download completion time will decreased significantly. In order to
solve this problem, we propose to add an incemtigehanism for seeders. Not only will
the incentive mechanism incentivize seeder to stdine, but it will also increase the
performance of the whole network. This paper disesshe design, implementation of
the incentive mechanism. Furthermore, we conduetgetriments on PlanetLab to test

performance of the incentive mechanism.

2.0 BitTorrent Background

This section describes known algorithms for Bit€at system to work
efficiently. A description of piece selection menlsam, peer selection mechanism, and
pipelining is presented. Moreover, two limitation§ current BitTorrent system are

discussed at the end of this section.

2.1 Overview of Piece Selection Mechanism
BitTorrent protocol transfers files piece by piedeifferent from traditional
network protocols which download files from startend, BitTorrent first allocates space

for a download process and then gets pieces frarmspeAn inefficient piece selection

mechanism can lead to low performance of the wBai€orrent network. For example,
if a leecher is not interested in pieces its asdedinodes have to offer, this leecher could
stop uploading any piece to its associated nodawnost of the nodes in a BitTorrent
network stop uploading any piece to others, thelevim@twork will collapse. So, an
efficient piece selection mechanism not only helpes system work properly but also
enables it to reach its optimal performance.

In a download process of BitTorrent natiy there are three different stages.
BitTorrent implies three separate algorithms insthetages. These three algorithms are

illustrated in Figure 4.

8 ®
2 2
o 1
c Rarest Piece First o
(=] ©
=) (18
c c
o L
o
- time
= w9
B T O Do B
cg o9 2y =23
s 89 as £5
25 86 85 3°
=l - GJ —_ o
D‘_CI E Q
© <5

Figure 4: Mechanism to Select Piece

2.2 Rarest Piece First

Rarest piece is the least amount of copies ofparécular piece in a swarm of
nodes [3]. Nodes in a downloading process storab# tcontaining a list of pieces
existing in the swarm and the number of each pidtth the rarest piece first algorithm,

the next piece for a peer to download is alwaysréinest missing piece. In some cases,

there will be more than one piece which is thestapece. If this happens, a random
piece for those will be selected by the peer tordoad.
Advantages of rarest piece first algoriture:
1. Each peer always has piece that its associated peert to download.
2. Increase the possibility of finishing downloadindl gieces by starting
downloading the rarest piece first. Furthermoreniy one seeder is available for

system, this algorithm is necessary for downloadmetion.

2.3 Random Piece First

When a new peer starts a download prod@esisould get pieces as soon as possible
in order to reciprocate for others. As to get psetaster, peers should randomly select
pieces to download. Compared with rarest first @ietgorithm, random piece first
algorithm that downloads from more than one peehatsame time is more likely to
download faster. After it has downloaded | piedeis(a constant which is different in
different BitTorrent client implementations), it Wistop using the random piece first

algorithm and start to apply the rarest firsttsigg.

2.4 End Game

Sometimes a peer will download a piece at a Vany download rate. If this
happens in the middle of a download process, dtsanproblem. However, if it happens
at the end of a download process, it will delay pinecess of finishing downloading.
BitTorrent prevents this condition by applying eyaime piece selection algorithm. This

algorithm is applied once a peer has requesteq gvece of the file. In that situation, the

peer will send requests for all sub pieces whiah rarssing to all its peers who have
those corresponding sub pieces. If a sub piecevwslbaded in the end game phase, the
peer sends “cancel’” messages to its associated pbat have the corresponding
appending requests. In this way, bandwidth couldadwed from redundant sends.
Advantages of end game algorithm are:
1. Downloading the end of the file at a faster rate

2. The possibility of finishing a download processisreased

2.5 Pipelining

Normally, HTTP requests are issued sequentialiyh whe next request being
issued only after the response to previous reqimests been received. Depending on the
network latencies and bandwidth limitations, thas cesult in significant delay before the
next request is seen by the server[2]. Pipelinimgbotes HTTP requests to be written out

to a single socket without waiting for the corresgiag responses, illustrated in Figure 5.

no pipelining pipelining
client server client server
QP& = BpEn -
- L
o
-
- it
5 5’ |
- m close=s
= T
-
close=
L] L

Figure 5: Schema of Non-Pipelined Connection V&kipd Connection

BitTorrent which depends on TCP enalidesmhechanism of Pipelining. In order to
maximize the advantage of pipelining, BitTorrenttprcol breaks down pieces into sub
pieces the size of which is from 32KB to 1MB. Irder to decrease the latency between
pieces in a BitTorrent download process, a peeaydvhas five requests pending at one
time. In this way, the peer could send out fiveuesis for sub pieces simultaneously.
Furthermore, in a good network environment, allefisub pieces will be returned
sequentially. With pipelining, BitTorrent helps pgelecrease download completion time

significantly.

2.6 Strict Priority

Different from the previous three algonits which are used at separate phases,
strict priority is used from the beginning of a ddwad process to its end. BitTorrent
applies the strict priority policy for sub piecelession. As we have explained in the
pipelining, when BitTorrent protocol transfers meoover the network, it breaks pieces
into sub pieces. Strict Priority is that once a pigre of a piece has been requested, the
remaining sub pieces of that piece will be reque$tefore sub-pieces from any other
piece [2]. With this mechanism, a peer could alwggsthe copy of a piece as soon as
possible. Furthermore, it's the crucial algorithrhigh enables rarest piece first, random
piece first and end game piece selection workifigieftly to finish downloading.
2.7 Seeder’s Peer Selection

Different from peers who upload to andvdtbad from others, who only upload
content to others apply different peer selectiogodihms. Generally, seeds try to

distribute data uniformly to peers, so they imgig tlgorithm in a round-robin manner.

2.8 Tit-for-Tat

In BitTorrent protocol, peers downloacdorr whom they can, and upload
simultaneously to a constant number of peers. Becaf TCP congestion control
behavior which prevent sending data over too mamnections at the same time, a peer
only uploads to a limited number of associated sodéus, peers need to select peers
from a swarm of peers to upload to. In BitTorreghts behavior is named unchoke. The
default number of peers to unchoke is four. A peakes the decision regarding whom to
unchoke and whom to choke every 10 seconds. Sauemeer needs to follow the choke
algorithm, an efficient choking algorithm will infénce the performance of the whole
system.

BitTorrent incorporates a tit-for-tat(TFpeer selection mechanism which nodes
preferentially upload to peers from whom they apée ao download at a fast rate in
return[2]. Although seeds don’t download anythitigey follow the same algorithm
policy which enables them to upload to up to 5 ottt have the highest download
rate.

Advantages of this mechanism are:

1. Motivate peers to contribute to the network.

2. Utilize all available bandwidth of the system.

2.9 Optimistic Unchoke
Tit-for-Tat works well in the middle of downloadingut, when a peer starts to
download, it doesn’t have anything to upload toeath Based on the Tit-for-Tat

algorithm, the new peer will never be unchoked.omler to avoid this problem,

10

optimistic unchoke mechanism is applied in BitTatrgrotocol to work together with tit-
for-tat algorithm. Optimistic unchoke mechanism Idoboost a new peer who does not
have any piece of content. This mechanism choogseanthoke a peer randomly
regardless of its current upload rate. It is amgplevery optimistic unchoke period
(typically 30 seconds). Optimistic unchoke mechamnis to unchoke one connection,
while tit-for-tat is to unchoke the resulting 4 cactions. With the optimistic unchoke
algorithm, new peers joining the BitTorrent netwaruld get resources as soon as

possible.

2.10 Anti-Snubbing

In BitTorrent, one important rule is that total widoad speed should be
approximately equal to the total upload speed.e&aah peer should be encouraged to
contribute to the system and get the same amourgtuin. However, there are some
peers who only download resources from others. fewvgmt this problem, BitTorrent
implies the anti-snubbing mechanism.

If a peer has not received anything feospecific peer for a certain amount of time
(typically 60 seconds), it will mark the particulpeer’'s connection as snubbed. In this
case, the peer will continue to get poor downlopded until the optimistic unchoke

mechanism finds better peers.

11

3.0 Related Work
This section describes known solutionssblve seeder promotion problem. A
description of single torrent incentive mechanismd anulti-torrent incentive mechanism

is presented.

3.1 Dandelion
Dandelion is a system which provides sibiprovably non-manipulable)

incentives for nodes to upload to others in a paittent distribution system [18]. Based
on Dandelion, a client who honestly uploads toagsociated peers is rewarded with
credit, which is a kind of monetary reward. A ctighat does not upload or uploads
garbage to its peers cannot claim credit. A clantnot download resources from selfish
(rational) peers without the client being charged ¢he peers rewarded. Based on the
Dandelion system, peers are incentivized to uptoaits peers even if they do not have

content that interests the client. Figure 6 shdwesDandelion system:

) V)
e R
‘e_j;"‘“———-_ 4 6
[¥
Client A |_| i3 / Client B

Dandelion Server

Figure 6: Dandelion System

12

In Figure 6, the numbers on the arromsesponds to the download process of
Dandelion system. Message in each arrow is show:
1. Request for content from server
2. Send Back a list of peers and tickets
3. Chunk Announcements
4. Request for chunk
5. Encrypted chunk, encrypted key and commitment
6. Request for decryption key
7. Decryption key
Each client’s credit is managed by ttend@elion server. Also, each client has

a shared symmetric key with the server. In this wig system could prevent known

attacks such as Sybil attack.

3.2 Team Incentives

Although Dandelion could incentivize pedo upload resources to others, it
sacrifices the scalability of P2P system. Team-Bobkd BitTorrent protocol enables
peers with similar upload bandwidth to form a teaimnch will collaborate for mutual

benefit. Figure 7 shows the steps for team formatio

13

=] I

leecher P, 4
willing to join a team 3 ™

- sends a join-team message to the tracker.

1P
= 2. The tracker responds with team identifier and list of team members.
3P
4.5
6.T

tracker

w

sends a join-announcement toits teammembers.
. Team members verify with the tracker that P belongs to their team.
eam members add P to their team.

leecher Q,
member of a team

Figure 7: Team Formation

Based on team-enhanced protocol, thé not@ber of optimistic unchoke will be
reduced. Furthermore, In a team of symmetric pesash one will make its prioirity to
serve other team members as a replacement to timisijt unchokes. In this way, a

peer will get improved download rates comparedeiodpindependent.

3.3 Buddy Incentives

Team incentive mechanism could improve plerformance of BitTorrent, but it
requires revisions to the tracker of a BitTorrgratem. Buddy incentives which adopt the
similar idea as team incentive does not requiresi@vs to the central tracker. The notion
of buddy means pairs of peers having similar uploapiacity, collaborating for mutual
benefit. Buddy incentives could significantly reduthe number of optimistic unchokes
which may force high capacity node to work with loapacity node. Figure 8 illustrates

the formation of buddy incentive:

14

_'J ~ (3" Q,P's potential buddy

e
P (1 Buddy Request-‘\
P looks for /5\'
a potential \Gr
buddy ative Buddy Response eeds m

wdles‘?

No -

Negative Buddy Response Y

es

|s a
potentla
- 2
/;\ uddy
Add Qto__/
the buddy |-¢——Positive Buddy Re's.ponse_v:95
list

Add P to the
buddy list

Figure 8: Buddy Formation

In Buddy incentives, a leecher P idliagl to maximize the number of buddies
that have a similar upload rate as itself. Leedheeserves an unchoked slot for each
buddy to which it can upload data to in order tmimize buddy chokes, which can lead
to the termination of buddy relations. Based on lbedy incentives, peers will save
bandwidth previously used for optimistic unchoke tteeir buddies. In this way, peer’s

download completion time will be decreased.

3.4 Multitorrent Solution
Most BT studies focus on single torreptution, while measurements in [19]
suggest that 85% of users participate in multiptesnts. In [19], it proposes a solution to

solve the seeder promotion problem in a multitdremvironment. Multitorrent means

15

that a node participating as a leecher in a pdatidorrent is willing to serve as a seed in
a torrent in which it has participated some timdiexain its lifetime. In [19], when node
chooses peers to unchoke, it will base its choige total contribution of each peer.
Contribution of each peer is computed in formula PL(x,Y) is the downloading rate of

nodeNy from NodeN, andw;(y) is the weight we assign to that downloading rHta,

is not a seeder in torrent I, than(y) = 1, otherwisew;(y) can be set to a value that is
larger than one. Based on the formula, the noddadtseeding files in one torrent file will

get more contributions which are computed in thenfda. Based on the multitorrent
solution, more contributions mean more bandwidth. seeder could be incentivized to

stay online and upload to others.

prorrents w (y) * Di(x,y) (1)

4.0 New Incentive Mechanism
This section discusses a new incentive mechanismechwaims to incentivize
seeders stay in the network and upload to otherspe® description of design,

implementation of the other incentive mechanisnmésented.

4.1 A Problem with BitTorrent

BitTorrent protocol strives to ensuggriiess: peers who contribute data to the
system should be able to achieve high downloadutiirput. However, fairness itself is
not enough to enable the BitTorrent system to lyebest system performance. There are

always some peers who contribute more data toyters than others.

16

One major incentive mechanism for leesherupload to other peers is tit-for-tat
incentive mechanism which facilitates the contimudiscovery of better peers. However,
the TFT peer selection mechanism could not incegigeeders uploading to others.
Although the number of seeders is far less thahdh&echers in a BitTorrent, a large
proportion of upload bandwidth is from seedersisiitated in Figure 9. Because of the
seeder promotion problem, a massive proportion asfebhts (about 40%) achieve
extremely low performance with few users being dabldownload the file successfully.
Furthermore, if more seeders are willing to upldadother peers, mean download
completion time of nodes will decrease significenth order to incentivize more seeds

to stay online after they finish downloading, wemrse an incentive mechanism for

seeders.
4 — T T 77— T 7T
5813 Uploadad by SEEDS
2 de+13 | Uploadzd by LEECHERS ——— 1
Z 35e413 | o
§ Je+1d ,.j-
S 28es13} /__/-’
o 28413})
£ q5es13} [
5 f —
E 1e+13 | L
S I
o Ses12 | [
31/03 01/05 01/06 01/0F7 O01/08 041/09
Time
Figure 9: Volume Uploaded by Seeders and Leechers
4.2 Design

The purpose of the incentive mechanisrthis paper is to incentivize seeder stay
longer in the BitTorrent network. The incentive k®to ensure seeders who stay longer
than others in the BitTorrent network have bettewwload speed than others when it

joins another download process in the future asegher. Download bandwidth of a

17

leecher is the sum of all its associated peersdagpbandwidth, so redistributions of its

associated peers’ upload bandwidth could managdetreher’'s download bandwidth.

The mechanism consists of three components:

1.

Counter component: if a seeder stays in BitTorrettvork and uploads to other
peers, the counter component will compue a valughe seeder based on the
number of seeding files and number of minutes uptaafor others.

Client component: it establishes TCP channels wailthassociated peers in the
same download process and gets each one’s valuenedt from server
component. Finally, it will rearrange upload spéadeach associated peer based
on the value returned from each client.

Server component: it binds to the port 59500 andswar future requests from
associated peers’ client component. When new réguesges, the server will get

the value computed by counter component and sévatk to requested client.

4.3 Deluge

Deluge [20] is a BitTorrent client selected tottéise incentive mechanism.

Advantages of deluge over other BitTorrent clieares

1.

It is a lightweight, cross-platform BitTorrent alie which makes its portable from
one platform to another.

Deluge and its dependent library libtorrent[5] aleopen source which is able for
us to change the source code.

Most functionalities of deluge are achieved by piggAlso, it provides complete

documentation for API of deluge.

18

One crucial part of the incentive meckaniis to manage each peer’'s upload
speed. However, in the latest deluge client, thattion doesn’t exist. In order to add a
new function to the Deluge client, we need to bailiar with the structure of Deluge,
illustrated in Figure 10. As explained in the formsection, deluge depends on libtorrent
to implement the BitTorrent protocol. Since libemt has the function to limit peer’s
download and upload speed, we only need to maksioes to source code of Deluge
client. In the Deluge client, there are three congmis: core, Ul and plug-in. In this
paper, we only make revision to the core sectioDelluge client. Structure of the core
section is illustrated in Figure 11. Torrent.py amatrentmanager.py contains functions
to limit speed of torrent. So, we add the functiodimit upload speed of peers in these

two files.

Deluge

Core ul Plugin

Libtorrent Library

0s

Figure 10: Deluge and Libtorrent

19

I core,

2 |7 altermanager. p¥

—= autoadd. py¥

i |== core. py

= |7 daemon. py

—= ewventmanager. py

T |7 filtermanager. py
-— _init__.pw

—— oldstateunpgrader. py
—= pluginmanager. py¥

-- preferencemanager. py
I |== rpeoserver. py¥

—= torrent. py

i |7 torrentmanager. py

Figure 11: Structure of Deluge Core

4.4 Counter

The counter component works to countritmaber of seconds a seeder has stayed
in BitTorrent network. Generally, one seeder mayséeding multiple files to others. In
order to provide fairness for those seeders wheeeding more than one file in the local
machine, the counter component will not only cailnet number of seconds it has stayed
in BitTorrent network but also the number of segdiiles on the local machine. The
formula used in the counter component,js= ((F-1) * 0.1 + 1) * S. Parameters used in
this formula are: F: the number of files seedingadocal machine. S is the number of
seconds local node has stayed online. The régufepresents the contributions of local
node. The more contributions one node has, the anelwidth it will get in its next

download process.

4.5 Server
A node’s server component works to process reguisi associated peers’
client components. It binds to the port number @@). Once a new request arrives, the

server will get the contribution computed from ctarncomponent and send that

20

information back to that peer. Pseudo Code of ses@mponent is illustrated in Figure

12.

1def on_connect_success(result):

2 def on_get_config(result):

3 usertime = result

4 client.myplugin.get_config().addCallback(ont gmnfig)
5

6def on_connect_fail(result):

7 print "Connection failed!"

8
10def bind(dict):
11 finalstr ="

12 finalstr = finalstr +'total_time'+ str(di¢tjtal_time']) + 'user_name' + dict['user_name/]
13 return finalstr

14

15class EchoProtocol(basic.LineReceiver):

16 d = client.connect()

17 d.addCallback(on_connect_success)

18 d.addErrback(on_connect_fail)

20 def lineReceived(self, line):

21 timestr = bind(usertime)

22 if line =="quit":

23 self.sendLine(timestr)

24 else:

25 self.sendLine("You said: " + line)
26

28class EchoServerFactory(protocol.ServerFactory):

29 protocol = EchoProtocol

21

30

3lif _name__ =="_main__"

32 host = "localhost"

33 reactor.listenTCP(port, EchoServerFactory())

34 reactor.run()

Figure 12: Pseudo-Code of Server Component

4.6 Client
The client component is the crucial gErthe incentive mechanism. It computes
and sets the upload bandwidth for every associe¢e. @ here are 3 steps in the client ,
illustrated in Figure 13.
1. When a new download process starts, the client cosmgt will get the list of
associated peers via BitTorrent protocol.
2. With associated peers’ IP addresses and port nus8%€0, the client establishes
TCP channels with each of its associated peers.
3. After the client gets each associated peer’'s dautions, the client will first
convert each peer’s contribution to its correspogdipload bandwidth. Then, the

client will set the upload bandwidth for each one.

22

Get peers' IP New tcp channels to Marlage each
addresses through get peer's online peer's download

BitTorrent portocol time and username speed based on
it's online time

> Time

TCP
Download channels Start
Starts start to be Manage
established Speed

Figure 13: Client Structure
In order to mange download speed of aasamt peers, it's necessary to use an
algorithm which could provide fairness for all pgein this paper, the algorithm consists
of two formulas (Parameters used in these two ftasmare: N represents peers in the
same download process, L represents the uploadwidthdper torrent,T,, represents

each peer’s contribution returned from correspogderver.
1
Yo=(@1+)™ @

=L 3)

Y Yy +Ys.. 4T,

Our Incentive mechanism highly dependsooline time which means long time
users who prefer to seeding files to others witlfggh contribution value. However, for
newcomers to the incentive mechanism, their comfiobs will be very low. In order to
prevent the local node from distributing too muemdwidth for long time users, we use
the first formula the value of which is betweennt @, illustrated in Figure 14. Based on
this graph, newcomer to the network will not beesely punished. Furthermore, nodes

who stayed longer in the network will be rewarded.

23

Figure 14: Function Graph

4.7 Usage
In this paper, we test the incentive mechanismPtametLab. Steps to run the
incentive mechanism:
1. Execute the incentive server component:
zack@ubuntu:~$thon server.py
2. Execute the incentive client component:
zack@ubuntu:~$ython client.py
3. Execute the incentive client component:

zack@ubuntu:~$ython counter.py

5.0 Software Tools, Development Kits Used
Deluge 1.3.0 is selected to test the incentivehraeism. All components of the
mechanism were developed using Python 2.7 and @avis¢twork engine. IDE used for

this paper is Eclipse with PyDev plug-in.

24

6.0 Experimental Results
In this section, we conducted five groopgxperiments to validate the property of

our incentive mechanism and explained their resaltetail.

6.1 Experiment Design

In order to evaluate the performance tloé incentive mechanism, several
experiments are conducted on PlanetLab [3]. In laab, we simulate a BitTorrent
network of 20 nodes which are from 20 differenesitOn each node, we install the
Deluge software and all its dependent librariesur@er script and Client script are
running on each node’s crontab. Server scriptmging in the OS’s background. Those
five experiments are distinguished by whether setbnodes have incentives installed or
not. Those five groups of experiments are showrnaliie 1. Y means the incentive

mechanism is installed on that node. N means tteniive mechanism is not installed on

that node.
Seeder Leecher
Experiment One Y Y
Experiment Two Y N
Experiment Three N Y
Experiment Four N N
Verification Experiment Y Y

Table 1: Experiments in this section

6.2.1 Experiment 1:
In this experiment, both leechers andleseehave incentive mechanism installed.
We conducted three different test cases:

1. One seeder and 19 leechers.

25

In order to prevent hogging limited netlwdandwidth of nodes in PlanetLab, we
set each node’s upload bandwidth per torrent t&KB@& and download bandwidth per
torrent to 200KB/s. Each node’s online time in Bitfent network is illustrated in Table

2.

Node 2131415167189 110|11|12|13|14]15]16|17|18|19]20

Number

Online 1121314|5|6]|7|8]9 |10]11|12|13|14|15|16|17|18]| 19
Time(day)

Table 2: G1T1 Node Online Time

Download completion time of all leechés illustrated in Figure 15. Since only
one seeder is available in the whole BitTorrentvoek, the upload bandwidth set by the
seeder doesn’t have much influence on others. I8 dbwnload completion time of
every node is approximately the same except Nodarid7 Node 19. Compared with
other nodes in the BitTorrent network, Node 17 Biodle 19 have much slower network
bandwidth. So their download completion time is mimnger than others. In summary,
incentive mechanism does not have much influenceasch node’s download completion
time. The revised BitTorrent network with one seederks almost the same as regular

BitTorrent network.

26

600

“eveerosrereesd VA

w

S 400

c

3

o 300

K2 —@—1 Seeder
[¢D)

e 200

|_

-c% 100

o

S

O 0 T T T T T T T T T T T T T T T T T T T 1
()]

1234567 8 91011121314151617181920

Figure 15: Download completion time of Nodes in G1T

2. Two seeders and 18 leechers.
Each node’s upload bandwidth per tdrisnset to 100KB/s and download
bandwidth per torrent is set to 200KB/s. Each ned&line time in BitTorrent network is

illustrated in Table 3.

Node 314|5|6|7]18]9]10|11|12|13]|14|15|16(17]|18|19]20

Number

Online 112|13|4|5|6]|7|8 |9 | 10|J11|12|13|14]15|16]|17]|18
Time(day)

Table 3: G1T2 Node Online Time

Figure 16 shows leechers’ download cotigrietime in this test case. Compared
with the previous test case which has one availsédeler, download completion time of
each node decreases significantly. Generally, kErsclwvho contribute more to others

could finish their download faster than others.slimmary, the incentive mechanism

27

works to ensure better download speed for those sténp online longer and contribute

more to others.

700

600
A

400 i

300 w —B—2 Seeders

200

100

O T T T T T T T T T T T T T T T T T T T 1

123456 7 8 91011121314151617181920

Download Time (seconds)

Figure 16: Download Completion Time of Nodes in G1T

3. Three seeders and 17 leechers.
Each node’s upload bandwidth per tdrisnset to 100KB/s and download

bandwidth per torrent is set to 200KB/s. Nodesirmmntime is illustrated in Table 4.

Node 41516]|71819110111|12|13|14]|15|16|17|18|19]20

Number

Online 112|13|4|5]|6|7 |8 |9 10/11]12|13|14|15]16] 17
Time(day)

Table 4: G1T3 Node Online Time

Figure 17 shows leechers’ download cotiguietime in this test case. Comparing
with the test case 2 of this experiment, each rodeivnload completion time decreases.
More importantly, majority of those nodes who cidnite more to others finish their

download faster than others.

28

600

500

400

a0
’_\‘\,v-o*....t/ V \\ o3 Seeders

200

100

Download Time (seconds)

1234567 8 91011121314151617181920

Figure 17: Download Completion Time of Nodes in G1T

In summary, our first experiment provattthe incentive mechanism could help

nodes who contribute more to others get better ttwaghspeed in a BitTorrent network if

there is more than one seeder from the beginnitigeoflownload process. If there is only

one seeder from the beginning of the download m®che performance of the revised

BitTorrent system is almost the same as a regutdioBent system.

6.2.2 Experiment 2:

In this experiment, only seeders haveentive mechanisms installed. Leechers

don't install incentive mechanisms. Leechers withour incentive mechanism will

follow regular BitTorrent TFT incentive uploading tothers. There are also three

different test cases in this experiment:

1. One seeder and 19 leechers.

Each node’s upload bandwidth per torrentset to 100KB/s and download

bandwidth per torrent is set to 200KB/s. Node’ naltime is illustrated in Table 5.

Node 213|14|5]|6|7|8]9]10]11|12|13|14|15(16]|17(18]|19|20

Number

Online 112|13|4|516|7|8]9 |10|11]12]|13|14|15]16|17]|18]19
Time(day)

Table 5: G2T1 Node Online Time

Figure 18 shows leechers’ download cotigietime. Download completion time
of each node is approximately the same. Since omé/node has incentive mechanism
installed and majority of nodes follow regular Bitfent, the upload bandwidth set by
the seeder will not have much effects on everyhees download bandwidth. In
summary, our incentive mechanism almost does rilteince the download completion

time of each node in this test case.

600
500 ﬁ ﬂ fY
4 400
C
o
O
@ 300
Z” —¢—1 Seeder
S 200
|_
2
o 100
c
%
D 0 T T T T T T T T T T T T T T T T T T T 1
123456 7 8 91011121314151617181920

Figure 18: Download Completion Time of Nodes in G2T

3C

2. Two seeders and 18 leechers.
Each node’s upload bandwidth per tdrisnset to 100KB/s and download
bandwidth per torrent is set to 200KB/s. Each neda&line time in BitTorrent network is

illustrated in Table 6.

Node 314|5|6|7|8|9]10(11112|13|14|15|16|17]|18]|19]|20

Number

Online 112|3|4]|5]6|7|8 |9 |10]11|12|13|14|15|16|17]|18
Time(day)

Table 6: G2T2 Node Online Time

Each leecher’s download completion timdlustrated in Figure 19. The result is
similar to the previous test case of this experim8&mce only those two seeders have
incentive installed, majority of the nodes will fmk the regular BitTorrent protocol to
upload to others. The upload bandwidth set by nitywaf nodes in the BitTorrent will
not have many effects on majority of nodes inritsummary, the incentive mechanism
will not influence much on each node’s download ptetion time in this test case. But,
each node’s download completion time in this testecdecreases significantly compared

to the previous test case with one seeder.

600

0 T T T T T T T T T T T T T T T T T T T 1

- 500

%)

2 A
S 400

5]

N 300

) v —9—2 Seeders
S

= 200

I

o 100

c

=

o

@]

1234567 8 91011121314151617181920

Figure 19: Download Completion Time Nodes in G2T2

31

3. Three seeders and 17 leechers.
Each node’s upload bandwidth per tdrisnset to 100KB/s and download
bandwidth per torrent is set to 200KB/s. Node’sirnltime in BitTorrent network is

illustrated in Table 7.

Node 4151671819101 11|12|13|14|15]|16|17]18|19]20

Number

Online 11213141567 |8 |9]10111]112|13|14|15]|16]17
Time(day)

Table 7: G2T3 Node Online Time

Each leecher’'s download completionllissirated in Figure 20. In this graph,
nodes who contribute more to others don’'t get bedtevnload speed, because most
nodes’ download bandwidth will not be influcenceg the upload speed set by three

seeders.

450

400

350 —

300 — —_——

250

200 3 Seeders

150

100

50

Download Time (seconds)

1234567 8 951011121314151617181920

Figure 20: Download Completion Time of Nodes in G2T

32

In summary, if majority of nodes in th&T®rrent network don’t have incentive
mechanism installed, then node who contribute normthers will not be guaranteed to

get better download speed than others.

6.2.3 Experiment 3:
In this experiment, we install the indeatmechanism on leechers but not on
seeders. There are also three different test aases experiment:
1. One seeder and 19 leechers.
Each node’s upload bandwidth per tdrrisnset to 100KB/s and download
bandwidth per torrent is set to 200KB/s. Each neda&line time in BitTorrent network is

illustrated in Table 8.

Node 213|14]|5]6|7]|8]9]10|11|12|13|14]15|16(17|18]19]20

Number

Online 112134516789 |10]11]12|13|14]15]|16|17]|18]19
Time(day)

Table 8: G3T1 Node Online Time

Figure 21 shows leechers’ download cotrguidime in this test case. The result is

similar to the previous two experiments. Each nedwnload completion time in the

revised BitTorrent system is almost the same adnhr@gular BitTorrent system.

33

600

500
g / \

c 400 ARGt

o

(&)

@ 300

Z; —o—1 Seeder
S 200

|_

2

- 100

C

=

o

a

1234567 8 91011121314151617181920

Figure 21: Download Completion Time of Nodes in G3T

2. Two seeders and 18 leechers.
Each node’s upload bandwidth per tdrisnset to 100KB/s and download
bandwidth per torrent is set to 200KB/s. Each neda&line time in BitTorrent network is

illustrated in Table 9.

Node 314|5|6|7]18]9]10|11|12|13]|14|15|16(17]|18|19]20

Number

Online 112|13|4]|5]6|7|8 |9 |10]11|12|13|14|15|16|17]|18
Time(day)

Table 9: G3T2 Node Online Time

Each leecher's download completion tisdlustrated in Figure 22. Compared
with the previous test case in this experiment, dbenload completion time for each
node decreases significantly. Furthermore, nodaisstlay longer and contribute more to

others will get better download speed than others.

34

500

450

400

350

300

250

=li—2 Seeders
200

150

100

50

Download Time (seconds)

123456 7 8 91011121314151617181920

Figure 22: Download Completion Time of Nodes in @3T

3. Three seeders and 17 leechers.
Each node’s upload bandwidth per tdrisnset to 100KB/s and download
bandwidth per torrent is set to to 200KB/s. Eachd®&s online time in BitTorrent

network is illustrated in Table 10.

Node 41516]|718]9|10111]12|13|14]|15(16117]|18|19]20
Number
Online 112|13|4|5]6]7 |8 |9 10[{11]12]13|14]15]|16]| 17
Time(day)

Table 10: G3T3 Node Online Time

Each leecher’'s download completion timellustrated in Figure 23. From the
graph, we could see that some nodes who contribudee to others will finish
downloading faster than others. However, some nadhesalso contribute more to others

don’t get better download speed. The reason isthenetwork situation of each node

varies a lot in PlanetLab and those three seedmtstridute resource evenly. In
experiment 2, all of those test cases almost dbaite influence on each leecher’s
download completion time. But in this experimergngrally, nodes who contribute more
to others will get better download speeds. In Surgmthis experiment shows that the

number of nodes that have incentive mechanisntallied will influence the final result.

500

450

400 e

350 —_——
300 — —

250 ==

3 Seeders
200

150

100

50

Download Time (seconds)

O T T T T T T T T T T T T T T T T T T T 1

123456 7 8 951011121314151617181920

Figure 23: Download Completion Time of Nodes in G3T

6.2.4 Experiment 4:
In this experiment, we run a regular BitEnt test which doesn’t have incentive
mechanisms installed on leerchers nor on seederssoMducted three different test cases:
1. One seeder and 19 leechers.
Each node’s upload bandwidth per tdrisnset to 100KB/s and download

bandwidth per torrent is set to 200KB/s.

3€

Figure 24 shows each leecher’'s downlaamptetion time. In regular Bittorrent
networks, the seeder tries to ensure fairness whezmns to distribute resource evenly to

each client. So, the download completion time tenode is approximately the same.

600

500

400 000000000009

300

—¢—1 Seeder

200

100

Download Time (seconds)

123456 7 8 91011121314151617181920

Figure 24: Download completion time of Nodes in G4T

2. Two seeders and 18 leechers.
Each node’s upload bandwidth per tdrisnset to 100KB/s and download
bandwidth per torrent is set to 200KB/s.
Figure 25 shows leecher’s download cotiietime. In regular BitTorrent, nodes
that have better download bandwidth will compléieit downloading process faster than
others. Compared with the previous test case, eade’s download completion time

decreased significantly.

37

600

- N
400

—~~

)

o

c

o

S \.
;8, 300 -

© =fi—2 Seeders
£

= 200

o

I

o 100

c

=

o

(a)

1234567 8 91011121314151617181920

Figure 25: Download Completion Time of Nodes in G4T

3. Three seeders and 17 leechers.
Each node’s upload bandwidth is set@OKB/s and download bandwidth is set
to 200KB/s.
Figure 26 shows leechers’ download detign time. Compared with the
previous test case which has two seeders, somes’ndonload completion decreased
significantly. However, most nodes’ download contipie time is the same or even

increased a little bit.

38

500

450 ——

400 A

350 ——

300 r = -

250 —

3 Seeders

200
150

100

50

Download Time (seconds)

1234567 8 91011121314151617181920

Figure 26: Download Completion Time of Nodes in G4T

In summary, in regular BitTorrent, moreeders don’'t mean faster download

completion for all nodes.

6.3 Verification Experiment

In all three experiments for revisedTBirent system, online time set for each
node is the same. In order to validate that ithés incentive mechanism instead of any
other factors that help nodes stay online longetr @ontribute more to others getting
better download speeds. In this section, we cordiuto test cases which have reversed

order of online time, illustrated in Table 11.

Node Index 1|12 |13]4]|56|7 |8 9] 1011|12]13

Time 112)|314]|56]7 |8]9]1011]|12]13
Increased(day)
Time 13112]11]10|918|7 |6 |514]| 3] 2] 1
Decreased(day)

Table 11: Verification Test Online Time

Download completion time of each nodéwad test cases are illustrated in Figure
27. From the graph, we could see that the downtoaapletion time of nodes is an
increasing order from left to right in the time o=ased test case. And, the download
completion time of nodes is a decreasing order fieftrto right in the time increased test
case. From this experiment, we could prove thatlbecause of the incentive mechanism,
instead of other factors that make those noded@tager finish downloading process

faster than others.

400

350

300 - — —
N M _

200

—&—Time Decreased

—{li—Regular
150

Time Increased
100

50

Download Time (seconds)

0 T r— T 1+ 1T T 1T 1T T T 1
1 2 3 45 6 7 8 9 1011 12 13

Figure 27: Download Completion time of Nodes in ¥feation Experiment

6.4 Security

In this paper, we mainly focus on thesef§ of incentive mechanisms to regular
BitTorrent networks. There are many security protdewhich may ruin the incentive
mechanism. First, each node who installs the imeemhechanism will create a log.dat
file to store its online time which is vulnerabte malicious attacks. Secondly, the client

component of our incentive mechanism receives uypted data from server. There is a

4C

possibility that some peers may send fake inforomaltiack to the client in order to to get

better download speeds.

7.0 Conclusion

This paper proposes an incentive mechanism toniiviee seeders upload to
others and evaluate the performance of the incentnechanism by comparing the
download completion time in regular BitTorrent netks with three other revised
BitTorrent networks. Experimental results demornsttathat the proposed incentive
mechanism could help those who contributed morethers get better download speed.
Furthermore, if the majority of nodes in a BitTarr@etwork have incentive mechanisms
installed, the download completion time of eachenedll decrease with the increasing
number of seeders. However, in regular BitTorrérg,increasing number of seeders will
not result in the decrease of every node’s downtmadpletion time.

Content in BitTorrent is stored in albdes in the network. The more nodes a
BitTorrent system has, the more available the cdnteit is. The incentive mechanism
which incentivizes seeders to stay longer in thevoek could potentially increase the
available content in the BitTorrent network.

Although the protocol can help thoseovdtay longer in the network get better
download speed, it also has weaknesses. In someiasits, it will increase the overall
download completion time. Most importantly, the entive mechanism needs to be
installed on the majority of nodes in the BitToir@etwork in order to work efficiently.

Only small portions of nodes in a BitTorrent netiwdnave incentive mechanism

41

installed, each node’s download completion timd wat be managed effectively by the

incentive mechanism.

8.0 Future Work

This work opens up many directions for future eesb. One major piece is that
the incentive mechanism couldn’t decrease the dw#wavnload completion time of the
BitTorrent network.

A better algorithm will be able to detéloe size of shared content and the quality
of shared content in one node. If the shared comderery rare in the BitTorrent network,
it should be rewarded more than those staying entint only have very commonly
shared content.

Furthermore, the incentive mechanismdade run third party scripts and make
revisions to the core portion of Deluge. These geamake Deluge very hard to deploy
in different platforms. Improvements for the in&bn of incentive mechanism to be

easily deployed on different platforms are necegssar

42

Appendix A

File: client.py

from deluge.ui.client import client

from deluge.log import setupLogger

from twisted.internet import reactor, defer, pratbc
from twisted.protocols import basic

from collections import defaultdict

from twisted.protocols.basic import LineReceiver
from twisted.internet.protocol import ClientFactory
setupLogger()

#struct of peer_info {{0: {'torrent_id": 'c3dabbft23ce50566eac209e004fe9903e35ea’,

ip": '60.181.114.35328',
'time": 1,
'speed": 2},

global peer_info
global counter

#number of conections establised to all associateds
global connection

#sum of associated peers of all torrent files
global total_peer

#upload bandwidth of local pc

global up_bandwidth

up_bandwidth = 100

port = 59500

total_peer =0

connection = 1

counter =0

peer_info = defaultdict(dict)

Component to get peers in local pc, Two functions:
1. get_torrent_id will get all torrent ids in cuntedeluge client
2. get_peer will get each torrent's associatedspeer
def get_torrent_id():
d = client.connect()
def on_get_id_success(result):
print "Connection in get_torrent_id was ceasful!"
def on_get_config(result):
get_peer(result)
client.core.get_session_state().addCalltmaciget config)
d.addCallback(on_get_id_success)

def on_get _id_fail(result):
print "Connection in on_get_id_fail failéd!
print "result:", result

We add the callback (in this case it's ahaak, for error)
d.addErrback(on_get_id_fail)

43

#get every torrent's associated peers in local PC
def get_peer(torrent_id):
d = client.connect()
def on_connect_success(result):
print "Connection in get_peer was succéssfu
def on_get_config(result, torrent_numbey, m
#detect whether a torrent has peeobr n
global counter
counter = counter + 1
if(result['peers == ()):
print "torrent id", torrent_id[t@mt_number], "doesn't has associated peers"”
else:
for i in range(0, len(result['pepis
global peer_info, total_peer
peer_info[total_peer]['ip] esult['peers][i]["ip"]
peer_info[total_peer]['torreiot] = torrent_id[torrent_number]
total_peer = total_peer + 1
#Get out of the loop and gile tict to connect function
if((counter == m) & (i == lemsult['peers’) - 1)):
clientconnection()
for i in range(0, len(torrent_id)):
client.core.get_torrent_status(torradjt], ['peers”], True).addCallback(on_get_config, i,
len(torrent_id))
d.addCallback(on_connect_success)

def on_connect_fail(result):
print "Connection failed!"
print "result:", result

d.addErrback(on_connect_fail)

Component to connect peers and get time
1. client connection. Initialize the connectioretach peer
2. class GetTime. Define the behavior if connectélisdsuccess or line received is success
if ineReceived is success, then computer ipezalent back from server with ip value stored ierpiefo
if these two values are the same, then sefrtteetend back from server to the correspondinggen
3. clas GetTimefactory. Define the behavior if tomnection is lost of failed
4. In this component, if the number of connectisrequal to the number of peers, then we go to the
setemptyvalue() funciton
in the setemptyvalue function, it will set empitye value to 1 which means that specific senaest't
install
the incentvie mechanism
#connect to all associated peers in local PC
def clientconnection():
global peer_info
factory = GetTimeFactory()
foriin range(0, len(peer_info)):
reactor.connectTCP(peer_info[i]['ip'].sflit)[0], port, factory)

class GetTime(LineReceiver):
def connectionMade(self):
self.sendLine("online time")
def lineReceived(self, line):
global connection

44

for i in range(0, len(peer_info)):

#line.split(":")[0] is the ip addresEpeer

#line.split(":")[1] is the online timaf peer

if (peer_info[i]['ip'] == line.split("™)[0]):

peer_info[i]['time'] = line.split(")[1]

print "ipcorrect", "connection:", conneaiid'peer_info", len(peer_info)
if(connection == len(peer_info)):

setemptyvalue()
connection = connection + 1

self.transport.loseConnection()

#if the number of connections is equal the numib¢otal peers in local PC.
#total peers means the sum of peers of all torrents
#for example: torrent one has 10 peers. torrentitag20 peers. Then, the total number of pee is 3
class GetTimeFactory(ClientFactory):
protocol = GetTime
def clientConnectionFailed(self, connectorsoeg:
global connection
print ‘connection failed:', "connection", ormection, "peer_info",
len(peer_info),reason.getErrorMessage()
if(connection == len(peer_info)):
setemptyvalue()
connection = connection + 1
def clientConnectionLost(self, connector, regso
global connection
print "connectionlost", "connection"”, cowtien, "peer_info",
len(peer_info),reason.getErrorMessage()
if(connection == len(peer_info)):
setemptyvalue()
connection = connection + 1

def setemptyvalue():
global peer_info
foriin range(0, len(peer_info)):
try:
peer_infoli]['time]
except KeyError:
peer_info[i]['time] = 1.0
speedmanager()

Manage speed has three function:
1. compute. Compute each peer's upload speed bdidwi
2. speedmanager. process the whole peer_info isciicand use compute function to calculate
3. speedset. set the key"speed" of peer_info diatipas each peer's upload limit
def compute(min, max):
sum =0
for i in range(min, max):
sum = sum + int(peer_info[i]['timeT)
for i in range(min, max):
peer_info[i]['speed’ = float(peer_info[tjne) * up_bandwidth / sum

45

def speedmanager():
global peer_info
sum =0
j=0
#in the for loop, if j is not equal to i, wernpute from j to i
#after we are out of the for loop, the lastent is not computed, so we use compute functidrsiole the
for
#to process the last part
foriin range(0, len(peer_info)):
if (peer_info[j]['torrent_id"]) != peer_iofi]['torrent_id']:
compute(, i)
=1
compute(j, len(peer_info))
speedset()

def speedset():
global peer_info
speedcontrol = client.connect()
#ip = ("150.254.186.34", 80)
We create a callback function to be callednua successful connection
def speedcontrol_success(result):
def on_get_config(result, torrent_id, ipJue):
print "speed set for "torrent_id, lpalue is", value
foriin range(0, len(peer_info)):
ip_port = (peer_info[i]['ip'].split([0], int(peer_info[i]['ip7.split(:")[1]))
client.core.set_peer_max_upload_speed(jinfo[i]['torrent_id], ip_port,
peer_info[i]['speed?).addCallback(on_get_configep info[i]['torrent_id"], ip_port, peer_info[i][feed])

def speedcontrol_fail(result):

print "Connection to control speed failed!"
speedcontrol.addCallback(speedcontrol_success)
speedcontrol.addErrback(speedcontrol_fail)

def main():
#peer_connection()
get_torrent_id()
reactor.run()

if _name__ =="_ main__"
main()

File: server.py

Created on Mar 7, 2011

@author: zack

from deluge.log import setupLogger

from twisted.internet import reactor, defer, pratbc
from twisted.protocols import basic

import math

import socket

setupLogger()

46

#location of the files store online time

global filename

#user's online time

global time

#if the pc doesn't install the incentive mechanigsngefault is 1 instead of 0
#because we have a fractional function to compakeevy

time =1

port = 59500
filename = "/home/zack/Documents/log3.dat"
B R B R R
#Get local machine's online time
#structure of data send back to client
#(ip:time) for example:
#(192.168.1.1:1.0034)
B R R R R
def fileinput(path):
try:
global time
file = open(path,"r")
inline = file.readline()
value = inline.split(:)[1]
time = float(value)
except IOError:
pass
#86400 is the number of seconds of a day, wd W& value of time increase by 0.24 per day.
#we could find the prototype of the funciorPRT stored in win7 CS298 file
time = (float(time) / 86400)*0.24
T = math.pow(1+1/float(time),float(time))
#get local PC's ip address
s = socket.socket(socket.AF_INET, socket. SOC&RBM)
s.connect(("gmail.com”,80))
finalstr ="
finalstr = s.getsockname()[0] + ":" + str(T)
return finalstr
B R B R R
#Get usernames and time from each peer
B R B R R
"'server wait part
class EchoProtocol(basic.LineReceiver):
def lineReceived(self, line):
if line == 'online time":
value = fileinput(filename)
self.sendLine(str(value))
else:
self.sendLine("You said: " + line)

class EchoServerFactory(protocol.ServerFactory):
protocol = EchoProtocol

if _name__ =="_ main__"
reactor.listenTCP(port, EchoServerFactory())
reactor.run()

47

File: counter.py

from deluge.ui.client import client
from twisted.internet import reactor
from twisted.internet import task
from deluge.log import setupLogger
setupLogger()

#each user's online time
global time

#number of files seeding in local machine
global seed_number

#value should add for time per second
global adder

#count number of threads in local PC
global counter

#location and name of the file we want to storg'ssmline time
global filename

#initialize value of global variable and file loaat
counter =0

seed_number =0

time =0

filename = "/home/zack/Documents/log3.dat"
#store user's online time

def fileinput(filename):

try:
global time
file = open(filename,"r")
inline = file.readline()
value = inline.split(":)[1]
time = float(value)

except IOError:
pass

def get_torrent_id():
d = client.connect()
def on_get_id_success(result):
print "Connection in get_torrent_id was ceasful!"
def on_get_config(result):
get_progress(result)

client.core.get_session_state().addCalltmaciget config)
d.addCallback(on_get_id_success)

def on_get _id_fail(result):
print "Connection in on_get_id_fail fail&d!
print "result:", result

We add the callback (in this case it's ahaak, for error)
d.addErrback(on_get_id_fail)

48

#Get the number of files seeding in local machine
def get_progress(torrent_id):
d = client.connect()
global seed_number
global adder
global counter
seed_number =0
adder =0
counter =0
def on_connect_success(result):
print "Connection in get_progress was sssfa!"
def on_get_config(result):
global seed_number
global adder
global counter
global time
counter = counter + 1
if result["progress"] == 100.0:
seed_number = seed_number + 1
adder = (seed_number - 1)*0.1 + 1
time = adder + time
print "online time is :", time
FILE = open(filename,"w")
FILE.write("online time:" + str(tie))
#the if condition loop will retuthe final adder value
if counter == len(torrent_id):
print "seed number:", seed_numtader value is:", adder

for i in range(0, len(torrent_id)):
client.core.get_torrent_status(torr@it], ['progress"], True).addCallback(on_get_cay)fi

d.addCallback(on_connect_success)

def on_connect_fail(result):
print "Error, get torrent progress"
print "result:", result
d.addErrback(on_connect_fail)

| = task.LoopingCall(get_torrent_id)
l.start(1.0) # call every second
fileinput(filename)

reactor.run()

#File: Install

#Install necessary libraries for deluge

Su -c 'yum groupinstall "Development Tools™

su -c 'yum install wget python python-devel twismOpenSSL gettext pyxdg boost boost-devel openssl
openssl-devel zlib zlib-devel libnotify pygame xdtils python-mako python-chardet pygtk2 pygtk2-deve
python-setuptools python-setuptools-devel librsdgfel’

mkdir ~/deluge && cd ~/deluge && wget http://dowrdd.deluge-torrent.org/source/deluge-1.3.0.tar.bz2
&& waget http://libtorrent.googlecode.com/files/ldrtrent-rasterbar-0.14.11.tar.gz

gunzip libtorrent-rasterbar-0.14.11.tar.gz

49

tar -xvjf deluge-1.3.0.tar.bz2 && tar -xvf libtomé-rasterbar-0.14.11.tar

mv libtorrent-rasterbar-0.14.11 libtorrent

mv libtorrent deluge-1.3.0

cd ~/deluge/deluge-1.3.0 && python setup.py clean&& python setup.py build && su -c ‘python
setup.py install'

#File: CopyLibrary

#Copy simplejson, chardet libraries to nodes oh&ab.
#l/bin/sh

Rotate procmail log files
node="ds-pl1.technion.ac.il"

cd /home/zack/Downloads

scp -i ~/Documents/id_rsa simplejson.tar.gz
sjsu_jsu_p2p_streaming@$node:/home/sjsu_jsu_p2@ansing
scp -i ~/Documents/id_rsa chardet-1.0.1.tar.gz

sjsu_jsu_p2p_streaming@$node:/home/sjsu_jsu_p2m@ansing

scp -i ~/Documents/id_rsa charjson sjsu_jsu_p2pastng@$node:/home/sjsu_jsu_p2p_streaming
scp -i ~/Documents/id_rsa installfile sjsu_jsu_p&peaming@$node:/home/sjsu_jsu_p2p_streaming
#File: UpAllScript

#Upload counter.py, client.py, server.py to 20 rsodiPlanetLab
#l/bin/sh

Rotate procmail log files

nodel="planetlabl.cesnet.cz"
node2="planetlabl.cs.stevens-tech.edu"
node3="planetlab-2.imperial.ac.uk"
node4="planetlabl.ucsd.edu"
node5="planetx.scs.cs.nyu.edu”

node6="planetlab2.hiit.fi"

node7="planetlab2.cs.pitt.edu”
node8="planetlabl.cs.pitt.edu"
node9="planetlab2.ucsd.edu"

nodel0="ricepl-1.cs.rice.edu”

nodell="pll.eecs.utk.edu"
nodel2="planetlabl.dtc.umn.edu"
nodel3="planetlab2.cs.stevens-tech.edu"
nodel4="planetlab-01.bu.edu”
nodel5="lefthand.eecs.harvard.edu"
nodel6="agni.iitd.ernet.in"

nodel7="planetlab-2.cs.uh.edu"
nodel8="planetlab-2.ssvl.kth.se"
nodel9="planetlab-2.cse.ohio-state.edu"
node20="righthand.eecs.harvard.edu"

cd /home/zack/workspace/CS298/src

scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$nodel:/home/sjsu_jsu_p&ansing
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$node2:/home/sjsu_jsu_p2ansing
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$node3:/home/sjsu_jsu_p2ansing
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$node4:/home/sjsu_jsu_paansing
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$node5:/home/sjsu_jsu_p2ansing
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$node6:/home/sjsu_jsu_p2ansing

50

scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$node7:/home/sjsu_jsu_p2&ansing
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$node8:/home/sjsu_jsu_p2&ansing
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$node9:/home/sjsu_jsu_p2ansing
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$node10:/home/sjsu_jsu_p2ansng
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$nodell:/home/sjsu_jsu_p2ansng
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$nodel2:/home/sjsu_jsu_pBansng
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$nodel3:/home/sjsu_jsu_p2ansng
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$nodel4:/home/sjsu_jsu_p2ansng
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$nodel5:/home/sjsu_jsu_pBansng
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$node16:/home/sjsu_jsu_pBansng
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$nodel7:/home/sjsu_jsu_p2ansng
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$nodel8:/home/sjsu_jsu_p2ansng
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$node19:/home/sjsu_jsu_pBansng
scp -i ~/Documents/id_rsa client.py counter.py sepy
sjsu_jsu_p2p_streaming@$node20:/home/sjsu_jsu_pBansng

File: torrent.py
torrent.py
#

""Internal Torrent class

import os

import time

from urllib import unquote
from urlparse import urlparse

from deluge._libtorrent import It

import deluge.common

import deluge.component as component

from deluge.configmanager import ConfigManager, gehfig_dir
from deluge.log import LOG as log

from deluge.event import *

from time import gmtime, strftime
TORRENT_STATE = deluge.common. TORRENT_STATE

def set_max_connections(self, max_connections):

self.options["max_connections"] = int(magnaections)
self.handle.set_max_connections(max_cororet

51

def set_max_upload_slots(self, max_slots):
self.options["max_upload_slots"] = int(malots)
self.handle.set_max_uploads(max_slots)

def set_max_upload_speed(self, m_up_speed):
self.options["'max_upload_speed"] = m_upesbe
if m_up_speed < O:
v=-1
else:
v = int(m_up_speed * 1024)

self.handle.set_upload_limit(v)

def set_max_download_speed(self, m_down_speed):
self.options["max_download_speed"] = m_dospeed
if m_down_speed < 0:
v=-1
else:
v = int(m_down_speed * 1024)
self.handle.set_download_limit(v)

#add this new function to limit speed of peer
def set_peer_download_speed(self, ip, value):

if value < 0:
v= -1
else:

v = int(value * 1024)
filename = "/home/zack/Documents/log.dat"
FILE = open(filename,"a")
FILE.write("pymodules download: " + strfime("%a, %d %b %Y %H:%M:%S", gmtime())) + "\n")
FILE.close()
self.handle.set_peer_download_limit(ip, v)

def set_peer_upload_speed(self, ip, value):
if value < O:
=-1
else:
v = int(value * 1024)
filename = "/home/zack/Documents/log.dat"
FILE = open(filename,"a")
FILE.write("pymodules upload:" + str(strfte("%a, %d %b %Y %H:%M:%S", gmtime())) + "\n")
FILE.close()
self.handle.set_peer_upload_limit(ip, v)

def set_stop_ratio(self, stop_ratio):
self.options["stop_ratio"] = stop_ratio

def set_stop_at_ratio(self, stop_at_ratio):
self.options["stop_at_ratio"] = stop_atigat

def set_remove_at_ratio(self, remove_at_ratio):
self.options["remove_at_ratio"] = remove ratio

def set_trackers(self, trackers):
""Sets trackers™"

52

if trackers == None:

trackers =]

for value in self.handle.trackers():
tracker = {}
tracker["url"] = value.url
tracker["tier"] = value.tier
trackers.append(tracker)

self.trackers = trackers

self.tracker_host = None

return

log.debug("Setting trackers for %s: %slf.&®rent_id, trackers)
tracker_list =[]

for tracker in trackers:
new_entry = It.announce_entry(tracken[])
new_entry.tier = tracker["tier"]
tracker_list.append(new_entry)
self.handle.replace_trackers(tracker_list)

Print out the trackers
#for t in self.handle.trackers():
log.debug("tier: %s tracker: %s",igtt], t["url"])
Set the tracker list in the torrent objec
self.trackers = trackers
if len(trackers) > 0O:
Force a reannounce if there is attl@dracker
self.force_reannounce()

def get_eta(self):
""Returns the ETA in seconds for this &
if self.status == None:
status = self.handle.status()
else:
status = self.status

if self.is_finished and self.options["st@b_ratio"]:
We're a seed, so calculate the toribe 'stop_share_ratio’
if not status.upload_payload_rate:

return O
stop_ratio = self.options["stop_ratio"]
return ((status.all_time_download * rstmatio) - status.all_time_upload) /

status.upload_payload_rate
left = status.total_wanted - status.totahed

if left <= 0 or status.download_payloaderat O:
return O

try:

eta = left / status.download_payloatk ra
except ZeroDivisionError:

eta=0

return eta

53

def get_ratio(self):
""Returns the ratio for this torrent
if self.status == None:
status = self.handle.status()
else:
status = self.status

if status.total_done > 0O:
We use 'total_done' if the downloadalde is 0
downloaded = status.total_done
else:
Return -1.0 to signify infinity
return -1.0

return float(status.all_time_upload) / flg@wnloaded)

def get_peers(self):
"""Returns a list of peers and various mfation about them
ret =]
peers = self.handle.get_peer_info()

for peer in peers:

We do not want to report peers thathalf-connected

if peer.flags & peer.connecting or pt&gs & peer.handshake:
continue

try:
client = str(peer.client).decode¢f-&l")

except UnicodeDecodeError:
client = str(peer.client).decodafft-1")

Make country a proper string
country = str()
for c in peer.country:
if not c.isalpha():
country +=""
else:
country +=¢

ret.append({
“client": client,
"country": country,
"down_speed": peer.down_speed,
"Iip"™: "%s:%s" % (peer.ip[0], pe@il]),
"progress": peer.progress,
"seed": peer.flags & peer.seed,
"up_speed": peer.up_speed,

)

return ret

def get_file_progress(self):
"""Returns the file progress as a listlofs.. 0.0 -> 1.0"™™
if not self.handle.has_metadata():
return 0.0

54

file_progress = self.handle.file_progress()
ret =]
for i,f in enumerate(self.get_files()):

try:
ret.append(float(file_progressfifloat(f["size"]))
except ZeroDivisionError:

ret.append(0.0)

return ret

def pause(self):
"""Pause this torrent
Turn off auto-management so the torrelitnet be unpaused by It queueing
self.handle.auto_managed(False)
if self.handle.is_paused():
This torrent was probably pausedtduseing auto managed by It
Since we turned auto_managed offshaild update the state which should
show it as 'Paused’. We need to anutrent_paused signal because
the torrent_paused alert from likdotrwill not be generated.
self.update_state()
component.get("EventManager").emit(€at6tateChangedEvent(self.torrent_id, "Paused"))
else:
try:
self.handle.pause()
except Exception, e:
log.debug("Unable to pause torréts!, e)
return False

return True

def resume(self):
"""Resumes this torrent™"

if self.handle.is_paused() and self.hamllauto_managed():
log.debug("Torrent is being auto-mamhg@annot resume!")
return

else:
Reset the status message just inafagsuming an Error'd torrent
self.set_status_message("OK")

if self.handle.is_finished():
If the torrent has already reaklt's 'stop_seed_ratio' then do not do anything
if self.options["stop_at_ratio"]:
if self.get_ratio() >= self.agis["stop_ratio"]:
#XXX: This should just beturned in the RPC Response, no event
#self.signals.emit_evemifént_resume_at_stop_ratio")
return

if self.options["auto_managed"]:
This torrent is to be auto-marthige It queueing
self.handle.auto_managed(True)

try:

self.handle.resume()
except:

55

pass
return True

def connect_peer(self, ip, port):
""adds manual peer
try:
self.handle.connect_peer((ip, int(PoR)
except Exception, e:
log.debug("Unable to connect to pees: %)
return False
return True

def move_storage(self, dest):
"""Move a torrent's storage location™"
if not os.path.exists(dest):
try:
Try to make the destination gathdoesn't exist
os.makedirs(dest)
except IOError, e:
log.exception(e)
log.error("Could not move storagetbrrent %s since %s does not exist and couldreatte the
directory.”, self.torrent_id, dest)
return False
try:
self.handle.move_storage(dest.encoti8()
except:
return False

return True

def save_resume_data(self):
"""Signals libtorrent to build resume d&ba this torrent, it gets
returned in a libtorrent alert™"
self.handle.save_resume_data()
self.waiting_on_resume_data = True

def write_torrentfile(self):

"""Writes the torrent file™"

path = "%s/%s.torrent" % (
os.path.join(get_config_dir(), "state")
self.torrent_id)

log.debug("Writing torrent file: %s", path)

try:
self.torrent_info = self.handle.getrémt_info()
Regenerate the file priorities
self.set_file_priorities([])
md = It.bdecode(self.torrent_info.metizd))
torrent_file = {}
torrent_file["info"] = md
open(path, "wb").write(lt.bencode(tarrefile))

except Exception, e:
log.warning("Unable to save torren¢fitos", e)

def delete_torrentfile(self):
""Deletes the .torrent file in the state™

56

path = "%s/%s.torrent" % (
os.path.join(get_config_dir(), "state")
self.torrent_id)

log.debug("Deleting torrent file: %s", path

try:
os.remove(path)

except Exception, e:
log.warning("Unable to delete the totréle: %s", €)

def force_reannounce(self):
"""Force a tracker reannounce
try:
self.handle.force_reannounce()
except Exception, e:
log.debug("Unable to force reannoués?, e)

return False

return True

def scrape_tracker(self):
""Scrape the tracker"™
try:
self.handle.scrape_tracker()
except Exception, e:
log.debug("Unable to scrape tracker:,%}
return False

return True

def force_recheck(self):

""Forces a recheck of the torrents pietes"

try:
self.handle.force_recheck()
self.handle.resume()

except Exception, e:
log.debug("Unable to force recheck: %&3'
return False

return True

def cleanup_prev_status(self):

This method gets called to check the validf the keys in the prev_status
dict. If the key is no longer valid, thietdwill be deleted.

for key in self.prev_status.keys():
if not self.rpcserver.is_session_v&iay):
del self.prev_status[key]

File: Core.py

#

core.py

#

from deluge._libtorrent import It

57

import os

import glob

import base64

import shutil

import threading
import pkg_resources
import warnings
import tempfile

from twisted.internet import reactor, defer
from twisted.internet.task import LoopingCall
import twisted.web.client

from deluge.httpdownloader import download_file
from deluge.log import LOG as log

import deluge.configmanager

import deluge.common

import deluge.component as component

from deluge.event import *

from deluge.error import *

from deluge.core.torrentmanager import TorrentManag
from deluge.core.pluginmanager import PluginManager
from deluge.core.alertmanager import AlertManager
from deluge.core.filtermanager import FilterManager
from deluge.core.preferencesmanager import Pratesiianager
from deluge.core.autoadd import AutoAdd

from deluge.core.authmanager import AuthManager
from deluge.core.eventmanager import EventManager
from deluge.core.rpcserver import export

class Core(component.Component):
def __init__ (self, listen_interface=None):
log.debug("Core init..")
component.Component.__init__(self, "Core")

Start the libtorrent session
log.info("Starting libtorrent %s sessionlt:version)

Create the client fingerprint
version = [int(value.split("-")[0]) for vak in deluge.common.get_version().split(".")]
while len(version) < 4:
version.append(0)
self.session = It.session(lt.fingerprintE’D *version), flags=0)

Load the session state if available
self.__load_session_state()

Set the user agent
self.settings = It.session_settings()
self.settings.user_agent = "Deluge %s" %agecommon.get_version()

Set session settings

58

self.settings.send_redundant_have = True
self.session.set_settings(self.settings)

Load metadata extension
self.session.add_extension(lt.create_mtdagdhugin)
self.session.add_extension(lt.create_utadata plugin)
self.session.add_extension(lt.create_sibant plugin)

Create the components

self.eventmanager = EventManager()
self.preferencesmanager = PreferencesMaf)age
self.alertmanager = AlertManager()
self.pluginmanager = PluginManager(self)
self.torrentmanager = TorrentManager()
self.filtermanager = FilterManager(self)
self.autoadd = AutoAdd()

self.authmanager = AuthManager()

New release check information
self.new_release = None

Get the core config
self.config = deluge.configmanager.Configidger("core.conf")

If there was an interface value fromd¢benmand line, use it, but
store the one in the config so we catorest on shutdown
self.__old_interface = None
if listen_interface:
self.__old_interface = self.config[tks_interface"]
self.config["listen_interface"] = listeinterface

def start(self):
""Starts the core
New release check information
self.__new_release = None

def stop(self):
Save the DHT state if necessary
if self.config["dht"]:
self.save_dht_state()
Save the libtorrent session state
self.__save_session_state()

We stored a copy of the old interfaceieal
if self.__old_interface:
self.config["listen_interface"] = self.old_interface

Make sure the config file has been saved
self.config.save()

def shutdown(self):
pass

def save_dht_state(self):
""Saves the dht state to a file

try:

59

dht_data = open(deluge.configmanageragafig_dir("dht.state"), "wb")
dht_data.write(lt.bencode(self.sessibh.state()))
dht_data.close()
except Exception, e:
log.warning("Failed to save dht stéts", e)

def get_new_release(self):
log.debug("get_new_release")
from urllib2 import urlopen
try:
self.new_release = urlopen(
"http://download.deluge-torrent maysion-1.0").read().strip()
except Exception, e:
log.debug("Unable to get release imémf website: %s", e)
return
self.check_new_release()

def check_new_release(self):
if self.new_release:
log.debug("new_release: %s", self.n&lease)
if deluge.common.VersionSplit(self.nealease)
deluge.common.VersionSplit(deluge.common.get_va(}io
component.get("EventManager").eNet{\VersionAvailableEvent(self.new_release))
return self.new_release
return False

@export
def pause_torrent(self, torrent_ids):
log.debug("Pausing: %s", torrent_ids)
for torrent_id in torrent_ids:
if not self.torrentmanager[torrent_jp#juse():
log.warning("Error pausing torréas", torrent_id)

@export
def connect_peer(self, torrent_id, ip, port):
log.debug("adding peer %s to %s", ip, torre)
if not self.torrentmanagerftorrent_id].cech peer(ip, port):
log.warning("Error adding peer %s:%%4s", ip, port, torrent_id)

@export
def move_storage(self, torrent_ids, dest):
log.debug("Moving storage %s to %s", totréats, dest)
for torrent_id in torrent_ids:
if not self.torrentmanager[torrent_idhve _storage(dest):
log.warning("Error moving torrens%o %s", torrent_id, dest)

@export
def pause_all_torrents(self):
"""Pause all torrents in the session™"
for torrent in self.torrentmanager.torrevatues():
torrent.pause()

@export
def get_torrent_status(self, torrent_id, kely=False):
Build the status dictionary
status = self.torrentmanager[torrent_id].g&atus(keys, diff)

60

Get the leftover fields and ask the ptugianager to fill them

leftover_fields = list(set(keys) - set(stkeys()))

if len(leftover_fields) > O:
status.update(self.pluginmanager.gatus torrent_id, leftover_fields))

return status

@export
def get_torrents_status(self, filter_dict, kedi¢f=False):

returns all torrents , optionally filterbg filter_dict.
torrent_ids = self.filtermanager filter_tent_ids(filter_dict)
status_dict = {}.fromkeys(torrent_ids)

Get the torrent status for each torreht_i
for torrent_id in torrent_ids:
status_dict[torrent_id] = self.get_tort_status(torrent_id, keys, diff)

return status_dict

@export

def get_session_state(self):
"""Returns a list of torrent_ids in the sies.
Get the torrent list from the TorrentMgaga
return self.torrentmanager.get_torrent()list

@export

def get_config(self):
"""Get all the preferences as a dictiondry"
return self.config.config

@export
def get_config_value(self, key):
"""Get the config value for key
try:
value = self.config[key]
except KeyError:
return None

return value

@export
def get_config_values(self, keys):
""Get the config values for the enteregg"

config = {}
for key in keys:
try:

config[key] = self.config[key]
except KeyError:
pass

return config
@export
def set_torrent_max_connections(self, torrehtvalue):

""Sets a torrents max number of connedith

return self.torrentmanager[torrent_id].se#x_connections(value)

61

@export
def set_torrent_max_upload_slots(self, torrehtvalue):
"""Sets a torrents max number of uploadss!d
return self.torrentmanager[torrent_id].sefx _upload_slots(value)

@export
def set_torrent_max_upload_speed(self, toriéntalue):
"""Sets a torrents max upload speed"™
return self.torrentmanager[torrent_id].sefx_upload_speed(value)

@export
def set_torrent_max_download_speed(self, torignvalue):
"""Sets a torrents max download speed™"
return self.torrentmanager[torrent_id].setx_download_speed(value)

#add the speed limit function for peer
@export
def set_peer_max_download_speed(self, tormnp,i value):
return self.torrentmanager([torrent_id].peter_download_speed(ip, value)

@export

def set_peer_max_upload_speed(self, torrenp,igdalue):
return self.torrentmanager[torrent_id].peter_upload_speed(ip, value)

62

References

1. BitTorrent Specification Wiki.
http://wiki.theory.org/BitTorrentSpecification/.

2. B. Cohen. Incentives Build Robustness in Bit&ot. In Proc. Of the Workshop on
Economics of Peer-to-Peer Systems(P2PEcon’03),eBsrkCA, June 2003.

3. PlanetLab platform. http://www.planet-lab.org.

4. N.Andrade, M. Mowbray, A. Lima, G. Wagner, andRpeanu. Influences on
Cooperation in BitTorrent Communities. In Proc.té¢ Workshop on Economics of
Peer-to-Peer Systems(P2PEcon’ 05), PhiladelphiaAegust 2005.

5. A.R. Bharambe, C. Herley, and V.N.Padmanabhaalyxing and Improving a
BitTorrent Network’s Performance Mechanisms. IndP©f Infocom’06, Barcelona,
Spain, April 2006.

6. L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, andZkang. Measurements, Analysis,
and Modeling of BitTorrent-like System. In Proc. IBC’05, Berkeley, CA, October
2005.

7. M. lzal, G. Urvoy-Keller, E. W. Biersack, P. Bel, A. A. Hamra, and L. Garces-
Erice. Dissecting BitTorrent: Five Monthes in a fiemt’s Lifetime. In Proc. of PAM’s
04. Antibes Juan-les-Pins, France, April 2004.

8. S. Jun and M. Ahamad. Incentives in BitTorrenluce Free Riding. In Proc. of the
Workshop on Economics of Peer-to-Peer Systems(R2PE&s), Philadelphia, PA,
August 2005.

9. T. Locher, P. Moor, S. Schmid, and R. Wattenhdfece Riding in BitTorrent is
Cheap. In Proc. of HotNets-V, Irvine, CA, NovemB606.

10. J. Pouwelse, P. Garbacki, D. Epema, and H. $hesBitTorrent P2P file-sharing
system: Measurements and Analysis. In Proc. of 8DB, Ithaca, NY, February 2005.

11. D. Qiu and R. Srikant. Modeling and Performafnalysis of BitTorrent-Like Peer-
to-Peer Networks. In Proc. of SIGCOMM’04, Portla@R, August 30-September 3,
2004.

12. J. Shneidman, D. Parkes, and L. Massouliehfediiess in Internet Algorithms. In

Proc. of the Workshop on Practice and Theory oémtives and Game Theory in
Networked Systems(PINS’ 04), Portland, OR, Septeribe4.

63

13. Ashwin R. Bharambe, Cormac Herley, and VenkhtRadmanabhan. Analyzing and
improving BitTorrent performance. Technical Regd8&R-TR-2005-03, Microsoft
Research, February 2005.

13.Y. Tian, D. Wu, and K. W. Ng. Modeling, Analgsand Improvements for
BitTorrent-Like File Sharing Networks. In Proc.lofocom’06, Barcelona, Spain, April
2006.

14. M. Izal, G. Urvory-Keller, E.W. Biersack, P.Belber, A. Al Hamra, and L. Garces-
Erice. Dissecting BitTorrent: Five Monthes in a fiemt’s Lifetime.

15. Libtorrent. Retrieved from http://www.rastarlcom/products/libtorrent/ on March
17, 2011.

16. Deluge. Retrieved from http://www.deluge.comMarch 16, 2011.
7. A. Fettig. Twisted Network Programming Essesti@’Reilly, October 2005.

8. Feldman, M., Lai, K. Stoica, lon. Chuang, JdRabust Incentive Techniques for Peer-
to-Peer Networks. EC'04, May 17-20, 2004, New YdsiSA.

9. The Internet Engineering Task Force Requestonments 5694. Retrieved from
http://tools.ietf.org/search/rfc5694 on FebruaBy 2011.

12. Isdal, Tomas. Using BitTorrent for Measurimgdelro-End Internet Path Characters.
Trita-CSC-E 2006:148, ISSN-1653-5715, 2006.

13. Jiajun Wang, Chuohao Yeo, Vinod Prabhakarath Kemna Ramchandran. “On the
role of helpers in peer-to-peer file download sysedesign, analysis and simulation.” In
IPTPS, 2007.

14. M. Sirivianos, J. H. P. X. Yang, and S. Jaretibandelio: Cooperative Content
Distribution with Robust Incentives.” In USENIX0Q7.

15. Jeffrey Shneidman and David C. Parkes. “Ralityrend Self-Interest in Peer to Peer
Networks. “ In IPTPS, 2003.

17. L.Cherkasova and J.Lee, “FastReplica: Efficlaarge File Distribution within
Content Delivery Networks (USITS 2003)”, In Procieegs of the £ USENIX
Symposium on Internet Technologies and Systemsciivi2003.

18. M. Sirivianos, J. H. Park, X. Yang and S. Jaré©andelion: Cooperative Content
Distribution with Robust Incentive. “. In USENIX0R7.

64

19. Kaune, S.; Tyson, G.; Pussep, K.; Mauthe, feinfhetz, R.; “The Seeder Promotion
Problem: Measurements, Analysis and Solution Spa€&€CN, 2010 Proceedings of
19" Internaiontla on Digital Object Identifier.

20. Deluge Software. http://www.deluge.com.

65

	San Jose State University
	SJSU ScholarWorks
	Summer 2011

	Improving Performance of BitTorrent Network through Incentive Mechanism
	Mingzhe Li
	Recommended Citation

	

