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Abstract 

 Content Distribution via Internet has become increasingly popular right now. 

Compared with centralized file distribution system using FTP and HTTP protocols, P2P 

(Peer to Peer) is more cost-effective. Furthermore, it could help save on bandwidth costs 

and to handle pick demands. Among many P2P protocols, BitTorrent is one of the most 

popular protocols right now. The BitTorrent network uses tit-for-tat as a method of 

seeking Pareto efficiency. However, seeders who contribute more to BitTorrent network 

than leechers are not incentivized to stay online and upload to others. This paper 

discusses an incentive mechanism which rewards seeder, who stays in a BitTorrent 

network and uploads to other peers, with better download speed in its further download 

process. Experimental results with the incentive mechanism and an analysis of the result 

are also discussed in this paper. 
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1.0 Introduction 

 This section argues the advantages of P2P network and gives brief introductions 

of BitTorrent protocol. The problem with regular BitTorrent network and the solution to 

this problem are discussed in section 1.3. 

 

1.1 The Case for Peer-To-Peer 

Peer-to-peer network is a system with elements that both provide services to and 

request services from other elements. There are various areas which Peer-to-peer 

architecture could work better than other architectures. For example, content distribution 

system that uses client-server model always needs strong central servers and enormous 

bandwidth to ensure client’s download speed. Illustrated in Figure 1, the burden on the 

server will increase with the number of clients because the server is sending one copy to 

each client.  

 

Figure 1: Centralized File Distribution System.  

Figure source: (bittorrent.org 2006) 
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In contrary with centralized file distribution system, P2P(Peer-toPeer) file 

distribution system enables the network to increase indefinitely without investing costly 

central resource because of extra processing power and bandwidth brought by new users 

to the network. It enables nodes to download resources from others and upload resources 

to others simultaneously, illustrated in figure2.  

 

Figure 2: File Distribution System with Peer-to-Peer.  

Another advantage of P2P is robustness of the network. In traditional centralized 

file distribution system, if one component of the server fails, the whole network will 

collapse. However, in P2P file distribution system, if components of nodes fail, the whole 

network is still robust.  

 

1.2 BitTorrent Introduction 

BitTorrent is a peer-to-peer file sharing protocol used for distributing large 

amount of data. It is one of most commonly used protocols for transferring large files, 
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and it has been estimated that it accounted for 27% to 55% of all Internet traffic as of 

February 2009[1]. One major advantage of BitTorrent protocol is distributing large files 

without adding heavy load on the source computer and network.  

The basic idea of BitTorrent is to divide the file into equal-sized blocks and have 

nodes download blocks from multiple peers concurrently [2]. Nodes in BitTorrent 

network are either seeder or leecher. A seeder refers to a client that uploads to its peers 

after it has completed its download. A leecher is a client that has not completed its 

download [2]. In order to establish connections between nodes in BitTorrent network, 

tracker, a central server of BitTorrent network that keeps record of nodes currently in the 

system, is necessary. An example is given to briefly introduce the complete download 

process in BitTorrent network. Assumed there are one seeder and three leechers in this 

example. A BitTorrent client AAA wants to share a novel named “Gone with the Wind” 

of 2 Megabyte. AAA first needs to create a .torrent file which contains metadata 

(assuming AAA set the piece size to be 512 KB) of the file and the tracker to use. 

Secondly, AAA could upload the torrent file to a public domain site which enables for 

others to download the torrent file. Another BitTorrent client BBB, who is interested in 

the novel, needs to obtain the .torrent file created by AAA from that public domain site. 

After BBB gets the torrent file and run on its BitTorrent client, information in the .torrent 

file will help establish connection between AAA and BBB, illustrated in Figure 3. Once 

the connection between AAA and BBB is established, BBB could start download piece1 

to piece4 from AAA. Suppose another client CCC begins to download “Gone with the 

Wind” after BBB finishes downloading piece1. Since AAA and BBB both have piece1 of 

that novel at this moment, CCC could download piece1 from BBB and get piece 2, 3 and 
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4 from AAA. When new user DDD comes to the network, DDD could connect with 

AAA, BBB and CCC. Because AAA, BBB and CCC all have pieces of the novel, DDD 

could download four pieces from 3 different nodes. In this way, the seeder AAA’s 

network and performance will not decrease as a result of the increasing number of users. 

If more users join the network, the download completion time will decrease significantly. 

Compared to traditional Internet hosting, BitTorrent network reduces great burden 

imposed on the original distributor’s hardware and bandwidth.   

 

Figure 3: BitTorrent Download Process. Source [3] 

 

1.3 Problem and Solution  

In contrast with traditional file distribution techniques’ enduring availability, a 

source for the file shared in a BitTorrent network is generally temporary and therefore 

harder to trace. To illustrate the problem, let’s consider the previous section’s example. 

Assuming BBB is the only seeder who completed downloading the novel “Gone with the 

Wind”. If AAA is not in the network anymore and BBB exits the network right after it 
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finishes downloading, other clients will have no other choice but to wait for BBB’s return 

to the network to finish downloading. This is one of challenges of BitTorrent network. 

Because of lacking incentives for seeders to upload resources for others, BitTorrent 

seeders choose to exit the network right after they finish downloading.  

 To enable leechers in BitTorrent network completing download process, seeders 

need to stay online and share resources. If there are more seeders available in the 

network, leecher’s download completion time will be decreased significantly. In order to 

solve this problem, we propose to add an incentive mechanism for seeders. Not only will 

the incentive mechanism incentivize seeder to stay online, but it will also increase the 

performance of the whole network. This paper discusses the design, implementation of 

the incentive mechanism. Furthermore, we conducted experiments on PlanetLab to test 

performance of the incentive mechanism.   

 

2.0 BitTorrent Background 

 This section describes known algorithms for BitTorrent system to work 

efficiently. A description of piece selection mechanism, peer selection mechanism, and 

pipelining is presented. Moreover, two limitations of current BitTorrent system are 

discussed at the end of this section.  

 

2.1 Overview of Piece Selection Mechanism 

 BitTorrent protocol transfers files piece by piece. Different from traditional 

network protocols which download files from start to end, BitTorrent first allocates space 

for a download process and then gets pieces from peers.  An inefficient piece selection 
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mechanism can lead to low performance of the whole BitTorrent network. For example, 

if a leecher is not interested in pieces its associated nodes have to offer, this leecher could 

stop uploading any piece to its associated nodes. If most of the nodes in a BitTorrent 

network stop uploading any piece to others, the whole network will collapse. So, an 

efficient piece selection mechanism not only helps the system work properly but also 

enables it to reach its optimal performance. 

           In a download process of BitTorrent network, there are three different stages. 

BitTorrent implies three separate algorithms in these stages. These three algorithms are 

illustrated in Figure 4.  

 

Figure 4: Mechanism to Select Piece 

 

2.2 Rarest Piece First 

 Rarest piece is the least amount of copies of one particular piece in a swarm of 

nodes [3]. Nodes in a downloading process store a table containing a list of pieces 

existing in the swarm and the number of each piece. With the rarest piece first algorithm, 

the next piece for a peer to download is always the rarest missing piece. In some cases, 
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there will be more than one piece which is the rarest piece. If this happens, a random 

piece for those will be selected by the peer to download.  

         Advantages of rarest piece first algorithm are:  

1. Each peer always has piece that its associated peers want to download.  

2. Increase the possibility of finishing downloading all pieces by starting 

downloading the rarest piece first. Furthermore, if only one seeder is available for 

system, this algorithm is necessary for download completion.  

 

2.3 Random Piece First  

        When a new peer starts a download process, it should get pieces as soon as possible 

in order to reciprocate for others. As to get pieces faster, peers should randomly select 

pieces to download. Compared with rarest first piece algorithm, random piece first 

algorithm that downloads from more than one peer at the same time is more likely to 

download faster. After it has downloaded I pieces( I is  a constant which is different in 

different BitTorrent client implementations), it will stop using the random piece first 

algorithm and start to apply the  rarest first strategy.  

 

2.4 End Game 

 Sometimes a  peer will download a piece at a very low download rate. If this 

happens in the middle of a download process, it’s not a problem. However, if it happens 

at the end of a download process, it will delay the process of finishing downloading. 

BitTorrent prevents this condition by applying end game piece selection algorithm. This 

algorithm is applied once a peer has requested every piece of the file. In that situation, the 
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peer will send requests for all sub pieces which are missing to all its peers who have 

those corresponding sub pieces. If a sub piece is downloaded in the end game phase, the 

peer sends “cancel” messages to its associated peers that have the corresponding 

appending requests. In this way, bandwidth could be saved from redundant sends.  

          Advantages of end game algorithm are: 

1. Downloading the end of the file at a faster rate 

2. The possibility of finishing a download process is increased  

 

2.5 Pipelining 

 Normally, HTTP requests are issued sequentially, with the next request being   

issued only after the response to previous requests have been received. Depending on the 

network latencies and bandwidth limitations, this can result in significant delay before the 

next request is seen by the server[2]. Pipelining enables HTTP requests to be written out 

to a single socket without waiting for the corresponding responses, illustrated in Figure 5.  

 

 

Figure 5: Schema of Non-Pipelined Connection VS Pipelined Connection 
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          BitTorrent which depends on TCP enables the mechanism of Pipelining. In order to 

maximize the advantage of pipelining, BitTorrent protocol breaks down pieces into sub 

pieces the size of which is from 32KB to 1MB. In order to decrease the latency between 

pieces in a BitTorrent download process, a peer always has five requests pending at one 

time. In this way, the peer could send out five requests for sub pieces simultaneously. 

Furthermore, in a good network environment, all five sub pieces will be returned 

sequentially. With pipelining, BitTorrent helps peers decrease download completion time 

significantly.  

 

2.6 Strict Priority 

          Different from the previous three algorithms which are used at separate phases, 

strict priority is used from the beginning of a download process to its end. BitTorrent 

applies the strict priority policy for sub piece selection. As we have explained in the 

pipelining, when BitTorrent protocol transfers pieces over the network, it breaks pieces 

into sub pieces. Strict Priority is that once a sub piece of a piece has been requested, the 

remaining sub pieces of that piece will be requested before sub-pieces from any other 

piece [2]. With this mechanism, a peer could always get the copy of a piece as soon as 

possible. Furthermore, it’s the crucial algorithm which enables rarest piece first, random 

piece first and end game piece selection working efficiently to finish downloading.  

2.7 Seeder’s Peer Selection 

          Different from peers who upload to and download from others, who only upload 

content to others apply different peer selection algorithms. Generally, seeds try to 

distribute data uniformly to peers, so they imply the algorithm in a round-robin manner.  
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2.8 Tit-for-Tat 

          In BitTorrent protocol, peers download from whom they can, and upload 

simultaneously to a constant number of peers. Because of TCP congestion control 

behavior which prevent sending data over too many connections at the same time, a peer 

only uploads to a limited number of associated nodes. Thus, peers need to select peers 

from a swarm of peers to upload to. In BitTorrent, this behavior is named unchoke. The 

default number of peers to unchoke is four. A peer makes the decision regarding whom to 

unchoke and whom to choke every 10 seconds. Since each peer needs to follow the choke 

algorithm, an efficient choking algorithm will influence the performance of the whole 

system. 

          BitTorrent incorporates a tit-for-tat(TFT) peer selection mechanism which nodes 

preferentially upload to peers from whom they are able to download at a fast rate in 

return[2]. Although seeds don’t download anything, they follow the same algorithm 

policy which enables them to upload to up to 5 nodes that have the highest download 

rate. 

           Advantages of this mechanism are:  

1. Motivate peers to contribute to the network.  

2. Utilize all available bandwidth of the system.  

 

2.9 Optimistic Unchoke 

Tit-for-Tat works well in the middle of downloading. But, when a peer starts to 

download, it doesn’t have anything to upload to others. Based on the Tit-for-Tat 

algorithm, the new peer will never be unchoked. In order to avoid this problem, 
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optimistic unchoke mechanism is applied in BitTorrent protocol to work together with tit-

for-tat algorithm. Optimistic unchoke mechanism could boost a new peer who does not 

have any piece of content. This mechanism chooses to unchoke a peer randomly 

regardless of its current upload rate. It is applied every optimistic unchoke period 

(typically 30 seconds). Optimistic unchoke mechanism is to unchoke one connection, 

while tit-for-tat is to unchoke the resulting 4 connections. With the optimistic unchoke 

algorithm, new peers joining the BitTorrent network could get resources as soon as 

possible. 

 

2.10 Anti-Snubbing  

 In BitTorrent, one important rule is that total download speed should be 

approximately equal to the total upload speed. So, each peer should be encouraged to 

contribute to the system and get the same amount in return. However, there are some 

peers who only download resources from others. To prevent this problem, BitTorrent 

implies the anti-snubbing mechanism.  

          If a peer has not received anything from a specific peer for a certain amount of time 

(typically 60 seconds), it will mark the particular peer’s connection as snubbed. In this 

case, the peer will continue to get poor download speed until the optimistic unchoke 

mechanism finds better peers.  
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3.0 Related Work  

           This section describes known solutions to solve seeder promotion problem. A 

description of single torrent incentive mechanism and multi-torrent incentive mechanism 

is presented.  

 

3.1 Dandelion 

          Dandelion is a system which provides robust (provably non-manipulable) 

incentives for nodes to upload to others in a paid content distribution system [18].  Based 

on Dandelion, a client who honestly uploads to its associated peers is rewarded with 

credit, which is a kind of monetary reward. A client that does not upload or uploads 

garbage to its peers cannot claim credit. A client cannot download resources from selfish 

(rational) peers without the client being charged and the peers rewarded. Based on the 

Dandelion system, peers are incentivized to upload to its peers even if they do not have 

content that interests the client. Figure 6 shows the Dandelion system:  

 

 

Figure 6: Dandelion System 
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          In Figure 6, the numbers on the arrows corresponds to the download process of 

Dandelion system. Message in each arrow is show: 

1. Request for content from server 

2. Send Back a list of peers and tickets  

3. Chunk Announcements 

4. Request for chunk 

5. Encrypted chunk, encrypted key and commitment 

6. Request for decryption key 

7. Decryption key 

           Each client’s credit is managed by the Dandelion server. Also, each client has 

a shared symmetric key with the server. In this way, the system could prevent known 

attacks such as Sybil attack.  

 

3.2 Team Incentives  

          Although Dandelion could incentivize peers to upload resources to others, it 

sacrifices the scalability of P2P system. Team-Enhanced BitTorrent protocol enables 

peers with similar upload bandwidth to form a team which will collaborate for mutual 

benefit. Figure 7 shows the steps for team formation. 
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Figure 7: Team Formation 

 

          Based on team-enhanced protocol, the total number of optimistic unchoke will be 

reduced. Furthermore, In a team of symmetric peers, each one will make its prioirity to 

serve other team members as a replacement to the optimistic unchokes. In this way, a 

peer will get improved download rates compared to being independent.  

 

3.3 Buddy Incentives  

          Team incentive mechanism could improve the performance of BitTorrent, but it 

requires revisions to the tracker of a BitTorrent system. Buddy incentives which adopt the 

similar idea as team incentive does not require revisions to the central tracker. The notion 

of buddy means pairs of peers having similar upload capacity, collaborating for mutual 

benefit. Buddy incentives could significantly reduce the number of optimistic unchokes 

which may force high capacity node to work with low capacity node. Figure 8 illustrates 

the formation of buddy incentive:  
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Figure 8: Buddy Formation  

 

            In Buddy incentives, a leecher P is willing to maximize the number of buddies 

that have a similar upload rate as itself. Leecher P reserves an unchoked slot for each 

buddy to which it can upload data to in order to minimize buddy chokes, which can lead 

to the termination of buddy relations. Based on the buddy incentives, peers will save 

bandwidth previously used for optimistic unchoke for their buddies. In this way, peer’s 

download completion time will be decreased.   

 

3.4 Multitorrent Solution 

            Most BT studies focus on single torrent solution, while measurements in [19] 

suggest that 85% of users participate in multiple torrents. In [19], it proposes a solution to 

solve the seeder promotion problem in a multitorrent environment. Multitorrent means 
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that a node participating as a leecher in a particular torrent is willing to serve as a seed in 

a torrent in which it has participated some time earlier in its lifetime. In [19], when node 

chooses peers to unchoke, it will base its choice on  total contribution of each peer. 

Contribution of each peer is computed in formula (1): D�(x, Y) is the downloading rate of 

node N	 from Node N
 and w�(y) is the weight we assign to that downloading rate. If N
 

is not a seeder in torrent I, then w�(y) = 1, otherwise, w�(y) can be set to a value that is 

larger than one. Based on the formula, the node that is seeding files in one torrent file will 

get more contributions which are computed in the formula. Based on the multitorrent 

solution, more contributions mean more bandwidth. So, seeder could be incentivized to 

stay online and upload to others.  

∑ w� 
#��������
��� (y) ∗  D�(x, y)   (1) 

 

4.0 New Incentive Mechanism  

 This section discusses a new incentive mechanism which aims to incentivize 

seeders stay in the network and upload to other peers. A description of design, 

implementation of the other incentive mechanisms is presented.  

 

4.1 A Problem with BitTorrent  

            BitTorrent protocol strives to ensure fairness: peers who contribute data to the 

system should be able to achieve high download throughput. However, fairness itself is 

not enough to enable the BitTorrent system to get the best system performance. There are 

always some peers who contribute more data to the system than others.  
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          One major incentive mechanism for leechers to upload to other peers is tit-for-tat 

incentive mechanism which facilitates the continuous discovery of better peers. However, 

the TFT peer selection mechanism could not incentivize seeders uploading to others. 

Although the number of seeders is far less than that of leechers in a BitTorrent, a large 

proportion of upload bandwidth is from seeders, illustrated in Figure 9. Because of the 

seeder promotion problem, a massive proportion of torrents (about 40%) achieve 

extremely low performance with few users being able to download the file successfully. 

Furthermore, if more seeders are willing to upload to other peers, mean download 

completion time of nodes will decrease significantly. In order to incentivize more seeds 

to stay online after they finish downloading, we propose an incentive mechanism for 

seeders.  

 

Figure 9: Volume Uploaded by Seeders and Leechers 

 

4.2 Design 

          The purpose of the incentive mechanism in this paper is to incentivize seeder stay 

longer in the BitTorrent network. The incentive works to ensure seeders who stay longer 

than others in the BitTorrent network have better download speed than others when it 

joins another download process in the future as a leecher. Download bandwidth of a 
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leecher is the sum of all its associated peers’ upload bandwidth, so redistributions of its 

associated peers’ upload bandwidth could manage the leercher’s download bandwidth. 

The mechanism consists of three components: 

1. Counter component: if a seeder stays in BitTorrent network and uploads to other 

peers, the counter component will compue a value for the seeder based on the 

number of seeding files and number of minutes uploading for others.   

2. Client component: it establishes TCP channels with all associated peers in the 

same download process and gets each one’s value returned from server 

component. Finally, it will rearrange upload speed for each associated peer based 

on the value returned from each client.  

3. Server component: it binds to the port 59500 and waits for future requests from 

associated peers’ client component. When new request arrives, the server will get 

the value computed by counter component and send it back to requested client.  

  

4.3 Deluge  

 Deluge [20] is a BitTorrent client selected to test the incentive mechanism. 

Advantages of deluge over other BitTorrent clients are:  

1. It is a lightweight, cross-platform BitTorrent client, which makes its portable from 

one platform to another.  

2. Deluge and its dependent library libtorrent[5] are all open source which is able for 

us to change the source code.  

3. Most functionalities of deluge are achieved by plugins. Also, it provides complete 

documentation for API of deluge.  
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          One crucial part of the incentive mechanism is to manage each peer’s upload 

speed. However, in the latest deluge client, that function doesn’t exist. In order to add a 

new function to the Deluge client, we need to be familiar with the structure of Deluge, 

illustrated in Figure 10. As explained in the former section, deluge depends on libtorrent 

to implement the BitTorrent protocol. Since libtorrent has the function to limit peer’s 

download and upload speed, we only need to make revisions to source code of Deluge 

client. In the Deluge client, there are three components: core, UI and plug-in. In this 

paper, we only make revision to the core section of Deluge client. Structure of the core 

section is illustrated in Figure 11. Torrent.py and Torrentmanager.py contains functions 

to limit speed of torrent. So, we add the function to limit upload speed of peers in these 

two files.  

 

 

Figure 10: Deluge and Libtorrent 
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Figure 11: Structure of Deluge Core 

 

4.4 Counter  

          The counter component works to count the number of seconds a seeder has stayed 

in BitTorrent network. Generally, one seeder may be seeding multiple files to others. In 

order to provide fairness for those seeders who are seeding more than one file in the local 

machine, the counter component will not only count the number of seconds it has stayed 

in BitTorrent network but also the number of seeding files on the local machine. The 

formula used in the counter component is T� = ((F-1) * 0.1 + 1) * S. Parameters used in 

this formula are: F: the number of files seeding in local machine. S is the number of 

seconds local node has stayed online. The result  T� represents the contributions of local 

node. The more contributions one node has, the more bandwidth it will get in its next 

download process.  

 

4.5 Server   

 A node’s server component works to process requests from associated peers’ 

client components. It binds to the port number of 59500. Once a new request arrives, the 

server will get the contribution computed from counter component and send that 



  21

information back to that peer. Pseudo Code of server component is illustrated in Figure 

12.  

1def on_connect_success(result): 

2    def on_get_config(result): 

3        usertime = result 

4    client.myplugin.get_config().addCallback(on_get_config) 

5     

6def on_connect_fail(result): 

7    print "Connection failed!" 

8 

10def bind(dict): 

11    finalstr = '' 

12    finalstr = finalstr +'total_time'+ str(dict['total_time']) + 'user_name' + dict['user_name'] 

13    return finalstr 

14 

15class EchoProtocol(basic.LineReceiver): 

16    d = client.connect() 

17    d.addCallback(on_connect_success) 

18    d.addErrback(on_connect_fail) 

20    def lineReceived(self, line): 

21        timestr = bind(usertime) 

22        if line == 'quit': 

23            self.sendLine(timestr) 

24        else: 

25            self.sendLine("You said: " + line) 

26             

28class EchoServerFactory(protocol.ServerFactory): 

29    protocol  = EchoProtocol 



  22

30 

31if __name__ == "__main__": 

32    host = "localhost" 

33    reactor.listenTCP(port, EchoServerFactory( )) 

34    reactor.run( ) 

Figure 12: Pseudo-Code of Server Component 

 

4.6 Client  

          The client component is the crucial part of the incentive mechanism. It computes 

and sets the upload bandwidth for every associate peer. There are 3 steps in the client , 

illustrated in Figure 13.  

1. When a new download process starts, the client component will get the list of 

associated peers via BitTorrent protocol.  

2. With associated peers’ IP addresses and port number 59500, the client establishes 

TCP channels with each of its associated peers.  

3. After the client gets each associated peer’s contributions, the client will first 

convert each peer’s contribution to its corresponding upload bandwidth. Then, the 

client will set the upload bandwidth for each one.  
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Figure 13: Client Structure 

          In order to mange download speed of associated peers, it’s necessary to use an 

algorithm which could provide fairness for all peers. In this paper, the algorithm consists 

of two formulas (Parameters used in these two formulas are: N represents peers in the 

same download process, L represents the upload bandwidth per torrent,  ��  represents 

each peer’s contribution returned from corresponding server.  

Y� = (1 +
�

� 
)�                                             (2) 

!�  = 
"#

"$%"&%"'…%"# 
 * L                                  (3) 

          Our Incentive mechanism highly depends on online time which means long time 

users who prefer to seeding files to others will get high contribution value. However, for 

newcomers to the incentive mechanism, their contributions will be very low. In order to 

prevent the local node from distributing too much bandwidth for long time users, we use 

the first formula the value of which is between 1 and e, illustrated in Figure 14. Based on 

this graph, newcomer to the network will not be severely punished. Furthermore, nodes 

who stayed longer in the network will be rewarded.  
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Figure 14: Function Graph 

 

4.7 Usage 

 In this paper, we test the incentive mechanism on PlanetLab. Steps to run the 

incentive mechanism: 

1. Execute the incentive server component:   

zack@ubuntu:~$python server.py 

2. Execute the incentive client component:  

zack@ubuntu:~$python client.py 

3. Execute the incentive client component:  

zack@ubuntu:~$python counter.py 

 

5.0 Software Tools, Development Kits Used 

 Deluge 1.3.0 is selected to test the incentive mechanism. All components of the 

mechanism were developed using Python 2.7 and Twisted network engine. IDE used for 

this paper is Eclipse with PyDev plug-in.  
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6.0 Experimental Results 

          In this section, we conducted five groups of experiments to validate the property of 

our incentive mechanism and explained their results in detail. 

 

6.1 Experiment Design 

           In order to evaluate the performance of the incentive mechanism, several 

experiments are conducted on PlanetLab [3]. In PlanetLab, we simulate a BitTorrent 

network of 20 nodes which are from 20 different sites. On each node, we install the 

Deluge software and all its dependent libraries. Counter script and Client script are 

running on each node’s crontab. Server script is running in the OS’s background. Those 

five experiments are distinguished by whether selected nodes have incentives installed or 

not. Those five groups of experiments are shown in table 1. Y means the incentive 

mechanism is installed on that node. N means the incentive mechanism is not installed on 

that node.  

 Seeder  Leecher 
Experiment One  Y Y 
Experiment Two  Y N 
Experiment Three  N Y 
Experiment Four  N N 
Verification Experiment Y Y 

Table 1: Experiments in this section 

 

6.2.1 Experiment 1:  

          In this experiment, both leechers and seeders have incentive mechanism installed. 

We conducted three different test cases:  

1. One seeder and 19 leechers.  
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          In order to prevent hogging limited network bandwidth of nodes in PlanetLab, we 

set each node’s upload bandwidth per torrent to 100KB/s and download bandwidth per 

torrent to 200KB/s. Each node’s online time in BitTorrent network is illustrated in Table 

2.  

Node 
Number 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Online 
Time(day) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Table 2: G1T1 Node Online Time 

 

            Download completion time of all leechers is illustrated in Figure 15. Since only 

one seeder is available in the whole BitTorrent network, the upload bandwidth set by the 

seeder doesn’t have much influence on others. So, the download completion time of 

every node is approximately the same except Node 17 and Node 19. Compared with 

other nodes in the BitTorrent network, Node 17 and Node 19 have much slower network 

bandwidth. So their download completion time is much longer than others. In summary, 

incentive mechanism does not have much influence on each node’s download completion 

time. The revised BitTorrent network with one seeder works almost the same as regular 

BitTorrent network.  
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Figure 15: Download completion time of Nodes in G1T1 

 

2. Two seeders and 18 leechers.  

            Each node’s upload bandwidth per torrent is set to 100KB/s and download 

bandwidth per torrent is set to 200KB/s. Each node’s online time in BitTorrent network is 

illustrated in Table 3.  

Node 
Number 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Online 
Time(day) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Table 3: G1T2 Node Online Time 

 

          Figure 16 shows leechers’ download completion time in this test case. Compared 

with the previous test case which has one available seeder, download completion time of 

each node decreases significantly. Generally, leechers who contribute more to others 

could finish their download faster than others. In summary, the incentive mechanism 
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works to ensure better download speed for those who stay online longer and contribute 

more to others.  

 

Figure 16: Download Completion Time of Nodes in G1T2 

 

3. Three seeders and 17 leechers.  

            Each node’s upload bandwidth per torrent is set to 100KB/s and download 

bandwidth per torrent is set to 200KB/s. Nodes’ online time is illustrated in Table 4.  

Node 
Number 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Online 
Time(day) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Table 4: G1T3 Node Online Time 

 

          Figure 17 shows leechers’ download completion time in this test case. Comparing 

with the test case 2 of this experiment, each node’s download completion time decreases. 

More importantly, majority of those nodes who contribute more to others finish their 

download faster than others. 
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Figure 17: Download Completion Time of Nodes in G1T3 

          

          In summary, our first experiment prove that the incentive mechanism could help 

nodes who contribute more to others get better download speed in a BitTorrent network if 

there is more than one seeder from the beginning of the download process. If there is only 

one seeder from the beginning of the download process, the performance of the revised 

BitTorrent system is almost the same as a regular BitTorrent system.  

 

6.2.2 Experiment 2:  

          In this experiment, only seeders have incentive mechanisms installed. Leechers 

don’t install incentive mechanisms. Leechers without our incentive mechanism will 

follow regular BitTorrent TFT incentive uploading to others. There are also three 

different test cases in this experiment:  

1. One seeder and 19 leechers.  
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          Each node’s upload bandwidth per torrent is set to 100KB/s and download 

bandwidth per torrent is set to 200KB/s. Node’ online time is illustrated in Table 5.  

Node 
Number 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Online 
Time(day) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Table 5: G2T1 Node Online Time 

 

          Figure 18 shows leechers’ download completion time. Download completion time 

of each node is approximately the same. Since only one node has incentive mechanism 

installed and majority of nodes follow regular BitTorrent, the upload bandwidth set by 

the seeder will not have much effects on every leecher’s download bandwidth. In 

summary, our incentive mechanism almost does not influence the download completion 

time of each node in this test case.  

 

Figure 18: Download Completion Time of Nodes in G2T1 
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2. Two seeders and 18 leechers.  

            Each node’s upload bandwidth per torrent is set to 100KB/s and download 

bandwidth per torrent is set to 200KB/s. Each node’s online time in BitTorrent network is 

illustrated in Table 6.  

Node 
Number 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Online 
Time(day) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Table 6: G2T2 Node Online Time 

          Each leecher’s download completion time is illustrated in Figure 19. The result is 

similar to the previous test case of this experiment. Since only those two seeders have 

incentive installed, majority of the nodes will follow the regular BitTorrent protocol to 

upload to others. The upload bandwidth set by minority of nodes in the BitTorrent will 

not have many effects on majority of nodes in it. In summary, the incentive mechanism 

will not influence much on each node’s download completion time in this test case. But, 

each node’s download completion time in this test case decreases significantly compared 

to the previous test case with one seeder.  

 

Figure 19: Download Completion Time Nodes in G2T2 
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3. Three seeders and 17 leechers.  

            Each node’s upload bandwidth per torrent is set to 100KB/s and download 

bandwidth per torrent is set to 200KB/s. Node’s online time in BitTorrent network is 

illustrated in Table 7.  

Node 
Number 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Online 
Time(day) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Table 7: G2T3 Node Online Time 

 

            Each leecher’s download completion is illustrated in Figure 20. In this graph, 

nodes who contribute more to others don’t get better download speed, because most 

nodes’ download bandwidth will not be influcenced by the upload speed set by three 

seeders.             

 

Figure 20: Download Completion Time of Nodes in G2T3 
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          In summary, if majority of nodes in the BitTorrent network don’t have incentive 

mechanism installed, then node who contribute more to others will not be guaranteed to 

get better download speed than others.  

 

6.2.3 Experiment 3:  

          In this experiment, we install the incentive mechanism on leechers but not on 

seeders. There are also three different test cases in this experiment:  

1. One seeder and 19 leechers.  

            Each node’s upload bandwidth per torrent is set to 100KB/s and download 

bandwidth per torrent is set to 200KB/s. Each node’s online time in BitTorrent network is 

illustrated in Table 8.  

Node 
Number 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Online 
Time(day) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Table 8: G3T1 Node Online Time 

 

          Figure 21 shows leechers’ download completion time in this test case. The result is 

similar to the previous two experiments. Each node’s download completion time in the 

revised BitTorrent system is almost the same as that in regular BitTorrent system.  
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Figure 21: Download Completion Time of Nodes in G3T1 

 

2. Two seeders and 18 leechers.  

            Each node’s upload bandwidth per torrent is set to 100KB/s and download 

bandwidth per torrent is set to 200KB/s. Each node’s online time in BitTorrent network is 

illustrated in Table 9.  

Node 
Number 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Online 
Time(day) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Table 9: G3T2 Node Online Time 

 

            Each leecher’s download completion time is illustrated in Figure 22. Compared 

with the previous test case in this experiment, the download completion time for each 

node decreases significantly. Furthermore, nodes that stay longer and contribute more to 

others will get better download speed than others.  
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Figure 22: Download Completion Time of Nodes in G3T2 

 

3. Three seeders and 17 leechers.  

            Each node’s upload bandwidth per torrent is set to 100KB/s and download 

bandwidth per torrent is set to to 200KB/s. Each Node’s online time in BitTorrent 

network is illustrated in Table 10.  

Node 
Number 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Online 
Time(day) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Table 10: G3T3 Node Online Time 

 

            Each leecher’s download completion time is illustrated in Figure 23. From the 

graph, we could see that some nodes who contribute more to others will finish 

downloading faster than others. However, some nodes who also contribute more to others 

don’t get better download speed. The reason is that the network situation of each node 
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varies a lot in PlanetLab and those three seeders disbtribute resource evenly. In 

experiment 2, all of those test cases almost don’t have influence on each leecher’s 

download completion time. But in this experiment, generally, nodes who contribute more 

to others will get better download speeds. In Summary, this experiment shows that the 

number of nodes that  have incentive mechanisms installed will influence the final result. 

 

Figure 23: Download Completion Time of Nodes in G3T3 

           

6.2.4 Experiment 4: 

          In this experiment, we run a regular BitTorrent test which doesn’t have incentive 

mechanisms installed on leerchers nor on seeders. We conducted three different test cases:  

1. One seeder and 19 leechers.  

            Each node’s upload bandwidth per torrent is set to 100KB/s and download 

bandwidth per torrent is set to 200KB/s.  
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          Figure 24 shows each leecher’s download completion time. In regular Bittorrent 

networks, the seeder tries to ensure fairness which means to distribute resource evenly to 

each client. So, the download completion time for each node is approximately the same.  

 

Figure 24: Download completion time of Nodes in G4T1 
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            Each node’s upload bandwidth per torrent is set to 100KB/s and download 
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that have better download bandwidth will complete their downloading process faster than 
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decreased significantly.  

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 Seeder

D
ow

n
lo

ad
 T

im
e 

(s
e

co
n

d
s)

 



  38

 

Figure 25: Download Completion Time of Nodes in G4T2 

 

3. Three seeders and 17 leechers.  

            Each node’s upload bandwidth is set to 100KB/s and download bandwidth is set 
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            Figure 26 shows leechers’ download completion time. Compared with the 

previous test case which has two seeders, some nodes’ download completion decreased 

significantly. However, most nodes’ download completion time is the same or even 
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0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 Seeders

D
o

w
n

lo
ad

 T
im

e 
(s

e
co

nd
s)

 



  39

 

Figure 26: Download Completion Time of Nodes in G4T3 

           

          In summary, in regular BitTorrent, more seeders don’t mean faster download 

completion for all nodes.  

 

6.3 Verification Experiment 

            In all three experiments for revised BitTorrent system, online time set for each 

node is the same. In order to validate that it is the incentive mechanism instead of any 

other factors that help nodes stay online longer and contribute more to others getting 

better download speeds. In this section, we conducted two test cases which have reversed 

order of online time, illustrated in Table 11. 

   Node Index 1 2 3 4 5 6 7 8 9 10 11 12 13 

Time 
Increased(day) 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Time 
Decreased(day) 

13 12 11 10 9 8 7 6 5 4 3 2 1 

Table 11: Verification Test Online Time 
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          Download completion time of each node of two test cases are illustrated in Figure 

27. From the graph, we could see that the download completion time of nodes is an 

increasing order from left to right in the time decreased test case. And, the download 

completion time of nodes is a decreasing order from left to right in the time increased test 

case. From this experiment, we could prove that it is because of the incentive mechanism, 

instead of other factors that make those nodes stay longer finish downloading process 

faster than others.  

 

Figure 27: Download Completion time of Nodes in Verification Experiment 
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possibility that some peers may send fake information back to the client in order to to get 

better download speeds.  

 

7.0 Conclusion 

 This paper proposes an incentive mechanism to incentivize seeders upload to 

others and evaluate the performance of the incentive mechanism by comparing the 

download completion time in regular BitTorrent networks with three other revised 

BitTorrent networks. Experimental results demonstrated that the proposed incentive 

mechanism could help those who contributed more to others get better download speed. 

Furthermore, if the majority of nodes in a BitTorrent network have incentive mechanisms 

installed, the download completion time of each node will decrease with the increasing 

number of seeders. However, in regular BitTorrent, the increasing number of seeders will 

not result in the decrease of every node’s download completion time.  

            Content in BitTorrent is stored in all nodes in the network. The more nodes a 

BitTorrent system has, the more available the content in it is. The incentive mechanism 

which incentivizes seeders to stay longer in the network could potentially increase the 

available content in the BitTorrent network.  

            Although the protocol can help those who stay longer in the network get better 

download speed, it also has weaknesses. In some situations, it will increase the overall 

download completion time. Most importantly, the incentive mechanism needs to be 

installed on the majority of nodes in the BitTorrent network in order to work efficiently. 

Only small portions of nodes in a BitTorrent network have incentive mechanism 
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installed, each node’s download completion time will not be managed effectively by the 

incentive mechanism.   

           

8.0 Future Work 

 This work opens up many directions for future research. One major piece is that 

the incentive mechanism couldn’t decrease the overall download completion time of the 

BitTorrent network.   

          A better algorithm will be able to detect the size of shared content and the quality 

of shared content in one node. If the shared content is very rare in the BitTorrent network,    

it should be rewarded more than those staying online but only have very commonly 

shared content.   

           Furthermore, the incentive mechanism needs to run third party scripts and make 

revisions to the core portion of Deluge. These changes make Deluge very hard to deploy 

in different platforms. Improvements for the installation of incentive mechanism to be 

easily deployed on different platforms are necessary.  
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 Appendix A 

File: client.py 
from deluge.ui.client import client 
from deluge.log import setupLogger 
from twisted.internet import reactor, defer, protocol 
from twisted.protocols import basic 
from collections import defaultdict 
from twisted.protocols.basic import LineReceiver 
from twisted.internet.protocol import ClientFactory 
setupLogger() 
 
 
#struct of peer_info {{0: {'torrent_id': 'c3dabbfcad23ce50566eac209e004fe9903e35ea',  
#                           'ip': '60.181.114.35:12345', 
#                            'time': 1, 
#                            'speed': 2}, 
 
global peer_info 
global counter 
 
#number of conections establised to all associated peers 
global connection 
#sum of associated peers of all torrent files 
global total_peer 
#upload bandwidth of local pc  
global up_bandwidth 
up_bandwidth = 100 
port = 59500 
total_peer = 0 
connection = 1 
counter = 0 
 
peer_info = defaultdict( dict )  
 
''' 
Component to get peers in local pc, Two functions: 
1. get_torrent_id will get all torrent ids in current deluge client 
2. get_peer will get each torrent's associated peers  
''' 
def get_torrent_id(): 
    d = client.connect() 
    def on_get_id_success(result): 
        print "Connection in get_torrent_id was successful!" 
        def on_get_config(result): 
            get_peer(result) 
        client.core.get_session_state().addCallback(on_get_config) 
    d.addCallback(on_get_id_success) 
 
    def on_get_id_fail(result): 
        print "Connection in on_get_id_fail failed!" 
        print "result:", result 
 
    # We add the callback (in this case it's an errback, for error) 
    d.addErrback(on_get_id_fail) 
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#get every torrent's associated peers in local PC 
def get_peer(torrent_id): 
    d = client.connect() 
    def on_connect_success(result): 
        print "Connection in get_peer was successful!" 
        def on_get_config(result, torrent_number, m): 
            #detect whether a torrent has peer or not 
            global counter 
            counter = counter + 1 
            if(result['peers'] == ()): 
                print "torrent id", torrent_id[torrent_number], "doesn't has associated peers" 
            else:  
                for i in range(0, len(result['peers'])): 
                    global peer_info, total_peer 
                    peer_info[total_peer]['ip'] = result['peers'][i]["ip"] 
                    peer_info[total_peer]['torrent_id'] = torrent_id[torrent_number] 
                    total_peer = total_peer + 1 
                    #Get out of the loop and give the dict to connect function 
                    if((counter == m) & (i == len(result['peers']) - 1)): 
                        clientconnection() 
        for i in range(0, len(torrent_id)): 
            client.core.get_torrent_status(torrent_id[i], ["peers"], True).addCallback(on_get_config, i, 
len(torrent_id)) 
    d.addCallback(on_connect_success) 
 
    def on_connect_fail(result): 
        print "Connection failed!" 
        print "result:", result 
    d.addErrback(on_connect_fail) 
 
''' 
Component to connect peers and get time 
1. client connection. Initialize the connection to each peer 
2. class GetTime. Define the behavior if connectMade is success or line received is success 
   if lineReceived is success, then computer ip value sent back from server with ip value stored in peer_info 
   if these two values are the same, then set the time send back from server to the corresponding ip node 
3. clas GetTimefactory. Define the behavior if the connection is lost of failed  
4. In this component, if the number of connection is equal to the number of peers, then we go to the 
setemptyvalue() funciton 
   in the setemptyvalue function, it will set empty time value to 1 which means that specific server doesn't 
install 
   the incentvie mechanism 
''' 
#connect to all associated peers in local PC 
def clientconnection(): 
    global peer_info 
    factory = GetTimeFactory() 
    for i in range(0, len(peer_info)): 
        reactor.connectTCP(peer_info[i]['ip'].split(":")[0], port, factory) 
 
class GetTime(LineReceiver): 
    def connectionMade(self): 
        self.sendLine("online time") 
    def lineReceived(self, line): 
        global connection 



  45

        for i in range(0, len(peer_info)): 
            #line.split(":")[0] is the ip address of peer 
            #line.split(":")[1] is the online time of peer   
            if (peer_info[i]['ip'] == line.split(":")[0]): 
                peer_info[i]['time'] = line.split(":")[1] 
        print "ipcorrect", "connection:", connection, "peer_info", len(peer_info) 
        if(connection == len(peer_info)): 
            setemptyvalue() 
        connection = connection + 1 
        self.transport.loseConnection() 
 
#if the number of connections is equal the number of total peers in local PC.  
#total peers means the sum of peers of all torrents 
#for example: torrent one has 10 peers. torrent two has 20 peers. Then, the total number of peers is 30 
class GetTimeFactory(ClientFactory): 
    protocol = GetTime 
    def clientConnectionFailed(self, connector, reason): 
        global connection 
        print 'connection failed:', "connection", connection, "peer_info", 
len(peer_info),reason.getErrorMessage() 
        if(connection == len(peer_info)): 
            setemptyvalue() 
        connection = connection + 1 
    def clientConnectionLost(self, connector, reason): 
        global connection  
        print "connectionlost", "connection", connection, "peer_info", 
len(peer_info),reason.getErrorMessage() 
        if(connection == len(peer_info)): 
            setemptyvalue() 
        connection = connection + 1 
         
 
def setemptyvalue(): 
    global peer_info 
    for i in range(0, len(peer_info)): 
        try: 
            peer_info[i]['time'] 
        except KeyError: 
            peer_info[i]['time'] = 1.0 
    speedmanager() 
 
''' 
Manage speed has three function: 
1. compute. Compute each peer's upload speed bandwidth 
2. speedmanager. process the whole peer_info dictionary and use compute function to calculate 
3. speedset. set the key"speed" of peer_info dictionary as each peer's upload limit  
''' 
def compute(min, max): 
    sum = 0 
    for i in range(min, max): 
        sum = sum + int(peer_info[i]['time']) 
    for i in range(min, max): 
        peer_info[i]['speed'] = float(peer_info[i]['time']) * up_bandwidth  / sum 
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def speedmanager(): 
    global peer_info 
    sum = 0 
    j = 0 
    #in the for loop, if j is not equal to i, we compute from j to i 
    #after we are out of the for loop, the last torrent is not computed, so we use compute function out side the 
for 
    #to process the last part 
    for i in range(0, len(peer_info)): 
        if (peer_info[j]['torrent_id']) != peer_info[i]['torrent_id']: 
            compute(j, i) 
            j = i 
    compute(j, len(peer_info)) 
    speedset() 
 
             
def speedset(): 
    global peer_info 
    speedcontrol = client.connect() 
    #ip = ('150.254.186.34', 80) 
    # We create a callback function to be called upon a successful connection 
    def speedcontrol_success(result): 
        def on_get_config(result, torrent_id, ip, value): 
            print "speed set for ",torrent_id, ip ,"value is", value 
        for i in range(0, len(peer_info)): 
            ip_port = (peer_info[i]['ip'].split(':')[0], int(peer_info[i]['ip'].split(':')[1]))      
            client.core.set_peer_max_upload_speed(peer_info[i]['torrent_id'], ip_port, 
peer_info[i]['speed']).addCallback(on_get_config, peer_info[i]['torrent_id'], ip_port, peer_info[i]['speed']) 
 
    def speedcontrol_fail(result): 
        print "Connection to control speed failed!" 
    speedcontrol.addCallback(speedcontrol_success) 
    speedcontrol.addErrback(speedcontrol_fail) 
 
def main(): 
    #peer_connection() 
    get_torrent_id() 
    reactor.run( ) 
 
if __name__ == "__main__": 

main() 
 
 
File: server.py 
''' 
Created on Mar 7, 2011 
@author: zack 
''' 
from deluge.log import setupLogger 
from twisted.internet import reactor, defer, protocol 
from twisted.protocols import basic 
import math 
import socket 
 
setupLogger() 
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#location of the files store online time  
global filename 
#user's online time  
global time  
#if the pc doesn't install the incentive mechanism, its default is 1 instead of 0 
#because we have a fractional function to compute value 
time = 1 
 
port = 59500 
filename = "/home/zack/Documents/log3.dat" 
###################################### 
#Get local machine's online time 
#structure of data send back to client 
#(ip:time) for example: 
#(192.168.1.1:1.0034) 
###################################### 
def fileinput(path): 
    try: 
        global time 
        file = open(path,"r") 
        inline = file.readline()    
        value = inline.split(':')[1] 
        time = float(value) 
    except IOError:  
        pass 
    #86400 is the number of seconds of a day, we want the value of time increase by 0.24 per day.  
    #we could find the prototype of the funcion in PPT stored in win7 CS298 file 
    time = (float(time) / 86400)*0.24 
    T = math.pow(1+1/float(time),float(time)) 
    #get local PC's ip address 
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 
    s.connect(("gmail.com",80)) 
    finalstr = '' 
    finalstr = s.getsockname()[0] + ":" + str(T) 
    return finalstr 
###################################### 
#Get usernames and time from each peer 
###################################### 
'''server wait part''' 
class EchoProtocol(basic.LineReceiver): 
    def lineReceived(self, line): 
        if line == 'online time': 
            value = fileinput(filename) 
            self.sendLine(str(value)) 
        else: 
            self.sendLine("You said: " + line) 
 
class EchoServerFactory(protocol.ServerFactory): 
    protocol  = EchoProtocol 
 
if __name__ == "__main__": 
    reactor.listenTCP(port, EchoServerFactory( )) 
    reactor.run( ) 
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File: counter.py 
from deluge.ui.client import client 
from twisted.internet import reactor 
from twisted.internet import task 
from deluge.log import setupLogger 
setupLogger() 
 
#each user's online time  
global time 
   
#number of files seeding in local machine 
global seed_number 
 
#value should add for time per second 
global adder 
 
#count number of threads in local PC 
global counter 
 
#location and name of the file we want to store user's online time 
global filename  
 
#initialize value of global variable and file location 
counter = 0 
seed_number = 0 
time = 0 
filename = "/home/zack/Documents/log3.dat" 
#store user's online time  
 
def fileinput(filename): 
    try: 
        global time 
        file = open(filename,"r") 
        inline = file.readline()    
        value = inline.split(':')[1] 
        time = float(value) 
    except IOError:  
        pass 
     
def get_torrent_id(): 
    d = client.connect() 
    def on_get_id_success(result): 
        print "Connection in get_torrent_id was successful!" 
        def on_get_config(result): 
            get_progress(result) 
          
        client.core.get_session_state().addCallback(on_get_config) 
    d.addCallback(on_get_id_success) 
 
    def on_get_id_fail(result): 
        print "Connection in on_get_id_fail failed!" 
        print "result:", result 
 
    # We add the callback (in this case it's an errback, for error) 
    d.addErrback(on_get_id_fail) 
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#Get the number of files seeding in local machine 
def get_progress(torrent_id):  
    d = client.connect() 
    global seed_number 
    global adder 
    global counter 
    seed_number = 0 
    adder = 0 
    counter = 0         
    def on_connect_success(result): 
        print "Connection in get_progress was successful!" 
        def on_get_config(result): 
            global seed_number 
            global adder 
            global counter 
            global time 
            counter = counter + 1 
            if result["progress"] == 100.0: 
                seed_number = seed_number + 1   
                adder = (seed_number - 1)*0.1 + 1   
                time = adder + time 
                print "online time is :", time 
                FILE = open(filename,"w") 
                FILE.write("online time:" + str(time)) 
                #the if condition loop will return the final adder value 
            if counter == len(torrent_id): 
                print "seed number:", seed_number, "adder value is:", adder 
                 
        for i in range(0, len(torrent_id)): 
            client.core.get_torrent_status(torrent_id[i], ["progress"], True).addCallback(on_get_config) 
         
    d.addCallback(on_connect_success) 
 
    def on_connect_fail(result): 
        print "Error, get torrent progress" 
        print "result:", result 
    d.addErrback(on_connect_fail) 
 
      
l = task.LoopingCall(get_torrent_id) 
l.start(1.0) # call every second 
fileinput(filename) 
 
reactor.run() 
 

#File: Install  
#Install necessary libraries for deluge 
su -c 'yum groupinstall "Development Tools"'  
su -c 'yum install wget python python-devel twisted pyOpenSSL gettext pyxdg boost boost-devel openssl 
openssl-devel zlib zlib-devel libnotify pygame xdg-utils python-mako python-chardet pygtk2 pygtk2-devel 
python-setuptools python-setuptools-devel librsvg2-devel'  
mkdir ~/deluge && cd ~/deluge && wget http://download.deluge-torrent.org/source/deluge-1.3.0.tar.bz2 
&& wget http://libtorrent.googlecode.com/files/libtorrent-rasterbar-0.14.11.tar.gz  
gunzip libtorrent-rasterbar-0.14.11.tar.gz  
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tar -xvjf deluge-1.3.0.tar.bz2 && tar -xvf libtorrent-rasterbar-0.14.11.tar  
mv libtorrent-rasterbar-0.14.11 libtorrent  
mv libtorrent deluge-1.3.0  
cd ~/deluge/deluge-1.3.0 && python setup.py clean -a && python setup.py build && su -c 'python 
setup.py install' 
 
#File: CopyLibrary 
#Copy simplejson, chardet libraries to nodes of Planetlab.  
#!/bin/sh 
# Rotate procmail log files 
node="ds-pl1.technion.ac.il" 
cd /home/zack/Downloads 
scp -i ~/Documents/id_rsa simplejson.tar.gz 
sjsu_jsu_p2p_streaming@$node:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa chardet-1.0.1.tar.gz 
sjsu_jsu_p2p_streaming@$node:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa charjson sjsu_jsu_p2p_streaming@$node:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa installfile sjsu_jsu_p2p_streaming@$node:/home/sjsu_jsu_p2p_streaming 
#File: UpAllScript  
 
#Upload counter.py, client.py, server.py to 20 nodes of PlanetLab 
#!/bin/sh 
# Rotate procmail log files 
node1="planetlab1.cesnet.cz" 
node2="planetlab1.cs.stevens-tech.edu" 
node3="planetlab-2.imperial.ac.uk" 
node4="planetlab1.ucsd.edu" 
node5="planetx.scs.cs.nyu.edu" 
node6="planetlab2.hiit.fi" 
node7="planetlab2.cs.pitt.edu" 
node8="planetlab1.cs.pitt.edu" 
node9="planetlab2.ucsd.edu" 
node10="ricepl-1.cs.rice.edu" 
node11="pl1.eecs.utk.edu" 
node12="planetlab1.dtc.umn.edu" 
node13="planetlab2.cs.stevens-tech.edu" 
node14="planetlab-01.bu.edu" 
node15="lefthand.eecs.harvard.edu" 
node16="agni.iitd.ernet.in" 
node17="planetlab-2.cs.uh.edu" 
node18="planetlab-2.ssvl.kth.se" 
node19="planetlab-2.cse.ohio-state.edu" 
node20="righthand.eecs.harvard.edu" 
cd /home/zack/workspace/CS298/src 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node1:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node2:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node3:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node4:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node5:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node6:/home/sjsu_jsu_p2p_streaming 
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scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node7:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node8:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node9:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node10:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node11:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node12:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node13:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node14:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node15:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node16:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node17:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node18:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node19:/home/sjsu_jsu_p2p_streaming 
scp -i ~/Documents/id_rsa client.py counter.py server.py  
sjsu_jsu_p2p_streaming@$node20:/home/sjsu_jsu_p2p_streaming 
 

File: torrent.py 
# torrent.py 
# 
 
"""Internal Torrent class""" 
 
import os 
import time 
from urllib import unquote 
from urlparse import urlparse 
 
from deluge._libtorrent import lt 
 
import deluge.common 
import deluge.component as component 
from deluge.configmanager import ConfigManager, get_config_dir 
from deluge.log import LOG as log 
from deluge.event import * 
 
from time import gmtime, strftime 
TORRENT_STATE = deluge.common.TORRENT_STATE 
 
    def set_max_connections(self, max_connections): 
        self.options["max_connections"] = int(max_connections) 
        self.handle.set_max_connections(max_connections) 
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    def set_max_upload_slots(self, max_slots): 
        self.options["max_upload_slots"] = int(max_slots) 
        self.handle.set_max_uploads(max_slots) 
 
    def set_max_upload_speed(self, m_up_speed): 
        self.options["max_upload_speed"] = m_up_speed 
        if m_up_speed < 0: 
            v = -1 
        else: 
            v = int(m_up_speed * 1024) 
 
        self.handle.set_upload_limit(v) 
 
    def set_max_download_speed(self, m_down_speed): 
        self.options["max_download_speed"] = m_down_speed 
        if m_down_speed < 0: 
            v = -1 
        else: 
            v = int(m_down_speed * 1024) 
        self.handle.set_download_limit(v) 
 
    #add this new function to limit speed of peer  
    def set_peer_download_speed(self, ip, value): 
        if value < 0: 
            v =  -1 
        else: 
            v = int(value * 1024) 
        filename = "/home/zack/Documents/log.dat" 
        FILE = open(filename,"a") 
        FILE.write("pymodules download: " + str(strftime("%a, %d %b %Y %H:%M:%S", gmtime())) + "\n") 
        FILE.close() 
        self.handle.set_peer_download_limit(ip, v) 
     
    def set_peer_upload_speed(self, ip, value): 
        if value < 0: 
            v =  -1 
        else: 
            v = int(value * 1024) 
        filename = "/home/zack/Documents/log.dat" 
        FILE = open(filename,"a") 
        FILE.write("pymodules upload:" + str(strftime("%a, %d %b %Y %H:%M:%S", gmtime())) + "\n") 
        FILE.close() 
        self.handle.set_peer_upload_limit(ip, v) 
     
    def set_stop_ratio(self, stop_ratio): 
        self.options["stop_ratio"] = stop_ratio 
 
    def set_stop_at_ratio(self, stop_at_ratio): 
        self.options["stop_at_ratio"] = stop_at_ratio 
 
    def set_remove_at_ratio(self, remove_at_ratio): 
        self.options["remove_at_ratio"] = remove_at_ratio 
 
    def set_trackers(self, trackers): 
        """Sets trackers""" 
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        if trackers == None: 
            trackers = [] 
            for value in self.handle.trackers(): 
                tracker = {} 
                tracker["url"] = value.url 
                tracker["tier"] = value.tier 
                trackers.append(tracker) 
            self.trackers = trackers 
            self.tracker_host = None 
            return 
 
        log.debug("Setting trackers for %s: %s", self.torrent_id, trackers) 
        tracker_list = [] 
 
        for tracker in trackers: 
            new_entry = lt.announce_entry(tracker["url"]) 
            new_entry.tier = tracker["tier"] 
            tracker_list.append(new_entry) 
        self.handle.replace_trackers(tracker_list) 
 
        # Print out the trackers 
        #for t in self.handle.trackers(): 
        #    log.debug("tier: %s tracker: %s", t["tier"], t["url"]) 
        # Set the tracker list in the torrent object 
        self.trackers = trackers 
        if len(trackers) > 0: 
            # Force a reannounce if there is at least 1 tracker 
            self.force_reannounce() 
 
    def get_eta(self): 
        """Returns the ETA in seconds for this torrent""" 
        if self.status == None: 
            status = self.handle.status() 
        else: 
            status = self.status 
 
        if self.is_finished and self.options["stop_at_ratio"]: 
            # We're a seed, so calculate the time to the 'stop_share_ratio' 
            if not status.upload_payload_rate: 
                return 0 
            stop_ratio = self.options["stop_ratio"] 
            return ((status.all_time_download * stop_ratio) - status.all_time_upload) / 
status.upload_payload_rate 
 
        left = status.total_wanted - status.total_done 
 
        if left <= 0 or status.download_payload_rate == 0: 
            return 0 
 
        try: 
            eta = left / status.download_payload_rate 
        except ZeroDivisionError: 
            eta = 0 
 
        return eta 
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    def get_ratio(self): 
        """Returns the ratio for this torrent""" 
        if self.status == None: 
            status = self.handle.status() 
        else: 
            status = self.status 
 
        if status.total_done > 0: 
            # We use 'total_done' if the downloaded value is 0 
            downloaded = status.total_done 
        else: 
            # Return -1.0 to signify infinity 
            return -1.0 
 
        return float(status.all_time_upload) / float(downloaded) 
 
 
    def get_peers(self): 
        """Returns a list of peers and various information about them""" 
        ret = [] 
        peers = self.handle.get_peer_info() 
 
        for peer in peers: 
            # We do not want to report peers that are half-connected 
            if peer.flags & peer.connecting or peer.flags & peer.handshake: 
                continue 
            try: 
                client = str(peer.client).decode("utf-8") 
            except UnicodeDecodeError: 
                client = str(peer.client).decode("latin-1") 
 
            # Make country a proper string 
            country = str() 
            for c in peer.country: 
                if not c.isalpha(): 
                    country += " " 
                else: 
                    country += c 
 
            ret.append({ 
                "client": client, 
                "country": country, 
                "down_speed": peer.down_speed, 
                "ip": "%s:%s" % (peer.ip[0], peer.ip[1]), 
                "progress": peer.progress, 
                "seed": peer.flags & peer.seed, 
                "up_speed": peer.up_speed, 
            }) 
 
        return ret 
 
    def get_file_progress(self): 
        """Returns the file progress as a list of floats.. 0.0 -> 1.0""" 
        if not self.handle.has_metadata(): 
            return 0.0 
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        file_progress = self.handle.file_progress() 
        ret = [] 
        for i,f in enumerate(self.get_files()): 
            try: 
                ret.append(float(file_progress[i]) / float(f["size"])) 
            except ZeroDivisionError: 
                ret.append(0.0) 
 
        return ret 
 
     
    def pause(self): 
        """Pause this torrent""" 
        # Turn off auto-management so the torrent will not be unpaused by lt queueing 
        self.handle.auto_managed(False) 
        if self.handle.is_paused(): 
            # This torrent was probably paused due to being auto managed by lt 
            # Since we turned auto_managed off, we should update the state which should 
            # show it as 'Paused'.  We need to emit a torrent_paused signal because 
            # the torrent_paused alert from libtorrent will not be generated. 
            self.update_state() 
            component.get("EventManager").emit(TorrentStateChangedEvent(self.torrent_id, "Paused")) 
        else: 
            try: 
                self.handle.pause() 
            except Exception, e: 
                log.debug("Unable to pause torrent: %s", e) 
                return False 
 
        return True 
 
    def resume(self): 
        """Resumes this torrent""" 
 
        if self.handle.is_paused() and self.handle.is_auto_managed(): 
            log.debug("Torrent is being auto-managed, cannot resume!") 
            return 
        else: 
            # Reset the status message just in case of resuming an Error'd torrent 
            self.set_status_message("OK") 
 
            if self.handle.is_finished(): 
                # If the torrent has already reached it's 'stop_seed_ratio' then do not do anything 
                if self.options["stop_at_ratio"]: 
                    if self.get_ratio() >= self.options["stop_ratio"]: 
                        #XXX: This should just be returned in the RPC Response, no event 
                        #self.signals.emit_event("torrent_resume_at_stop_ratio") 
                        return 
 
            if self.options["auto_managed"]: 
                # This torrent is to be auto-managed by lt queueing 
                self.handle.auto_managed(True) 
 
            try: 
                self.handle.resume() 
            except: 
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                pass 
 
            return True 
 
    def connect_peer(self, ip, port): 
        """adds manual peer""" 
        try: 
            self.handle.connect_peer((ip, int(port)), 0) 
        except Exception, e: 
            log.debug("Unable to connect to peer: %s", e) 
            return False 
        return True 
 
    def move_storage(self, dest): 
        """Move a torrent's storage location""" 
        if not os.path.exists(dest): 
            try: 
                # Try to make the destination path if it doesn't exist 
                os.makedirs(dest) 
            except IOError, e: 
                log.exception(e) 
                log.error("Could not move storage for torrent %s since %s does not exist and could not create the 
directory.", self.torrent_id, dest) 
                return False 
        try: 
            self.handle.move_storage(dest.encode("utf8")) 
        except: 
            return False 
 
        return True 
 
    def save_resume_data(self): 
        """Signals libtorrent to build resume data for this torrent, it gets 
        returned in a libtorrent alert""" 
        self.handle.save_resume_data() 
        self.waiting_on_resume_data = True 
 
    def write_torrentfile(self): 
        """Writes the torrent file""" 
        path = "%s/%s.torrent" % ( 
            os.path.join(get_config_dir(), "state"), 
            self.torrent_id) 
        log.debug("Writing torrent file: %s", path) 
        try: 
            self.torrent_info = self.handle.get_torrent_info() 
            # Regenerate the file priorities 
            self.set_file_priorities([]) 
            md = lt.bdecode(self.torrent_info.metadata()) 
            torrent_file = {} 
            torrent_file["info"] = md 
            open(path, "wb").write(lt.bencode(torrent_file)) 
        except Exception, e: 
            log.warning("Unable to save torrent file: %s", e) 
 
    def delete_torrentfile(self): 
        """Deletes the .torrent file in the state""" 
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        path = "%s/%s.torrent" % ( 
            os.path.join(get_config_dir(), "state"), 
            self.torrent_id) 
        log.debug("Deleting torrent file: %s", path) 
        try: 
            os.remove(path) 
        except Exception, e: 
            log.warning("Unable to delete the torrent file: %s", e) 
 
    def force_reannounce(self): 
        """Force a tracker reannounce""" 
        try: 
            self.handle.force_reannounce() 
        except Exception, e: 
            log.debug("Unable to force reannounce: %s", e) 
            return False 
 
        return True 
 
    def scrape_tracker(self): 
        """Scrape the tracker""" 
        try: 
            self.handle.scrape_tracker() 
        except Exception, e: 
            log.debug("Unable to scrape tracker: %s", e) 
            return False 
 
        return True 
 
    def force_recheck(self): 
        """Forces a recheck of the torrents pieces""" 
        try: 
            self.handle.force_recheck() 
            self.handle.resume() 
        except Exception, e: 
            log.debug("Unable to force recheck: %s", e) 
            return False 
        return True 
 
         
    def cleanup_prev_status(self): 
        """ 
        This method gets called to check the validity of the keys in the prev_status 
        dict.  If the key is no longer valid, the dict will be deleted. 
         
        """ 
        for key in self.prev_status.keys(): 
            if not self.rpcserver.is_session_valid(key): 
                del self.prev_status[key] 
 
File: Core.py 
# 
# core.py 
# 
from deluge._libtorrent import lt 
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import os 
import glob 
import base64 
import shutil 
import threading 
import pkg_resources 
import warnings 
import tempfile 
 
 
from twisted.internet import reactor, defer 
from twisted.internet.task import LoopingCall 
import twisted.web.client 
 
from deluge.httpdownloader import download_file 
from deluge.log import LOG as log 
 
 
import deluge.configmanager 
import deluge.common 
import deluge.component as component 
from deluge.event import * 
from deluge.error import * 
from deluge.core.torrentmanager import TorrentManager 
from deluge.core.pluginmanager import PluginManager 
from deluge.core.alertmanager import AlertManager 
from deluge.core.filtermanager import FilterManager 
from deluge.core.preferencesmanager import PreferencesManager 
from deluge.core.autoadd import AutoAdd 
from deluge.core.authmanager import AuthManager 
from deluge.core.eventmanager import EventManager 
from deluge.core.rpcserver import export 
 
class Core(component.Component): 
    def __init__(self, listen_interface=None): 
        log.debug("Core init..") 
        component.Component.__init__(self, "Core") 
 
        # Start the libtorrent session 
        log.info("Starting libtorrent %s session..", lt.version) 
 
        # Create the client fingerprint 
        version = [int(value.split("-")[0]) for value in deluge.common.get_version().split(".")] 
        while len(version) < 4: 
            version.append(0) 
 
        self.session = lt.session(lt.fingerprint("DE", *version), flags=0) 
 
        # Load the session state if available 
        self.__load_session_state() 
 
        # Set the user agent 
        self.settings = lt.session_settings() 
        self.settings.user_agent = "Deluge %s" % deluge.common.get_version() 
 
        # Set session settings 
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        self.settings.send_redundant_have = True 
        self.session.set_settings(self.settings) 
 
        # Load metadata extension 
        self.session.add_extension(lt.create_metadata_plugin) 
        self.session.add_extension(lt.create_ut_metadata_plugin) 
        self.session.add_extension(lt.create_smart_ban_plugin) 
 
        # Create the components 
        self.eventmanager = EventManager() 
        self.preferencesmanager = PreferencesManager() 
        self.alertmanager = AlertManager() 
        self.pluginmanager = PluginManager(self) 
        self.torrentmanager = TorrentManager() 
        self.filtermanager = FilterManager(self) 
        self.autoadd = AutoAdd() 
        self.authmanager = AuthManager() 
 
        # New release check information 
        self.new_release = None 
 
        # Get the core config 
        self.config = deluge.configmanager.ConfigManager("core.conf") 
 
        # If there was an interface value from the command line, use it, but 
        # store the one in the config so we can restore it on shutdown 
        self.__old_interface = None 
        if listen_interface: 
            self.__old_interface = self.config["listen_interface"] 
            self.config["listen_interface"] = listen_interface 
 
    def start(self): 
        """Starts the core""" 
        # New release check information 
        self.__new_release = None 
 
    def stop(self): 
        # Save the DHT state if necessary 
        if self.config["dht"]: 
            self.save_dht_state() 
        # Save the libtorrent session state 
        self.__save_session_state() 
 
        # We stored a copy of the old interface value 
        if self.__old_interface: 
            self.config["listen_interface"] = self.__old_interface 
 
        # Make sure the config file has been saved 
        self.config.save() 
 
    def shutdown(self): 
        pass 
 
    def save_dht_state(self): 
        """Saves the dht state to a file""" 
        try: 



  60

            dht_data = open(deluge.configmanager.get_config_dir("dht.state"), "wb") 
            dht_data.write(lt.bencode(self.session.dht_state())) 
            dht_data.close() 
        except Exception, e: 
            log.warning("Failed to save dht state: %s", e) 
 
    def get_new_release(self): 
        log.debug("get_new_release") 
        from urllib2 import urlopen 
        try: 
            self.new_release = urlopen( 
                "http://download.deluge-torrent.org/version-1.0").read().strip() 
        except Exception, e: 
            log.debug("Unable to get release info from website: %s", e) 
            return 
        self.check_new_release() 
 
    def check_new_release(self): 
        if self.new_release: 
            log.debug("new_release: %s", self.new_release) 
            if deluge.common.VersionSplit(self.new_release) > 
deluge.common.VersionSplit(deluge.common.get_version()): 
                component.get("EventManager").emit(NewVersionAvailableEvent(self.new_release)) 
                return self.new_release 
        return False 
 
         @export 
    def pause_torrent(self, torrent_ids): 
        log.debug("Pausing: %s", torrent_ids) 
        for torrent_id in torrent_ids: 
            if not self.torrentmanager[torrent_id].pause(): 
                log.warning("Error pausing torrent %s", torrent_id) 
 
    @export 
    def connect_peer(self, torrent_id, ip, port): 
        log.debug("adding peer %s to %s", ip, torrent_id) 
        if not self.torrentmanager[torrent_id].connect_peer(ip, port): 
            log.warning("Error adding peer %s:%s to %s", ip, port, torrent_id) 
 
    @export 
    def move_storage(self, torrent_ids, dest): 
        log.debug("Moving storage %s to %s", torrent_ids, dest) 
        for torrent_id in torrent_ids: 
            if not self.torrentmanager[torrent_id].move_storage(dest): 
                log.warning("Error moving torrent %s to %s", torrent_id, dest) 
 
    @export 
    def pause_all_torrents(self): 
        """Pause all torrents in the session""" 
        for torrent in self.torrentmanager.torrents.values(): 
            torrent.pause() 
 
    @export 
    def get_torrent_status(self, torrent_id, keys, diff=False): 
        # Build the status dictionary 
        status = self.torrentmanager[torrent_id].get_status(keys, diff) 
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        # Get the leftover fields and ask the plugin manager to fill them 
        leftover_fields = list(set(keys) - set(status.keys())) 
        if len(leftover_fields) > 0: 
            status.update(self.pluginmanager.get_status(torrent_id, leftover_fields)) 
        return status 
 
    @export 
    def get_torrents_status(self, filter_dict, keys, diff=False): 
        """ 
        returns all torrents , optionally filtered by filter_dict. 
        """ 
        torrent_ids = self.filtermanager.filter_torrent_ids(filter_dict) 
        status_dict = {}.fromkeys(torrent_ids) 
 
        # Get the torrent status for each torrent_id 
        for torrent_id in torrent_ids: 
            status_dict[torrent_id] = self.get_torrent_status(torrent_id, keys, diff) 
 
        return status_dict 
 
    @export 
    def get_session_state(self): 
        """Returns a list of torrent_ids in the session.""" 
        # Get the torrent list from the TorrentManager 
        return self.torrentmanager.get_torrent_list() 
 
    @export 
    def get_config(self): 
        """Get all the preferences as a dictionary""" 
        return self.config.config 
 
    @export 
    def get_config_value(self, key): 
        """Get the config value for key""" 
        try: 
            value = self.config[key] 
        except KeyError: 
            return None 
 
        return value 
 
    @export 
    def get_config_values(self, keys): 
        """Get the config values for the entered keys""" 
        config = {} 
        for key in keys: 
            try: 
                config[key] = self.config[key] 
            except KeyError: 
                pass 
        return config 
    @export 
    def set_torrent_max_connections(self, torrent_id, value): 
        """Sets a torrents max number of connections""" 
        return self.torrentmanager[torrent_id].set_max_connections(value) 
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    @export 
    def set_torrent_max_upload_slots(self, torrent_id, value): 
        """Sets a torrents max number of upload slots""" 
        return self.torrentmanager[torrent_id].set_max_upload_slots(value) 
 
    @export 
    def set_torrent_max_upload_speed(self, torrent_id, value): 
        """Sets a torrents max upload speed""" 
        return self.torrentmanager[torrent_id].set_max_upload_speed(value) 
 
    @export 
    def set_torrent_max_download_speed(self, torrent_id, value): 
        """Sets a torrents max download speed""" 
        return self.torrentmanager[torrent_id].set_max_download_speed(value) 
 
     
    #add the speed limit function for peer  
    @export  
    def set_peer_max_download_speed(self, torrent_id, ip, value): 
        return self.torrentmanager[torrent_id].set_peer_download_speed(ip, value) 
     
    @export  
    def set_peer_max_upload_speed(self, torrent_id, ip, value): 
        return self.torrentmanager[torrent_id].set_peer_upload_speed(ip, value) 
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