
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Summer 2011

Social Network Leverage Search Social Network Leverage Search

Payal Gupta
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the OS and Networks Commons, and the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Gupta, Payal, "Social Network Leverage Search" (2011). Master's Projects. 187.
DOI: https://doi.org/10.31979/etd.ejbj-uaa8
https://scholarworks.sjsu.edu/etd_projects/187

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/187?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

i

Social Network Leverage Search

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Payal Gupta

Spring 2011

ii

Copyright 2011

Payal Gupta

All Rights Reserved

iii

ABSTRACT

Social networks are at an all time high, nowadays. They make the world a smaller place to live

in. People can stay in touch with friends and can make new friends on these social networks

which traditionally were not possible without internet service. The possibilities provided by

social networks enable vast and immediate contact. People tend to spend lot of time on the social

networks like Facebook, LinkedIn and Twitter peeping into their friend‟s accounts and trying to

stay connected with the world.

However, recently people have started closing their accounts on these famous social networks

after having been irritated with the large amount of data that floods these networks. Although

there are many problems associated with these social networks like: privacy issues, identity

fraud, information overload, etc.; the problem that bothers people the most is that of information

overload.

This project provides a solution to the information overload problem by filtering all the user‟s

friend‟s posts on the basis of user‟s likes without explicitly asking the user to specify their likes.

The project analyzes the user's posts to find out their likes, and then returns the filtered posts to

them from their friends on Facebook, Twitter and LinkedIn.

Thus, this project attempts to remove noise from the huge amount of data on these social

networks.

iv

ACKNOWLEDGEMENT

Firstly, I am grateful to my advisor, Dr. Robert Chun, for his continuous assistance and support.

In the initial stage I was novice to this subject but Dr. Robert Chun gave me ample time to

understand and research on the subject. He provided valuable guidance and help. Without his

help it would not have been possible to finish this project on time.

I greatly appreciate Dr. Teoh Soon Tee and Mr. Snehal Patel‟s contribution as thesis committee

members. Lastly I thank my family and friends for keeping faith in me and providing me with

support during the project.

Thank you.

v

Contents

1. INTRODUCTION... 1

1.1 PROBLEM ADDRESSED .. 2

2. RELATED WORK ... 5

2.1 SOCIAL NETWORKS .. 6

2.1.1 FACEBOOK .. 6

2.1.2 TWITTER ... 8

2.1.3 LINKEDIN .. 10

2.2 PREVIOUS WORK ... 11

3. PROBLEMS WITH SOCIAL NETWORKS ... 16

3.1 PROBLEMS WITH FACEBOOK ... 16

3.2 PROBLEMS WITH TWITTER ... 17

3.3 PROBLEMS WITH LINKEDIN .. 17

4. INFORMATION OVERLOAD .. 19

4.1 INFORMATION OVERLOAD IN FACEBOOK ... 19

4.2 INFORMATION OVERLOAD IN TWITTER .. 22

4.3 INFORMATION OVERLOAD IN LINKEDIN ... 23

5. DESIGN ... 25

6. IMPLEMENTATION .. 31

7. EXPERIMENT ... 41

8. CONCLUSION ... 46

9. FUTURE WORK .. 47

10. APPENDIX A: SOURCE CODE .. 48

11. REFERENCES .. 93

vi

LIST OF FIGURES

Figure 1: World Map of Social Networks [2] 5

Figure 2: Facebook in blue across the world [2] 7

Figure 3: Popularity of Twitter across the Globe [4] 9

Figure 4: Popularity of LinkedIn across the Globe [4] 10

Figure 5: beencounter API [5] 14

Figure 6: Example of information Overload in Facebook 21

Figure 7: The Asymptotic Twitter Curve [9] 22

Figure 8: MVC Architecture [11] 26

Figure 9: Database structure 31

Figure 10: Deriving tags 33

Figure 11: Deriving User’s Friend’s Posts 38

Figure 12: Pie chart suggesting overall noise removal 41

Figure 13: Efficiency for a particular test case 43

Figure 14: Set 1: Avg=70% 44

Figure 15: Set 2:Avg=65% 45

Figure 16:Set 3: Avg=75% 45

1

1. INTRODUCTION

The various technological advancements have brought change in the way service providers

correspond to their customers‟ needs. In spite of a larger business focus on service, a big number

of companies are still failing to meet up their customers' service requirements and expectations.

One way to help improve customer service would be to come up with a complete performance

management solution to make sure that their product is providing the preferred level of service.

The right technology will help put the right things in the right place at the right time; performing

the right tasks to deliver the right results. The Internet has now reached a “tipping point” and

developers have begun to do a lot more than just creating their own applications and making

them available to the users. Developers have started combining two or more Web services to

create useful combinations. This helps the users to make decisions by analyzing and comparing

data from various sources. Mashup is a way to enhance the ability or increase the capability on

the run without wasting time to train the new employees or spending money in building new

infrastructure.

“SOCIAL NETWORK,” I am sure that no one is unaware of this term. The popularity of social

networking sites has increased by leaps and bounds in recent years. Everyday internet users,

businesses and social organizations have chosen social networking websites as an unmatched

resource. Social networking sites offer a variety of methods to implement end users' generation

of contacts and opportunities. Although many sites are limited in complexity, their popularity is

spurred by ease of use and familiar processes. UKOM General Manager, James Smythe,

2

explains: “Over the last seven years, we see two broad developments: first, huge growth in the

use of sites built on social content, where we mostly find contributions from people we trust; and

second, websites with a high-street or „real-world‟ presence translating the strength of their

offline brands into online audiences.”

Taking into consideration the massive amount of social networking websites accessible on the

internet these days, picking the paramount one that suits our business needs the best, often turns

out to be really difficult and sometimes, even unfeasible. Users often find that one particular

social networking site does not fulfill all their requirements. So to target audience masses,

companies need to integrate more than one social networking site and this is when the proper

integration of sites and a more useful product comes into picture. Companies need to provide a

place to the users where they can effortlessly carry out both professional and personal

communications at the same time.

1.1 PROBLEM ADDRESSED

With the increasing use of Internet and sky touching popularity of social networks, there is not

only a need to stay up-to-date with the day to day events going on all across the globe, but also to

stay in touch with one‟s professional and social life. The pressures of handling the information

from all the sides can cause a serious problem called information overload.

Thus, information overloading can be defined as getting besieged by one‟s information

demands.

3

At this point, we are still at the very beginning of trading data in the social networks. We‟ve been

introduced to four kinds of things that were hard to do or simply not available, before. These

things are:

Profiles – Summaries of online conceptions and expressions of individuality or group

affiliations.

Connections – Channels between ourselves and others, or a connection between groups in our

“network.”

Content – The various media: text, pictures and video that are shared online.

Activities – A demonstration of what we are doing on our own and conglomerate networks. [1]

In the past, “media-driven” globe, the content pillar was truly the only angle that we perceived.

Information processing became strategically developed to deal with content-overload by going

through the data posted by “trusted” sources only, and even from those trusted sources, only

reading self relevant items. (For example, if we read a newspaper, we only read those articles

that interest us and about things that we like)

In the case modern dynamic social networking, with its newly-polished profiles, links and

actions, we need to recognize observation techniques. It becomes apparent that one does not

implicitly need to respond to everything. [1]

The goal of the project will be to develop a mash up of API‟s from few very famous social

networking sites that will combine various services such as: social, storage, search, etc. The basic

4

idea of the project is to use the social networking concepts and present the data to the user in

more meaningful way.

5

2. RELATED WORK

"Social networking" has been around since the beginning of time. Basically, it is the act of

introducing friends and expanding groups with friends becoming friends, and so on. Today,

many people use Twitter and Facebook to advance their on hand and forthcoming businesses.

Companies looking to expand their business-associated acquaintances usually shift to networks

like LinkedIn.

Top 3 Social Networking Sites (December 2010)

Observing the figure below, it‟s seen that Facebook is the favorite social network among all the

countries in the list. A remarkable growth of Twitter can be seen when compared to MySpace (in

Italy, Germany, Canada and Australia). The measured but stable expansion of LinkedIn (in UK,

Australia and Canada) can also be witnessed. The fields in the table that are in yellow are the

new entries that were made after June. [2]

Figure 1:World Map of Social Networks [2]

6

2.1 SOCIAL NETWORKS

2.1.1 FACEBOOK

Facebook, one of the most famous social networking sites, keeps us updated with our friend‟s

information no matter which corner of the world our friends are. It allows us to see all the

information that our friends post. This great invention called Facebook continues to expand users

all over the world. Since June 2010, Facebook was able to take away the position previously held

by its competitors in many countries. Facebook has held the number one position in 115

countries out of a total 132 countries analyzed. For example:

“- From Hi5: Mongolia

 - From Nasza-Klasa: Poland

 - From Orkut (Google): Paraguay and India

 - From Iwiw: Hungary.”[2]

7

Figure 2: Facebook in blue across the world [2]

The following are the steps to be followed to access the functionalities provided by

Facebook:

1. The user is required to create a new account on Facebook.com. The user does not have to

pay to own an account as the service provided by them is free. The service requires the

user to be at least 13 years of age to have a legitimate email account. Once the user is

registered he/she can:

2. The user can connect with friends all over the world by searching for them using their

names, identities, etc.

8

3. The user can join some networks of interest by browsing them based on the user‟s

location, education, workplaces, etc.

4. The user can share and connect to people from other web based accounts by importing

them to the Facebook account.

5. The latest figures show that Facebook already has more than 500 million users and is one

of the top social networking sites across the globe.

2.1.2 TWITTER

Nowadays, Twitter is acquiring recognition as one of the favorite social networking sites

amongst of all the providers of social networking services. Users on Twitter can send and accept

messages to any particular network, instead of transmitting email messages individually. Users

can also build their own networks and can allow people to follow other‟s posts and receive

tweets from other member users. The user is given full control of his information. The user is

given the privilege to leave any network any time he/she wishes and to stop receiving tweets

from any person whose meaningless posts irritates him/her.

9

Figure 3: Popularity of Twitter across the Globe [4]

Countries with highest traffic with Twitter:

”

1. Singapore

2. Japan

3. Hong Kong

4. United States

5. Taiwan” [4]

10

2.1.3 LINKEDIN

LinkedIn is a social network choice for professionals. The users on LinkedIn can find a job based

on their field of interest. Its professional networking design is focused to help members find

work and connect with prospective business associates. LinkedIn is different from other famous

social networking sites as it mainly deals with sharing content and socializing.

To register with LinkedIn, the user is required to create an account with them. The user must fill

out a profile page. The user has to fill in personal information, all of which is editable at any

point of time. To add to this, users can get suggestions and recommendations from their

colleagues and bosses. Results show that there are already about 75 million users registered on

LinkedIn.

Figure 4: Popularity of LinkedIn across the Globe [4]

11

“ Countries with highest interest in LinkedIn:

 Denmark

 India

 United State

 Netherlands

 Belgium” [4]

2.2 PREVIOUS WORK

When I started with the project, I was sure that I wanted to do something valuable in the social

networking area. My interest in the field and the boom of social networking in today‟s world are

my primary reasons for this report.

After few attempts, I was able to come up with the feasible and very useful idea of filtering the

user‟s friends' posts from the three major social network names: Facebook, Twitter and

LinkedIn, and present them in a meaningful way to the user.

In this section I would like to describe in brief about my previous attempts to build something

unique in this area of social networking.

Idea 1:

Topic: To implement search on the social graph.

12

The goal of the project was to develop a mashup that combined various services such as: social,

storage, search, etc., from various available API‟s. The basic idea of the project was to

implement a search on the derived social graphs stored in a database.

The project consisted of three main parts. The first part consisted of deriving the social graph

from the general information of my friends available from various social networks like LinkedIn,

Facebook, and Twitter.

In the second part, I tried to build a website that pulled articles on the run and I also developed a

database to store the social graph of my friends.

In the third part, I tried to implement the semantic search on the social graph. Let‟s follow an

example to understand this idea. For example, there is one article from the New York Times on

my website. The user can see how many people viewed that article. Then, this search can be

implemented on the social graph such that we can determine our friends out of the people who

read the article.

This kind of service would have helped the user, as he would have been able to see how many of

his friends liked a particular article; and seeing that, he might have shown interest in reading that

article. This assumption was derived from the general human psychology where users prefer to

watch the video that‟s being uploaded by more than 1 friend rather than the one that‟s being

uploaded by only one friend. It also would have proven beneficial to the service providers, like

13

the New York Times, to increase its sales and provide better and quick service, thus gaining

better user satisfaction and support.

Initially the challenge was to determine who read the article on my website. While the project

was still in the research phase, Facebook came up with something called “Social Plugins.” These

plugins can be added to any website to see what my friends on facebook have liked. Adding a

social plugin is easy and does not require much work. So my idea of detecting who read the

article came to an end, there.

Idea 2:

Derive a social graph of my friends and store it in the database. I used three social networks for

this:

 Facebook

 LinkedIn

 Twitter

The system used beencounter API to browse the web history of the users for a particular website.

For example, to search the user's web history for www.google.com/analytics. The result returned

by beencounter was something like:

http://www.google.com/analytics

14

Figure 5: beencounter API [5]

This graph shows that 72% of my site visitors view www.google.com/analytics.

On the basis of this data, I had the articles on my website. These articles had Facebook‟s social

plugin. Users were able to “like” these articles and that were displayed on their respective

accounts. By using google‟s API, I found out websites similar to www.google.com/analytics.

The result returned was something like:

http://www.webanalyticsassociation.org

http://en.wikipedia.org/wiki/Web_analytics

http://www.google.com/analytics
http://www.google.com/analytics
http://www.webanalyticsassociation.org/
http://en.wikipedia.org/wiki/Web_analytics

15

I utilized these similar websites lists to compare it with the browsing history of the user once

again. If I found out that there were 3 or more matches between 2 users' web history, I used to

find out the geographical location of those 2 people using Google maps API. Then I suggested

them to be friends with each other on the basis of their location and likes. The idea behind this

module was that we were tracking the users' web history for particular tags. On the basis of this

list of returned websites, I found out how many people using my system had the similar list of

websites returned. I suggested people to be friends with others who shared same interest.

There were some concerns for this application.

1) Peeping into user‟s web history did not seem a very good idea. There could have been

privacy issue with it.

2) Scalability of the developed system was a question mark. Since I was trying to compare

the list of websites with the user's browser history, the system had to make lot of

comparisons. So the concern was, “what if million people are using our system.”

Idea 3:

Filtering the user‟s friend‟s posts from Facebook, Linkedin and Twitter according to user‟s likes

without the user explicitly specifying what he likes. This idea and the related work are being

discussed in depth in this report.

16

3. PROBLEMS WITH SOCIAL NETWORKS

3.1 PROBLEMS WITH FACEBOOK

1) The top three social networks taken into consideration in this project have many

problems with the type of system they utilize.

2) Users can get overwhelmed with friend requests from unwanted people or strangers.

3) As users share the content on these social networks, everybody including the user‟s

family, can peep into the user‟s Facebook page.

4) Users often post their pictures on Facebook which can be misused in some ways.

Moreover, people can be “tagged” in their pictures– making those pictures viewable by

unknown people.

5) The user might accept the friend request from someone with tricky plans.

6) One will be flooded with all the updates posted by their friends no matter if the user is

interested in them or not.

7) Any post posted by the user will similarly receive a large number of feeds.

8) Unwanted advertisements, annoying advertisements, and often spam can flood the

Facebook page.

9) One can observe needless staging of irrelevant passages in the user's friends‟ lives.

10) If the privacy settings are not set properly, any Facebook user, even one not in the user's

friend list will be able to view the user's content on Facebook.

11) There are some great applications provided by Facebook, but most of them require the

user to provide access to the user's personal information.

17

12) And lastly, one fact that cannot be ignored is that Facebook is so addictive that it

becomes a habit for most of its users. Hours are wasted on Facebook while one reads

unnecessary information which otherwise could have been invested in doing something

productive. [6]

3.2 PROBLEMS WITH TWITTER

These are several strong reasons for me to dislike Twitter. They are as follows:

1) It can really be snobbish. No one is interested in knowing what someone had in snacks

 today.

2) It can sometimes be annoying. Why would I want to share the details of my entire day

 with everybody?

 3) The content can be redundant. If I already have a blog, why should I tweet?

 4) Twitter is also addictive like Facebook. So, the amount of time wasted on Twitter could

 actually be used by doing something meaningful.

 5) There are also some privacy issues. As the user shares all one's content, like where one is

 at any point of time on Twitter, the user could get followed by obsessive users. [7]

3.3 PROBLEMS WITH LINKEDIN

1) There does not seem to be a verification control on LinkedIn.

2) The inner organization is unidentified at LinkedIn and there is no direct way to reach the

higher management.

3) There are not a lot of groups or communities to join on LinkedIn.

18

4) LinkedIn asks the users to pay to get the premium membership. But there is not a shared

reimbursement given to the members of group organizations who are also the premium

account holders on LinkedIn.

19

4. INFORMATION OVERLOAD

The everyday assault of information causes more frustration than its constructive output.

One of the many influences that affect me is the abundant reception of email messages

and feeds. The biggest concern for me is the large amount of information that I have to

grasp and discover to be efficiently up to date with vital topics.

A research done recently infers that the continuous bombardment of too much

information; and the fact that most of the companies allow access to these social

networks at work; can impact one's capability to formulate apparent and crucial choices.

It can also influence one's efficiency and individual well being. One of the studies

suggest that people on average take around 25 minutes to get back to work following one

email interruption. That does not sound very good for both the employees and the

employer of the organization. [8]

4.1 INFORMATION OVERLOAD IN FACEBOOK

These days I hardly log in to Facebook and I have begun to speculate about what has

brought that change in me. I mostly make use of Facebook to manage my contacts and

events and in rare case upload pictures.

I‟ve realized that I am finding it difficult to remove all the noise from the data on

Facebook. Honestly, Facebook now happens to be a storm of information for me. There

are definitely some very valuable parts on Facebook that satisfy my instant needs. For

20

example, I can receive a notification of an event that I am interested to attend and I can

find my friend‟s contact details when needed.

However, the live feed from my friends now terrifies me and seems extremely dull.

Facebook, is highly infected with the problem of “information overload” and we do not

have enough resources to deal with this problem. These days Facebook allows me to hide

a few of my friends who create noise. It does allow me to see all the feeds from the

friends that I most interact with, but it seems that the whole Facebook system is badly

infected with the noise problem. I am not trying to say that Facebook is worthless

because it publishes personal or other information which otherwise is difficult to find. I

think the biggest drawback with Facebook is that it floods our brains with lots of

worthless information.

21

Figure 6: Example of information Overload in Facebook

This screen shot above is from my Facebook account. It shows how one of my friends has posted

worthless information and is flooding my home page with it every few minutes. This is how

Facebook is suffering from this disease.

22

This project provides a solution to this problem of information overloading.

4.2 INFORMATION OVERLOAD IN TWITTER

We are yet at the premature stage of dealing with the devastating quantity of worthless data.

Twitter just adds one more layer to it. Last year I removed all my friends from Facebook to clear

my account‟s dorm. And this year, I was struggling to “unfollow” people every time I logged in

to Twitter. However, that's was not the best solution to the problem and so I came up with a way

to deal with it.

Figure 7: The Asymptotic Twitter Curve [9]

23

For all the people who know anything about Twitter, it has one and only one intention in life. A

global community of friends and strangers answering one simple question: “What are you

doing?” This adored question is answered by millions of people millions of time in a day.

Twitter allows users to post small posts to a kind of small blog provided by Twitter. Twitter is

highly infected with information overload as well. Here are few examples of the kind of

uninteresting posts that people tweet:

"Missed the my hair appointment, again."

"Attempting to figure out why my dog has his legs crossed."

"I just had a hiccup."

"I'm on my way to work."

"Scanning photos of cheerleaders doing high-kicks..."

"Getting very tired, now."

"Thinking about something delicious to eat."

"About to make a phone call."

"I'm watching my cat chase flies!"

"Totally sick of work. Not sure if it is my feelings or the work."

"Trimming my nose hairs. Fetching dinner." [9]

4.3 INFORMATION OVERLOAD IN LINKEDIN

Recently, LinkedIn is trying to match the popularity of its competitors and in that race it now

provides many features that have been offered and that were a huge hit on Twitter and Facebook.

24

An example of this is follow and feeds. To add to it now, LinkedIn has joined hands with Twitter

so that the tweets of the people can be directly posted on LinkedIn. This feature along with the

Group Updates feature has increased the content generated by users on the LinkedIn network.

Thus, Linkedin is not being spared the deadly disease of information overloading. [10]

25

5. DESIGN

“Rails” is the development framework for ruby used to create web applications. It was designed

to make the programming of web based applications easier by assuming what all the developers

might need to start building the applications. It allows one to code less, so that the use of other

frameworks and languages becomes easier.

The main philosophy followed by Rails is:

 DRY – “Don‟t Repeat Yourself” – which infers that repetition of the code in a program is

not a good idea.

 Convention Over Configuration – which means that rather than parsing all the

configuration files; Rails will assume the user‟s intent to do something and will also

assume the way he/she is going to do it

 REST allows one to speed up the application based on the resources available and

HTTP verbs.

“Rails” is using MVC (Model-View-Controller) architecture.

26

Figure 8: MVC Architecture [11]

In the middle of Rails is the Model, View, Controller architecture, called MVC. Its benefits

include

:

 Isolating the UI from the business logic.

 The simplicity of keeping the code free of repetition.

 Making the maintenance easy by identifying different types to which the code

belongs.

27

Models

A model is responsible for representing the data of the application and it also defines the rules to

operate that data. For Rails, the rules are matched with the respective database tables. Therefore,

one table is mapped to one model. Thus the model consists of an application‟s business logic.

Views

Views are responsible to present the UI of an application. Views in Rails are typically

HTML files having the ruby code embedded within so it can perform the responsibilities related

exclusively to the presentation of the data. Views take the data to the web browser that issues the

requests from the application.

Controllers

Controllers do the work on gluing views and models. In Rails, they take the requests that come

from the web browsers and then ask the models to render the data which the controller then

passes to the views for presenting it.

Models

Authorization: The application is using OmniAuth gem for Facebook,Twitter and LinkedIn API

authorizations.

This rack based system called OmniAuth eases the external authentication steps without

assumptions made about the final results of the preferred authentication system.

Thus, this method allows the user to have new way of control over the application by

authenticating it through Facebook,Twitter and LinkedIn.

28

Controllers (along with the actions they are responsible for):

Application (main controller, inaccessible directly): application controller in Rails basically

implements functions which will be available in each controller. It is a class which is extended

by each of our controllers. The Application controller in our app has functions to

set/reset/identify logged in user, and a function to redirect guest to home page if it tries to access

the user-only area.

redirect_if_not_user: Redirects to home page is user is not signed in

current_user: Gets current user in a variable

signed_in?: Is our user signed in? Checks if current_user variable exists

sign_out: Deletes current_user session

current_user=: Assigns new current_user

Authorization:

destroy: Delete current_user authorization for a specific social network; authorizations are

essentially stored auth security tokens for each of the network. Our app uses them to fetch

specific user posts.

Cron:

run: Calls Rake task to get new/existing user posts and rebuild tags. We won't need this

controller when one has the application's source code in one's computer.

29

All server tasks are implemented using the Rake tool, which comes along with Ruby on Rails.

Using Rake we can run the tasks that we need from the command line and there is no need to go

to the web page. Rake tasks were used for

 getting the user posts from Facebook, Twitter and LinkedIn for the new users

 updating user posts for the existing users

 building tags from the user posts

 anything needed to search friends posts by tags.

Pages:

home: renders home page template (view) file.

Sessions

create: When our user clicks login with "facebook" (or other) button, Omniauth library redirects

user to the facebook login page, then facebook fills in the security tokens and other information

and redirects to session/create action if the user agrees to join our app. We update the user profile

and store new "Facebook" authorization info. This action stores a session variable with user id,

so our app can know this user in future requests.

destroy: User signs out. Deletes user_id variable from the session and redirects him/her to home

page

30

CopusTerm: We have a corpus_terms table in our database in which the structure is: "id, term,

count, created_at, updated_at." Here 'term' is the word and 'count' is the number of documents

that have this word. Currently I'm using "Brown" corpus

Tag: Tags are the key words derived after analyzing the user's posts. They define the likes of the

user.

User: Users are the customers using our system.

UserPost: User posts are the posts that are posted by the user on the three social networking sites

taken into consideration in this project (Facebook/Twitter/LinkedIn).

Views: Views are html files with ruby code. They are like templates for our system. We used

several layers of views. The first layer is called 'application' and it basically renders common

elements like header, footer, navigation, and sign in block. The second layer is called actual

action.

Currently we are using only two views here:

pages/home: home page template, renders tags for our users and sample text

users/edit: renders profile page, with a form to edit user name, and links to remove

authorizations.

31

6. IMPLEMENTATION

Figure 9: Database structure

User Sign up

Users can connect to the system using one of the supported social networks. The system is using

OAuth authorization standard to authorize users with a social network account. We are using

'omniauth' ruby library to implement this functionality.

32

Omniauth works by redirecting users to a selected social network, where they will sign in using

their credentials. By signing in, the user agrees to share his profile data with our system. After

signing in, the system redirects the user to our callback url that we provided for the service.

Once we get a request to our callback url, we create a new Authorization model instance with

'token' and 'secret' parameters that we got with the callback request. The model is saved to

database and the new User model is created if needed.

Next we add 'user_id' variable to session storage and the user is signed in. Any subsequent calls

to sign in/connect new service will create a new Authorization model for the same signed in user.

Fetching user posts

Whenever the user signs in, we check if he has any posts in our database. These posts are stored

as the User Post model in the database. If there are no posts, we use our Consumer classes to

fetch the user's own posts for each connected social network. The new posts fetching action is

also triggered by connecting the new social network for the user account.

The results returned by the consumer will be saved to the database, so now we have fetched user

posts and can proceed to deriving tags.

33

Figure 10: Deriving tags using TF-IDF algorithm

34

Deriving tags can be triggered by connecting the new social network to the user profile or

running CRON worker task.

load_ * _posts is called first, which loads and saves all newer user posts in the db .Then

Rebuild_tags method is called from the Consumer:* classes which is executed once the user

signs up for a new service, or when we run a CRON/Rake task. Rebuild_tags method only

checks for already existing user posts, it doesn't check for new user posts. It collects all user

posts to a single document .Then we use the Analyzer class to create a list of possible tags with

their Tf-Idf values and then the tags are added to the database if the TF_IDF value is high

enough.

Analyzer class

Analyzer class is used to derive tags for a given document. We are using the TF-IDF algorithm

to extract tags from the document. We begin by going through each word in the document and

counting its Term Frequency (TF). Next, for each word, we check the CorpusTerm model for

Inverse Document Frequency (IDF) and calculate the TF-IDF value. Lastly, the derived tags list

is sorted according to the TF-IDF value and returned as a result.

Corpus

Corpus is used as the IDF part of the TF-IDF algorithm. Our system has a Rake task which loads

all text documents in the 'corpus' directory and counts all the word occurrences in every

document. So for example, if the word 'the' appears in 500 corpus documents, the system will

create the CorpusTerm module with the word parameter as 'the' and count the parameter as 500.

Currently our system is loaded with the Brown corpus which derives ~40,000 CorpusTerm

models.

35

Consumer classes

Our system has one consumer class for every social network that we are working with.

Therefore, there are three consumer classes:

Consumer: Twitter

Consumer: Facebook

Consumer: LinkedIn

These classes are responsible for all the interactions with social network API's. Every consumer

class will first contact a social network with a user Token and Key to get an authorized security

token. We are again using the Omniauth library, here.

All consumer classes consist of methods to get the users' own and friends' posts. Those methods

execute the API call with given parameters and instantiate the Post type class for each post in the

result set.

When fetching the new user posts, we don't want to download old posts, so we pass the 'since'

parameter to the API call, so we can only fetch the newer posts that we have in the database.

Post type classes

Our system has one Post type class for each social network:

36

TwitterPost

FacebookPost

LinkedInPost

These classes are used to extract the relevant information from the API call results. The

TwitterPost class is the simplest one since Twitter only has one type of post. The FacebookPost

is more complicated, because there are a lot of different types of posts, but we mainly focused on

two of them: User post and User News (Wall) posts.LinkedIn is the most complicated of all,

since it has many different post types and most of them have an entirely different structure from

any other.

Therefore, Post type classes are used to abstract resulting objects to a common interface, which

can reliably be used in various operations.

Fetching User’s Friends Posts

The User's friend‟s posts were fetched once every 2 hours. It was possible to use a Rake task for

an automated update, however, the system was configured to check and fetch posts if needed on

every request.

The User's posts storage has strict regulations set forth by the social network's license. So we

only stored posts for a short time within a model named “CachedRequest”. We used this model

every time the user requested to see a list of friend‟s posts.

37

Fetching the user posts is triggered by PagesController 'reload_cache' filter. This filter executes

function in the User model– which checks for expired cached requests and reloads them before

rendering pages.

38

Figure 11: Deriving User’s Friend’s Posts

39

Cached Requests

The CachedRequest model is responsible for keeping a list of recent user friend‟s posts. This

model will load the data for each social network connected to by the user. This data is stored in

the database text column as serialized array of Post type classes. As a result, we did not need to

create Post type class for each post again. Each CachedRequest model is deleted and recreated

with new information every 2 hours.

PostsCollection class

PostCollection class is used by PageController to collect and order user friends posts. This class

will collect only valid posts and exclude the users own posts from the list.

PostCollection class has the ability to order posts by date or relevance. For relevance, we need

to pass a tag as a parameter for which the relevance should be measured.

This class first collects all posts or posts which has a tagged word if we pass 'tag' as parameter.

Each post is analyzed for a tagged word when selecting the tagged posts. If a post includes the

tagged word it goes into collection.

Once a collection contains all filtered posts, then we can use the class functions to sort them

according to user preference.

Here is description of how relevance analyzing works:

Relevance analyzing in posts works by checking number of times given tag appears in post.

Posts having higher tag frequency appear higher in the list.

40

The Home page needs a different technique from the 'selected tag' pages, since we have no

selected tag. We are displaying posts sorted by date or relevance here using same technique as

mentioned above, but instead of analyzing all posts at once, we are splitting posts in blocks by

tag. Highest showing tag will have highest TF-IDF value. We need to keep our home page as

short as possible to minimize information noise, so instead of showing all posts for each tag, we

are showing only 3 having highest relevance/newest date.

41

7. EXPERIMENT

The experiment was conducted to see how efficient the newly built system is.

There are two factors that can determine how efficient my system is:

Experiment 1: To see how much noise is removed from the three accounts for the user.

Experiment 2: How accurate are the results returned by the system.

Experiment 1: To do the first test we counted the number of posts on user‟s accounts.

(facebook+ Twitter+ LinkedIn).For 10 users, the average results came out to be 52% that means

out of 100 posts the user‟s accounts show; the system returned 48% relevant posts.

Figure 12: Pie chart suggesting overall noise removal

42

Experiment 2: The experiment was conducted on three sets of people .Each set consisted of 10

users.

The users were asked to select the post that they might be interested to read and write them

down. Then the user was asked to login to my system and then I compared the sheet with the

results written down by the user with the results shown by my system. To understand the

experiment better let‟s take 1 test case. The user has signed in with his LinkedIn account on my

system. He has 38 posts on his account. He is asked to select posts that might interest him from

his LinkedIn account. The user ends up selected 25 posts that he might read from his account.

My system returns 23 posts to the user when he logs in to my system. Out of these 23 posts, 19

posts overlap with the list of 25 posts selected by the user manually. So the efficiency here is

76% that is 19 out of 25 posts that user was interested in reading were returned by my system.

The following pie chart explains this test case.

43

Figure 13: Efficiency for a particular test case

Overall results for 30 users:

For set 1 the Average result was 70% –that is for every 20 posts that the user selected, 14

matched with the results shown by my system.

44

Figure 12: Set 1: Avg=70%

45

Figure 13: Set 2:Avg=65%

Figure 14:Set 3: Avg=75%

46

The average of all the three sets gives us 70%.Hence; the experiment suggests that 70% of the

user's likes were detected correctly by the system.

8. CONCLUSION

This project “Social Network Leverage search” makes better use of the search done on the social

networks. It solves the problem of information loading which infects the three most famous

social networks: Facebook, Twitter and LinkedIn. It finds the user‟s likes, analyzing the posts

that are posted by the user on the three social networks, rather than explicitly asking the user to

specify them. Then it removes the noise from Facebook, Twitter and LinkedIn to provide the

users with only the posts that are of his interest. To evaluate the usability of the project an

experiment was conducted on 30 users and the results suggest that the system provides the users

with 70% posts of their likes. Thus, it resulted with the removal of noise and kept the user

updated with the information of his interest.

47

9. FUTURE WORK

Any new idea evolved also has a scope of improvement. My system tracks the likes of

the user by analyzing the posts that are posted by the user and the comments on the user's

posts. This system matched the likes of users to 70%. The TF-IDF algorithm is used by

this system to analyze the posts and form the tags. However, we can improve the

algorithm and the results by also tracking the behavior of the user. We can keep track of

all the places where the user comments, what posts he reads, where he blogs, etc. This

analysis can give accurate resulting tags. Thus, tracking the behavior of the user to find

out his/her likes will help improve the system to some extent.

48

 10. APPENDIX A: SOURCE CODE

APP

CONTROLLERS:

Application_controller.rb

class ApplicationController < ActionController::Base

 protect_from_forgery

 helper_method :current_user, :signed_in?

 protected

 def redirect_if_not_user

 unless signed_in?

 flash[:error] = "You need to be signed in to access this action."

 redirect_to root_url

 end

 end

 def current_user

 @current_user ||= User.find_by_id(session[:user_id])

 end

 def signed_in?

 !!current_user

 end

 def sign_out

 if signed_in?

 @current_user = nil

 session[:user_id] = nil

 end

 end

 def current_user=(user)

 @current_user = user

 session[:user_id] = user.id

 end

end

authorizations_controller.rb

class AuthorizationsController < ApplicationController

 before_filter :redirect_if_not_user

49

 # Delete user session, sign out

 def destroy

 # do not allow to delete last authorization

 if current_user.authorizations.count > 1

 Authorization.where('id = ? AND user_id = ?', params[:id],

 current_user.id).first.destroy

 flash[:notice] = "Authorization successfuly removed."

 else

 flash[:error] = "Cannot delete last authorization."

 end

 redirect_to edit_user_path(current_user)

 end

end

cron_controller.rb

class CronController < ApplicationController

 # load all users posts and rebuild tags

 def run

 User.all.each { |user|

 user.load_twitter_posts

 user.load_facebook_posts

 user.load_linked_in_posts

 user.rebuild_tags

 # delete CachedRequests so they will be

 # reloaded on next user request

 CachedRequest.delete_all

 }

 render :text => "finished"

 end

end

pages_controller.rb

class PagesController < ApplicationController

 before_filter :reload_cache

 # Home page

 def home

 if signed_in? && params[:id]

 # find user tag

 @tag = Tag.where("id = ? AND user_id =? ", params[:id], current_user.id).first.try(:word)

 end

50

 if signed_in?

 if @tag

 # list all posts tagged by @tag if user selected tag

 @collection = PostsCollection.new(current_user.cached_requests)

 @title = "Listing posts tagged by \"#{@tag}\""

 @collection.parse(@tag)

 if params[:sort] == 'relevance'

 # sort by relevance

 @collection = @collection.sort_by_word_count(@tag)

 return

 else

 # sort by date

 @collection = @collection.sort_by_date

 end

 # slice posts array to only include set number of posts

 @collection = @collection.slice(0,APP_CONFIG['app']['tags_per_page'])

 else

 # list all posts

 @title = "Listing all posts"

 @posts_by_tag = Array.new

 # for each user tag get 3 posts and sort according to

 # user preference

 current_user.tags.all.each { |tag|

 @collection = PostsCollection.new(current_user.cached_requests)

 @collection.parse(tag.word)

 @sorted = params[:sort] == 'relevance' ? @collection.sort_by_word_count(tag.word):

@collection.sort_by_date

 @posts_by_tag << [[tag.word, @sorted.slice(0,3)]]

 }

 end

 else

 # user is not signed in, so show welcome message

 @title = "Welcome, please sign in"

 @collection = Array.new

 end

 end

 # reload user CachedRequests if needed on each request

 def reload_cache

 if signed_in?

 current_user.reload_expired_cached_requests

 end

51

 end

end

sessions_controller.rb

class SessionsController < ApplicationController

 # sign in/up user

 def create

 auth = request.env['omniauth.auth']

 unless @auth = Authorization.find_from_hash(auth)

 # Create a new user or add an auth to existing user, depending on

 # whether there is already a user signed in.

 @auth = Authorization.create_from_hash(auth, current_user)

 end

 # update access token in database

 @auth.update_access_token(auth)

 # Log the authorizing user in.

 self.current_user = @auth.user

 redirect_to root_url

 end

 # sign out user

 def destroy

 sign_out

 redirect_to root_url

 end

end

users_controller.rb

class UsersController < ApplicationController

 before_filter :redirect_if_not_user

 # impersonate to user account, only in development!

 # delete once app is deployed to live server!

 def impersonate

 if params[:id]

 session[:user_id] = User.find(params[:id]).id

 redirect_to root_url

 end

 end

52

 # edit user page

 def edit

 @user = current_user

 end

 # update user attributes

 def update

 @user = current_user

 if @user.update_attributes(params[:user])

 redirect_to edit_user_path(@user), :notice => "Your profile successfuly updated."

 else

 render :action => 'edit'

 end

 end

end

HELPERS

Application_helper.rb

module ApplicationHelper

 # signed in user links

 def user_links

 menu = Array.new

 menu << { :title => 'Profile', :class => "", :path => edit_user_path(current_user) } if

signed_in?

 menu << { :title => 'Logout', :class => 'logout', :path => logout_path } if signed_in?

 # set current page

 menu.each do |link|

 link[:class] += " active" if current_page? link[:path]

 end

 end

 # Returns link to specified serfice html <a> tag

 def link_to_service(service)

 case service

 when "facebook"

 link_to image_tag("facebook.png") + " Facebook", "/auth/facebook"

 when "twitter"

 link_to image_tag("twitter.png") + " Twitter", "/auth/twitter"

 when "linked_in"

 link_to image_tag("linkedin.png") + " LinkedIn", "/auth/linked_in"

 end

 end

53

 # Returns image to specified service html tag

 def provider_image_tag_small(provider)

 case provider

 when "facebook"

 image_tag("facebook_small.png")

 when "twitter"

 image_tag("twitter_small.png")

 when "linked_in"

 image_tag("linkedin_small.png")

 end

 end

 # Returns image to specified service html tag

 def provider_image_tag(provider)

 case provider

 when "facebook"

 image_tag("facebook.png")

 when "twitter"

 image_tag("twitter.png")

 when "linked_in"

 image_tag("linkedin.png")

 end

 end

end

authorizations_helper.rb

module AuthorizationsHelper

 def destroy

 end

end

cron_helper.rb

module CronHelper

end

pages_helper.rb

module PagesHelper

end

sessions_helper.rb

54

module SessionsHelper

end

users_helper.rb

module UsersHelper

end

MODELS

Authorization.rb

class Authorization < ActiveRecord::Base

 belongs_to :user

 validates_presence_of :user_id, :uid, :provider

 validates_uniqueness_of :uid, :scope => :provider

 after_create :get_own_posts, :get_friends_posts, :rebuild_user_tags

 before_destroy :delete_cached_requests

 # destroys all cached requests for given user

 def delete_cached_requests

 CachedRequest.where('user_id = ? and provider = ?', self.user.id, self.provider).first.destroy

 end

 # loads user own posts

 def get_own_posts

 case self.provider

 when 'twitter'

 self.user.load_twitter_posts

 when 'linked_in'

 self.user.load_linked_in_posts

 when 'facebook'

 self.user.load_facebook_posts

 end

 end

 # loads friends posts

 def get_friends_posts

 CachedRequest.update_provider_cache(self.user, self.provider)

 end

 # rebuilds/builds user tags

 def rebuild_user_tags

 self.user.rebuild_tags

 end

55

 # search for authorization by hash parameters

 def self.find_from_hash(hash)

 find_by_provider_and_uid(hash['provider'], hash['uid'])

 end

 # updates access token from hash parameters

 def update_access_token(hash)

 self.update_attributes({

 :token => hash['credentials']['token'],

 :secret => hash['credentials']['secret']

 })

 end

 # creates instance from hash parameters

 def self.create_from_hash(hash, user = nil)

 user ||= User.create_from_hash!(hash)

 Authorization.create(

 :user => user, :uid => hash['uid'],

 :provider => hash['provider'],

 :token => hash['credentials']['token'],

 :secret => hash['credentials']['secret'])

 end

end

cached_request.rb

require 'twitter_post'

require 'linked_in_post'

class CachedRequest < ActiveRecord::Base

 belongs_to :user

 belongs_to :authorization

 serialize :result, Array

 validates_uniqueness_of :provider, :scope => :user_id

 # time to keep CachedRequest

 EXPIRE_IN = 2.hours

 # update all CachedRequests for user connected providers

 def self.update_cache(user)

 user.connected_providers.each do |provider|

 self.update_provider_cache(user, provider)

 end

56

 end

 # update CachedRequest for given user and provider

 def self.update_provider_cache(user, provider)

 # remove old CachedRequest

 destroy_all("user_id = '#{user.id}' AND provider = '#{provider}'")

 user.reload

 case provider

 when "twitter"

 auth = user.twitter_authorization

 consumer = Consumers::Twitter.new(auth['token'], auth['secret'])

 create(:provider => provider, :user_id => user.id,

 :result => consumer.get_friends_posts,

 :authorization_id => auth.id

)

 when "linked_in"

 auth = user.linked_in_authorization

 consumer = Consumers::LinkedIn.new(auth['token'], auth['secret'])

 create(:provider => provider, :user_id => user.id,

 :result => consumer.get_friends_posts,

 :authorization_id => auth.id

)

 when "facebook"

 auth = user.facebook_authorization

 consumer = Consumers::Facebook.new(auth['token'], auth['secret'])

 create(:provider => provider, :user_id => user.id,

 :result => consumer.get_friends_posts,

 :authorization_id => auth.id

)

 end

 end

 # Is specified user provider CachedRequest expired?

 def self.not_expired?(provider, user_id)

 where("created_at >= ? AND user_id = ? AND provider = ?", EXPIRE_IN.ago, user_id,

 provider).first

 end

 # Delete all expired CachedRequests

 def self.delete_expired

 destroy_all("created_at <= '#{EXPIRE_IN.ago}'")

 end

end

corpur_term.rb

57

class CorpusTerm < ActiveRecord::Base

end

facebook_post.rb

class FacebookPost < Post

 attr_reader :message, :description, :link, :caption

 def initialize (data, provider=nil)

 @provider = provider

 parse(data)

 self

 end

 private

 def parse(data)

 @text = parse_text(data)

 @message = data['message']

 @description = data['description']

 @link = data['link']

 @caption = data['caption']

 @name = data['from']['name']

 @all_text = [@message, @description, @link, @caption, @name].join(' ')

 @date = DateTime.parse(data['created_time'])

 @since = DateTime.parse(data['created_time']).to_time.to_i

 @uid = data['from']['id']

 end

 def parse_text(data)

 text = data['description'].to_s

 text += " " + data['caption'].to_s

 text += " " + data['message'].to_s

 text += " " + data['name'].to_s

 end

end

linked_in_post.rb

class LinkedInPost < Post

 attr_reader :headline, :comment, :link

 def initialize (data, provider=nil)

 @provider = provider

 parse(data)

 self

 end

58

 private

 def parse(data)

 if data['timestamp']

 @date = DateTime.parse(Time.at(data['timestamp'].to_i / 1000).to_time.to_s)

 @since = data['timestamp']

 @type = data['updateType']

 parse_by_type(data)

 end

 end

 def parse_by_type(data)

 case data['updateType']

 when "CONN"

 @text = data['updateContent']['person']['connections']['values'].collect { |c|

 c['headline'] }.join(" ")

 @uid = data['updateContent']['person']['id']

 @name = @name.to_s + data['updateContent']['person']['firstName'] + " " +

data['updateContent']['person']['lastName']

 @all_text = @text

 when "STAT"

 @text = data['updateContent']['person']['currentStatus']

 @headline = data['updateContent']['person']['headline']

 @all_text = [@text, @headline].join(' ')

 @uid = data['updateContent']['person']['id']

 @name = @name.to_s + data['updateContent']['person']['firstName'] + " " +

data['updateContent']['person']['lastName']

 when "SHAR"

 @text = data['updateContent']['person']['currentShare']['content']['title']

 @comment = data['updateContent']['person']['currentShare']['comment']

 @link = data['updateContent']['person']['currentShare']['content']['submittedUrl']

 @headline = data['updateContent']['person']['headline']

 @all_text = [@text, @headline, @link, @comment].join(' ')

 @uid = data['updateContent']['person']['id']

 @name = @name.to_s + data['updateContent']['person']['firstName'] + " " +

data['updateContent']['person']['lastName']

 end

 end

end

post.rb

Base Post class. All services post classes will extend this class.

Implements default attributes, accessors and methods.

59

class Post

 attr_reader :text, :date, :name, :provider, :since, :uid, :all_text

 def valid?

 true

 end

 def own?(user_id)

 user_id.to_s == @uid.to_s

 end

end

tag.rb

class Tag < ActiveRecord::Base

 belongs_to :user

 scope :sorted, order("tf_idf DESC")

 # tags to display in list

 DISPLAY = 30

 # find Tag from hash parameters

 def self.find_from_hash(hash)

 find_by_word_and_user_id(hash[:word], hash[:user_id])

 end

 # Create/update Tag from hash parameters

 def self.add_from_hash(hash)

 if tag = find_from_hash(hash)

 if tag.tf_idf != hash[:tf_idf]

 tag.update_attributes(:tf_idf => hash[:tf_idf])

 end

 else

 create(hash)

 end

 end

end

twitter_post.rb

class TwitterPost < Post

 def initialize (data, provider=nil)

 @provider = provider

 parse(data)

 self

 end

60

 private

 def parse(data)

 @text = data['text']

 @all_text = @text

 @date = DateTime.parse(data['created_at'])

 @name = data['user']['name']

 @since = data['id']

 @uid = data['user']['id']

 end

end

user.rb

class User < ActiveRecord::Base

 has_many :authorizations

 has_many :user_posts

 has_many :cached_requests

 has_many :tags

 serialize :options

 validates_presence_of :name

 # list of providers

 PROVIDERS = %w{facebook twitter linked_in}

 # minimum Tf-Idf threshhold for tags

 TF_IDF_THRESHOLD = 2.0

 def rebuild_tags

 # collect all user posts to single document

 text = self.user_posts.collect { |p| p.text }.join("\n")

 # analyze document for tags

 tags = Analyzer.analyze(text)

 # add tags to database if TF_IDF value is high enough

 tags.each { |tag|

 if tag[1][:tf_idf] > TF_IDF_THRESHOLD

 logger.info("Adding \"#{tag[0]}\" tag to \"#{self.name}\"")

 hash = {:word => tag[0], :tf_idf => tag[1][:tf_idf], :user_id => self.id}

 Tag.add_from_hash(hash)

 end

 }

 end

61

 # Reloads all expired cached requests

 def reload_cached_requests

 CachedRequest.update_cache(self)

 end

 # Reloads expired cached requests

 def reload_expired_cached_requests

 self.connected_providers.each { |provider|

 unless CachedRequest.not_expired?(provider, self.id)

 CachedRequest.update_provider_cache(self, provider)

 end

 }

 end

 # Fetch and save to database user Facebook posts

 def load_facebook_posts

 if auth = self.facebook_authorization

 consumer = Consumers::Facebook.new(auth['token'], auth['secret'])

 since = self.since_param(auth.provider)

 consumer.get_posts(since).each { |post|

 logger.info("Creating Facebook UserPost \"#{post.text}\" for \"#{self.name}\"")

 UserPost.create(

 :text => post.all_text,

 :since => post.since,

 :user_id => self.id,

 :provider => auth.provider

)

 }

 end

 end

 # Fetch and save to database user LinkedIn posts

 def load_linked_in_posts

 if auth = self.linked_in_authorization

 consumer = Consumers::LinkedIn.new(auth['token'], auth['secret'])

 since = self.since_param(auth.provider)

 consumer.get_network_updates(since).each { |post|

 logger.info("Creating LinkedIn UserPost \"#{post.all_text}\" for \"#{self.name}\"")

 UserPost.create(

 :text => post.all_text,

 :since => post.since,

 :user_id => self.id,

62

 :provider => auth.provider

)

 }

 end

 end

 # Fetch and save to database user Twitter posts

 def load_twitter_posts

 if auth = self.twitter_authorization

 consumer = Consumers::Twitter.new(auth['token'], auth['secret'])

 since = self.since_param(auth.provider)

 consumer.get_posts(since).each { |post|

 logger.info("Creating Twitter UserPost \"#{post.all_text}\" for \"#{self.name}\"")

 UserPost.create(

 :text => post.all_text,

 :since => post.since,

 :user_id => self.id,

 :provider => auth.provider

)

 }

 end

 end

 # Get latest 'since' paramater for user authentication posts

 # Since parameter is used to fetch only newer posts, skipping

 # all existing in database posts

 def since_param(provider)

 self.user_posts.where(:provider => provider).order("since DESC").first.try(:since)

 end

 # Reload cached requests for all connected providers

 def reload_cached_requests

 CachedRequest.delete_expired

 if self.connected_providers.count != self.cached_requests.count

 CachedRequest.update_cache(self)

 end

 end

 # Create User from hash parameters

 def self.create_from_hash!(hash)

 create(:name => hash['user_info']['name'])

 end

 # Is all providers connected to specified user?

63

 def all_providers_connected?

 self.authorizations.count == 3

 end

 # Returns array of connected providers

 def connected_providers

 self.authorizations.collect { |auth| auth.provider }

 end

 # Returns array of providers still not connected

 def pending_providers

 @pending_providers = User::PROVIDERS.dup

 self.authorizations.each { |auth|

 @pending_providers.delete(auth.provider)

 }

 @pending_providers

 end

 # Returns Twitter Authorization model for specified user

 def twitter_authorization

 self.authorizations.where('provider = ?', 'twitter').first

 end

 # Returns Facebook Authorization model for specified user

 def facebook_authorization

 self.authorizations.where('provider = ?', 'facebook').first

 end

 # Returns LinkedIn Authorization model for specified user

 def linked_in_authorization

 self.authorizations.where('provider = ?', 'linked_in').first

 end

end

user_post.rb

class UserPost < ActiveRecord::Base

 belongs_to :user

 validates_uniqueness_of :since, :scope => [:user_id, :provider]

end

64

VIEWS

Application.html.erb

<!DOCTYPE html>

<html>

<head>

 <title>Social Network Search App</title>

 <%= stylesheet_link_tag "web-app-theme/base", "web-app-theme/themes/default/style", "web-

app-theme/override", "style" %>

 <%= javascript_include_tag 'jquery.min.js', 'rails.js', :defaults %>

 <%= csrf_meta_tag %>

</head>

<body>

 <div id="container">

 <div id="header">

 <h1>Social Network Search App</h1>

 <div id="user-navigation">

 <ul class="wat-cf">

 <% user_links.each do |link| %>

 <%= link_to link[:title], link[:path], :class => link[:class] %>

 <% end %>

 </div>

 <div id="main-navigation">

 <ul class="wat-cf">

 <li class="first active last"><%= link_to "Home page", root_url%>

 </div>

 </div>

 <div id="wrapper" class="wat-cf">

 <div class="flash">

 <% flash.each do |type, message| -%>

 <div class="message <%= type %>">

 <p><%= message %></p>

 </div>

 <% end -%>

 </div>

 <div id="main">

 <%= yield %>

 <div id="footer">

 <div class="block">

 <p>Copyright © <%= Time.now.year %> Social Network Search App.</p>

 </div>

 </div>

 </div>

65

 <div id="sidebar">

 <%= render :partial => 'partials/connect' %>

 <%= yield :sidebar %>

 </div>

 </div>

 </div>

</body>

</html>

Home.html.erb

<div class="block">

 <div class="content">

 <h2 class="title"><%= @title %></h2>

 <div class="inner">

 <% if signed_in? %>

 <ul class="list">

 <p>Sort by <%= link_to "date", '?' %> | <%= link_to "relevance", '?sort=relevance' %>

 <% if @tag %>

 <%= render :partial => 'partials/post', :collection => @collection %>

 <% else %>

 <%= render :partial => 'partials/post_list', :collection => @posts_by_tag %>

 <% end %>

 <% end %>

 </div>

 </div>

</div>

<% content_for :sidebar do %>

 <% if signed_in? %>

 <div class="block">

 <h3>Tags</h3>

 <p class="tags">

 <% current_user.tags.sorted.slice(0,Tag::DISPLAY).each do |tag| %>

 <%= link_to tag.word, "/tags/#{tag.id}", :class => 'tag' %>

 <% end %>

 </p>

 </div>

 <% end %>

<% end %>

_connect.html.erb

<% unless signed_in? %>

 <div class="block notice">

 <h3>Sign in with</h3>

 <ul class="navigation social_links">

66

 <% User::PROVIDERS.each do |provider| %>

 <%= link_to_service(provider) %>

 <% end %>

 </div>

<% else %>

 <% if current_user.all_providers_connected? %>

 <p id="connected_to">

 Your profile is connected to:

 <% current_user.connected_providers.each do |provider| %>

 <%= provider_image_tag_small(provider) %>

 <% end %>

 </p>

 <% else %>

 <div class="block notice">

 <h3>Improve your experience by connecting your profile to more social networks:</h3>

 <ul class="navigation social_links">

 <% current_user.pending_providers.each do |provider| %>

 <%= link_to_service(provider) %>

 <% end %>

 </div>

 <% end %>

<% end %>

_post.html.erb

<li class="">

 <div class="left"><%= provider_image_tag(post.provider) %></div>

 <% case post.provider %>

 <% when 'twitter' %>

 <div class="item">

 <p><%= post.text %></p>

 <p>By <%= post.name %> at <%= l post.date.to_time, :format => :long

%></p>

 </div>

 <% when 'facebook' %>

 <div class="item">

 <% if post.caption %>

 <p><%= post.caption %></p>

 <% end %>

 <% if post.message %>

 <p><%= post.message %></p>

 <% end %>

67

 <% if post.description %>

 <p><%= post.description %></p>

 <% end %>

 <% if post.link %>

 <p><a href="<%= post.link %>" class="link"><%= image_tag 'web-app-

theme/icons/link.png'%> <%= post.link %></p>

 <% end %>

 <p>By <%= post.name %> at <%= l post.date.to_time, :format => :long

%></p>

 </div>

 <% when 'linked_in' %>

 <div class="item">

 <% if post.headline %>

 <p><%= post.headline %></p>

 <% end %>

 <% if post.text %>

 <p><%= post.text %></p>

 <% end %>

 <% if post.comment %>

 <p><%= post.comment %></p>

 <% end %>

 <% if post.link %>

 <p><a href="<%= post.link %>" class="link"><%= image_tag 'web-app-

theme/icons/link.png'%> <%= post.link %></p>

 <% end %>

 <p>By <%= post.name %> at <%= l post.date.to_time, :format => :long

%></p>

 </div>

 <% end %>

_post_list.html.erb

<% post_list.each do |list| %>

 <% unless list[1].empty? %>

 <h3>Posts tagged by "<%= list[0] %>"</h3>

 <%= render :partial => 'partials/post', :collection => list[1] %>

 <% end %>

<% end %>

68

Edit.html.erb

<% post_list.each do |list| %>

 <% unless list[1].empty? %>

 <h3>Posts tagged by "<%= list[0] %>"</h3>

 <%= render :partial => 'partials/post', :collection => list[1] %>

 <% end %>

<% end %>

LIB

Analyzer.rb

class Analyzer

 # Constructor method.

 def initialize(user)

 @user = user

 end

 # add text to document

 def add_text(text)

 @user.document += "\n#{text}"

 @user.save

 end

 # Returns sorted tags list

 def self.analyze(text)

 words = Hash.new

 # split text into words and calculate

 # each word frequency in the text - TF

 text.split(/[^A-Za-z]/).each { |word|

 word = word.downcase

 if words[word]

 words[word][:tf] += 1

 elsif word.length > 2

 words[word] = {:tf => 1}

 end

 }

 # calculate IDF value for each word

 # in the text

 words.each { |word, value|

 if corpus_term = CorpusTerm.find_by_term(word)

 words[word][:idf] = Math.log10(504 / corpus_term.count)

 else

69

 words[word][:idf] = Math.log10(504 / 1)

 end

 # calculate TF-IDF value

 words[word][:tf_idf] = words[word][:tf] * words[word][:idf]

 }

 # sort words by TF-IDF value

 words.sort { |a,b| b[1][:tf_idf] <=> a[1][:tf_idf] }

 end

end

consumers.rb

require 'json'

require 'consumers/base'

require 'consumers/twitter'

require 'consumers/facebook'

require 'consumers/linked_in'

corpus.rb

require 'ar-extensions'

class Corpus

 # Constructor method

 def initialize

 @collection = Hash.new

 end

 # add new document for analization

 def add_document(doc)

 words = split_into_words(doc)

 temp = Array.new

 words.each { |word|

 if word and word.length > 2

 temp << normalize_word(word)

 end

 }

 temp.uniq.each{ |word|

 add_to_collection(word)

 }

 end

70

 # do mass insert of analyzed terms to DB

 def insert

 fields = [:term, :count]

 data = []

 @collection.each { |term,count|

 data << [term, count]

 }

 puts "Starting to import #{data.length} terms..."

 CorpusTerm.import fields, data

 puts "Import finished!"

 end

 private

 # add word to main collection

 def add_to_collection(word)

 if @collection[word].nil?

 @collection[word] = 1

 else

 @collection[word] += 1

 end

 end

 # split text into words

 def split_into_words(text)

 text.split(/[^a-zA-Z\/]/).collect { |w| w.split('/').try(:first) }

 end

 # normalize word

 def normalize_word(word)

 word.downcase

 end

end

posts_collection.rb

class PostsCollection

 attr_reader :collection

 # Constructor method

 def initialize(cached_requests)

 @cached_requests = cached_requests

 @collection = Array.new

 self

 end

71

 # parse all posts

 def parse(tag = nil)

 if tag.nil?

 collect_all_posts

 else

 collect_posts_by_tag(tag)

 end

 end

 # sort posts by word count

 def sort_by_word_count(tag)

 @collection.sort { |a,b|

 word_count(b.all_text, tag) <=> word_count(a.all_text, tag)

 }

 end

 # sort posts by date

 def sort_by_date

 @collection.sort { |a,b| b.date <=> a.date }

 end

 private

 # collect all posts

 def collect_all_posts

 @cached_requests.each do |request|

 request.result.each { |post|

 # post must not be own and invalid

 if !post.own?(request.authorization.uid) && post.valid?

 @collection << post

 end

 }

 end

 end

 # collect all posts including 'tag' word

 def collect_posts_by_tag(tag)

 @cached_requests.each do |request|

 request.result.each { |post|

 # post must not be own and invalid

 if !post.own?(request.authorization.uid) && post.valid? && word_search(post.all_text, tag)

 @collection << post

 end

 }

 end

 end

72

 private

 # Returns word frequency in document

 def word_count(document, word)

 document.to_s.scan(/#{word}/i).count

 end

 # Search for word in document

 def word_search(document, word)

 document =~ /#{word}/i

 end

end

CONSUMERS

Base.rb

Consumers Base class, all services consumers will extend this

class

module Consumers

 class Base

 # Constructor method, it takes user auth tokens

 # and initializes connection to API

 def initialize(oauth_token, oauth_token_secret)

 @consumer = OAuth::Consumer.new(

 APP_CONFIG[provider_name]['key'],

 APP_CONFIG[provider_name]['secret'],

 { :site => site_name }

)

 @token_hash = {

 :oauth_token => oauth_token,

 :oauth_token_secret => oauth_token_secret

 }

 @access_token = OAuth::AccessToken.from_hash(@consumer, @token_hash)

 end

 # provider name

 def provider_name

 nil

 end

 # provider site url

 def site_name

 nil

 end

 end

73

end

facebook.rb

require 'open-uri'

module Consumers

 class Facebook < Base

 def provider_name

 'facebook'

 end

 def site_name

 'http://www.facebook.com'

 end

 # load friends posts

 def get_friends_posts

 token = CGI.escape(@access_token.token)

 # posts per request

 limit = 100

 posts = Array.new

 # request url

 url = "https://graph.facebook.com/me/home?limit=#{limit}&access_token=" + token

 begin

 # initialize request

 result = JSON.parse(

 open(url).read

)

 posts = result['data']

 rescue

 Rails.logger.fatal("Facebook fetching failed")

 end

 # create FacebookPost object for each post in result

 posts.collect { |post|

 FacebookPost.new(post, provider_name)

 }

 end

 # load own posts

 def get_posts(since = nil)

 token = CGI.escape(@access_token.token)

74

 # posts per request

 limit = 100

 # build request url

 url = "https://graph.facebook.com/me/posts?limit=#{limit}&access_token=" + token

 url += "&since=#{since}" if since

 puts "Getting #{url}"

 posts = Array.new

 begin

 # initialize request

 result = JSON.parse(

 open(url).read

)

 posts = result['data']

 # build request url for next page

 next_url = result['paging'].nil? ? nil : result['paging']['next']

 # fetch next page while there is one

 while next_url

 puts "Getting #{next_url}"

 #parse request result JSON

 result = JSON.parse(open(next_url).read)

 next_url = result['paging'].nil? ? nil : result['paging']['next']

 # append posts from current page to main array

 posts += result['data']

 end

 rescue

 Rails.logger.fatal("Facebook fetching failed")

 end

 # create FacebookPost object for each post in result

 posts.collect { |post|

 FacebookPost.new(post, provider_name)

 }

 end

 end

end

linked_in.rb

75

module Consumers

 class LinkedIn < Base

 def provider_name

 'linked_in'

 end

 def site_name

 'http://www.linkedin.com'

 end

 # load user friends posts

 def get_friends_posts

 count = 50

 posts = Array.new

 begin

 # build request url

 url = "http://api.linkedin.com/v1/people/~/network/updates?"

 url += "count=#{count}"

 # initialize request

 response = @access_token.request(:get, url,'x-li-format'=>'json')

 # parse request result JSON

 posts = JSON.parse(response.body)['values'] || []

 rescue

 Rails.logger.fatal("LinkedIn fetching failed")

 end

 # create LinkedInPost object for each post in result

 posts.collect { |post|

 LinkedInPost.new(post, provider_name)

 }

 end

 # load user own posts

 def get_network_updates(since = nil)

 count = 50

 page = 0

 posts = Array.new

 # build request url

 url = "http://api.linkedin.com/v1/people/~/network/updates?scope=self"

 url += "&count=#{count}"

 url += "&after=#{since}" if since

 # fetch next page while there is one

76

 begin

 while true

 get_url = url + "&start=#{page*count}"

 puts "Fetching #{get_url}"

 # initialize request

 response = @access_token.request(:get, get_url,'x-li-format'=>'json')

 new_posts = JSON.parse(response.body)['values'] || []

 # create LinkedInPost object for each post in result

 new_posts.each { |post|

 # assign current page posts to main array

 posts << LinkedInPost.new(post, provider_name)

 }

 page += 1

 if new_posts.count != count then

 break

 end

 end

 rescue

 Rails.logger.fatal("LinkedIn fetching failed")

 end

 posts

 end

 end

end

twitter.rb

require 'twitter_post'

module Consumers

 class Twitter < Base

 def provider_name

 'twitter'

 end

 def site_name

 'http://api.twitter.com'

 end

 def get_friends_posts

 # results per page

 count = 200

 posts = Array.new

 page = 1

77

 # building API request url

 url = "http://api.twitter.com/1/statuses/home_timeline.json"

 url += "?count=#{count}"

 begin

 # initialize request

 response = @access_token.request(:get, url)

 # parse JSON response to Hash

 posts = JSON.parse(response.body)

 rescue

 Rails.logger.fatal("Twitter fetching failed")

 end

 # create TwitterPost object for each post in result

 posts.collect {|post|

 TwitterPost.new(post, provider_name)

 }

 end

 def get_posts(since = nil)

 # results per page

 count = 200

 page = 1

 posts = Array.new

 # building API request url

 url = "http://api.twitter.com/1/statuses/user_timeline.json"

 url += "?count=#{count}"

 url += "&since_id=#{since}" if since

 begin

 # fetch all pages

 while true

 get_url = url + "&page=#{page}"

 puts "Getting #{url}"

 # do fetch

 response = @access_token.request(:get, get_url)

 # parse JSON response to Hash

 new_posts = JSON.parse(response.body)

 posts += new_posts

78

 page += 1

 # stop fetching if we got less tweets than

 # specified in our count parameter

 if new_posts.count != count then

 break

 end

 end

 rescue

 Rails.logger.fatal("Twitter fetching failed")

 end

 # create TwitterPost object for each post in result

 posts.collect {|post|

 TwitterPost.new(post, provider_name)

 }

 end

 end

end

TASKS

Application.rake

namespace :app do

 # worker will load new user posts, and

 # rebuild tags, probably should be run

 # once every 24 hours

 desc "Run worker"

 task :run_worker => :environment do

 Rake::Task["app:get_all_posts"].invoke

 Rake::Task["app:tags:build"].invoke

 end

 desc "Get all users new posts"

 task :get_all_posts => :environment do

 Rake::Task["app:twitter:load_posts"].invoke

 Rake::Task["app:facebook:load_posts"].invoke

 Rake::Task["app:linked_in:load_posts"].invoke

 end

 desc "Delete all posts in db"

 task :delete_all_posts => :environment do

 UserPost.delete_all

 end

 desc "Delete posts and tags"

79

 task :delete_all_data => :environment do

 UserPost.delete_all

 CachedRequest.delete_all

 Tag.delete_all

 end

 desc "Show user tags"

 task :show_tags => :environment do

 User.all.each { |user|

 puts "Tags for #{user.name}"

 user.tags.sorted.each { |tag|

 puts "\t#{tag.word} => #{tag.tf_idf}"

 }

 }

 end

 namespace :tags do

 desc "Build tags from users posts"

 task :build => :environment do

 User.all.each { |user|

 user.rebuild_tags

 }

 end

 end

 namespace :twitter do

 desc "Fetch all system users Twitter posts"

 task :load_posts => :environment do

 User.all.each { |user|

 user.load_twitter_posts

 }

 end

 end

 namespace :facebook do

 desc "Fetch all system users Twitter posts"

 task :load_posts => :environment do

 User.all.each { |user|

 user.load_facebook_posts

 }

 end

 task :show_own_posts, :id, :needs => :environment do |t, args|

 if id = args[:id]

 if user = User.find(id)

 puts "User \"#{user.name}\" Facebook posts:"

 user.user_posts.where("provider = 'facebook'").all.each { |post|

80

 puts post.text

 }

 end

 end

 end

 end

 namespace :linked_in do

 desc "Fetch all system users LinkedIn posts"

 task :load_posts => :environment do

 User.all.each { |user|

 user.load_linked_in_posts

 }

 end

 task :api_response_all, :id, :needs => :environment do |t, args|

 if id = args[:id]

 if user = User.find(id)

 puts "User \"#{user.name}\" LinkedIn response:"

 if auth = user.linked_in_authorization

 @consumer = OAuth::Consumer.new(

 APP_CONFIG['linked_in']['key'],

 APP_CONFIG['linked_in']['secret'],

 { :site => 'http://www.linkedin.com' }

)

 @token_hash = {

 :oauth_token => auth['token'],

 :oauth_token_secret => auth['secret']

 }

 @access_token = OAuth::AccessToken.from_hash(@consumer, @token_hash)

 url = "http://api.linkedin.com/v1/people/~/network/updates"

 response = @access_token.request(:get, url,'x-li-format'=>'json')

 puts JSON.pretty_generate(JSON.parse(response.body))

 end

 end

 end

 end

 task :api_response_self, :id, :needs => :environment do |t, args|

 if id = args[:id]

 if user = User.find(id)

 puts "User \"#{user.name}\" LinkedIn response:"

 if auth = user.linked_in_authorization

81

 @consumer = OAuth::Consumer.new(

 APP_CONFIG['linked_in']['key'],

 APP_CONFIG['linked_in']['secret'],

 { :site => 'http://www.linkedin.com' }

)

 @token_hash = {

 :oauth_token => auth['token'],

 :oauth_token_secret => auth['secret']

 }

 @access_token = OAuth::AccessToken.from_hash(@consumer, @token_hash)

 url = "http://api.linkedin.com/v1/people/~/network/updates?scope=self"

 response = @access_token.request(:get, url,'x-li-format'=>'json')

 puts JSON.pretty_generate(JSON.parse(response.body))

 end

 end

 end

 end

 task :api_response_all_posts, :id, :needs => :environment do |t, args|

 if id = args[:id]

 if user = User.find(id)

 puts "User \"#{user.name}\" LinkedIn response:"

 if auth = user.linked_in_authorization

 @consumer = OAuth::Consumer.new(

 APP_CONFIG['linked_in']['key'],

 APP_CONFIG['linked_in']['secret'],

 { :site => 'http://www.linkedin.com' }

)

 @token_hash = {

 :oauth_token => auth['token'],

 :oauth_token_secret => auth['secret']

 }

 @access_token = OAuth::AccessToken.from_hash(@consumer, @token_hash)

 url = "http://api.linkedin.com/v1/people/~/network/updates"

 response = @access_token.request(:get, url,'x-li-format'=>'json')

 posts = JSON.parse(response.body)['values'].collect { |post|

 LinkedInPost.new(post, 'linked_in')

 }

 puts posts.inspect

82

 end

 end

 end

 end

 task :api_response_self_posts, :id, :needs => :environment do |t, args|

 if id = args[:id]

 if user = User.find(id)

 puts "User \"#{user.name}\" LinkedIn response:"

 if auth = user.linked_in_authorization

 @consumer = OAuth::Consumer.new(

 APP_CONFIG['linked_in']['key'],

 APP_CONFIG['linked_in']['secret'],

 { :site => 'http://www.linkedin.com' }

)

 @token_hash = {

 :oauth_token => auth['token'],

 :oauth_token_secret => auth['secret']

 }

 @access_token = OAuth::AccessToken.from_hash(@consumer, @token_hash)

 url = "http://api.linkedin.com/v1/people/~/network/updates?scope=self"

 response = @access_token.request(:get, url,'x-li-format'=>'json')

 posts = JSON.parse(response.body)['values'].collect { |post|

 LinkedInPost.new(post, 'linked_in')

 }

 puts posts.inspect

 end

 end

 end

 end

 end

 namespace :test do

 desc "Test analyzer"

 task :analyzer => :environment do

 User.all.each { |user|

 puts "User #{user.name} tags"

 text = user.user_posts.collect { |p| p.text }.join("\n")

 analyzer = Analyzer.analyze(text)

 }

 end

 end

end

83

corpus.rake

namespace :corpus do

 desc "Corpus database status"

 task :status => :environment do

 puts "Corpus currently has #{CorpusTerm.all.count} terms."

 end

 desc "Load corpus from .txt file"

 task :load => :environment do

 dir = Dir.new(Rails.root.join('corpus'))

 corpus = Corpus.new

 dir.each { |filename|

 path = "#{dir.path}/#{filename}"

 if File.file?(path)

 puts "Reading #{filename} ..."

 file = File.open(path,'r')

 text = file.read

 corpus.add_document(text)

 end

 }

 corpus.insert

 end

end

DB

MIGRATE

20110407175015_create_authorizations.rb

class CreateAuthorizations < ActiveRecord::Migration

 def self.up

 create_table :authorizations do |t|

 t.string :provider

 t.string :uid

 t.integer :user_id

 t.timestamps

 end

 end

84

 def self.down

 drop_table :authorizations

 end

end

20110407175046_create_users.rb

class CreateUsers < ActiveRecord::Migration

 def self.up

 create_table :users do |t|

 t.string :name

 t.timestamps

 end

 end

 def self.down

 drop_table :users

 end

end

20110413094708_add_token_and_secret_to_authorizations.rb

class AddTokenAndSecretToAuthorizations < ActiveRecord::Migration

 def self.up

 add_column :authorizations, :token, :string

 add_column :authorizations, :secret, :string

 end

 def self.down

 remove_column :authorizations, :token

 remove_column :authorizations, :secret

 end

end

20110414150930_create_corpus_terms.rb

class CreateCorpusTerms < ActiveRecord::Migration

 def self.up

 create_table :corpus_terms do |t|

 t.string :term

 t.integer :idf

 t.timestamps

 end

 end

85

 def self.down

 drop_table :corpus_terms

 end

end

20110414174200_rename_idf_to_count.rb

class RenameIdfToCount < ActiveRecord::Migration

 def self.up

 rename_column :corpus_terms, :idf, :count

 end

 def self.down

 end

end

20110414192340_add_index_to_corpus_term.rb

class AddIndexToCorpusTerm < ActiveRecord::Migration

 def self.up

 add_index :corpus_terms, :term

 end

 def self.down

 remove_index :corpus_terms, :term

 end

end

20110414194302_add_options_to_user.rb

class AddOptionsToUser < ActiveRecord::Migration

 def self.up

 add_column :users, :options, :text

 end

 def self.down

 remove_column :users, :options

 end

end

20110415064823_create_user_posts.rb

class CreateUserPosts < ActiveRecord::Migration

 def self.up

 create_table :user_posts do |t|

 t.text :text

86

 t.string :provider

 t.string :since

 t.timestamps

 end

 end

 def self.down

 drop_table :user_posts

 end

end

20110415071047_add_user_id_to_user_posts.rb

class AddUserIdToUserPosts < ActiveRecord::Migration

 def self.up

 add_column :user_posts, :user_id, :integer

 end

 def self.down

 remove_column :user_posts, :user_id

 end

end

20110415115954_create_tags.rb

class CreateTags < ActiveRecord::Migration

 def self.up

 create_table :tags do |t|

 t.string :word

 t.float :tf_idf

 t.integer :user_id

 t.timestamps

 end

 end

 def self.down

 drop_table :tags

 end

end

20110418065317_create_cached_requests.rb

class CreateCachedRequests < ActiveRecord::Migration

 def self.up

 create_table :cached_requests do |t|

87

 t.integer :user_id

 t.string :provider

 t.text :result

 t.timestamps

 end

 end

 def self.down

 drop_table :cached_requests

 end

end

20110419132313_add_authorization_id_to_cached_requests.rb

class AddAuthorizationIdToCachedRequests < ActiveRecord::Migration

 def self.up

 add_column :cached_requests, :authorization_id, :integer

 end

 def self.down

 remove_column :cached_requests, :authorization_id

 end

end

CONFIG

Application.rb

require File.expand_path('../boot', __FILE__)

require 'rails/all'

If you have a Gemfile, require the gems listed there, including any gems

you've limited to :test, :development, or :production.

Bundler.require(:default, Rails.env) if defined?(Bundler)

#ENV['BUNDLER_HOME']="C:\My Documents\Rails\app"

module App

 class Application < Rails::Application

 # Settings in config/environments/* take precedence over those specified here.

 # Application configuration should go into files in config/initializers

 # -- all .rb files in that directory are automatically loaded.

 # Custom directories with classes and modules you want to be autoloadable.

88

 config.autoload_paths += %W(#{config.root}/lib)

 # Only load the plugins named here, in the order given (default is alphabetical).

 # :all can be used as a placeholder for all plugins not explicitly named.

 # config.plugins = [:exception_notification, :ssl_requirement, :all]

 # Activate observers that should always be running.

 # config.active_record.observers = :cacher, :garbage_collector, :forum_observer

 # Set Time.zone default to the specified zone and make Active Record auto-convert to this

zone.

 # Run "rake -D time" for a list of tasks for finding time zone names. Default is UTC.

 config.time_zone = 'Pacific Time (US & Canada)'

 # The default locale is :en and all translations from config/locales/*.rb,yml are auto loaded.

 # config.i18n.load_path += Dir[Rails.root.join('my', 'locales', '*.{rb,yml}').to_s]

 # config.i18n.default_locale = :de

 # JavaScript files you want as :defaults (application.js is always included).

 config.action_view.javascript_expansions[:defaults] = %w()

 # Configure the default encoding used in templates for Ruby 1.9.

 config.encoding = "utf-8"

 # Configure generators

 config.generators do |g|

 g.test_framework :rspec

 g.fixture_replacement :factory_girl, :dir => "spec/factories"

 end

 # Configure sensitive parameters which will be filtered from the log file.

 config.filter_parameters += [:password]

 end

end

boot.rb

require 'rubygems'

Set up gems listed in the Gemfile.

ENV['BUNDLE_GEMFILE'] ||= File.expand_path('../../Gemfile', __FILE__)

require 'bundler/setup' if File.exists?(ENV['BUNDLE_GEMFILE'])

database.yml

SQLite version 3.x

89

gem install sqlite3

development:

 adapter: sqlite3

 database: db/development.sqlite3

 pool: 5

 timeout: 5000

#development:

adapter: mysql2

database: socialnetworksearch

pool: 5

timeout: 5000

Warning: The database defined as "test" will be erased and

re-generated from your development database when you run "rake".

Do not set this db to the same as development or production.

test:

 adapter: sqlite3

 database: db/test.sqlite3

 pool: 5

 timeout: 5000

#test:

adapter: mysql2

database: socialnetworksearch_test

pool: 5

timeout: 5000

production:

 adapter: sqlite3

 database: db/production.sqlite3

 pool: 5

 timeout: 5000

#production:

adapter: mysql2

database: socialnetworksearch

pool: 5

timeout: 5000

Config.yml

90

development: &development

 twitter:

 key: aWSfkZhK2qfcOrVWqM0Rrg

 secret: mQaX6QTBVRT0AXb0m2tTvT04j63mDyjrtenztvsy8E8

 facebook:

 key: 2c54454543dbfe1a3d3a6fb63e4f6b6c

 secret: a9f3b6342c152cbd47948a3480a0ff8e

 linked_in:

 key: 4zDVLKF3QjiundO4-e-XC4rhLzhJyWcIdX8OpPHX21YNXawXFWIPTot0EcGElPqb

 secret: _-xxXs9PP_n_iTtI2krrnYLerKN8VUaP-FcXT4Uqqn8uiwgPXNT_vWVc4YPTWg0F

 app:

 tags_per_page: 20

production:

 <<: *development

test:

 <<: *development

Environment.rb

Load the rails application

require File.expand_path('../application', __FILE__)

Initialize the rails application

App::Application.initialize!

show form error messages inside the generated forms

ActionView::Base.field_error_proc = Proc.new do |html_tag, instance|

 if html_tag =~ /<label/

 %|<div class="fieldWithErrors">#{html_tag} <span

class="error">#{[instance.error_message].join(', ')}</div>|.html_safe

 else

 html_tag

 end

end

routes.rb

App::Application.routes.draw do

 resources :authorizations, :only => [:destroy]

 resources :users, :only => [:edit, :update] do

 member do

 get 'impersonate'

 end

91

 end

 match '/tags/:id', :to => 'pages#home'

 match '/cron/run', :to => 'cron#run'

 match '/logout', :to => 'sessions#destroy'

 match '/auth/:provider/callback', :to => 'sessions#create'

 root :to => "pages#home"

 # The priority is based upon order of creation:

 # first created -> highest priority.

 # Sample of regular route:

 # match 'products/:id' => 'catalog#view'

 # Keep in mind you can assign values other than :controller and :action

 # Sample of named route:

 # match 'products/:id/purchase' => 'catalog#purchase', :as => :purchase

 # This route can be invoked with purchase_url(:id => product.id)

 # Sample resource route (maps HTTP verbs to controller actions automatically):

 # resources :products

 # Sample resource route with options:

 # resources :products do

 # member do

 # get 'short'

 # post 'toggle'

 # end

 #

 # collection do

 # get 'sold'

 # end

 # end

 # Sample resource route with sub-resources:

 # resources :products do

 # resources :comments, :sales

 # resource :seller

 # end

 # Sample resource route with more complex sub-resources

 # resources :products do

 # resources :comments

 # resources :sales do

 # get 'recent', :on => :collection

 # end

92

 # end

 # Sample resource route within a namespace:

 # namespace :admin do

 # # Directs /admin/products/* to Admin::ProductsController

 # # (app/controllers/admin/products_controller.rb)

 # resources :products

 # end

 # You can have the root of your site routed with "root"

 # just remember to delete public/index.html.

 # root :to => "welcome#index"

 # See how all your routes lay out with "rake routes"

 # This is a legacy wild controller route that's not recommended for RESTful applications.

 # Note: This route will make all actions in every controller accessible via GET requests.

 # match ':controller(/:action(/:id(.:format)))'

End

93

11. REFERENCES

1. “How to deal with information overload brought on by Social media”, Retrieved from

http://marketingwizdom.com/archives/2048

2. “World cup of social networks”, Retrieved from http://www.vincos.it/world-map-of-social-

networks/

3. Paul,R., & Roger, G. “Comparing corpora using frequency Profiling”, Retrieved from

http://www.comp.lancs.ac.uk/~paul/publications/rg_acl2000.pdf

4. Pingdom. (2008, August): http://royal.pingdom.com/2008/08/12/social-network-

popularity-around-the-world/

5. T.Peterson, E. (2010). Know Where Your Visitors Have Been: beencounter:

http://tech.webanalyticsdemystified.com/2010/02/know-where-your-visitors-have-been-

beencounter.html

6. Thadani, R. (2010). Pros and cons of Facebook: http://www.buzzle.com/articles/pros-

and-cons-of-facebook.html

7. Trevin, W., “Weighing the Pros and Cons of Twitter”, Retrieved from

http://trevinwax.com/2009/08/04/weighing-the-pros-and-cons-of-twitter/

8. Paul, H., “Death by Information Overload”, Retrieved from

http://hbr.org/2009/09/death-by-information-overload/ar/1

9. “The Asymptotic Twitter Curve” , Retrieved from

http://headrush.typepad.com/creating_passionate_users/2006/12/httpwww37signal.html

10. “What‟s behind LinkedIn‟s Mspoke acquisition?”, Retrieved from

http://hitechenergy.blogspot.com/2010/08/whats-behind-linkedins-mspoke.html

http://marketingwizdom.com/archives/2048
http://www.vincos.it/world-map-of-social-networks/
http://www.vincos.it/world-map-of-social-networks/
http://www.comp.lancs.ac.uk/~paul/publications/rg_acl2000.pdf
http://royal.pingdom.com/2008/08/12/social-network-%20popularity-around-the-world/
http://royal.pingdom.com/2008/08/12/social-network-%20popularity-around-the-world/
http://tech.webanalyticsdemystified.com/2010/02/know-where-your-visitors-have-been-beencounter.html
http://tech.webanalyticsdemystified.com/2010/02/know-where-your-visitors-have-been-beencounter.html
http://www.buzzle.com/articles/pros-%20%20%0band-cons-of-facebook.html
http://www.buzzle.com/articles/pros-%20%20%0band-cons-of-facebook.html
http://trevinwax.com/2009/08/04/weighing-the-pros-and-cons-of-twitter/
http://hbr.org/2009/09/death-by-information-overload/ar/1
http://headrush.typepad.com/creating_passionate_users/2006/12/httpwww37signal.html
http://hitechenergy.blogspot.com/2010/08/whats-behind-linkedins-mspoke.html

94

11. MVC Architecture:

http://1.bp.blogspot.com/_R2pbFBgV4uk/TItwslMxZPI/AAAAAAAAA9s/vu80e5mAb

EY/s1600/mvc-rails.png

12. Elena, D., & Wolfgang,N. “Integrating RDF Querying Capabilities into a

http://wortschatz.uni-leipzig.de/~fwitschel/papers/ordIDag.pdf

13. Distributed Search Infrastructure”, Retrieved from

http://www.l3s.de/web/upload/documents/1/IntegratingRDFQueryingCapabilities.pdf

14. Eoin, W., & Robin, T. “Managing Information Overload: Examining the Role of the

Human Filter”, Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1718455

15. David, K. F., “Designing for Selective Reading to Address Information Overload”,

Retrieved from http://faculty.washington.edu/farkas/TC510/FarkasSelectiveReadingDraft.pdf

16. Programmable Web: http://www.programmableweb.com/

17. Social Plugins, Like plugin feature retrieved from

http://developers.facebook.com/docs/reference/plugins/like

18. Social Plugins, Activity feed plugin feature retrieved from

http://developers.facebook.com/docs/reference/plugins/activity

19. Social Plugins, Recommendations plugin feature retrieved from

http://developers.facebook.com/docs/reference/plugins/recommendations

20. Social Plugins, Comments plugin feature retrieved from

http://developers.facebook.com/docs/reference/plugins/comments

21. Young.,(2010, April).How to Add Facebook Social Plugins to your Blog. Retrieved

December 20, 2010, from http://freenuts.com/how-to-add-facebook-social-plugins-to-

your-blog/

22. Damien.,(2010, April). The Howto Guide to Add Facebook Social Plugins to Your

WordPress Site. Retrieved December 20, 2010, from http://maketecheasier.com/howto-

guide-to-add-facebook-social-plugin-to-your-site/2010/04/28

http://1.bp.blogspot.com/_R2pbFBgV4uk/TItwslMxZPI/AAAAAAAAA9s/vu80e5mAbEY/s1600/mvc-rails.png
http://1.bp.blogspot.com/_R2pbFBgV4uk/TItwslMxZPI/AAAAAAAAA9s/vu80e5mAbEY/s1600/mvc-rails.png
http://wortschatz.uni-leipzig.de/~fwitschel/papers/ordIDag.pdf
http://www.l3s.de/web/upload/documents/1/IntegratingRDFQueryingCapabilities.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1718455
http://faculty.washington.edu/farkas/TC510/FarkasSelectiveReadingDraft.pdf
http://www.programmableweb.com/
http://developers.facebook.com/docs/reference/plugins/like
http://developers.facebook.com/docs/reference/plugins/activity
http://developers.facebook.com/docs/reference/plugins/recommendations
http://developers.facebook.com/docs/reference/plugins/comments
http://freenuts.com/how-to-add-facebook-social-plugins-to-your-blog/
http://freenuts.com/how-to-add-facebook-social-plugins-to-your-blog/
http://maketecheasier.com/howto-guide-to-add-facebook-social-plugin-to-your-site/2010/04/28
http://maketecheasier.com/howto-guide-to-add-facebook-social-plugin-to-your-site/2010/04/28

95

23. Patty.S., Outside Innovation from

http://outsideinnovation.blogs.com/pseybold/2006/03/why_mash_ups_ma.html

24. Dingyi,C., Xue,l., Jing, l., & Xia, C. “Ranking-Constrained Keyword Sequence

Extraction from Web Documents” Retrieved from

http://crpit.com/confpapers/CRPITV92Chen.pdf

25. Github Social Coding, https://github.com/intridea/omniauth

http://outsideinnovation.blogs.com/pseybold/2006/03/why_mash_ups_ma.html
http://crpit.com/confpapers/CRPITV92Chen.pdf
https://github.com/intridea/omniauth

	Social Network Leverage Search
	Recommended Citation

	tmp.1308673920.pdf.edtS_

