
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2011

RiverLand 2.0: Blending of Multiple User-defined Slopes in a RiverLand 2.0: Blending of Multiple User-defined Slopes in a

Procedurally Modeled Terrain Procedurally Modeled Terrain

Jeffrey Jensen
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Jensen, Jeffrey, "RiverLand 2.0: Blending of Multiple User-defined Slopes in a Procedurally Modeled
Terrain" (2011). Master's Projects. 208.
DOI: https://doi.org/10.31979/etd.65dg-txf7
https://scholarworks.sjsu.edu/etd_projects/208

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F208&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F208&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/208?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F208&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

RiverLand 2.0: Blending of Multiple User-defined
Slopes in a Procedurally Modeled Terrain

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Jeffrey Jensen

Under the Advisement of Dr. Soon Tee Teoh

August 2011

© 2011

Jeffrey Jensen

ALL RIGHTS RESERVED

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

RiverLand 2.0: Blending of Multiple User-defined Slopes in a Procedurally
Modeled Terrain

by

Jeffrey Jensen

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Soon Tee Teoh Department of Computer Science Date

Dr. David Taylor Department of Computer Science Date

Dr. Chris Pollett Department of Computer Science Date

ABSTRACT

BLENDING OF MULTIPLE USER-DEFINED SLOPES IN A

PROCEDURALLY MODELED TERRAIN

By Jeffrey Jensen

 This writing project attempts to improve on and add features to the

current program called RiverLand originally designed and implemented by Dr.

Soon Tee Teoh. I discuss the original methods used by RiverLand to create

procedurally generated terrain. I then explore the weaknesses of the original

RiverLand which include having only linear ridges and undesirable medial axis

cells. I then tackle the problem of recurring patterns when texturizing a

surface with very few textures. I propose how to solve these problems and

explain the methods used to accomplish this. I discuss the user interfaces

that were designed to accommodate the added features to RiverLand. I also

discuss the open problems with the updated RiverLand.

Table of Contents

1 Introduction

1.1 Background Information

1.1.1 Procedural Modeling

1.2 Original RiverLand

1.2.1 Overview

1.2.2 Generating Rivers

1.2.3 Generating Terrain Height

1.2.4 Problems

1.2.4.1 Linear Slopes

1.2.4.2 Undesirable Medial Axis Cells

2 Integrating Multiple User Defined Slopes

2.1 Overview

2.2 User Interfaces Designed

2.3 Slope Influence

2.4 Blending User Slopes with Existing Terrain

2.4.1 Overview

2.4.2 Blending With Linear Slopes

2.4.3 Blending With Multiple Defined Slopes

2.4.4 Results

3 Pruning Undesirable Medial Axis Cells

3.1 Overview

3.2 Pruning Method

3.3 Converting Medial Axis Cells

3.4 Results

3.5 Performance Concerns

4 Non-periodic Texturization

4.1 Introduction

4.2 Previous Work by Cani and Neyret

4.3 Texturization Method

4.4 Results

5 Open Problems and Future Work

6 Conclusion

References

List of Figures

Figures

Figure 1. A game world procedurally generated in Minecraft 2

Figure 2. Original RiverLand rivers and ridges 3

Figure 3. A user drawing an island in the canvas and creating
ridge lines in RiverLand 4

Figure 4. Example of medial axis cells; medial axis cells in red,
river cells in blue, land cells in brown 6

Figure 5. Mountain with non-linear slope 7

Figure 6. 2D view of terrain showing all medial axis cells
 (Original RiverLand) 8

Figure 7. “Slope” mode added to Control Panel 10

Figure 8. Edit Slope interface 11

Figure 9. Select Predefined Slope Interface 11

Figure 10. Create Custom Slope Interface 12

Figure 11. Center of user selected slope shown in green 13

Figure 12. 2D view of slope’s influence 15

Figure 13. Blending of multiple user-defined slopes with existing 17
terrain

Figure 14. Medial axis cells targeted for removal 19

Figure 15. Pruning Method Clarification 20

Figure 16. Changes in Pointers when converting medial axis
 cells to normal land cells. 22

Figure 17. Comparison of No Pruning vs. Pruning 23

Figure 18. Runtime of pruning on different size height maps 24

Figure 19. An oriented edge, and the set of four texture samples
that need to be created to fit the different boundary
conditions it produces. [1] 26

Figure 20. Oriented edges for each side of the right triangle 26

Figure 21. The set of 8 textures that is needed to satisfy all
boundary conditions when using a one edge per side. 27

Figure 22. Non-period texturization of RiverLand using the 8

texture triangles mentioned. 28

Figure 23. Right: Standard tiling of height map; Left: Same
height map with random orientation of triangles 30

1

1 Introduction

1.1 Background Information

1.1.1 Procedural Modeling

Procedural modeling is the method of generating 3D objects and

environments automatically by following a set of rules and parameters.

Procedural modeling can be very useful because it allows developers to

generate large quantities of 3D objects without having to explicitly define each

object’s properties. Instead, parameters are given for the general

characteristics of the object or environment, and random numbers are used to

create something unique. This kind of modeling can be used to create such

things as terrain, buildings, cities, trees, and many other objects. The

challenge of procedural modeling is to develop an algorithm that produces

realistic results while remaining efficient.

The content created from these procedural modeling algorithms can then be

input into computer games, movies, or they might even be used as a starting

point for users or developers to edit the content further to more closely meet

their needs. Using procedural modeling techniques can greatly reduce the

amount of time and effort needed to create complicated environments. For

example, if a developer wanted to create a city for his 3D computer game, he

or she could simply input which areas of the city are residential, commercial,

and industrial as well as other important structures, and the city would be

automatically generated using the given parameters as seen in Dr. Teoh’s

Autopolis [8].

2

An example where procedural modeling is used extensively is in a computer

game called Minecraft. In this game, players explore a 3D world that is

automatically generated as needed. The world can grow as long as there is

enough memory to contain the world [7]. Figure 1 shows a player’s currently

explored world in Minecraft. Procedural modeling allows for expansive worlds

that could never be produced explicitly by developers.

Figure 1: A game world procedurally generated in Minecraft

1.2 Original RiverLand

1.2.1 Overview

RiverLand was a program originally designed and implemented by Dr. Soon

Tee Teoh. RiverLand generates an island with meandering rivers and

calculates ridges based on those rivers [9]. The user is allowed to define the

shape of the island by painting on a 2D canvas, as well as specify ridges lines

which rivers cannot cross (as seen in Figure 2).

3

Ridges are also generated by searching outwards from the river edge’s to find

the furthest distance from all nearby rivers.

Figure 2: A user drawing an island in the canvas and creating ridge lines in
RiverLand

4

Figure 3: Original RiverLand rivers and ridges [2]

1.2.2 Generating Rivers

RiverLand generates rivers by first creating a number of randomly located

river mouths, or seeds, along the island’s coast. From each of these rivers

mouths, a river is grown by going inland, perpendicular to the coast, for a

certain distance. At this distance, the river direction is shifted by a random

angle between 90 and -90 degrees. This process is repeated for a certain

number of times to create a connected string of SegmentPoints. By adjusting

the segment length and the skew of the river direction at each SegmentPoint,

the user can create many varying river types, from long straight rivers to small

winding rivers.

After these SegmentPoints have been generated, a meandering river is fit

through the points. Between each SegmentPoint, the amount of river

curvature is randomly created, alternating with each SegmentPoint, to create

a river that continuously travels left and right. This will create more realistic

rivers as most rivers in reality do not travel in straight lines.

5

To make the rivers seem even more realistic, tributaries are spawned from the

rivers. These tributaries are grown outwards from randomly generated seed

points on the concave banks of the rivers. They grow in the same way as the

rivers, meandering through SegmentPoints. These tributaries may also have

tributaries of their own, allowing for more interesting landscapes. As rivers

and tributaries spawn tributaries of their own, their length and movement is

more restricted.

After all the river networks have been generated, the height of these river cells

must be determined. The river mouth is set to be zero, and for each river cell

further inward, the height increases according to AverageSlope with some

random offset. As the river goes further inland still, the river is allowed to

have a steeper slope. This simulates the steep mountains that can

sometimes exist near river sources.

1.2.3 Generating Terrain Height

To create the height of all the land cells, all medial axis cells must be found.

Medial axis cells are cells that are the maximum distance from the nearby

river and coast cells. An example of these cells is shown in Figure 4. To

accomplish this, all the river and coast cells are put into a list which all have a

distance d equal to 0, since they are the river/coast cells. For each cell in this

list, all adjacent cells are found and are set to have dadjacent = dcell + slope 

dist, where dist is the horizontal distance between the cells and slope is

usually 1.0. slope can be changed by the user to create ridges where each

side of the ridge has a different slope. The cell is then removed from the list,

while the adjacent cells are added to the list. A pointer is also added to these

adjacent cells that specifies which cell sent them to the list. This process is

repeated so that each land cell is set with its distance from the river.

6

When all the distances have been set, the cells which did not have a pointer

to an adjacent cell are then considered to be the medial axis cells.

Figure 4: Example of medial axis cells; medial axis cells in red, river cells in
blue, land cells in brown.

Once all medial axis cells have been found, the height of each medial axis is

calculated by taking the height of the river cell that the medial axis cell came

from (more precisely, the river cell that had the influence on d, from above)

and adding slope  d. The height of all remaining cells can then be found by

linearly interpolating along the path from each river cell to the medial axis cell.

1.2.4 Problems

1.2.4.1 Linear Slopes

The original RiverLand linearly interpolated along the path from the river cells

to the medial axis cells to find the height of the cells in between. This type of

interpolation creates smooth slopes but does not allow for varying types of

ridges. This does not allow for things like rough canyons, valleys, and

plateaus. The terrains that are generated with RiverLand appear very

uniform. In the real world, most geological features do not have exactly linear

slopes. Even when using a fractal overlay to give the slope some

randomness, the prevalent shape of the slopes is still linear.

7

In Figure 5 below, the right side of the mountain does not have a linear slope

but rather a more parabolic shape. This is one of the kinds of slopes we are

trying to achieve in this project.

Figure 5: Mountain with non-linear slope [5]

1.2.4.2 Undesirable Medial Axis Cells

Another problem of the original RiverLand was that the terrain would be

littered with medial axis cells that did not accurately approximate the ridges

the user would like to have based on the rivers. These medial axis cells make

it extremely difficult to integrate non-linear slopes into the terrain. The

resulting ridges are short and run perpendicular to the main ridges.

8

As can be seen in Figure 6, there are many medial axis cells that are highly

undesirable. Because of meandering rivers, many rows of medial axis cells

are created that extend out all the way to the rivers. The desirable medial

axis cells are the ones which form rows that are parallel to the rivers.

This problem is not relevant when all slopes in the terrain are linear, but when

trying to alter the slopes to resemble something more realistic, we run into

problems because we are targeting specific ridge slopes. When the user

wants to pick a ridge to alter, it can be difficult to get the desired slope to

appear when there are small surrounding ridges that still have linear slopes.

Figure 6: 2D view of terrain showing all medial axis cells in pink (Original

RiverLand)

9

2 Integrating Multiple User Defined Slopes

2.1 Overview

In order to solve the problem of only having linearly interpolated slopes, the

updated RiverLand features the ability of the user to define his or her own

type of slope for a particular side of a ridge after the initial slopes have been

generated. The user can also specify the amount of influence for where the

slope will affect the terrain. The user defined slopes are then blended into the

slope to create a seamless terrain.

2.2 User Interfaces Designed

Several interfaces were designed and implemented in order to accommodate

the added feature of letting users define their own slopes. These interfaces

are designed to give the user an accurate way to create the desired slope

they want for the ridge.

10

Figure 7: “Slope” mode added to “Control Panel”

Figure 7 shows the updated control panel for RiverLand which includes a new

slope mode. To create a new user defined slope on the current terrain, the

user must select “Slope” mode. The user must then select a point on the

terrain which specifies the area on the terrain they would like to alter. The

user can check the boxes “Show maximal cells”, “Show height map”, and

“Show distance to river” in the 2D View Options interface to get a better idea

of where to place the slope. These options let the user see the ridges and

their slopes more easily.

11

Figure 8: “Edit Slope” Interface

After selecting the area on the terrain where the user wishes to adjust the

slope, the interface in Figure 8 is shown. This interface allows the user to set

the distance of influence for the slope. The user can then choose either to

have a predefined slope, which consists of a set of predefined functions, or a

custom slope which the user can draw out.

Figure 9: “Select Predefined Slope” Interface

If the user decides to have a predefined slope, they are presented with the

interface in Figure 9. Currently the program offers three predefined functions:

cosine(x), (cosine(x))^2, and Gauss(x) which is the slope of a standard normal

distribution curve between 0 and 3.1.

12

Figure 10: “Create Custom Slope” Interface

If the user finds that the predefined slopes do not meet their needs, they may

choose to create a custom slope. The interface for this can be seen in Figure

10. This interface allows the user to manipulate the slope of a line segment

with a 1:1 slope which represents the side of the ridge. This does not

necessarily mean that the ridge selected had a 1:1 slope. The lower end of

the line segment represents the edge of the river while the upper end

represents the top of the ridge. The slope created will be stretched or

compressed, horizontally and/or vertically, to fit onto the ridge. The picture on

the left shows the interface initially with a linear slope. The picture on the right

shows the interface after the user has created the slope with a rocky terrain.

The user defines the custom slope by adding points to the slope by clicking

the left mouse button. The user can then further adjust the slope by clicking

on any point with the right mouse button. The clicked point can then moved,

so long as it stays between the two adjacent points horizontally. The number

of points in the custom slope is limited to 64.

13

After the user has selected the kind of slope they want, they can check the

“Show user slopes” box in the “2D View Options” interface to see the path of

cells going from the river to the medial axis cell which contains the cell that

the user clicked on. This path contains the cells that will have the chosen

slope with greatest influence (100%). This can be seen in Figure 11. The

medial axis cells are shown in pink, while the user selected slope is defined to

have maximum influence on the cells shown in green.

Figure 11: Center of user selected slope shown in green

2.3 Slope Influence

In this section, I will discuss what slope influence means and how it is

calculated. When the user initially sets the slope influence in the interface

shown in Figure 8, they are defining the absolute distance away from the path

shown in Figure 11 where the slope of the cells will be influence by that slope.

Beyond this distance, the slope will have no influence, so cells will have linear

slopes unless they are influenced by another user-defined slope.

14

To determine the amount of influence a cell will receive from a user defined

slope, a flood fill algorithm is used starting from the path connecting the top of

the ridge to the river. The distance of influence (the same number specified

by the user earlier) is recorded in each of the cells in this path. They are then

added to a list of cells to be processed. The algorithm proceeds by first

removing a cell from the list and exploring each of its adjacent neighbors.

Each neighbor cell is recorded with a distance of influence 1 less than the

current cell unless the neighbor cell has already been recorded with a higher

distance of influence by another iteration of the algorithm. The neighbor cells

that had their influence updated are then added to the end of the list to be

processed. A neighbor cell is not added to the list if it is a medial axis cell,

river cell, or coastal cell. This prevents a user defined slope from influencing

the opposite side of the ridge. This would cause undesirable results.

Multiple slopes can affect the same cells when their influences overlap, so

instead of associated each cell with a slope, each cell has a linked list of

slopes associated with them in the terrain. When recording the amount of

influence a cell should receive from a slope, the algorithm searches the list of

slopes the cell has, if any, to see if the current slope exists. If it does, then the

abovementioned check is performed to see if the influence already recorded

is larger than the current influence. If the slope does not exist, the slope is

added onto the linked list of cell.

15

Figure 12: 2D view of slope’s influence

Figure 12 shows the slope’s influence decreasing as it gets farther away from

the targeted path. It does not pass over medial axis cells (pink) or coastal

cells (blue). The scale is from black (very little influence) to white (full

influence).

2.4 Blending User Slopes with Existing Terrain

2.4.1 Overview

I will now discuss the techniques used to integrate the user slopes into the

existing terrain. We start by explaining the method to blend a single user

defined slope with the existing terrain which has all linear slopes. We will then

discuss how the method changes when multiple user slopes are being

considered. In this case, multiple defined slopes might overlap. We propose

a solution that takes into account a slope’s influence along with its shape to

generate a new slope that seamlessly blends them together.

16

2.4.2 Blending with Linear Slopes

When there is only a single user defined slope, the slope must be blended

with the existing terrain which has a linearly interpolated slope. To

accomplish this, each cell which receives influence from the user defined

slope calculates its height by dividing the maximum influence of the slope by

the current influence the cell has. This result will yield a percentage, which is

the weight the user defined slope has on the cell. For example, a user has

defined a slope with a maximum influence of 120. The current cell is 96 units

away from the defined slope, which gives it an influence value of 24. The

height for this cell is calculated by using a weighted average of the user

defined slope (24/120 = 20%) and a linear slope (1 – (24/120) = 80%). If the

height would have been 100 with a linear slope and 50 with the user defined

slope, the resulting height would be 100*0.80 + 50*0.20 = 90.

Height = (SlopeInfluencecurrent / SlopeInfluencemax)*(Heightcustom) +

(1- (SlopeInfluencecurrent / SlopeInfluencemax))*(Heightlinear)

2.4.3 Blending With Multiple User Slopes

There will be times when a cell is under the influence of two or more user

defined slopes. If this is the case, the height of the cell will be calculated as a

weighted average of all the slopes that influence it as well as the underlying

linear slope. For example, a cell is influenced by slopes S1, S2, S3, and SLinear

where the maximum influences are 50, 70, 30, and 100 respectively, and the

cell has influence values for these slopes of 25, 35, 10, and 100 respectively.

The maximum influence and the current influence for the linear slope must

always match because the linear slope expands throughout the entire terrain.

To calculate the height, we find the weight for each slope and calculate a

weighted average of all the slopes.

17

We first add up all the percentages as such: 25/50 + 35/70 + 10/30 +100/100

= 2.33. We then divide each percentage by this total, so weight of S1 =

0.50/2.33 = 21.5%, weight of S2 = 0.50/2.33 = 21.5%, weight of S3 = 0.33/2.33

= 14.3%, and weight SLinear = 1.0/2.33 = 42.9%.

TotalWeight = Σ ((SlopeInfluencecurrent) / (SlopeInfluencemax)) i

IndividualWeight i = ((SlopeInfluencecurrent / SlopeInfluencemax) i) / TotalWeight

Height = Σ IndividualWeighti * (Heightcustom)i

2.4.4 Results

Figure 13. Blending of multiple user-defined slopes with existing terrain.

18

An example of the technique used is shown in Figure 13. The fractal overlay

has been disabled to see the slopes more clearly. The area shown in the

white circle has been defined with a slope which starts out flat and becomes

steeper near the center of the ridge. The area shown in the red circle has

been defined with a slope that rises quickly near the ocean and levels out into

a plateau afterwards. It can be seen that both slopes have been blended into

the existing terrain while smoothly transitioning into one another. All other

ridges where no slope has been defined continue to have a linear slope.

This way of blending multiple user defined slopes will ensure that all the

slopes will be smoothed together. There are no sudden changes into a

different type of slope. This is important to the believability of the terrain.

Users can easily spot even slight changes in the terrain if they are not done

smoothly.

3 Pruning Undesirable Medial Axis Cells

3.1 Overview

As discussed before, there are many medial axis cells which cause problems

when attempting to integrate user-defined slopes into the terrain. I will now

discuss the method that was used to prune these medial axis cells. This

method is experimental and does not completely remove all undesirable

medial axis cells.

This method targets those medial axis cells that run perpendicular to the

rivers and are close to them as well. These kinds of cells are shown in Figure

13. The circle on the far left shows an area that is full of medial axis cells.

19

This area would not be able to change its linear slope at all because there is

no clear side to any one ridge. The circle on the right shows a single ridge

that should also be eliminated. These kinds of ridges are not large enough to

allow proper slope manipulation. They also interfere with the manipulation of

slopes from larger ridges.

Figure 14: Medial axis cells targeted for removal

Each medial axis cell has a pointer that points back to a river cell in came

from. This information is useful because this method attempts to remove a

medial axis cell if all of its adjacent medial axis cells point back to a river cell

that is close to the river cell that the candidate for pruning points back to.

Figure 15 demonstrates this idea. The candidate for removal is marked with

an ‘X’. The arrows indicate which river cell the medial axis cells point back to.

It can be seen that for these kinds of medial axis cells which are close, and

sometimes even touching the rivers, all point back to nearby river cells. The

distances measured in the diagram must all be above a relatively small

threshold to keep the medial axis cell.

20

Figure 15: Pruning Method Clarification

3.2 Pruning Method

To accomplish this, we first create a 2-dimensional array of integers where

each river cell is compared against every other river cell. The array is

implemented as a list of lists to create a sparse matrix. A sparse matrix is

needed as the number of river cells can go into the tens of thousands for a

height map of 700 by 700 units. Only a small amount of table will have

entries.

For each river cell, we traverse the river in both directions as well as following

any tributaries in a depth-first search fashion. Once the algorithm has

traversed the river for a suitable length, we make an entry into the sparse

matrix for each river cell that was traversed, recording the distance that was

traversed to reach the cell. This information will be useful for easy lookup

when deciding to remove a medial axis cell.

21

Once this array has been constructed, we can then search for medial axis

cells to prune. All the medial axis cells are put into a list that is sorted by their

shortest distance to a river. They are sorted in this fashion so that medial axis

cells do not become isolated. In Figure 15, the cells closest to the river would

each be removed in order. For each of the medial axis cells in the list, we

look at the river cells that the adjacent cells point to. As mentioned above, if

all these river cells are nearby the river cell the medial axis cell points to, we

can remove it. We can look up these distances using the table that was

constructed in the previous step. If the entry in the table is less than a certain

threshold, the medial axis cell can be pruned. We use a threshold of 20 in

this project. The medial axis cell must then be converted to a normal cell. If

this is not true for any of the neighbor cells, then the medial axis is not pruned.

3.3 Converting Medial Axis Cells

There are many things to consider when deciding to prune a medial axis cell.

Since non-medial axis cells must point to a neighboring cell that leads towards

a medial axis cell, the pruned cell will be made to point to a neighboring

medial axis cell. It must also be given another pointer that points to this

neighbor because all non-medial axis cells have a pointer to a medial axis

cell.

The final step is to fix all the pointers for non-medial axis, which includes the

recently pruned cells. For each non-medial axis cell in the terrain, if the

medial axis cell it points to has been pruned, the pruned medial axis cell must

now be pointing to another medial axis cell (although this cell could also have

been pruned). The algorithm follows this path of pointers until it finds a medial

axis cell that has not been pruned and sets this cell as the end of the path.

22

Figure 16: Changes in Pointers when converting medial axis cells to normal
land cells. Brown cells represent normal land cells. Red cells represent

medial axis cells, with the ‘X’ representing the medial axis cell that will be
removed. Space has been left between cells for clarity.

Figure 16 illustrates the changes that are made to cells in the terrain. In the

upper image, the pointers that make a path to the medial axis cells are shown.

The medial axis cell that has been removed has been given a new pointer to

its neighboring medial axis cell. In the lower image, the pointers directly to the

medial axis cells are shown. When the marked medial axis cell is removed,

the land cells that were pointing to it are changed to point to the neighboring

medial axis cell.

23

3.4 Results

Figure 17: Comparison of No Pruning (Right) vs. Pruning (Left) Showing
Influence of User-defined Slope

It was found that the method used was effective at removing many of the

problematic medial axis cells. Figure 17 shows the comparison between the

terrain without pruning, on the left, and the terrain with pruning, on the right.

The influence of the user defined slope can be seen near the top of the

terrain. It is clearly visible that when pruning is done, the slope’s influence

affects more of the cells that the user intended to alter. The influence can

become “boxed in” by medial axis cells when no pruning is done as seen in

the left image. Many medial axis cells were pruned, but many still remain.

More specialized pruning techniques would be necessary to eliminate these

cells.

24

3.3 Performance Concerns

The method used here was effective and efficient at removing medial axis

cells. The amount of time to prune is O(n) as the number of river cells

increases. This is true because even though the dimensional size of the

sparse matrix for river cells increases by n2, each river cell is only compared

against a limited number of cells, not every other river cell.

 Run #1
(seconds)

Run #2
(seconds)

Run #2
(seconds)

Avg. Runtime
(seconds)

350 x 350
height map

1.203s 1.194s 1.218s 1.205s

700 x 700
height map

3.822s 3.955s 3.875s 3.844s

Figure 18: Runtime of pruning on different size height maps.

Figure 18 shows the results of running RiverLand 2.0 with pruning on different

size height maps. When using a height map of 350 by 350 cells, pruning took

an average of 1.205 seconds to complete. When using a height map of 700

by 700 cells, which is 4 times as many cells, pruning took an average of 3.844

seconds to complete. When increasing the number of cells by 4, the runtime

increased by a factor 3.19. This confirms that pruning medial axis cells has a

runtime of no more than O(n).

25

4 Non-periodic Texturization

4.1 Introduction

In order to bring 3D objects and environments closer to the real word, they

must have realistic looking textures. Textures can take something that looks

plain and boring and bring it to life, giving it much needed depth and detail.

For objects that are relatively small, unique textures can be made for each

surface without spending a great deal of time. For larger objects however,

textures are made to repeat over surfaces. These texture patterns are not so

apparent when used on things like buildings, but they are easily noticeable

when used on a terrain because repeated patterns are not always completely

continuous. When users explore the terrain, they can forget that they are just

looking at a virtual world.

But when they begin to see patterns in the textures, they immediately become

aware of the fact that what they are looking at is just a simulation. The goal is

to create a method that uses a few textures to create a continuous landscape

without any repeating patterns.

4.2 Previous Work by Cani and Neyret

M. Cani and F. Neyret have proposed a method of applying textures as

equilateral triangles instead of square patches. They create the textures in

such a way that they can be randomly arranged while still being continuous.

The edges of these textures are made so that there are only a few different

edges. Figure 19 shows an image from their work depicting a single

continuous edge and the four resulting textures that would need to be created.

When applying the textures to an object, the algorithm randomly picks a

texture from the ones that satisfy the boundaries conditions.

26

Figure 19: An oriented edge, and the set of four texture samples that need to
be created to fit the different boundary conditions it produces [1].

This idea solves the problem nicely because it allows for random placement of

textures while keeping the entire surface continuous. The difference here is

that terrains usually involve height maps in a 2D array. Because of this,

textures are applied as right triangles instead of equilateral triangles. This

does not allow for the same kind of flexibility for arranging the tiles.

4.3 Texturization Method

In order to apply textures randomly to the terrain using right triangles, we

need to develop a new set of textures that can be used to fit different

boundary conditions. We propose to have an oriented edge pair for each side

of a right triangle instead of having a single edge pair for all sides. Figure 20

illustrates the oriented edges created for each sides where A, B, and C match

with A’, B’, and C’ respectively.

Figure 20: Oriented edges for each side of the right triangle

27

In this demonstration, we have 2 possible edges for each side and 3 sides, so

we will need 2*2*2 = 8 different textures triangles to satisfy all possible

boundary conditions. Figure 21 illustrates the 8 texture triangles needed

when using the edge pairs (A, A’), (B, B’), and (C, C’).

Figure 21: The set of 8 textures that is needed to satisfy all boundary
conditions when using a one edge per side.

To apply these textures to our terrain, we proceed through each side of every

triangle to be textured and decide which edge to assign to it. If the

neighboring triangle has assigned an edge to the shared side, that side will be

assigned the corresponding edge (B’ for B, for example) for that triangle. If no

edge has been assigned, an edge is chosen at random where each edge has

a 50% chance of being chosen. Once every side has been assigned an edge,

a texture can be chosen that fits with the three edges.

4.4 Results

28

We have applied this method of texturizing to RiverLand to create a

landscape with a continuous surface while maintaining a non-period pattern,

as can be seen in Figure 22. Although the result does not resemble an actual

terrain, it does illustrate the results of implementing random texture

placement.

Figure 22: Non-period texturization of RiverLand using the 8 texture triangles
mentioned.

29

5 Open Problems and Future Work

In this project, we used a method for flooding a user defined slope across the

terrain starting with a line from the river to the ridge line. In the future we

would like to be able to specify any piecewise linear curve along the terrain

and have the user defined slope flood away from this curve. The algorithms

used in the original program allowed the slopes to be easily manipulated from

the ridge to the river. In order to manipulate slopes across any direction on

the terrain, the original algorithms would need to be revised.

The method used in this paper to prune medial axis cells was efficient on

large terrains, but it did not remove all the undesirable medial axis cells from

the terrain. In the future, multiple techniques will need to be used to remove

more of these cells.

RiverLand 2.0’s non-periodic texturization is still lacking in the fact that the

right triangles are all facing the same way which would allow users to spot

patterns more easily. If the triangles were allowed to placed in a different

orientation, it would allow the texturization to be even less periodic as the

triangles would be randomly oriented as well as randomly textured. Figure 23

is an illustration of this idea. This way of positioning the triangles greatly

increases the number of textures that will need to be made in order to deal

with all the restrictions on which triangles can fit into the mesh.

30

Figure 23: Right: Standard tiling of height map; Left: Same height map with
random orientation of triangles

The texturization of the terrain of RiverLand could not done as described Cani

and Neyret because of the nature of the data set that was constructed by the

original algorithm. If the original algorithm of RiverLand had created a height

map in an equilateral or even hexagonal fashion, the terrain could be textured

using equilateral triangles. In this way, no extra work would have to be done

to apply Cani and Neyret’s method to RiverLand.

6 Conclusion

In this project, we have presented a method of allowing users to gain more

control over the terrain using RiverLand. While the original RiverLand offered

users the ability to create their own island and specify ridges, RiverLand 2.0

lets users draw their own slopes to shape the ridges to their liking. Users are

able to determine if they want the slope to consume the entire ridge or if they

would rather have several smaller localized slope types.

31

RiverLand 2.0 eliminated many of the undesirable medial axis cells so that

users could use the new slope feature to a further extent. This greatly

increased the usability of the slope feature as it removed many of the “fake”

ridges which were restricting the user-defined slopes from taking hold in the

landscape. Although many were eliminated, unwanted medial axis cells still

remain which can still cause problems when trying to refine the terrain.

RiverLand 2.0 also dealt with texturing the landscape with a few simple

textures to get a texturization that did not have a definite pattern. The method

provided by Cani and Neyret worked nicely for equilateral triangles but

provided more restrictions when adapting it to height maps which for the most

part use right triangles because of the grid nature of the raw data.

32

References

1. Audiber, P. and Belhadj, F. Modeling Landscapes with Ridges and

Rivers. Proceedings of the ACM Symposium on Virtual Reality Software
and Technology (VSRT 2005). 2005.

2. Cani, M. and Neyret, F. Pattern-Based Texturing Revisited.

Proceedings of the 26th annual conference on Computer graphics and
interactive techniques (SIGGRAPH '99), 1999. URL:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.6343&rep
=rep1&type=pdf

3. Kamal, K. R. and Uddin, Y. S. Parametrically controlled terrain

generation. Proceedings of the 5th international conference on
Computer graphics and interactive techniques in Austrail and Southeast
Asia (GRAPHITE ’07), 2007. doi: 10.1145/1321261.1321264

4. Kilgard, M. J. The OpenGL Utility ToolKit (GLUT) Programming

Interface API Version 3. URL:
http://www.opengl.org/resources/libraries/glut/spec3/spec3.html

5. Mountain Picture, URL: http://www.tripadvisor.com/LocationPhotos-

g303883-Nashik_Maharashtra.html

6. OpenGL 2.1 Reference Pages. URL:
http://www.opengl.org/sdk/docs/man/

7. Persson, M. 2011, March. Terrain Generation, Part 1. URL:

http://notch.tumblr.com/post/3746989361/terrain-generation-part-1

8. Teoh, S. T., 2007. Autopolis: Allowing User Influences in the Automatic

Creation of Realistic Cities. Advances in Visual Computing: Proc. of the
3rd International Symposium on Visual Computing (ISVC’07), Nov 2007.
URL : http://cs.sjsu.edu/~teoh/research/papers/isvc07.pdf

33

9. Teoh, S. T., 2009. RiverLand: An Efficient Procedural Modeling System
for Creating Realistic-Looking Terrains. URL :
http://cs.sjsu.edu/~teoh/research/presentations/isvc2009.ppt

	RiverLand 2.0: Blending of Multiple User-defined Slopes in a Procedurally Modeled Terrain
	Recommended Citation

	Front Matter
	Main Content

