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ABSTRACT 
 
 

BLENDING OF MULTIPLE USER-DEFINED SLOPES IN A  
 

PROCEDURALLY MODELED TERRAIN 
 

By Jeffrey Jensen 
 
 

 This writing project attempts to improve on and add features to the 

current program called RiverLand originally designed and implemented by Dr. 

Soon Tee Teoh.  I discuss the original methods used by RiverLand to create 

procedurally generated terrain. I then explore the weaknesses of the original 

RiverLand which include having only linear ridges and undesirable medial axis 

cells.  I then tackle the problem of recurring patterns when texturizing a 

surface with very few textures.  I propose how to solve these problems and 

explain the methods used to accomplish this.  I discuss the user interfaces 

that were designed to accommodate the added features to RiverLand.  I also 

discuss the open problems with the updated RiverLand. 
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1 Introduction 
 
1.1 Background Information 
 
1.1.1 Procedural Modeling 
 
Procedural modeling is the method of generating 3D objects and 

environments automatically by following a set of rules and parameters.  

Procedural modeling can be very useful because it allows developers to 

generate large quantities of 3D objects without having to explicitly define each 

object’s properties.  Instead, parameters are given for the general 

characteristics of the object or environment, and random numbers are used to 

create something unique. This kind of modeling can be used to create such 

things as terrain, buildings, cities, trees, and many other objects.  The 

challenge of procedural modeling is to develop an algorithm that produces 

realistic results while remaining efficient. 

 

The content created from these procedural modeling algorithms can then be 

input into computer games, movies, or they might even be used as a starting 

point for users or developers to edit the content further to more closely meet 

their needs.  Using procedural modeling techniques can greatly reduce the 

amount of time and effort needed to create complicated environments. For 

example, if a developer wanted to create a city for his 3D computer game, he 

or she could simply input which areas of the city are residential, commercial, 

and industrial as well as other important structures, and the city would be 

automatically generated using the given parameters as seen in Dr. Teoh’s 

Autopolis [8]. 
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An example where procedural modeling is used extensively is in a computer 

game called Minecraft.  In this game, players explore a 3D world that is 

automatically generated as needed. The world can grow as long as there is 

enough memory to contain the world [7].  Figure 1 shows a player’s currently 

explored world in Minecraft.  Procedural modeling allows for expansive worlds 

that could never be produced explicitly by developers. 

 

 

Figure 1: A game world procedurally generated in Minecraft 

 

1.2 Original RiverLand 
 
1.2.1 Overview 
 
RiverLand was a program originally designed and implemented by Dr. Soon 

Tee Teoh.  RiverLand generates an island with meandering rivers and 

calculates ridges based on those rivers [9].  The user is allowed to define the 

shape of the island by painting on a 2D canvas, as well as specify ridges lines 

which rivers cannot cross (as seen in Figure 2).   
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Ridges are also generated by searching outwards from the river edge’s to find 

the furthest distance from all nearby rivers. 

 

 

Figure 2: A user drawing an island in the canvas and creating ridge lines in 
RiverLand 
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Figure 3: Original RiverLand rivers and ridges [2] 

 

1.2.2 Generating Rivers 
 
RiverLand generates rivers by first creating a number of randomly located 

river mouths, or seeds, along the island’s coast.  From each of these rivers 

mouths, a river is grown by going inland, perpendicular to the coast, for a 

certain distance.  At this distance, the river direction is shifted by a random 

angle between 90 and -90 degrees.  This process is repeated for a certain 

number of times to create a connected string of SegmentPoints.  By adjusting 

the segment length and the skew of the river direction at each SegmentPoint, 

the user can create many varying river types, from long straight rivers to small 

winding rivers. 

 

After these SegmentPoints have been generated, a meandering river is fit 

through the points.  Between each SegmentPoint, the amount of river 

curvature is randomly created, alternating with each SegmentPoint, to create 

a river that continuously travels left and right.  This will create more realistic 

rivers as most rivers in reality do not travel in straight lines. 
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To make the rivers seem even more realistic, tributaries are spawned from the 

rivers.  These tributaries are grown outwards from randomly generated seed 

points on the concave banks of the rivers.  They grow in the same way as the 

rivers, meandering through SegmentPoints.  These tributaries may also have 

tributaries of their own, allowing for more interesting landscapes.  As rivers 

and tributaries spawn tributaries of their own, their length and movement is 

more restricted.  

 

After all the river networks have been generated, the height of these river cells 

must be determined.  The river mouth is set to be zero, and for each river cell 

further inward, the height increases according to AverageSlope with some 

random offset.  As the river goes further inland still, the river is allowed to 

have a steeper slope.  This simulates the steep mountains that can 

sometimes exist near river sources. 

 

1.2.3 Generating Terrain Height 
 
To create the height of all the land cells, all medial axis cells must be found.  

Medial axis cells are cells that are the maximum distance from the nearby 

river and coast cells.  An example of these cells is shown in Figure 4.  To 

accomplish this, all the river and coast cells are put into a list which all have a 

distance d equal to 0, since they are the river/coast cells.  For each cell in this 

list, all adjacent cells are found and are set to have dadjacent = dcell + slope  

dist, where dist is the horizontal distance between the cells and slope is 

usually 1.0.  slope can be changed by the user to create ridges where each 

side of the ridge has a different slope.  The cell is then removed from the list, 

while the adjacent cells are added to the list.  A pointer is also added to these 

adjacent cells that specifies which cell sent them to the list. This process is 

repeated so that each land cell is set with its distance from the river.   
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When all the distances have been set, the cells which did not have a pointer 

to an adjacent cell are then considered to be the medial axis cells. 

 

Figure 4: Example of medial axis cells; medial axis cells in red, river cells in 
blue, land cells in brown. 

 

Once all medial axis cells have been found, the height of each medial axis is 

calculated by taking the height of the river cell that the medial axis cell came 

from (more precisely, the river cell that had the influence on d, from above) 

and adding slope  d.  The height of all remaining cells can then be found by 

linearly interpolating along the path from each river cell to the medial axis cell. 

 

1.2.4 Problems 
 
1.2.4.1 Linear Slopes 
 
The original RiverLand linearly interpolated along the path from the river cells 

to the medial axis cells to find the height of the cells in between.  This type of 

interpolation creates smooth slopes but does not allow for varying types of 

ridges.  This does not allow for things like rough canyons, valleys, and 

plateaus.  The terrains that are generated with RiverLand appear very 

uniform.  In the real world, most geological features do not have exactly linear 

slopes.  Even when using a fractal overlay to give the slope some 

randomness, the prevalent shape of the slopes is still linear.   
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In Figure 5 below, the right side of the mountain does not have a linear slope 

but rather a more parabolic shape.  This is one of the kinds of slopes we are 

trying to achieve in this project. 

 

 

Figure 5: Mountain with non-linear slope [5] 

 

1.2.4.2 Undesirable Medial Axis Cells 
 
Another problem of the original RiverLand was that the terrain would be 

littered with medial axis cells that did not accurately approximate the ridges 

the user would like to have based on the rivers.  These medial axis cells make 

it extremely difficult to integrate non-linear slopes into the terrain.  The 

resulting ridges are short and run perpendicular to the main ridges.  
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As can be seen in Figure 6, there are many medial axis cells that are highly 

undesirable.  Because of meandering rivers, many rows of medial axis cells 

are created that extend out all the way to the rivers.  The desirable medial 

axis cells are the ones which form rows that are parallel to the rivers. 

 

This problem is not relevant when all slopes in the terrain are linear, but when 

trying to alter the slopes to resemble something more realistic, we run into 

problems because we are targeting specific ridge slopes.  When the user 

wants to pick a ridge to alter, it can be difficult to get the desired slope to 

appear when there are small surrounding ridges that still have linear slopes. 

 

 

 

Figure 6: 2D view of terrain showing all medial axis cells in pink (Original 

RiverLand) 
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2 Integrating Multiple User Defined Slopes 
 
2.1 Overview 
 
In order to solve the problem of only having linearly interpolated slopes, the 

updated RiverLand features the ability of the user to define his or her own 

type of slope for a particular side of a ridge after the initial slopes have been 

generated.  The user can also specify the amount of influence for where the 

slope will affect the terrain.  The user defined slopes are then blended into the 

slope to create a seamless terrain.   

 

2.2 User Interfaces Designed 

Several interfaces were designed and implemented in order to accommodate 

the added feature of letting users define their own slopes.  These interfaces 

are designed to give the user an accurate way to create the desired slope 

they want for the ridge. 



10 

 

Figure 7: “Slope” mode added to “Control Panel” 

 

Figure 7 shows the updated control panel for RiverLand which includes a new 

slope mode.  To create a new user defined slope on the current terrain, the 

user must select “Slope” mode.  The user must then select a point on the 

terrain which specifies the area on the terrain they would like to alter.  The 

user can check the boxes “Show maximal cells”, “Show height map”, and 

“Show distance to river” in the 2D View Options interface to get a better idea 

of where to place the slope.  These options let the user see the ridges and 

their slopes more easily. 
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Figure 8: “Edit Slope” Interface 
 

After selecting the area on the terrain where the user wishes to adjust the 

slope, the interface in Figure 8 is shown.  This interface allows the user to set 

the distance of influence for the slope.  The user can then choose either to 

have a predefined slope, which consists of a set of predefined functions, or a 

custom slope which the user can draw out. 

 

 

Figure 9: “Select Predefined Slope” Interface 
 

If the user decides to have a predefined slope, they are presented with the 

interface in Figure 9.  Currently the program offers three predefined functions: 

cosine(x), (cosine(x))^2, and Gauss(x) which is the slope of a standard normal 

distribution curve between 0 and 3.1. 
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Figure 10: “Create Custom Slope” Interface 
 
 

If the user finds that the predefined slopes do not meet their needs, they may 

choose to create a custom slope.  The interface for this can be seen in Figure 

10.  This interface allows the user to manipulate the slope of a line segment 

with a 1:1 slope which represents the side of the ridge.  This does not 

necessarily mean that the ridge selected had a 1:1 slope.  The lower end of 

the line segment represents the edge of the river while the upper end 

represents the top of the ridge.  The slope created will be stretched or 

compressed, horizontally and/or vertically, to fit onto the ridge.  The picture on 

the left shows the interface initially with a linear slope.  The picture on the right 

shows the interface after the user has created the slope with a rocky terrain.  

The user defines the custom slope by adding points to the slope by clicking 

the left mouse button.  The user can then further adjust the slope by clicking 

on any point with the right mouse button.  The clicked point can then moved, 

so long as it stays between the two adjacent points horizontally.  The number 

of points in the custom slope is limited to 64. 
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After the user has selected the kind of slope they want, they can check the 

“Show user slopes” box in the “2D View Options” interface to see the path of 

cells going from the river to the medial axis cell which contains the cell that 

the user clicked on.  This path contains the cells that will have the chosen 

slope with greatest influence (100%).  This can be seen in Figure 11.  The 

medial axis cells are shown in pink, while the user selected slope is defined to 

have maximum influence on the cells shown in green. 

 

 

Figure 11: Center of user selected slope shown in green 

 

2.3 Slope Influence 
 
In this section, I will discuss what slope influence means and how it is 

calculated.  When the user initially sets the slope influence in the interface 

shown in Figure 8, they are defining the absolute distance away from the path 

shown in Figure 11 where the slope of the cells will be influence by that slope.  

Beyond this distance, the slope will have no influence, so cells will have linear 

slopes unless they are influenced by another user-defined slope. 
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To determine the amount of influence a cell will receive from a user defined 

slope, a flood fill algorithm is used starting from the path connecting the top of 

the ridge to the river.  The distance of influence (the same number specified 

by the user earlier) is recorded in each of the cells in this path.  They are then 

added to a list of cells to be processed.  The algorithm proceeds by first 

removing a cell from the list and exploring each of its adjacent neighbors.  

Each neighbor cell is recorded with a distance of influence 1 less than the 

current cell unless the neighbor cell has already been recorded with a higher 

distance of influence by another iteration of the algorithm.  The neighbor cells 

that had their influence updated are then added to the end of the list to be 

processed.  A neighbor cell is not added to the list if it is a medial axis cell, 

river cell, or coastal cell.  This prevents a user defined slope from influencing 

the opposite side of the ridge.  This would cause undesirable results. 

 

Multiple slopes can affect the same cells when their influences overlap, so 

instead of associated each cell with a slope, each cell has a linked list of 

slopes associated with them in the terrain.  When recording the amount of 

influence a cell should receive from a slope, the algorithm searches the list of 

slopes the cell has, if any, to see if the current slope exists.  If it does, then the 

abovementioned check is performed to see if the influence already recorded 

is larger than the current influence.  If the slope does not exist, the slope is 

added onto the linked list of cell. 
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Figure 12: 2D view of slope’s influence 

 

Figure 12 shows the slope’s influence decreasing as it gets farther away from 

the targeted path.  It does not pass over medial axis cells (pink) or coastal 

cells (blue).  The scale is from black (very little influence) to white (full 

influence). 

 
2.4 Blending User Slopes with Existing Terrain 
 
2.4.1 Overview 
 
I will now discuss the techniques used to integrate the user slopes into the 

existing terrain.  We start by explaining the method to blend a single user 

defined slope with the existing terrain which has all linear slopes.  We will then 

discuss how the method changes when multiple user slopes are being 

considered.  In this case, multiple defined slopes might overlap.  We propose 

a solution that takes into account a slope’s influence along with its shape to 

generate a new slope that seamlessly blends them together. 
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2.4.2 Blending with Linear Slopes 
 
When there is only a single user defined slope, the slope must be blended 

with the existing terrain which has a linearly interpolated slope.  To 

accomplish this, each cell which receives influence from the user defined 

slope calculates its height by dividing the maximum influence of the slope by 

the current influence the cell has.  This result will yield a percentage, which is 

the weight the user defined slope has on the cell.  For example, a user has 

defined a slope with a maximum influence of 120.  The current cell is 96 units 

away from the defined slope, which gives it an influence value of 24.  The 

height for this cell is calculated by using a weighted average of the user 

defined slope (24/120 = 20%) and a linear slope (1 – (24/120) = 80%).  If the 

height would have been 100 with a linear slope and 50 with the user defined 

slope, the resulting height would be 100*0.80 + 50*0.20 = 90. 

 

Height = (SlopeInfluencecurrent / SlopeInfluencemax)*(Heightcustom) +  

(1- (SlopeInfluencecurrent / SlopeInfluencemax))*(Heightlinear) 

 
2.4.3 Blending With Multiple User Slopes 
 
There will be times when a cell is under the influence of two or more user 

defined slopes.  If this is the case, the height of the cell will be calculated as a 

weighted average of all the slopes that influence it as well as the underlying 

linear slope.  For example, a cell is influenced by slopes S1, S2, S3, and SLinear 

where the maximum influences are 50, 70, 30, and 100 respectively, and the 

cell has influence values for these slopes of 25, 35, 10, and 100 respectively.  

The maximum influence and the current influence for the linear slope must 

always match because the linear slope expands throughout the entire terrain.  

To calculate the height, we find the weight for each slope and calculate a 

weighted average of all the slopes.   
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We first add up all the percentages as such: 25/50 + 35/70 + 10/30 +100/100 

= 2.33.  We then divide each percentage by this total, so weight of S1 = 

0.50/2.33 = 21.5%, weight of S2 = 0.50/2.33 = 21.5%, weight of S3 = 0.33/2.33 

= 14.3%, and weight SLinear = 1.0/2.33 = 42.9%. 

 

TotalWeight = Σ ((SlopeInfluencecurrent) / (SlopeInfluencemax)) i 

IndividualWeight i = ((SlopeInfluencecurrent / SlopeInfluencemax) i) / TotalWeight 

Height = Σ IndividualWeighti * (Heightcustom)i 

 
2.4.4 Results 
 

 

Figure 13. Blending of multiple user-defined slopes with existing terrain. 
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An example of the technique used is shown in Figure 13.  The fractal overlay 

has been disabled to see the slopes more clearly.  The area shown in the 

white circle has been defined with a slope which starts out flat and becomes 

steeper near the center of the ridge.  The area shown in the red circle has 

been defined with a slope that rises quickly near the ocean and levels out into 

a plateau afterwards.  It can be seen that both slopes have been blended into 

the existing terrain while smoothly transitioning into one another.  All other 

ridges where no slope has been defined continue to have a linear slope. 

 

This way of blending multiple user defined slopes will ensure that all the 

slopes will be smoothed together.  There are no sudden changes into a 

different type of slope.  This is important to the believability of the terrain.  

Users can easily spot even slight changes in the terrain if they are not done 

smoothly.   

 

 

3 Pruning Undesirable Medial Axis Cells 
 
3.1 Overview 
 
As discussed before, there are many medial axis cells which cause problems 

when attempting to integrate user-defined slopes into the terrain.  I will now 

discuss the method that was used to prune these medial axis cells.  This 

method is experimental and does not completely remove all undesirable 

medial axis cells.   

 

This method targets those medial axis cells that run perpendicular to the 

rivers and are close to them as well.  These kinds of cells are shown in Figure 

13.  The circle on the far left shows an area that is full of medial axis cells.   
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This area would not be able to change its linear slope at all because there is 

no clear side to any one ridge.  The circle on the right shows a single ridge 

that should also be eliminated.  These kinds of ridges are not large enough to 

allow proper slope manipulation.  They also interfere with the manipulation of 

slopes from larger ridges. 

 

 

Figure 14: Medial axis cells targeted for removal 

 

Each medial axis cell has a pointer that points back to a river cell in came 

from.  This information is useful because this method attempts to remove a 

medial axis cell if all of its adjacent medial axis cells point back to a river cell 

that is close to the river cell that the candidate for pruning points back to.  

Figure 15 demonstrates this idea.  The candidate for removal is marked with 

an ‘X’.  The arrows indicate which river cell the medial axis cells point back to.  

It can be seen that for these kinds of medial axis cells which are close, and 

sometimes even touching the rivers, all point back to nearby river cells.  The 

distances measured in the diagram must all be above a relatively small 

threshold to keep the medial axis cell. 
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Figure 15: Pruning Method Clarification 

 

3.2 Pruning Method 
 

To accomplish this, we first create a 2-dimensional array of integers where 

each river cell is compared against every other river cell.  The array is 

implemented as a list of lists to create a sparse matrix.  A sparse matrix is 

needed as the number of river cells can go into the tens of thousands for a 

height map of 700 by 700 units.  Only a small amount of table will have 

entries.   

 

For each river cell, we traverse the river in both directions as well as following 

any tributaries in a depth-first search fashion.  Once the algorithm has 

traversed the river for a suitable length, we make an entry into the sparse 

matrix for each river cell that was traversed, recording the distance that was 

traversed to reach the cell.  This information will be useful for easy lookup 

when deciding to remove a medial axis cell. 
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Once this array has been constructed, we can then search for medial axis 

cells to prune.  All the medial axis cells are put into a list that is sorted by their 

shortest distance to a river.  They are sorted in this fashion so that medial axis 

cells do not become isolated.  In Figure 15, the cells closest to the river would 

each be removed in order.  For each of the medial axis cells in the list, we 

look at the river cells that the adjacent cells point to.  As mentioned above, if 

all these river cells are nearby the river cell the medial axis cell points to, we 

can remove it.  We can look up these distances using the table that was 

constructed in the previous step.  If the entry in the table is less than a certain 

threshold, the medial axis cell can be pruned.  We use a threshold of 20 in 

this project.  The medial axis cell must then be converted to a normal cell.  If 

this is not true for any of the neighbor cells, then the medial axis is not pruned.   

 

3.3 Converting Medial Axis Cells 
 

There are many things to consider when deciding to prune a medial axis cell.   

Since non-medial axis cells must point to a neighboring cell that leads towards 

a medial axis cell, the pruned cell will be made to point to a neighboring 

medial axis cell.  It must also be given another pointer that points to this 

neighbor because all non-medial axis cells have a pointer to a medial axis 

cell. 

 

The final step is to fix all the pointers for non-medial axis, which includes the 

recently pruned cells.  For each non-medial axis cell in the terrain, if the 

medial axis cell it points to has been pruned, the pruned medial axis cell must 

now be pointing to another medial axis cell (although this cell could also have 

been pruned).  The algorithm follows this path of pointers until it finds a medial 

axis cell that has not been pruned and sets this cell as the end of the path.   
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Figure 16: Changes in Pointers when converting medial axis cells to normal 
land cells.  Brown cells represent normal land cells. Red cells represent 

medial axis cells, with the ‘X’ representing the medial axis cell that will be 
removed.  Space has been left between cells for clarity. 

 

Figure 16 illustrates the changes that are made to cells in the terrain.  In the 

upper image, the pointers that make a path to the medial axis cells are shown.  

The medial axis cell that has been removed has been given a new pointer to 

its neighboring medial axis cell.  In the lower image, the pointers directly to the 

medial axis cells are shown.  When the marked medial axis cell is removed, 

the land cells that were pointing to it are changed to point to the neighboring 

medial axis cell. 

 

 
 
 
 
 
 
 
 



23 

3.4 Results 
 

     

Figure 17: Comparison of No Pruning (Right) vs. Pruning (Left) Showing 
Influence of User-defined Slope 

 
 
It was found that the method used was effective at removing many of the 

problematic medial axis cells.  Figure 17 shows the comparison between the 

terrain without pruning, on the left, and the terrain with pruning, on the right.  

The influence of the user defined slope can be seen near the top of the 

terrain.  It is clearly visible that when pruning is done, the slope’s influence 

affects more of the cells that the user intended to alter.  The influence can 

become “boxed in” by medial axis cells when no pruning is done as seen in 

the left image. Many medial axis cells were pruned, but many still remain.  

More specialized pruning techniques would be necessary to eliminate these 

cells. 
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3.3 Performance Concerns 
 

The method used here was effective and efficient at removing medial axis 

cells. The amount of time to prune is O(n) as the number of river cells 

increases.  This is true because even though the dimensional size of the 

sparse matrix for river cells increases by n2, each river cell is only compared 

against a limited number of cells, not every other river cell. 

 

 Run #1 
(seconds) 

Run #2 
(seconds) 

Run #2 
(seconds) 

Avg. Runtime 
(seconds) 

350 x 350 
height map 

1.203s 1.194s 1.218s 1.205s 

700 x 700 
height map 

3.822s 3.955s 3.875s 3.844s 

 
Figure 18: Runtime of pruning on different size height maps. 

 

Figure 18 shows the results of running RiverLand 2.0 with pruning on different 

size height maps.  When using a height map of 350 by 350 cells, pruning took 

an average of 1.205 seconds to complete.  When using a height map of 700 

by 700 cells, which is 4 times as many cells, pruning took an average of 3.844 

seconds to complete.  When increasing the number of cells by 4, the runtime 

increased by a factor 3.19.  This confirms that pruning medial axis cells has a 

runtime of no more than O(n). 
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4 Non-periodic Texturization 

4.1 Introduction 
 
In order to bring 3D objects and environments closer to the real word, they 

must have realistic looking textures.  Textures can take something that looks 

plain and boring and bring it to life, giving it much needed depth and detail.  

For objects that are relatively small, unique textures can be made for each 

surface without spending a great deal of time.  For larger objects however, 

textures are made to repeat over surfaces.  These texture patterns are not so 

apparent when used on things like buildings, but they are easily noticeable 

when used on a terrain because repeated patterns are not always completely 

continuous.  When users explore the terrain, they can forget that they are just 

looking at a virtual world.   

But when they begin to see patterns in the textures, they immediately become 

aware of the fact that what they are looking at is just a simulation.  The goal is 

to create a method that uses a few textures to create a continuous landscape 

without any repeating patterns. 

 

4.2 Previous Work by Cani and Neyret 
 
M. Cani and F. Neyret have proposed a method of applying textures as 

equilateral triangles instead of square patches.  They create the textures in 

such a way that they can be randomly arranged while still being continuous.  

The edges of these textures are made so that there are only a few different 

edges.  Figure 19 shows an image from their work depicting a single 

continuous edge and the four resulting textures that would need to be created. 

When applying the textures to an object, the algorithm randomly picks a 

texture from the ones that satisfy the boundaries conditions.   
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Figure 19: An oriented edge, and the set of four texture samples that need to 
be created to fit the different boundary conditions it produces [1]. 

 

This idea solves the problem nicely because it allows for random placement of 

textures while keeping the entire surface continuous.  The difference here is 

that terrains usually involve height maps in a 2D array.  Because of this, 

textures are applied as right triangles instead of equilateral triangles.  This 

does not allow for the same kind of flexibility for arranging the tiles. 

 

4.3 Texturization Method 
 
In order to apply textures randomly to the terrain using right triangles, we 

need to develop a new set of textures that can be used to fit different 

boundary conditions.  We propose to have an oriented edge pair for each side 

of a right triangle instead of having a single edge pair for all sides.  Figure 20 

illustrates the oriented edges created for each sides where A, B, and C match 

with A’, B’, and C’ respectively. 

 

 

Figure 20:  Oriented edges for each side of the right triangle 
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In this demonstration, we have 2 possible edges for each side and 3 sides, so 

we will need 2*2*2 = 8 different textures triangles to satisfy all possible 

boundary conditions.  Figure 21 illustrates the 8 texture triangles needed 

when using the edge pairs (A, A’), (B, B’), and (C, C’).   

 

 

 

Figure 21: The set of 8 textures that is needed to satisfy all boundary 
conditions when using a one edge per side. 

 

To apply these textures to our terrain, we proceed through each side of every 

triangle to be textured and decide which edge to assign to it.  If the 

neighboring triangle has assigned an edge to the shared side, that side will be 

assigned the corresponding edge (B’ for B, for example) for that triangle.  If no 

edge has been assigned, an edge is chosen at random where each edge has 

a 50% chance of being chosen.  Once every side has been assigned an edge, 

a texture can be chosen that fits with the three edges. 

 

 
 
4.4 Results 
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We have applied this method of texturizing to RiverLand to create a 

landscape with a continuous surface while maintaining a non-period pattern, 

as can be seen in Figure 22.  Although the result does not resemble an actual 

terrain, it does illustrate the results of implementing random texture 

placement.   

 

 

Figure 22:  Non-period texturization of RiverLand using the 8 texture triangles 
mentioned. 
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5 Open Problems and Future Work 

In this project, we used a method for flooding a user defined slope across the 

terrain starting with a line from the river to the ridge line.  In the future we 

would like to be able to specify any piecewise linear curve along the terrain 

and have the user defined slope flood away from this curve.  The algorithms 

used in the original program allowed the slopes to be easily manipulated from 

the ridge to the river.  In order to manipulate slopes across any direction on 

the terrain, the original algorithms would need to be revised. 

 

The method used in this paper to prune medial axis cells was efficient on 

large terrains, but it did not remove all the undesirable medial axis cells from 

the terrain.  In the future, multiple techniques will need to be used to remove 

more of these cells. 

 

RiverLand 2.0’s non-periodic texturization is still lacking in the fact that the 

right triangles are all facing the same way which would allow users to spot 

patterns more easily.  If the triangles were allowed to placed in a different 

orientation, it would allow the texturization to be even less periodic as the 

triangles would be randomly oriented as well as randomly textured.  Figure 23 

is an illustration of this idea.  This way of positioning the triangles greatly 

increases the number of textures that will need to be made in order to deal 

with all the restrictions on which triangles can fit into the mesh. 
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Figure 23: Right: Standard tiling of height map; Left: Same height map with 
random orientation of triangles 

 
The texturization of the terrain of RiverLand could not done as described Cani 

and Neyret because of the nature of the data set that was constructed by the 

original algorithm.  If the original algorithm of RiverLand had created a height 

map in an equilateral or even hexagonal fashion, the terrain could be textured 

using equilateral triangles.  In this way, no extra work would have to be done 

to apply Cani and Neyret’s method to RiverLand. 

 

6 Conclusion 

In this project, we have presented a method of allowing users to gain more 

control over the terrain using RiverLand.  While the original RiverLand offered 

users the ability to create their own island and specify ridges, RiverLand 2.0 

lets users draw their own slopes to shape the ridges to their liking.  Users are 

able to determine if they want the slope to consume the entire ridge or if they 

would rather have several smaller localized slope types. 
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RiverLand 2.0 eliminated many of the undesirable medial axis cells so that 

users could use the new slope feature to a further extent.  This greatly 

increased the usability of the slope feature as it removed many of the “fake” 

ridges which were restricting the user-defined slopes from taking hold in the 

landscape.  Although many were eliminated, unwanted medial axis cells still 

remain which can still cause problems when trying to refine the terrain. 

RiverLand 2.0 also dealt with texturing the landscape with a few simple 

textures to get a texturization that did not have a definite pattern.  The method 

provided by Cani and Neyret worked nicely for equilateral triangles but 

provided more restrictions when adapting it to height maps which for the most 

part use right triangles because of the grid nature of the raw data. 
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