
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2011

Graph Technique For Metamorphic Virus Detection Graph Technique For Metamorphic Virus Detection

Neha Runwal
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Runwal, Neha, "Graph Technique For Metamorphic Virus Detection" (2011). Master's Projects. 206.
DOI: https://doi.org/10.31979/etd.ksd9-uzf5
https://scholarworks.sjsu.edu/etd_projects/206

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/206?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Graph Technique For Metamorphic Virus Detection

A Project Report

Presented to

The Faculty of the Department of Computer Science

 San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Neha Runwal

December 2011

 ii

© 2011

Neha Runwal

ALL RIGHTS RESERVED

 iii

The Designated Project Committee Approves the Project Titled

GRAPH TECHNIQUE FOR METAMORPHIC VIRUS DETECTION

by

Neha Runwal

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2011

__
Dr. Mark Stamp, Department of Computer Science Date

__
Dr. Sami Khuri, Department of Computer Science Date

__
 Dr. Richard Low, Department of Mathematics Date

APPROVED FOR THE UNIVERSITY

__
Associate Dean Office of Graduate Studies and Research Date

 iv

ABSTRACT

GRAPH TECHNIQUE FOR METAMORPHIC VIRUS DETECTION

by Neha Runwal

Current anti-virus techniques include signature based detection, anomaly based detection,

and machine learning based virus detection. Signature detection is the most widely used

approach. Metamorphic malware changes its internal structure with each infection.

Metamorphism provides one of the strong known methods for evading malware

detection.

In this project, we consider metamorphic virus detection based on a directed graph

obtained from executable files. We compare our detection results with a previously

developed and highly successful technique based on hidden Markov models.

 v

ACKNOWLEDGEMENTS

I would like to thank Dr. Mark Stamp for his wonderful support through out the project.

His idea and guidance were the keys to the success of this project. A very special thanks

to Dr. Richard Low for suggesting a comparison formula for the graph based detection

technique.

I also want to thank Mr. Sushant Priyadarshi for providing all related information and

data for this project. Finally I want to thank my family and especially my husband Mr.

Mayur Runwal for his patience and emotional support through out my Masters.

 vi

Table of Contents

1. Introduction... 1

2. Malware and detection techniques.. 2

2.1 Types of malware .. 3
2.1.1 Viruses ... 3

2.1.1.1 Polymorphic viruses.. 3
2.1.1.2 Metamorphic viruses... 4

2.1.2 Trojans ... 6
2.1.3 Worms.. 6

2.2 Detection techniques... 6
2.2.1 Signature based detection .. 7
2.2.2 Anomaly based detection... 7
2.2.3 HMM based detection.. 7

3. Hidden Markov Models.. 8

3.1 Introduction to HMM.. 8

3.2 Main features of HMM.. 9
3.2.1 HMM observations .. 14
3.2.2 Limitations of HMM.. 15

3.3 HMM based virus detection .. 16

4. Graph technique for metamorphic virus detection ... 18

4.1 Related work ... 18

4.2 Proposed solution ... 19

4.3 Implementation details.. 21

4.4 Graph technique algorithm... 26

4.5 Flow of the graph technique ... 26

5. Similarity score calculation and analysis.. 27

5.1 Data collection.. 27

5.2 Test cases .. 28
5.2.1 Metamorphic virus versus metamorphic virus... 29
5.2.2 Normal file versus normal file (benign files)... 29
5.2.3 Benign file versus metamorphic virus ... 30
5.2.4 Benign file versus other virus .. 32
5.2.5 Combined graph... 33

5.3 Comparing 10 benign files with 10 metamorphic files ... 34

 vii

5.3.1 Average score calculation .. 35

5.4 Comparing 10 metamorphic virus files... 36

5.5 Parameter variations in the formula... 37
5.5.1 First variation ... 37
5.5.2 Second variation... 40
5.5.3 Third variation ... 42
5.5.4 Fourth variation.. 43
5.5.5 Fifth variation... 44

6. Observations.. 45

7. Analysis of graph technique... 47

8. Attacks on the graph technique... 48

8.1 Removing distinct instructions.. 48

8.2 Using a morphing engine.. 50
8.2.1 Morphing engine based on subroutine code insertion and instruction
substitution.. 50

8.2.1.1 Comparing HMM and graph based detection... 52
8.2.2 Morphing engine based on block dead code insertion..................................... 53

8.2.2.1 Comparing HMM and graph based detection for block morphing........... 56
8.2.3 Morphing engine based on random dead code insertion 58

8.2.3.1 Comparing HMM and graph based detection for random morphing 59

8.3 Reason behind all morphing results for graph based detection 61

9. Conclusion ... 64

10. Future work... 67

References .. 68

Appendix A: More frequent assembly instructions [21] ... 73

Appendix B: Additional scores and graphs.. 74

 viii

List of Figures

Figure 1: Metamorphic virus generations [32] ... 4

Figure 2: Anatomy of a metamorphic engine [33].. 5

Figure 3: Generic Hidden Markov Model [17]... 9

Figure 4: Similarity graphs of the NGVCK pair... 16

Figure 5: Bi-directed graph created using the matrix in Table 6 25

Figure 6: Flow of the graph technique.. 27

Figure 7: Similarity scores of metamorphic virus files... 29

Figure 8: Similarity scores for normal files .. 30

Figure 9: Similarity score for normal versus metamorphic virus file............................... 31

Figure 10: Graph for normal file versus other viruses.. 32

Figure 11: Graph for all types combined .. 33

Figure 12: Showing graph for normal file versus metamorphic virus file........................ 34

Figure 13: Graph plotted after average score calculations.. 35

Figure 14: Metamorphic virus versus metamorphic virus .. 36

Figure 15: Graph showing match and non-match case together....................................... 37

Figure 16: Result of first variation for match case ... 38

Figure 17: Result of first variation for non-match case .. 39

Figure 18: Result of first variation.. 40

Figure 19: Result of second variation ... 41

Figure 20: Result of third variation... 42

Figure 21: Result of fourth variation .. 43

 ix

Figure 22: Result of fifth variation ... 44

Figure 23: Equation 1 results for both the cases ... 46

Figure 24: Graph for different files after instruction removal attack................................ 48

Figure 25: Graph to compare similar and different files after attack................................ 49

Figure 26: 30% subroutine code inserted in metamorphic virus files 51

Figure 27: 40% subroutine code inserted in metamorphic virus files 51

Figure 28: HMM based detection results with 30% subroutines copied [7]..................... 53

Figure 29: Scores for block morphed metamorphic viruses ... 54

Figure 30: Metamorphic and benign versus morphed metamorphic virus 55

Figure 31: Metamorphic versus other benign ... 55

Figure 32: HMM - 30% block morphed scores .. 56

Figure 33: HMM - 100% block morphed results.. 57

Figure 34: Randomly morphed metamorphic viruses versus benign files........................ 59

Figure 35: HMM - 30% random morphed results .. 60

Figure 36: HMM - 100% random morphed results .. 61

Figure 37: Block morph example ... 62

Figure 38: Random morph example ... 63

Figure 39: Graph with all comparisons... 74

Figure 40: 30% junk code inserted ... 77

Figure 41: 30% dead code inserted... 77

Figure 42: 40% dead code inserted... 78

Figure 43: 40% junk code inserted ... 78

 x

Figure 44: Consolidated block morph HMM results for metamorphic viruses 79

Figure 45: Consolidated block morph HMM results for benign files............................... 79

Figure 46: Consolidated random morph HMM results for metamorphic viruses............. 80

Figure 47: Consolidated random morph HMM results for benign files 80

 xi

List of Tables

Table 1: Final trained HMM for English Text.. 11

Table 2: Final trained HMM for other texts.. 13

Table 3: Comparison of logarithmic probabilities .. 14

Table 4: Assembly language instruction traces for graph creation................................... 22

Table 5: Matrix created using assembly language instruction counts 23

Table 6: Normalized sparse matrix to make it row stochastic .. 24

Table 7: Maximum and minimum scores ... 33

Table 8: First variation scores... 39

Table 9: First variation - false positives and negatives... 39

Table 10: Second variation scores .. 41

Table 11: Second variation - false positives and negatives .. 41

Table 12: Third variation score... 42

Table 13: Fourth variation score ... 43

Table 14: Fifth variation score.. 44

Table 15: Comparison between parameter variations... 46

Table 16: Comparison between normalized parameter variations................................... 46

Table 17: Different file scores .. 49

Table 18: Number of false positives / negatives after the attack 49

Table 19: Scores for graph based technique ... 52

Table 20: False positives / negatives in graph based technique.. 52

Table 21: HMM based detection results with 30% subroutine insertion.......................... 52

 xii

Table 22: HMM - Minimum and maximum scores .. 56

Table 23: HMM - 30% false scores .. 57

Table 24: HMM - 100% false scores .. 58

Table 25: HMM - 30% false scores .. 60

Table 26: HMM - 30% false scores .. 61

 xiii

List of Equations

Equation 1: Formula for calculating similarity score [11].. 25

Equation 2: Squaring the difference and take the summation .. 38

Equation 3: Removed n2 from Equation 2 .. 40

Equation 4: Removing n2 from Equation 1... 42

Equation 5: Keeping only n in Equation 1.. 43

Equation 6: Replaced N2 with (110)2 in Equation 1 ... 44

 1

1. Introduction

Malicious softwares are concerns for many organizations [25]. Various reports were

created and analyzed to find total loss occurred due to malicious softwares. According to

[24] [25], overall effect of damages ranges from US$ 13.2 billion to US$ 67.2 billion for

US business alone. A report [26] has a list of top ten malicious software profiles of 2006

where Mytob, Sdbot, and Netsky were ranked in first three. There are various techniques

available for virus detection. But with each improvement in detection, virus writers

attempt to improve their virus implementations so as to evade detection [1].

According to an analysis discussed in [25], it is revealed that on average, only 48.16% of

malware was detected by popular antivirus programs. Recent common types of malware

include Trojans, worms, and polymorphic viruses [2]. Although not yet common,

metamorphic viruses could present the most difficult detection challenge to date. In

metamorphic viruses, virus writers do not have to explicitly write different undetectable

viruses. They just have to create one virus and then use morph engines [12] to create its

copies which will have similar functionality but different body structures [3].

We have analyzed a graph based malware detection technique proposed in [4]. Our

technique is inspired by the approach followed in [4]. As in [4], we create weighted

directed graphs based on instruction counts and then directly compare the resultant

graphs to compare the similarity of executable files. Our approach differs significantly

from [4] in a way that we use a much simpler method for comparing the graphs.

 2

Following sections provide detailed information about the proposed graph technique and

related analysis.

• Section 2 introduces different types of malicious software and detection

techniques.

• Section 3 discusses Hidden Markov Model (HMM) and virus detection based on

HMM.

• Section 4 explains the implementation details of graph based metamorphic virus

detection.

• Section 5 shows various test cases and their analysis.

• Section 6 deals with detailed observations of all test cases discussed in section 5.

• Section 7 analyses graph technique and its features.

• Section 8 contains information about attacks carried out on the graph technique.

• Section 9 concludes about the proposed graph technique.

• Section 10 discusses future work related to the graph technique.

2. Malware and detection techniques

Malware is nothing but a program developed to perform malicious activities on a

computer. These activities could harm the computer data or could simply be intended as a

prank. Malware can be a source of revenue for a malware writer. Hence there are

different intentions behind different types of malware. If a computer is infected with any

type of malware, then the malware needs to be caught and removed to avoid any loss.

This can be done using anti-virus softwares.

 3

2.1 Types of malware

Malicious software, commonly known as malware, tends to affect more than one

computer at an instance. Some malware are downloaded unknowingly and executed

without appropriate permissions. Following are a few types of malware.

2.1.1 Viruses

Initially, viruses were created to stay in the boot sectors of floppy disks so that whenever

an infected system is booted, that virus will also get executed [28]. The executables of

viruses need human interaction to get spread onto other computers [25]. If a user uses an

external drive to copy some data which is already infected by such viruses, then that host

system will also get infected. “Viruses have ability to reproduce themselves infecting

other files and programs” [27].

2.1.1.1 Polymorphic viruses

These types of viruses are encrypted and spread along with their decryptor body and an

encrypted mutation engine [29]. The base virus remains as it is, only the decryptor body

changes. Once these viruses are copied or downloaded, the decryptor body decrypts the

virus and the mutation engine, to infect the host machine. The mutation engine creates

randomized decryptor body and attaches it to the newly encrypted virus body with the

new key on each infection [29]. So on every new infection, a new decryptor and virus

body is generated. Heuristic analysis using sandbox can be used to detect polymorphic

viruses [30].

 4

2.1.1.2 Metamorphic viruses

Metamorphic viruses are different than polymorphic viruses. Metamorphic virus does not

carry a decryptor or encrypted virus body [31]. “Main goal of metamorphism is to change

the appearance of the virus while keeping its functionality” [3]. Figure 1 shows different

generations of a metamorphic virus where the shape changes but the functionality

remains the same.

Figure 1: Metamorphic virus generations [32]

Body structure of a metamorphic virus changes its shape from generation to generation.

This is done using metamorphic engine. The anatomy of a metamorphic engine is showed

 5

in Figure 2. There are different modules like locate own code, decode, analyze,

transform, and attach.

Figure 2: Anatomy of a metamorphic engine [33]

As stated in [33] [3], Locate own code module is used to find own code. Decode module

provides the virus decode information which is needed in transformation process.

Analyze module is used to construct register liveliness. Transform module transforms the

code into some other equivalent code. Finally, attach module is used to bind the newly

created virus file with a new host program or file [3].

In transform module, virus copies are transformed using techniques like register

swapping, code obfuscation, transposition, and subroutine permutation [3]. Examples of

metamorphic engines are Next Generation Virus Construction Kit (NGVCK),

Phalcon/Skism Mass-Produced Code generator (PS-MPC), Second Generation virus

generator (G2), Mass Code Generator (MPCGEN) [34]. According to [6], NGVCK is

more effective in creating metamorphic viruses with different generations but keeping the

exact functionality similar to the base virus.

 6

2.1.2 Trojans

Trojan horse is a malicious program which gets stored on the host machine by luring the

user as it is a benign software or a file [14]. When user clicks on a link or email

attachments or downloads a file which looks familiar to user, Trojan horse gets stored

and executed without the knowledge of the user or the administrator.

The purpose of a Trojan horse could be to get remote access, download and execute

malware or to steal information from the infected system [14]. Trojans do not reproduce

or self-replicate like viruses or worms [27].

2.1.3 Worms

Worm is a program that replicates itself over the internet or computer networks and it is

done without any human intervention [15] [27]. Worm is a macro residing in a word or

excel document that spreads itself across the network. This document travels from one

computer to another infecting all intermediate systems [15].

Worms saturate the network and collapse it by reproducing itself. Some worms sent via

emails include: Navidad, Pretty Park, Happy99 etc [27].

2.2 Detection techniques

As there are different types of malware, there are many types of detection techniques

available. Most common and fast technique is signature based detection. Second

technique is anomaly based detection which is good in detecting new malware. But these

techniques have inadequacies to detect each and every malware [16]. Next subsections

discuss these detection techniques in detail.

 7

2.2.1 Signature based detection

Signature based detection is popular due to its simplicity, faster detection, and less false

positives [35]. This technique looks for specific signature, a sequence of specific opcodes

in a file to detect and classify it as a benign or virus file. It uses signature dictionary or

database to compare with existing virus signatures [36]. Although it seems much easier to

implement, it is not effective in case of new malware since the signatures for new

malware will not be present in the database. Hence, this technique keeps on updating its

database for up-to-date virus detections. Also, this detection technique can easily be

defeated by simple code obfuscation techniques used to change the signature of the

malware [35].

2.2.2 Anomaly based detection

This technique is efficient in detecting zero-day malware [16] as compared to signature

based detection technique. There are two phases in anomaly based detection, training and

detection [16]. During training phase the scanner learns about normal as well as

malicious behavior. Malicious behavior means a behavior which changes or accesses the

system data without the authoritative permissions. Once the scanner is trained, it is used

to detect such malicious activities and take the appropriate actions [16]. But it has its own

disadvantages. This technique has more false positives or negatives as compared to other

detection techniques and secondly it is more complex and costlier [16].

2.2.3 HMM based detection

Hidden Markov Model (HMM) based virus detection is a new technique as compared to

above two techniques. HMM works as a state machine [6]. It helps in finding probability

 8

of transition from one state to another. Once the HMM is trained, it can be used to detect

or differentiate between malware and benign software. It is discussed in more detail in

later sections.

3. Hidden Markov Models

There has been a lot of work done on Hidden Markov Model (HMM) for virus detection

[17][6]. A threshold represents a value or a range where scores of benign software and

malware do not overlap. Using such threshold, benign files and virus files can be

distinguished. Technique in [6] was quite successful in finding the threshold to

distinguish between malware and benign software. This section concentrates on HMM,

its features, HMM for plain text, and HMM for virus detection.

3.1 Introduction to HMM

“Hidden Markov Model is based on pattern analysis” [35] and used to find the state

transition probabilities. It is mainly used in language recognition [17], speech recognition

[18], and now in virus detection [6]. Here HMM is thoroughly experimented and

analyzed for plain English text pattern to understand its working. A pattern or structure of

the software is a sequence in which instructions are written and a way the program flows.

Malware also has different structures as compared to benign software structures. In this

paper, we will also compare HMM based virus detection with newly proposed graph

technique.

 9

3.2 Main features of HMM

HMM for plain English text [17] is so effective that after executing it for an observation

string of 50000 characters, it distinguishes vowels and consonants in two states.

Before analyzing HMM, following are the notations used in HMM.

“T = the length of the observation sequence

N = the number of states in the model

M = the number of observation symbols

Q = {q0, q1, . . . , qN−1} = the states of the Markov process

V = {0, 1, . . . ,M − 1} = set of possible observations

A = the state transition probabilities

B = the observation probability matrix

π = the initial state distribution

O = (O0,O1, . . . ,OT−1) = observation sequence.” [17]

Here A, B and π are row stochastic which means every element in a row sums to 1.

Figure 3 shows a generic HMM where Oi are observations, Xi are hidden states, A shows

state transition probabilities, and B is an observation probability matrix.

Figure 3: Generic Hidden Markov Model [17]

 10

The English plain text is taken from “Brown Corpus” [37] which has around 1,000,000

words. In this experiment, we have removed all special symbols and considered in total

27 symbols containing all 26 alphabets and space. For English plain text, we considered

value of N as 2 and M as 27 (26 alphabets + space). Consider T= 50000 observations. At

start, each element inπ and A are initialized to approximately 1/2 and B matrix is

initialized to 1/27 [17].

π = [0.51316 0.48684]

A =

48344.051656.0

52532.047468.0

Once the initialization is done, next step is to train the model. After 500 iterations, we get

trainedπ , A, and B matrices and logarithmic probability. Depending upon this

logarithmic probability, threshold is decided. Here the probability threshold is noted after

the model is trained for Brown Corpus plain text. Following is a brief algorithm for

HMM.

a. Every matrix (A, B, andπ) is row stochastic

b. Iteration contains forward and backward passes to train the model [17].

c. It can be run for any number of iterations (no space complexity issue).

d. Using final values of all matrices, logarithmic probability is calculated.

e. Similarity between two texts is calculated by comparing their probabilities got

from the trained models.

It is observed that, bigger the observation string, stronger is the trained model. In table 1,

all matrices and final probability value are shown.

 11

Observations for English text

Matrix Pi

0.00000 1.00000

Final Matrix A
0.25633 0.74367

0.71195 0.28805

Final Matrix B

a 0.13956 0.00000

b 0.00000 0.02306

c 0.00000 0.05661

d 0.00000 0.06925

e 0.21460 0.00000

f 0.00000 0.03547

g 0.00016 0.02780

h 0.00000 0.07321

i 0.12308 0.00000

j 0.00000 0.00364

k 0.00177 0.00708

l 0.00000 0.07258

m 0.00000 0.03880

n 0.00000 0.11439

o 0.13184 0.00000

p 0.00000 0.03703

q 0.00000 0.00153

r 0.00000 0.10202

s 0.00000 0.11024

t 0.00971 0.14483

u 0.04514 0.00000

v 0.00000 0.01617

w 0.00000 0.02298

x 0.00000 0.00446

y 0.00000 0.02599

z 0.00000 0.00110

space 0.33413 0.01178

log [P(observations | lambda)]

= -137300.054917

Table 1: Final trained HMM for English Text

 12

Matrix B is N x M i.e. it has 2 rows and 27 columns. Matrix B is shown vertical for

simplicity. Two rows in matrix B represent two states. Here first row has higher values

for all vowels and zero or smaller values for consonants. In the second row, vowels have

zero values and consonants have larger values. Matrix B in table 1 shows the separation

of consonants and vowels in two hidden states. This shows that HMM is able to detect

the English language pattern.

Next step is to check whether HMM is able to distinguish between English texts and

other texts. For this check, HMM was tested against some other language text. Text for

this experiment is collected from Hindi language. Table 2 shows values of all matrices

for non-English language text.

 13

Observations from other texts

Matrix Pi

0.91991 0.08009

Final Matrix A

0.48633 0.51367

0.4912 0.5088

Final Matrix B

A 0.04451 0.04297

B 0.08326 0.08377

C 0.04328 0.04313

D 0.04029 0.04035

E 0.04614 0.04603

F 0.0459 0.04626

G 0.04887 0.04904

H 0.05464 0.0548

I 0.06322 0.0635

J 0.03252 0.03244

K 0.02737 0.02735

L 0.00000 0.00000

M 0.03028 0.03021

N 0.02731 0.02741

O 0.02733 0.02739

P 0.02587 0.02597

Q 0.03171 0.03165

R 0.03166 0.0317

S 0.03166 0.0317

T 0.03456 0.03456

U 0.03161 0.03175

V 0.03315 0.03309

W 0.03023 0.03025

X 0.03448 0.03464

Y 0.04027 0.04037

Z 0.04615 0.04602

space 0.01373 0.01367

log [P(observations | lambda)] = -160022.815487

Table 2: Final trained HMM for other texts

 14

In table 2, matrix B does not distinguish between vowels or consonants as it is not an

English text. Also table 3 shows that there are different logarithmic probabilities of

English text and other text.

Logarithmic probability for English Text Logarithmic probability for other text

-137300.054917 -160022.815487

Table 3: Comparison of logarithmic probabilities

HMM easily distinguishes between English and other texts. All related observations are

discussed in more detail in the next section.

3.2.1 HMM observations

Hidden Markov Model testing is carried out for 200 to 500 iterations for English text and

other text. This section summarizes the changes in matrices A, B, andπ . At the end,

matrix A had similar distribution of numbers in both the states for plain English texts.

Matrix A had row values ranging from 0.19 to 0.808 and 0.69 to 0.302. Matrix A and B

varied with plain English texts observation sequences and with number of iterations.

1. At the end of all the iterations, all vowels {A,E,I,O,U} had higher values in state one

along with very small values for C,G,K,L,P,T and Y in state one. But in state two all

these vowels had zeros (0) and other characters had bigger values which had zeros or

very small values in state one. After increasing the number of iterations to 500 and later

to 1000, small values were changed to zero. Hence training a model may require more

number of iterations.

 15

2. The final logarithmic probability was similar in case of plain English text. Parameters

such as number of iterations or seed value were affecting the final value of the

probability though not making significant difference to B matrix.

3. "Space" had similar distribution in both the states throughout the HMM.

3.2.2 Limitations of HMM

Though HMM is able to detect English text pattern, there are still few limitations over

HMM which could affect its efficiency. Few factors like observations, observation

length, and number of iterations do affect the trained matrices values and logarithmic

probability. Following are some HMM limitations based on above factors.

1. If the observation sequence is small then the final probability value changes

drastically as compared to the probability of the observation sequence with 50,000

characters even though both are plain English texts.

2. When the seed value was changed, the probability value was also changed.

3. HMM mainly depends upon the total count of characters present in the

observation sequence. So if all the characters are evenly distributed then HMM

does not give appropriate probability value.

4. HMM shows different values for the final trained model and probability for the

same observation string due to variations in input values of observation string

length, seed number, and iterations.

From above limitations, it seems that observation sequence, its length, iterations, and

seed value affect HMM results and logarithmic probability. To avoid these problems, we

can consider constant values for few factors like iterations and seed value. And before

 16

comparing HMM results of two texts, observation sequence length should be same to

compare results and probabilities adequately.

3.3 HMM based virus detection

In [6], an effective virus detection scheme based on HMMs is developed and analyzed.

There were many test cases executed to check the effectiveness of HMM based detection.

Datasets consisted different virus files, CYGWIN files, and NGVCK metamorphic virus

files belonging to IDAN virus family. It is proven that NGVCK creates varied morphed

copies maintaining the existing functionality of the base virus [6]. Figure 4 shows the

graph of the NGVCK virus pair with highest similarity score of 21%.

Figure 4: Similarity graphs of the NGVCK pair

After creating the variants using NGVCK, the HMM was trained. In [6], a five fold cross

validation technique is used to train the HMM. In this, the whole dataset is divided into 5

subsets. For training purpose, 4 datasets are used and the fifth subset is used to test the

 17

trained HMM model. This process is repeated for 5 times. At the end of the experiment, it

was observed that HMM had higher probabilities for similar virus files and low

probabilities for benign and metamorphic virus files. For 200 metamorphic viruses, 25

models were trained to classify viruses and normal files. HMM was able to detect 23

models out of 25 models and was able to distinguish between viruses and normal files.

HMM based detection was tested against a morphing engine in [7]. For 5% subroutine

code insertion in the metamorphic virus files, scores calculated using HMM based

detection technique showed 3 false positives and 6 false negatives amongst 40 normal

files and 40 metamorphic virus files. When 15% of the subroutine was copied from

normal file to metamorphic virus file and scores were calculated using HMM. There were

26 false negatives and 33 false positives in 40 normal and 40 metamorphic virus files.

And for 30% of the subroutine code insertion, there were 36 false negatives and 35 false

positives which shows that HMM based detection was not able to distinguish between

normal files and metamorphic virus files with 30% of subroutine code insertion.

Above scores show that the morphing engine is very effective in morphing the

metamorphic virus files and is able to defeat the HMM based detection. It is very

important to check our graph technique against this morphing engine as well.

 18

4. Graph technique for metamorphic virus detection

Next subsection discusses the graph based malware detection technique from [4] along

with our proposed graph technique. Rest subsections will focus on the implementation

details, flow chart, and algorithm of our graph technique.

4.1 Related work

As discussed in paper [6], HMM based virus detection was effective in classifying

metamorphic viruses and benign files. HMM is able to detect NGVCK metamorphic

virus copies with less false positives and negatives. In paper [7], an engine is

implemented to morph copies of metamorphic viruses to make them undetectable by the

HMM. This engine was tested against HMM based detection technique, and engine was

able to defeat the HMM based virus detection. In the HMM based detection, these

morphed metamorphic virus copies were able to evade the detection and increased the

false positive and negative rates.

As proposed in [4], virus detection can be carried out by creating graphs according to the

assembly instructions present in files and comparing those graphs using graph kernel

technique. Graph kernel is used to find the similarity between two graphs. Graph kernel

has a feature Hφ for each possible graph H where)(GHφ measures how many graphs

have the same structure as graph H [38]. In [4], Spectral kernel and Gaussian kernel were

used. Spectral kernel is using graph’s global structure like smoothness, diameter, and

number of components to find the similarity matrix. Gaussian kernel considered local

 19

structure of the graph where it takes the squared difference between corresponding edges

in weighted adjacency matrices. Once the similarity matrix is constructed using graph

kernels and their combination, Support Vector Machine (SVM) is used for classification.

SVM maximizes the margin where hyperplane can be separated [39]. Critical element is

support vector and for such inputs it identifies in which of the two classes it belongs to.

In paper [4], the test data sets contain different types of viruses. It used 1,615 instances of

malware and 615 instances of benign software. Tests were carried out against this

technique and top five antivirus softwares and results were compared. Results showed

that the combined graph kernels were 96.41% accurate in classifying normal files and

viruses. But there were 47 false positives and 33 false negatives.

Compared to the above technique, our proposed technique differs significantly in finding

the similarity check and in the classification techniques used. In our method, comparison

between the two graphs or matrices is much simpler than the technique proposed in [4].

We will discuss our technique in more detail in further sections.

4.2 Proposed solution

The proposed graph technique includes graph creations based on traces of assembly

language instructions. Mostly viruses are in the form of executable files. We have a set of

disassembled virus and benign files. In this graph technique we are creating an instruction

array to keep track of all instructions present in a file. This array is initialized using an

existing instruction set file. As tracing progresses, this array is appended with new

assembly instructions found in the file. A successive instruction set represents any two

 20

same or different instructions coming after each other (subsection 4.3 discusses this in

more detail). There is another matrix which is used to store counts of such successive

instruction sets. In this matrix, rows and columns will represent instructions. Before

tracing starts, this whole matrix is initialized to zero. Both the array and the matrix are

updated for each instruction. Assembly file contains a sequence of combinations of

instructions and related operands. Instruction performs defined operations on the

operands or using the operands. Following is an example of an assembly language

instruction with operands.

MOV EAX, 20H

Here “MOV” is an instruction and “EAX” and “20H” are operands. MOV instruction

copies 20H into EAX which is a register. There are more than 130 assembly language

instructions for a particular processor [40]. Operands can be different forms like registers,

memory operands, flags etc. There could be 3000 different combinations of instructions

and different operands [4]. If we create a graph based upon such combinations of

vertices, graph will become too large to compare. Instead we considered only instructions

to represent vertices in the graph. The program ignores comments, variables, and

instruction operands. Once the complete file is traced and matrix is updated, next step is

to repeat this process for another file. For second file, another matrix will be created.

Both the matrices will have same number of rows and columns as both matrices will use

the same array which has list of all distinct instructions present in both the files. This

matrix can be represented as a bi-directed graph. Subsection 4.3 discusses the matrix

operations in more detail. Once both the matrices are ready with respective counts, next

step is to calculate the similarity score between these matrices. This score is calculated

 21

using a formula shown in equation 1. Last step is to classify whether these files are

similar or different.

4.3 Implementation details

This subsection gives detailed information about the implementation of the technique.

Our technique is based upon assembly language instructions. Every processor has its own

assembly language instruction sets [8]. So if we use specific/fixed set of instructions, then

it might not be possible to compare or differentiate any other assembly language

instruction set. Hence we considered to collect all new instructions while tracing the files.

When any instruction which is not present in the matrix is found, it will get appended at

the end of the matrix and this will increase the length of the matrix and the array. Hence

the length of the matrix is nothing but the total number of distinct instructions found in

the software / malware. As mentioned, this matrix contains counts of successive

instructions. For successive instructions example, consider there is an instruction ADD in

the code segment of the file. If that instructions is present in the matrix, and if it is

preceded by another instruction MOV, then its count in the matrix with the combination

of previous instruction (MOV row) and current instruction (ADD column), will be

increased. For example, Table 4 shows a code segment, based on which, a matrix will be

created. The total number of distinct instructions is 17 and those are listed below. All

distinct instructions will represent an individual node in the graph. All these instructions

push, mov, sub, and, test, jz, int, fnstcw, movzx, or, fldcw, call, leave, retn, align, xor,

and lea will have outgoing and incoming edges representing some numbers which are

counts of those instructions coming after each other.

 22

Instruction (Operator) Operand

Push Ebp

Mov ebp, esp

Sub esp, 8

And esp, 0FFFFFFF0h

Mov eax, ds:dword_404000

Test eax, eax

Jz Short loc_401013

Int 3

Fnstcw [ebp+var_2]

Movzx eax, [ebp+var_2]

And eax, 0FFFFF0C0h

Mov [ebp+var_2], ax

Movzx eax, [ebp+var_2]

Or eax, 33Fh

Mov [ebp+var_2], ax

Fldcw [ebp+var_2]

Mov [esp+8+var_8], offset sub_401050

Call sub_401960

Leave, Retn, Align 10h

Push Ebp

Mov eax, 10h

Mov ebp, esp

Push Edi

Push Esi

Push Ebx

Sub esp, 7Ch

Mov edi, [ebp+arg_0]

Mov esi, [ebp+arg_4]

And esp, 0FFFFFFF0h

Call sub_401930

Call j___main

Mov [ebp+var_4C], 0

Mov [esp+88h+var_88], offset unk_404090

Call j_CORBA_exception_init

Mov dword ptr [esp+88h+var_84+4], esi

Xor edx, edx

Mov eax, offset off_402000

Mov [esp+88h+var_78], edx

Mov [esp+88h+var_7C], eax

Mov dword ptr [esp+88h+var_84], edi

Mov [esp+88h+var_88], offset aOafClient ; "oaf-client"

Call j_poptGetContext

Mov ebx, eax

Lea esi, [esi+0]

Table 4: Assembly language instruction traces for graph creation

 23

After tracing above instructions and finding all the counts, matrix looks like as shown in
Table 5.

Table 5: Matrix created using assembly language instruction counts

In table 5, blank cells represent zeros. Sparse matrix contains more zeros and very less

non-zero values. Thus this matrix becomes a sparse matrix due to less number of non-

zero values. Rows in this matrix will represent the nodes and values in that row

correspond to values of the edges going out from that node to other nodes. Now if we

keep all these counts as it is and calculate the difference, then this technique can easily be

defeated. It is because, if we add more and more dead code to the .asm file, it will simply

increase the count and will lead to incorrect score.

In a matrix if each row sums to one, then this matrix is called row stochastic matrix.

To avoid this problem and to find the probability, we decided to make that matrix, row

stochastic. Stochastic matrix is used for non-deterministic or probabilistic calculations

 24

[9]. By taking sum of a row and dividing each value in that row by that sum makes it row

stochastic. The sparse row stochastic matrix looks like as shown in table 6.

Table 6: Normalized sparse matrix to make it row stochastic

Table 6 shows the probability of transition from one instruction to another instruction.

This way whole successive instruction count is stored in the matrix. Now this matrix can

be represented in a graph format as shown in figure 5.

 25

Figure 5: Bi-directed graph created using the matrix in Table 6

Reason behind creating a graph is we want to find the probability of one instruction

coming after another or same instruction. After constructing the matrix (graph) for a file,

next step is to create another matrix with the counts of successive instructions present in

other file. We use the Equation 1 to measure the similarity between two files.

∑ ∑
−=

=

−=

=

−=
1

0

2
1

0
2

))((*
1 Ni

i

Nj

j

ijij ba
N

Difference

Equation 1: Formula for calculating similarity score [11]

Threshold will be a range or a value which will be useful in classifying benign file and

virus file. If the score calculated by this formula is lower than the threshold that means

compared files have similar structures in nature. Else if score is higher than the threshold

Push

Or

Fnstcw Movzx

And

Jz

Test

Align

Fldcw

Leave

Int
Lea

Retn

Xor

Call

Mov

Sub
0.4

0.4

0.2

0.05
0.389

0.05

0.05
0.05

0.05

0.167

0.05

0.05

0.5

0.5

0.66

0.33

1
1

1

1

0.5
1

1

0.6

0.2 0.2

1

1

1

1

 26

that means files are different from each other. In this way technique will find whether a

given file is a malware or benign software.

4.4 Graph technique algorithm

Below is the algorithm to briefly explain the proposed graph technique.

1. Trace assembly language instructions for the first file

2. Initialize an array with most frequent assembly language instructions present in an

“InstSet.txt” file.

2. Create a matrix with memory allocated for all instructions in the above array and

initialize all cells with zero.

3. The matrix will be appended dynamically whenever a new instruction is found

4. While tracing the program, keep counting the number of successive instructions which

are coming after each other. Store this count in the matrix.

5. Repeat steps 3 and 4 until it reaches end of the file.

6. Repeat steps from 1 through 5 for another file.

7. To calculate the similarity score between these two files (matrices), use the formula in

Equation 1.

8. This similarity score will decide whether the given files are similar or different.

4.5 Flow of the graph technique

Figure 6 shows the flow of the graph technique implementation. Combinations of any

two files from the following sets will become inputs to the program. A simple text file

containing more frequent instructions will be used to initialize the matrix. Then the

program creates matrices for both the files. Those matrices are sent as an input to another

 27

module which calculates the similarity score. This score is then used to classify whether

the files are similar or different.

Figure 6: Flow of the graph technique

5. Similarity score calculation and analysis

5.1 Data collection

Three different sets are used to test our graph technique. First set has 200 IDAN virus

files which belong to one metamorphic virus family. Second set consists of 41 benign

files which are nothing but CYGWIN files [13]. Third set contains 25 different virus

files. These files do not belong to any family. All these sets were created in [6] to analyze

HMM based detection technique.

CYGWIN
files

IDAN
metamorphic
virus files

IDAV other
virus files Graph technique

Create matrix
using
instruction
traces

Provide basic
instruction set

Calculate
similarity score

Classification
unit

Similar / different

 28

As per results in [6], metamorphic viruses can be detected using HMM based detection

technique. But according to [7], this technique can be defeated by few morphing

techniques like dead code insertion, junk code insertion, and instruction substitution

methods. According to [7], 30% subroutine code insertion similar to dead code insertion

evades metamorphic virus detection. Percentage of the subroutine code inserted is

calculated as per the total number of instructions present in subroutines of a file.

There are two considerations in choosing this dataset. First consideration is we want to

compare this technique with HMM based detection technique [6]. For this we will have

to use the same dataset, to adequately compare these two techniques. Second

consideration, as discussed in subsection 3.3, is NGVCK metamorphic viruses have

already been tested for variation in their structures of all generations [6].

Our aim is to check if our graph technique works for simple metamorphic virus detection,

then next step would be to check if it can be defeated by a morphing engine implemented

in [7].

5.2 Test cases

Our program compares two files to find their similarity score. This graph technique is

implemented to detect metamorphic viruses. Hence there are four important comparisons

of different files.

a. Metamorphic virus versus metamorphic virus

b. Normal file versus normal file

c. Benign file versus metamorphic virus file

d. Benign file versus other viruses

 29

5.2.1 Metamorphic virus versus metamorphic virus

In this combination, we are comparing two metamorphic virus files from the same family

(IDAN). We have 200 IDAN metamorphic virus files created using NGVCK. After

comparing one metamorphic virus file with another metamorphic virus file, we got

around 100 scores.

Figure 7: Similarity scores of metamorphic virus files

Figure 7 shows 100 similarity scores between 200 metamorphic viruses. It shows 0.173

as minimum and 0.525 as maximum score for metamorphic virus files (similar files).

In this case, similar file score range is from 0.173 to 0.525.

5.2.2 Normal file versus normal file (benign files)

In this combination, we are comparing two benign (normal) files. We have around 41

benign files representing CYGWIN files. After comparing one CYGWIN file with only

one CYGWIN file, we get around 20 scores.

 30

Figure 8: Similarity scores for normal files

Maximum similarity score between benign files is 0.468 and minimum similarity score is

0.023. In both the combinations from 5.2.1 and 5.2.2, scores approximately lie in the

range from 0.023 to 0.525.

5.2.3 Benign file versus metamorphic virus

This combination is the most important combination. If our graph technique is able to

find a similarity score outside the above range, then we will be able to distinguish

between metamorphic virus files and benign software files.

For this combination we have 41 instances of benign files and 200 instances of

metamorphic virus files. As this is a one to one comparison, we are using 41 instances of

both the files. Figure 9 shows the graph for 41 metamorphic virus files compared with 41

benign files.

 31

Figure 9: Similarity score for normal versus metamorphic virus file

Figure 10 shows the similarity score between metamorphic virus file and benign file

ranges from 0.588 to 0.966. Clearly from above three combinations, metamorphic virus

files and benign files are less similar as their scores have higher values as compared to

that of two benign files and two metamorphic virus files.

Maximum score range for similar files (two benign files and two metamorphic virus files)

is 0.525 and minimum score range for different files (one benign versus one metamorphic

virus file) is 0.588. This shows that there is a threshold of 0.063 between similar files and

different files. There are one more combinations which are not very important in this

scenario, but can be useful in further improvements.

 32

5.2.4 Benign file versus other virus

This combination is also important as the virus we are comparing does not belong to any

family. To see if this graph technique is able to detect that this virus and benign files are

different, we compared virus file with benign file.

We have 41 benign files and 26 virus files which do not belong to any virus family. To

have one to one comparison, we considered 26 virus files and 26 benign files. Figure 10

is the graph created after calculating the scores of 26 virus and benign files.

Figure 10: Graph for normal file versus other viruses

This graph technique also differentiates between normal viruses and normal (benign)

softwares. The range of the similarity score is 0.563 to 0.86. This range is closer to the

third combination (metamorphic virus Vs benign file) range 0.588 to 0.966. This graph

technique distinguishes between a benign file and any malware present in the dataset.

 33

5.2.5 Combined graph

Figure 11 shows combination of all graphs.

Figure 11: Graph for all types combined

There is a threshold between similar file scores and different file scores. Table 7 shows

minimum scores and maximum scores for all cases explained till now.

Metamorphic files versus metamorphic files

 Minimum Score Maximum Score
Similar Files 0.173 0.525

Benign files versus benign files

 Minimum Score Maximum Score
Similar Files 0.023 0.468

Benign files versus metamorphic files

 Minimum Score Maximum Score
Different Files 0.588 0.966

Benign files versus other viruses

 Minimum Score Maximum Score
Different Files 0.563 0.860

Table 7: Maximum and minimum scores

 34

We have compared files with one to one mapping. But now we will compare one file

with all other files using many to many mapping.

5.3 Comparing 10 benign files with 10 metamorphic files

For this combination, we are taking 10 benign files and 10 metamorphic virus files. We

will get 100 different observations from many to many comparisons. Figure 12 shows

graph of 100 scores for 20 different file combinations. In figure 12, match case is grayed

out as those records are temporarily disabled to show only non-match case. Figure 15

shows the complete graph.

Figure 12: Showing graph for normal file versus metamorphic virus file

Minimum score here is 0.555 and maximum score is 0.933. Score 0.555 is greater than

0.525 which is the maximum score for similar files. Graph technique easily identifies

different file or similar file.

 35

5.3.1 Average score calculation

If we take the average of 10 scores for a particular file compared with different type of

files, we can surely differentiate between metamorphic virus files and benign files using

this graph technique. We took average of each benign file by adding all ten scores and

dividing it by 10. It can be seen in figure 13.

Figure 13: Graph plotted after average score calculations

In figure 13 minimum average score is 0.6464 and maximum average score is 0.844.

Minimum average score is larger than threshold 0.525. Before taking average, minimum

score was 0.555 which was closer to threshold 0.525 as compared to the minimum

average score of 0.6464. It gives confirmed results of similarity or differentiation.

 36

5.4 Comparing 10 metamorphic virus files

Mapping for this comparison will be many to many. Any two metamorphic virus files

compared with each other using this graph technique will give the same score even if

order of the files is changed. So here we will get 45 distinct scores from many to many

mapping of 10 virus files. Figure 14 shows the graph with non-match case disabled

(grayed out). Figure 15 shows the complete graph.

Figure 14: Metamorphic virus versus metamorphic virus

 37

Figure 15: Graph showing match and non-match case together

Figure 15 shows both match case versus non-match case. There is a threshold of 0.06

between match case and non-match case. No false positives or false negatives were

found.

But now there is a need to check if the formula is effective for metamorphic virus

detection. To test its strength, we made some changes in parameters of the formula and

calculated the scores with one to one mapping between a set of 41 benign files and

metamorphic virus files and another set of 100 metamorphic virus files.

5.5 Parameter variations in the formula

5.5.1 First variation

Now we need to test formula for its strength. In the first variation, we took the square of

the difference and then went on adding it to the cumulative sum.

 38

∑ ∑
−=

=

−=

=

−=
1

0

21

0
2

))((*
1 Ni

i

Nj

j

ijij ba
N

Difference

Equation 2: Squaring the difference and taking the summation

This change in the formula is tested against the same dataset. After calculating score

using this changed formula, graph in figure 16 was plotted. Normal file option is disabled

for time being.

Figure 16: Result of first variation for match case

The scores for similar files are ranging from 0.003 to 0.007. Scores for different files are

shown in figure 17.

 39

Figure 17: Result of first variation for non-match case

Scores are ranging from 0.0054 to 0.0085.

 Minimum Score Maximum Score
Similar Files 0.003 0.007
Different Files 0.0054 0.0085

Table 8: First variation scores

 Threshold = 0.006
False Positives 2
False Negatives 17

Table 9: First variation - false positives and negatives

 40

Figure 18: Result of first variation

In figure 18, scores are overlapping for different and similar files. This formula change is

not much effective, as there are many false negatives though less false positives.

5.5.2 Second variation

In this variation, we are keeping the above change as it is but removing n2 from it. As n is

the total number of distinct instructions present in both the files, it might not affect much

in similarity score.

∑ ∑
−=

=

−=

=

−=
1

0

21

0

))((
Ni

i

Nj

j

ijij baDifference

Equation 3: Removed n
2
 from Equation 2

After removing n2 from the formula, we got figure 21 for similar and different files.

 41

Figure 19: Result of second variation

 Minimum Score Maximum Score
Similar Files 10.241 26.072
Different Files 25.159 48.695

Table 10: Second variation scores

 Threshold = 25
False Positives 0
False Negatives 2

Table 11: Second variation - false positives and negatives

Figure 18 and figure 19 show that this formula also works but not as accurate as the

formula in equation 1, that is, no threshold to differentiate between similar or different

files but very less false positives and negatives.

 42

5.5.3 Third variation

In this change, we are removing n2 from Equation 1. For every score calculation, we are

dividing by the square of the total number of distinct instructions present in both the files.

The value of n is approximately similar in all the cases. The score might not get affected

due to removal of the n2 term.

∑ ∑
−=

=

−=

=

−=
1

0

2
1

0

))((
Ni

i

Nj

j

ijij baDifference

Equation 4: Removing n
2
 from Equation 1

Figure 20: Result of third variation

The only difference is that values are in thousands range with a separation of 146 and no

false positives or false negatives.

 Minimum Score Maximum Score
Similar Files 585.056 2084.291
Different Files 2230.528 6783.549

Table 12: Third variation score

 43

5.5.4 Fourth variation

Till now we have seen that value of n2 does not affect much. Another small change could

be removing n2 and only keeping n which is nothing but total number of distinct

instructions present in both the files.

∑ ∑
−=

=

−=

=

−=
1

0

2
1

0

))((*
1 Ni

i

Nj

j

ijij ba
N

Difference

Equation 5: Keeping only n in Equation 1

Figure 21: Result of fourth variation

 Minimum Score Maximum Score
Similar Files 10.087 33.083
Different Files 37.659 77.971

Table 13: Fourth variation score

No false positives or false negatives appeared in figure 21 with threshold of 4.576.

 44

5.5.5 Fifth variation

In this variation, the term n2 is kept constant as (110)2 and graph is plotted in figure 22.

∑ ∑
−=

=

−=

=

−=
1

0

2
1

0
2

))((*
)110(

1 Ni

i

Nj

j

ijij baDifference

Equation 6: Replaced N
2
 with (110)

2
 in Equation 1

Figure 22: Result of fifth variation

Though there are no false positives or negatives present, threshold 0.012 is not larger

enough. This proves that Equation 1 is more effective.

 Minimum Score Maximum Score
Similar Files 0.048 0.172
Different Files 0.184 0.56

Table 14: Fifth variation score

 45

6. Observations

From all above test cases, we observed that the graph technique differentiates between

metamorphic virus files and benign files.

Graph technique was tested against many types of files. The similarity score distinguishes

between similar and non-similar files. When two virus files not belonging to any virus

family are compared, results show that their score fall in similarity range. When two

metamorphic virus files from the same family are compared, again the score falls in the

similarity range. When two benign files are compared against each other, score classifies

them as similar files.

But when a benign file is compared against a simple virus or metamorphic virus, results

immediately show that it belongs to different score range. When this score calculation is

computed using variations in the formula, all figures from section 5.5 show that formula

in equation 1 fits the best as compared to other variations.

 46

Figure 23: Equation 1 results for both the cases

Parameter Variations Threshold False Positives False Negatives Score range

Without variation 0.063 0 0 0.173 – 0.966
First variation NA 2 17 0.003 – 0.0085
Second variation NA 0 2 10.241 – 48.695
Third variation 146 0 0 585.056 – 6783.549
Fourth variation 4.576 0 0 10.087 – 77.971
Fifth variation 0.012 0 0 0.048 – 0.56

Table 15: Comparison between parameter variations

To check which variation was the most effective, all score ranges are normalized.

Parameter variation 1 and 2 are removed from the comparison as there is no clear

threshold between similar and different files. Table 16 shows all threshold values.

Parameter variation Threshold False Positives False Negatives Score range

Without variation 0.0630 0 0 0.173 – 0.966
Third variation / 10000 0.0146 0 0 0.0585 – 0.6783
Fourth variation / 100 0.0457 0 0 0.1008 – 0.7797
Fifth variation 0.0120 0 0 0.048 – 0.56

Table 16: Comparison between normalized parameter variations

In equation 1, threshold is higher as compared to other variations.

 47

7. Analysis of graph technique

Following are the key features of this technique.

• Common instruction is present in both the files. Range of total difference for a

common instruction (row) is 0 to 2.

• The sparse matrix is normalized to make it a row stochastic matrix. This

normalization helps in calculating the probability of similarity. If the matrix is not

normalized, then this technique can be attacked by increasing the number of

instructions using dead or junk code insertions.

• If an instruction is present in one file but not in the other file, then it is a distinct

instruction. The difference of rows representing distinct instructions is one.

Due to all the above features, detection rate of the graph technique is close to 100%.

HMM virus detection technique [6] was also successful in detecting NGVCK

metamorphic virus files. But HMM detection technique failed when morphing engine

implemented in [7] was used to morph metamorphic virus copies by inserting 30% of

dead and junk code.

Next step in this project is to create an attack on this graph technique by compromising

its features and by using morphing engine from [7] to morph metamorphic virus files.

 48

8. Attacks on the graph technique

A metamorphic virus file may contain some instructions which are uncommon (not

present) in benign files. If we try to replace or remove those instructions to make

metamorphic virus file look like a benign file, then test that virus file against a benign

file. This might give us score which falls in the similar score range. Removing such

instructions will also lower the score.

8.1 Removing distinct instructions

Distinct instructions which are not present in benign file but present in virus file are

removed from the virus file to make it look like a normal file. Almost 80% of distinct

instructions are removed from a virus file, and scores are calculated. Figure 24 shows the

different file scores before and after the attack.

Figure 24: Graph for different files after instruction removal attack

 49

 Minimum Score Maximum Score
Score before the attack 0.588 0.966
Score after the attack 0.511 0.94

Table 17: Different file scores

Minimum score fell below the threshold for different files. There is one false negative.

 Threshold = 0.5
False Positives 0
False Negatives 1

Table 18: Number of false positives / negatives after the attack

From table 18 it is clear that, this attack is able to remove the threshold but it is not

successful in defeating the virus detection.

Figure 25: Graph to compare similar and different files after attack

 50

8.2 Using a morphing engine

8.2.1 Morphing engine based on subroutine code insertion and

instruction substitution

In [7], morph engine results are really good in terms of junk and subroutine code

insertions. Dead instructions are a set of instructions which are intentionally kept at a

place where control never comes and those instructions will not be executed. False loop

condition is never true and control does not enter in the loop through out the execution.

When dead instructions are placed into the code segment, they do not get executed due to

a new jump or a false loop condition. In [7], junk code insertion denotes dead instructions

added in between a code segment. Before the dead instructions, a new jump instruction is

added which points to the original code and avoids dead code execution. There is one

more type of dead code insertion which is subroutine code insertion. A function in the

morphing engine copies subroutines from normal file and pastes it into the virus copy to

make it look similar to the normal file. As this subroutine is not called anywhere in the

virus file, it becomes a dead code. Instruction substitution though not carried out on a

higher percentage, morphs the virus copy. Instruction substitution is not of much

importance here as it constitutes to 2-3% of the complete code.

Here we have two major cases, junk code insertion and subroutine insertion. After

modifying the morphing engine in [7] to satisfy current requirements, scores for 30% and

40% morphing are calculated and following is a 30% morphed graph.

 51

Figure 26: 30% subroutine code inserted in metamorphic virus files

In figure 26, similar file scores are getting merged with different file scores at some

extent. Almost 4 files fall into false positive range. Similarly figure 27 is a graph for 40%

subroutine code insertion case. It seems that this attack performs better than instructions

removal attack.

Figure 27: 40% subroutine code inserted in metamorphic virus files

 52

8.2.1.1 Comparing HMM and graph based detection

We will compare these results with the results stated in [7]. Figure 28 shows the result for

30% subroutine code insertion tested against HMM based detection technique.

 Minimum score Maximum score
Similar Files 0.173 0.525
Different Files 0.428 0.926

Table 19: Scores for graph based technique

False Positive False Negative

4 0

Table 20: False positives / negatives in graph based technique

Table 19 and 20 shows results of our graph technique for morphed metamorphic viruses.

False Positives False Negatives

35 36

Table 21: HMM based detection results with 30% subroutine insertion

 53

Figure 28: HMM based detection results with 30% subroutines copied [7]

Table 21 and Figure 28 show that HMM virus detection technique was failing for 30%

subroutine copying from normal file. But our graph technique works much better as

compared to HMM based detection technique. Graph based detection technique has 4

false positives. In [7], HMM based detection failed for 30% subroutine code with 36 false

negatives and 35 false positives. This way, second attack is also failing to break our

graph technique and to evade virus detection.

8.2.2 Morphing engine based on block dead code insertion

In the block morphing, we are capturing a random block from benign file and appending

that code into metamorphic virus. The size of the block depends upon the inputs such as

percentage of morphing, virus and benign files, and the file sizes. First we need to count

the total number of lines present in the virus file. To count the number of lines, we parse

 54

the whole virus file ignoring comments, variable declarations, and blank lines. Then

according to the given percentage input we calculate the total number of lines to be

copied. Percentage value ranges from 0 to 1. For example, if the percentage value entered

is x and total number of actual instruction lines is n, then total number of lines to be

copied from benign file is n * x. If n is 700 and x is 0.2 then total number of lines copied

from a benign file is 140. After appending the chunk of code in the metamorphic virus

file, we calculate the similarity score for the metamorphic virus file as well as the benign

file from which the chunk of code is copied. Figure 29 shows scores for all 40 morphed

metamorphic viruses scored against 40 benign files for percentages ranging from 0.1 to 1.

Figure 29: Scores for block morphed metamorphic viruses

There is huge drop in scores for different kind of files. For 100% of morphing, the score

is below the threshold of 0.525. Till 30%, scores are not affected much. There are only 4

false positives and 6 false negatives as shown in figure 30.

 55

Figure 30: Metamorphic and benign versus morphed metamorphic virus

These scores are calculated when a morphed metamorphic virus is compared with the

benign file from which the chunk of code is copied. Hence these two files look similar as

we increase the percentage. Figure 31 shows a graph where metamorphic virus file is

compared with the benign file from which the code is not copied.

Figure 31: Metamorphic versus other benign

 56

In figure 31, most of the scores are above the threshold of 0.5. It shows that even if the

metamorphic virus file is morphed using benign code, it still can be detected using this

graph technique.

8.2.2.1 Comparing HMM and graph based detection for block morphing

For this comparison, we have calculated scores individually for all block morphed copies

of metamorphic virus files and benign files. To calculate HMM scores we used the HMM

detector from [6]. Around 800 scores were calculated for benign files and metamorphic

virus files for all percentage cases. Figure 32 shows 30% block morphed scores for

metamorphic virus files and benign files.

Figure 32: HMM - 30% block morphed scores

In figure 32, there are many false positives and false negatives.

 Minimum score Maximum score
Morphed Metamorphic files -2.620 -43.488
Benign files -3.437 -31.602

Table 22: HMM - Minimum and maximum scores

 57

From table 22, it is clear that all benign file scores lie inside the range of morphed

metamorphic virus file scores. HMM is not able to distinguish between virus and benign

files as there is no clear threshold to distinguish. If we consider a particular threshold of

say -3.800 where > -3.800 are metamorphic virus files and < -3.800 are benign files, then

values of false positives and false negatives are calculated as shown in table 23.

False Positive False Negative

1 9

Table 23: HMM - 30% false scores

Values of false positives and false negatives depend upon the threshold. If we increase or

decrease the particular threshold then false scores are affected. Table 24 shows the false

scores for 100% block morphing.

Figure 33: HMM - 100% block morphed results

Here if we consider threshold of -5.000 then table 24 shows the counts of false positives

and false negatives.

 58

False Positive False Negative

11 3

Table 24: HMM - 100% false scores

From above figures and tables, it is clear that block morphing is not able to completely

evade HMM based metamorphic virus detection. When we compare HMM based

detection with graph based detection against block morphing engine, graph based

detection is definitely more accurate than HMM as the numbers of false positives and

false negatives are very less in case of graph based detection.

8.2.3 Morphing engine based on random dead code insertion

In the random morphing, we are capturing a random block from benign file and evenly

distributing the whole chunk of instructions into metamorphic virus. The size of the

chunk depends upon the inputs such as percentage of morphing, virus and benign files,

and the file sizes. It is similar to block morphing in calculating the total number of lines

present in the virus file. Then according to the given percentage input we calculate the

total number of lines to be copied. Percentage calculation is also similar to block

morphing. Main difference between these two morphing engines is how the metamorphic

virus file morphed using the code copied from benign file. In random morphing, the

copied code is evenly distributed through out the metamorphic virus file depending upon

a factor “after_lines”. Value of “after_lines” is calculated by dividing length of the virus

file with total number of lines to be copied. For example if the morphing percentage is

100% then each statement from the chunk of code is inserted after each instruction in the

virus file. Hence total number of lines in both the morphing engines will be same

 59

according to the percentage value. Figure 34 shows scores for all 40 randomly morphed

metamorphic viruses scored against 40 benign files for percentages ranging from 0.1 to 1.

Figure 34: Randomly morphed metamorphic viruses versus benign files

Random morphing did not remove the threshold between similar and different files, and

instead improved the similarity score between different types of files. Here the score for

all percentages is higher than 0.5. Hence this technique is able to distinguish between

morphed metamorphic virus files and benign files.

8.2.3.1 Comparing HMM and graph based detection for random morphing

For this comparison, we have calculated scores individually for all random morphed

copies of metamorphic virus files and benign files. Around 800 scores were calculated for

benign files and metamorphic virus files for all percentage cases. Figure 35 shows 30%

random morphed scores for metamorphic virus files and benign files.

 60

Figure 35: HMM - 30% random morphed results

If we consider a threshold of -5.0 and > -5.0 are metamorphic viruses and < -5.0 are

benign files, then table 25 shows false score statistics.

False Positive False Negative

11 5

Table 25: HMM - 30% false scores

Figure 36 shows score ranges for 100% randomly morphed metamorphic virus copies and

benign files.

 61

Figure 36: HMM - 100% random morphed results

If we consider a threshold of -5.000 then table 26 shows false scores.

False Positive False Negative

11 5

Table 26: HMM - 30% false scores

In random morphing, the total count of false positives and false negatives is larger than

that of block morphing. Random morphing is more effective than block morphing in

evading the HMM based metamorphic virus detection.

8.3 Reason behind all morphing results for graph based

detection

In block morphing, the whole chunk is copied. That means the count of successive

instructions is moving towards equality. It results in morphed metamorphic virus file to

look like benign file from which the code is copied. But score between two similar files

also has some non-zero value. So if another benign file is compared with the morphed

 62

metamorphic virus file, then the score is still high which shows both the files are

different. Figure 37 gives detailed information.

Figure 37: Block morph example

In random morphing, the overall chunk is scattered in the whole metamorphic virus file.

This distribution is even and statements are inserted after particular number of lines. If

there is increase in the count of successive instructions, then the score will also increase.

And due to new insertions of statements the count for those successive instructions will

increase. Figure 38 shows detailed information.

Normal1.txt
MOV

ADD

SUB

Virus1.txt
PUSH

JZ

INT

Bmorph_virus1.txt

PUSH

JZ

INT
MOV

ADD
SUB

Normal2.txt
MOV

ADD

JNZ

SUB

Less
different

More different

Different

 63

Figure 38: Random morph example

Whenever there is increment in the count of successive instructions, score will increase.

If the score is high, that means both the files are much different in appearance or nature.

Normal1.txt
MOV
ADD
SUB

Virus1.txt
PUSH
JZ
INT

Bmorph_virus1.txt

PUSH
MOV

JZ

ADD
INT

SUB

Normal2.txt
MOV
ADD
JNZ
SUB

More different More different

Different

Morphed

 64

9. Conclusion

Graph based detection technique distinguishes between viruses, benign files,

metamorphic viruses, and randomly morphed metamorphic viruses. There is a threshold

to distinguish between similar and different files with no false negatives or false

positives. Graph based detection technique results show 100% detection with zero error

rates.

Similar and different file scores are affected due to variations in the formula. First

variation lowered the accuracy of the technique with 17 false negatives and 2 false

positives. Second variation showed better results as compared to first variation. It has

only two false negatives. Third and fourth variations show a separation between similar

and different types of files but the threshold value is small. Third and fourth variations

have less impact on the results of the graph based detection technique. From the

normalized score, equation 1 is the most effective formula with maximum threshold.

In total, four attacks are carried out on graph based detection technique. First attack is

instruction removal attack. This attack is not much effective in defeating the graph based

virus detection as there is only one false positive. Second attack is to morph metamorphic

viruses using a morphing engine based on subroutine insertion and instruction

substitution to evade virus detection by graph based detection technique. This attack not

only removed the threshold, but also created false alarms. There are 4 false positives due

to the second attack. Second attack shows good results as compared to first attack. Graph

 65

based detection results in second attack are compared with HMM based virus detection

scores for morphed metamorphic viruses.

For 30% of the subroutine code insertion, HMM based detection was showing 36 false

negatives and 35 false positives for 40 benign files and 40 metamorphic viruses. In graph

based detection technique only 4 false positives and no false negatives are observed for

40 benign files and 40 metamorphic virus files. Though 4 benign files are caught as a

virus, metamorphic virus detection is 100%.

For third and fourth attack, we created our own morphing engines to test graph based

detection and HMM based detection. In the third attack, the morphing engine appends the

virus file with a chunk of code copied from benign file. In block morphing, the graph

based technique failed to detect all virus and benign files after 70% of morphing. But

when the morphed copies were compared against other benign files from where the code

is not copied, then the graph based technique was much effective in differentiating

between morphed metamorphic virus files and benign files till 100% morphing. There

were 3 false positives in 100% block morphing when compared with other benign file

from which the code is not copied to morph the metamorphic virus file.

In fourth attack, morphing engine is inserting each statement from the chunk of code

copied from benign file, into virus file at a particular interval. This in effect increases the

count of successive instructions. So the similarity score between randomly morphed

 66

metamorphic virus and benign virus file is increased, which shows that both these files

are much different.

Graph based detection technique proved to be better in detecting metamorphic viruses as

compared to HMM based virus detection technique. For graph based detection technique,

the numbers of false positives and false negatives are very less as compared to HMM

based virus detection technique.

 67

10. Future work

Currently graph based detection technique is detecting NGVCK metamorphic viruses

from IDAN family. We used an existing set of benign files, metamorphic virus files and

other virus files. This set is limited in terms of file counts for viruses and benign

software. Going forward, it would be useful if larger number of files is tested against this

graph based detection technique. Every year millions of new malware are created [41].

So with larger data sets, it would be beneficial to consider more recent list of malware.

In this paper, we concentrated on metamorphic viruses as they are the most difficult

viruses to detect. This view can be broadened to other types of viruses like polymorphic

virus, macro virus, resident virus etc.

Any detection technique does not detect all types of malware. Another improvement

would be to incorporate this graph based detection technique with other effective

malware detection techniques to detect malware. This might prove to be effective and

accurate.

 68

References

1. Nachenberg, C. (Jan, 1997), Computer Virus Coevolution, Retrieved on July 14, 2011,

from website: http://www.csun.edu/~deb53351/Papers/Nachenberg_Computer_virus-

antivirus_coevolution.pdf

2. Top Choice Reviews (n.d.), Types of Viruses, Retrieved on August 21, 2011, from

website: http://antivirus-software.topchoicereviews.com/types-of-viruses.html

3. Konstantinou, E. (2008), Metamorphic Virus: Analysis and Detection, Retrieved on

February 22, 2011, from website: http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-

MA-2008-02.pdf

4. Anderson, B. Quist, D. Neil, J. Storlie, C. Lane, T. (8 June, 2011), “Graph-based

malware detection using dynamic analysis”, Journal of Computer Virology, (June,

2011), doi: 10.1007/s11416-011-0152-x

5. M. Stamp, “Information Security: Principles and Practice,” August 2005.

6. Wong, W. (May, 2006), Analysis and Detection of Metamorphic Computer Viruses,

Master’s thesis, San Jose State University, Retrieved on February 01, 2011, from

website: http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

7. Lin, D. (Dec, 2009), Hunting for Undetectable Metamorphic Viruses, Master’s thesis,

San Jose State University, Retrieved on January 25, 2011 from website:

http://www.cs.sjsu.edu/faculty/stamp/students/lin_da.pdf

8. OSdata (2004), Assembly Language, Retrieved on March 10, 2011 from website:

http://www.osdata.com/topic/language/asm/asmintro.htm

 69

9. Radev, D. (March 06, 2008), Lecture 13 - Eigenvectors, Eigenvalues, Stochastic

Matrices, Retrieved on October 11, 2011 from website:

http://www1.cs.columbia.edu/~coms6998/Notes/lecture13.pdf

10. AXIS ETRAX (May 19, 2005), 100LX Programmer’s Manual, Retrieved on October

28, 2011 from website:

http://developer.axis.com/old/documentation/hw/etrax100lx/prog_man/5_assembly_lan

g_syntax.pdf

11. Low, R. (April 27, 2011). Discussion on Graph comparison formula, at San Jose State

University

12. SnakeByte (2002), Next Generation Virus Construction Kit, Retrieved on March 26,

2011 from website: http://vx.netlux.org/vx.php?id=tn02

13. Cygwin (2011), Cygwin Utility Files, Retrieved on April 12, 2011 from website:

http://www.cygwin.com/

14. Symantec (April 10, 2010), Trojan Horse Risk Level 1: Very Low, Retrieved on May

9, 2011 from website:

http://www.symantec.com/security_response/writeup.jsp?docid=2004-021914-2822-99

15. Symantec (October 04, 2006), What is the difference between viruses, worms, and

Trojans?, Retrieved on September 10, 2011 from website:

http://service1.symantec.com/support/nav.nsf/docid/1999041209131106

16. Idika, N and Mathur, A, A Survey of Malware Detection Techniques,Technical report,

Software Engineering Research Center, 2007. Retrieved Aug 19, 2011 from website:

http://www.serc.net/system/files/SERC-TR-286.pdf

 70

17. Stamp, M. (Jan, 2004), A Revealing Introduction to Hidden Markov Models,

Retrieved Jan 20, 2011, from website: http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

18. Juang, B and Rabiner, L., Hidden Markov Models for Speech Recognition,

Technometrics, Vol. 33, No. 3. (Aug., 1991), pp. 251-272.

19. Stamp, M. (Jan, 2004), HMM Source Code, Retrieved Feb 20, 2011, from website:

http://www.cs.sjsu.edu/~stamp/RUA/hmmSource.zip

20. Desai, P. (2008), Towards an Undetectable Computer Virus, Master’s thesis, San Jose

State University, Int. J. Multimedia Intelligence and Security, Vol. 1, No. 4, 2010

21. Programming Ground Up (n.d.), Programming from the ground up, Retrieved on

November 05, 2011 from website:

http://programminggroundup.blogspot.com/2007/01/appendix-b-common-x86-

instructions.html

22. Ogata, H. et.al. (Aug, 2000), A heuristic graph comparison algorithm and its

application to detect functionally related enzyme clusters, Retrieved Feb 25, 2011, from

website: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC110779

23. Hlaoui, A. and Wang, S. (n.d.), A New Algorithm for Inexact Graph Matching,

Retrieved Feb 26, 2011, from website: http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.90.6797&rep=rep1&type=pdf

24. ITU, (July 2008), “Network security: Malware and Spam”, Retrieved on October 29,

2011 from website: http://www.itu.int/ITU-D/cyb/cybersecurity/docs/itu-study-

financial-aspects-of-malware-and-spam.pdf

 71

25. Organization for economic co-operation and development, (2007), “Malicious

software: A security threat to the internet economy”, Retrieved on October 2, 2011

from website: http://www.oecd.org/dataoecd/53/34/40724457.pdf

26. Computer economic, (n.d.), “2007 Malware Report: The Economic Impact of Viruses,

Spyware, Adware, Botnets, and Other Malicious Code”, Retrieved on November 2,

2011 from website:

http://www.computereconomics.com/page.cfm?name=Malware%20Report

27. Panda Security (n.d.), “Virus, worms, trojans and backdoors: Other harmful relatives

of viruses”, Retrieved on October 17, 2011 from website:

http://www.pandasecurity.com/homeusers-cms3/security-info/about-malware/general-

concepts/concept-2.htm

28. Antivirus.about.com (n.d.), "Boot sector virus repair", Retrieved Jan 27, 2011 from

website: http://antivirus.about.com/od/securitytips/a/bootsectorvirus.htm

29. Nachenberg, C. (n.d.), “Understanding and managing Polymorphic viruses”, The

Symantec Enterprise Papers, vol. XXX, Retrieved on September 11, 2011 from

website: http://www.symantec.com/avcenter/reference/striker.pdf

30. Halfpap, B. (30 Mar, 2010), “Artificial immune system virus detector”, Retrieved on

Aug 9, 2011 from website: http://resheth.wordpress.com/tag/virus-detection/

31. Peter Szor and Peter Ferrie, “Hunting for metamorphic”, Virus Bulletin Conference,

September 2001

32. Mohamed R. Chouchane and Arun Lakhotia, “Using engine signature to detect

metamorphic malware”. In WORM '06: Proceedings of the 4th ACM workshop on

Recurring malcode, pages 73{78, New York, NY, USA, 2006. ACM Press

 72

33. Andrew Walenstein, Rachit Mathur, Mohamed R. Chouchane R. Chouchane, and

Arun Lakhotia, “The design space of metamorphic malware”. In Proceedings of the 2nd

International Conference on Information Warfare, March 2007

34. VX Heavens. http://vx.netlux.org/

35. Priyadarshi, S. "Metamorphic Detection via Emulation" (2011), Master's Projects.

Paper 177, Retrieved Jun 12, 2011 from website:

http://scholarworks.sjsu.edu/etd_projects/177

36. Easy Net Live (n.d.), “Signature based detection”, Retrieved on November 19, 2011

from website: http://www.easynetlive.info/based-detection.html

37. The Brown Corpus of Standard American English, available for download at

http://www.cs.toronto.edu/~gpenn/csc401/a1res.html\verb

38. Gartner, T. et al. (2003), “On Graph Kernels: Hardness Results and Efficient

Alternatives”, Springer, pp. 129–143, 2003

39. Berwick, R. and Idiot, V. (2003), “An Idiot’s guide to Support Vector Machine

(SVMs)”, Retrieved on October 21, 2011 from website:

http://www.cs.ucf.edu/courses/cap6412/fall2009/papers/Berwick2003.pdf

40. MikroElektronika (n.d.), “Chapter 4: Assembly Language”, Retrieved on November

10, 2011 from website: http://www.easypsoc.com/book/chapter4.html

41. G Data Software (9 Sep, 2010), “Number of new computer viruses at record high”,

Retrieved on November 12, 2011 from website: http://www.gdatasoftware.co.uk/about-

g-data/press-centre/news/news-details/article/1760-number-of-new-computer-

viruses.html

 73

Appendix A: More frequent assembly instructions [21]

Instructions Use

push Push data onto stack

mov Move data from one place to another

cmp Compare operands

jne Jump if not equals

clc Clear the carry flag

xor Exclusive OR

adc Add with Carry

inc Increment by 1

loop Loop control

Jc Jump on carry

jmp Simply jump to the location

pop Pop data from stack

leave Leave stack frame

ret Return from procedure

sbb Subtraction with Borrow

jnc Jump if no carry

enter Enter stack frame

fld Floating point load

fcomip Compare

jna Jump if condition

fcomp Compare and pop

pusha
Push all general purpose registers onto
stack

call Call procedure

add Addition

popa Pop all general purpose registers from stack

Je Jump if equals

 74

Appendix B: Additional scores and graphs

Figure 39: Graph with all comparisons

Benign files versus benign files

File 1 File 2 Score

IDAR0.asm IDAR1.asm 0.227
IDAR2.asm IDAR3.asm 0.337
IDAR4.asm IDAR5.asm 0.344
IDAR6.asm IDAR7.asm 0.023
IDAR8.asm IDAR9.asm 0.357
IDAR10.asm IDAR11.asm 0.255
IDAR12.asm IDAR13.asm 0.246
IDAR14.asm IDAR15.asm 0.468
IDAR16.asm IDAR17.asm 0.14
IDAR18.asm IDAR19.asm 0.138
IDAR20.asm IDAR21.asm 0.326
IDAR22.asm IDAR23.asm 0.431
IDAR24.asm IDAR25.asm 0.316
IDAR26.asm IDAR27.asm 0.289
IDAR28.asm IDAR29.asm 0.112
IDAR30.asm IDAR31.asm 0.231
IDAR32.asm IDAR33.asm 0.454
IDAR34.asm IDAR35.asm 0.431
IDAR36.asm IDAR37.asm 0.191
IDAR38.asm IDAR39.asm 0.424

 75

Family of Metamorphic Viruses

Other viruses

File 1 File 2 Score

IDAV0.asm IDAV1.asm 0.007

IDAV2.asm IDAV3.asm 0.016

IDAV4.asm IDAV5.asm 0.012

IDAV6.asm IDAV7.asm 0.003

IDAV8.asm IDAV9.asm 0.023

IDAV10.asm IDAV11.asm 0.245

IDAV12.asm IDAV13.asm 0.236

IDAV14.asm IDAV15.asm 0.264

IDAV16.asm IDAV17.asm 0.333

IDAV18.asm IDAV19.asm 0.211

IDAV20.asm IDAV21.asm 0.174

File 1 File 2 Score

IDAN0.asm IDAN1.asm 0.395
IDAN2.asm IDAN3.asm 0.354
IDAN4.asm IDAN5.asm 0.437
IDAN6.asm IDAN7.asm 0.384
IDAN8.asm IDAN9.asm 0.327
IDAN10.asm IDAN11.asm 0.29
IDAN12.asm IDAN13.asm 0.293
IDAN14.asm IDAN15.asm 0.173
IDAN16.asm IDAN17.asm 0.214
IDAN18.asm IDAN19.asm 0.419
IDAN20.asm IDAN21.asm 0.283
IDAN22.asm IDAN23.asm 0.335
IDAN24.asm IDAN25.asm 0.339
IDAN26.asm IDAN27.asm 0.331
IDAN28.asm IDAN29.asm 0.406
IDAN30.asm IDAN31.asm 0.525
IDAN32.asm IDAN33.asm 0.235
IDAN34.asm IDAN35.asm 0.409
IDAN36.asm IDAN37.asm 0.298
IDAN38.asm IDAN39.asm 0.272
IDAN40.asm IDAN41.asm 0.414
IDAN42.asm IDAN43.asm 0.247
IDAN44.asm IDAN45.asm 0.287
IDAN46.asm IDAN47.asm 0.332
IDAN48.asm IDAN49.asm 0.286
IDAN50.asm IDAN51.asm 0.333
IDAN52.asm IDAN53.asm 0.298
IDAN54.asm IDAN55.asm 0.218
IDAN56.asm IDAN57.asm 0.291
IDAN58.asm IDAN59.asm 0.357

 76

Benign files versus metamorphic virus files

File 1 File 2 Score

IDAR0.asm IDAN0.asm 0.702

IDAR1.asm IDAN1.asm 0.738

IDAR2.asm IDAN2.asm 0.933

IDAR3.asm IDAN3.asm 0.706

IDAR4.asm IDAN4.asm 0.82

IDAR5.asm IDAN5.asm 0.675

IDAR6.asm IDAN6.asm 0.782

IDAR7.asm IDAN7.asm 0.588

IDAR8.asm IDAN8.asm 0.635

IDAR9.asm IDAN9.asm 0.761

IDAR10.asm IDAN10.asm 0.701

IDAR11.asm IDAN11.asm 0.677

IDAR12.asm IDAN12.asm 0.722

IDAR13.asm IDAN13.asm 0.666

IDAR14.asm IDAN14.asm 0.856

IDAR15.asm IDAN15.asm 0.714

IDAR16.asm IDAN16.asm 0.615

IDAR17.asm IDAN17.asm 0.64

IDAR18.asm IDAN18.asm 0.632

IDAR19.asm IDAN19.asm 0.7

IDAR20.asm IDAN20.asm 0.725

IDAR21.asm IDAN21.asm 0.7

IDAR22.asm IDAN22.asm 0.705

IDAR23.asm IDAN23.asm 0.66

IDAR24.asm IDAN24.asm 0.881

IDAR25.asm IDAN25.asm 0.803

IDAR26.asm IDAN26.asm 0.746

IDAR27.asm IDAN27.asm 0.663

IDAR28.asm IDAN28.asm 0.632

IDAR29.asm IDAN29.asm 0.695

IDAR30.asm IDAN30.asm 0.77

IDAR31.asm IDAN31.asm 0.759

IDAR32.asm IDAN32.asm 0.643

IDAR33.asm IDAN33.asm 0.725

IDAR34.asm IDAN34.asm 0.966

IDAR35.asm IDAN35.asm 0.806

IDAR36.asm IDAN36.asm 0.705

IDAR37.asm IDAN37.asm 0.783

IDAR38.asm IDAN38.asm 0.896

IDAR39.asm IDAN39.asm 0.79

IDAR40.asm IDAN40.asm 0.912

 77

Figure 40: 30% junk code inserted

Figure 41: 30% dead code inserted

 78

Figure 42: 40% dead code inserted

Figure 43: 40% junk code inserted

 79

Figure 44: Consolidated block morph HMM results for metamorphic viruses

Figure 45: Consolidated block morph HMM results for benign files

 80

Figure 46: Consolidated random morph HMM results for metamorphic viruses

Figure 47: Consolidated random morph HMM results for benign files

	Graph Technique For Metamorphic Virus Detection
	Recommended Citation

	Microsoft Word - runwal_neha.doc

