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ABSTRACT 
 

GRAPH TECHNIQUE FOR METAMORPHIC VIRUS DETECTION 
 

by Neha Runwal 
 
Current anti-virus techniques include signature based detection, anomaly based detection, 

and machine learning based virus detection. Signature detection is the most widely used 

approach.  Metamorphic malware changes its internal structure with each infection. 

Metamorphism provides one of the strong known methods for evading malware 

detection. 

 

In this project, we consider metamorphic virus detection based on a directed graph 

obtained from executable files. We compare our detection results with a previously 

developed and highly successful technique based on hidden Markov models. 
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1. Introduction 
 
Malicious softwares are concerns for many organizations [25]. Various reports were 

created and analyzed to find total loss occurred due to malicious softwares. According to 

[24] [25], overall effect of damages ranges from US$ 13.2 billion to US$ 67.2 billion for 

US business alone. A report [26] has a list of top ten malicious software profiles of 2006 

where Mytob, Sdbot, and Netsky were ranked in first three. There are various techniques 

available for virus detection. But with each improvement in detection, virus writers 

attempt to improve their virus implementations so as to evade detection [1].  

 

According to an analysis discussed in [25], it is revealed that on average, only 48.16% of 

malware was detected by popular antivirus programs. Recent common types of malware 

include Trojans, worms, and polymorphic viruses [2]. Although not yet common, 

metamorphic viruses could present the most difficult detection challenge to date. In 

metamorphic viruses, virus writers do not have to explicitly write different undetectable 

viruses. They just have to create one virus and then use morph engines [12] to create its 

copies which will have similar functionality but different body structures [3]. 

 

We have analyzed a graph based malware detection technique proposed in [4]. Our 

technique is inspired by the approach followed in [4]. As in [4], we create weighted 

directed graphs based on instruction counts and then directly compare the resultant 

graphs to compare the similarity of executable files. Our approach differs significantly 

from [4] in a way that we use a much simpler method for comparing the graphs. 
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Following sections provide detailed information about the proposed graph technique and 

related analysis. 

• Section 2 introduces different types of malicious software and detection 

techniques. 

• Section 3 discusses Hidden Markov Model (HMM) and virus detection based on 

HMM. 

• Section 4 explains the implementation details of graph based metamorphic virus 

detection. 

• Section 5 shows various test cases and their analysis. 

• Section 6 deals with detailed observations of all test cases discussed in section 5. 

• Section 7 analyses graph technique and its features. 

• Section 8 contains information about attacks carried out on the graph technique. 

• Section 9 concludes about the proposed graph technique. 

• Section 10 discusses future work related to the graph technique. 

2. Malware and detection techniques 
 
Malware is nothing but a program developed to perform malicious activities on a 

computer. These activities could harm the computer data or could simply be intended as a 

prank. Malware can be a source of revenue for a malware writer. Hence there are 

different intentions behind different types of malware. If a computer is infected with any 

type of malware, then the malware needs to be caught and removed to avoid any loss. 

This can be done using anti-virus softwares. 
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2.1 Types of malware 

 
Malicious software, commonly known as malware, tends to affect more than one 

computer at an instance. Some malware are downloaded unknowingly and executed 

without appropriate permissions. Following are a few types of malware. 

2.1.1 Viruses 

Initially, viruses were created to stay in the boot sectors of floppy disks so that whenever 

an infected system is booted, that virus will also get executed [28]. The executables of 

viruses need human interaction to get spread onto other computers [25]. If a user uses an 

external drive to copy some data which is already infected by such viruses, then that host 

system will also get infected. “Viruses have ability to reproduce themselves infecting 

other files and programs” [27]. 

2.1.1.1 Polymorphic viruses 

These types of viruses are encrypted and spread along with their decryptor body and an 

encrypted mutation engine [29]. The base virus remains as it is, only the decryptor body 

changes. Once these viruses are copied or downloaded, the decryptor body decrypts the 

virus and the mutation engine, to infect the host machine. The mutation engine creates 

randomized decryptor body and attaches it to the newly encrypted virus body with the 

new key on each infection [29]. So on every new infection, a new decryptor and virus 

body is generated. Heuristic analysis using sandbox can be used to detect polymorphic 

viruses [30]. 
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2.1.1.2 Metamorphic viruses 

Metamorphic viruses are different than polymorphic viruses. Metamorphic virus does not 

carry a decryptor or encrypted virus body [31]. “Main goal of metamorphism is to change 

the appearance of the virus while keeping its functionality” [3]. Figure 1 shows different 

generations of a metamorphic virus where the shape changes but the functionality 

remains the same.  

 

Figure 1: Metamorphic virus generations [32] 

 

Body structure of a metamorphic virus changes its shape from generation to generation. 

This is done using metamorphic engine. The anatomy of a metamorphic engine is showed 
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in Figure 2. There are different modules like locate own code, decode, analyze, 

transform, and attach.  

 

Figure 2: Anatomy of a metamorphic engine [33] 

 

As stated in [33] [3], Locate own code module is used to find own code. Decode module 

provides the virus decode information which is needed in transformation process. 

Analyze module is used to construct register liveliness. Transform module transforms the 

code into some other equivalent code. Finally, attach module is used to bind the newly 

created virus file with a new host program or file [3]. 

 

In transform module, virus copies are transformed using techniques like register 

swapping, code obfuscation, transposition, and subroutine permutation [3]. Examples of 

metamorphic engines are Next Generation Virus Construction Kit (NGVCK), 

Phalcon/Skism Mass-Produced Code generator (PS-MPC), Second Generation virus 

generator (G2), Mass Code Generator (MPCGEN) [34]. According to [6], NGVCK is 

more effective in creating metamorphic viruses with different generations but keeping the 

exact functionality similar to the base virus.  
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2.1.2 Trojans 

Trojan horse is a malicious program which gets stored on the host machine by luring the 

user as it is a benign software or a file [14]. When user clicks on a link or email 

attachments or downloads a file which looks familiar to user, Trojan horse gets stored 

and executed without the knowledge of the user or the administrator.  

The purpose of a Trojan horse could be to get remote access, download and execute 

malware or to steal information from the infected system [14]. Trojans do not reproduce 

or self-replicate like viruses or worms [27].  

2.1.3 Worms 

Worm is a program that replicates itself over the internet or computer networks and it is 

done without any human intervention [15] [27].  Worm is a macro residing in a word or 

excel document that spreads itself across the network. This document travels from one 

computer to another infecting all intermediate systems [15]. 

Worms saturate the network and collapse it by reproducing itself. Some worms sent via 

emails include: Navidad, Pretty Park, Happy99 etc [27]. 

2.2 Detection techniques 

As there are different types of malware, there are many types of detection techniques 

available. Most common and fast technique is signature based detection. Second 

technique is anomaly based detection which is good in detecting new malware. But these 

techniques have inadequacies to detect each and every malware [16]. Next subsections 

discuss these detection techniques in detail. 
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2.2.1 Signature based detection 

Signature based detection is popular due to its simplicity, faster detection, and less false 

positives [35]. This technique looks for specific signature, a sequence of specific opcodes 

in a file to detect and classify it as a benign or virus file. It uses signature dictionary or 

database to compare with existing virus signatures [36]. Although it seems much easier to 

implement, it is not effective in case of new malware since the signatures for new 

malware will not be present in the database. Hence, this technique keeps on updating its 

database for up-to-date virus detections. Also, this detection technique can easily be 

defeated by simple code obfuscation techniques used to change the signature of the 

malware [35]. 

2.2.2 Anomaly based detection 

This technique is efficient in detecting zero-day malware [16] as compared to signature 

based detection technique. There are two phases in anomaly based detection, training and 

detection [16]. During training phase the scanner learns about normal as well as 

malicious behavior. Malicious behavior means a behavior which changes or accesses the 

system data without the authoritative permissions. Once the scanner is trained, it is used 

to detect such malicious activities and take the appropriate actions [16]. But it has its own 

disadvantages. This technique has more false positives or negatives as compared to other 

detection techniques and secondly it is more complex and costlier [16].  

2.2.3 HMM based detection 

Hidden Markov Model (HMM) based virus detection is a new technique as compared to 

above two techniques. HMM works as a state machine [6]. It helps in finding probability 
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of transition from one state to another. Once the HMM is trained, it can be used to detect 

or differentiate between malware and benign software. It is discussed in more detail in 

later sections. 

3. Hidden Markov Models 

There has been a lot of work done on Hidden Markov Model (HMM) for virus detection 

[17][6]. A threshold represents a value or a range where scores of benign software and 

malware do not overlap. Using such threshold, benign files and virus files can be 

distinguished. Technique in [6] was quite successful in finding the threshold to 

distinguish between malware and benign software. This section concentrates on HMM, 

its features, HMM for plain text, and HMM for virus detection. 

3.1 Introduction to HMM 

“Hidden Markov Model is based on pattern analysis” [35] and used to find the state 

transition probabilities. It is mainly used in language recognition [17], speech recognition 

[18], and now in virus detection [6]. Here HMM is thoroughly experimented and 

analyzed for plain English text pattern to understand its working. A pattern or structure of 

the software is a sequence in which instructions are written and a way the program flows. 

Malware also has different structures as compared to benign software structures. In this 

paper, we will also compare HMM based virus detection with newly proposed graph 

technique. 
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3.2 Main features of HMM 

HMM for plain English text [17] is so effective that after executing it for an observation 

string of 50000 characters, it distinguishes vowels and consonants in two states.  

Before analyzing HMM, following are the notations used in HMM. 

“T = the length of the observation sequence 

N = the number of states in the model 

M = the number of observation symbols 

Q = {q0, q1, . . . , qN−1} = the states of the Markov process 

V = {0, 1, . . . ,M − 1} = set of possible observations 

A = the state transition probabilities 

B = the observation probability matrix 

π  = the initial state distribution 

O = (O0,O1, . . . ,OT−1) = observation sequence.” [17] 

Here A, B and π  are row stochastic which means every element in a row sums to 1. 

Figure 3 shows a generic HMM where Oi are observations, Xi are hidden states, A shows 

state transition probabilities, and B is an observation probability matrix. 

 

Figure 3: Generic Hidden Markov Model [17] 
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The English plain text is taken from “Brown Corpus” [37] which has around 1,000,000 

words. In this experiment, we have removed all special symbols and considered in total 

27 symbols containing all 26 alphabets and space. For English plain text, we considered 

value of N as 2 and M as 27 (26 alphabets + space). Consider T= 50000 observations. At 

start, each element inπ and A are initialized to approximately 1/2 and B matrix is 

initialized to 1/27 [17].  

π  = [0.51316  0.48684] 

A = 








48344.051656.0

52532.047468.0
 

Once the initialization is done, next step is to train the model. After 500 iterations, we get 

trainedπ , A, and B matrices and logarithmic probability. Depending upon this 

logarithmic probability, threshold is decided. Here the probability threshold is noted after 

the model is trained for Brown Corpus plain text. Following is a brief algorithm for 

HMM. 

a. Every matrix (A, B, andπ ) is row stochastic 

b. Iteration contains forward and backward passes to train the model [17]. 

c. It can be run for any number of iterations (no space complexity issue). 

d. Using final values of all matrices, logarithmic probability is calculated. 

e. Similarity between two texts is calculated by comparing their probabilities got 

from the trained models. 

It is observed that, bigger the observation string, stronger is the trained model. In table 1, 

all matrices and final probability value are shown.  
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Observations for English text 

Matrix Pi 

0.00000  1.00000 
 
Final Matrix A 
0.25633  0.74367 

0.71195  0.28805 

 
 
Final Matrix B 
 

a 0.13956 0.00000 

b 0.00000 0.02306 

c 0.00000 0.05661 

d 0.00000 0.06925 

e 0.21460 0.00000 

f 0.00000 0.03547 

g 0.00016 0.02780 

h 0.00000 0.07321 

i 0.12308 0.00000 

j 0.00000 0.00364 

k 0.00177 0.00708 

l 0.00000 0.07258 

m 0.00000 0.03880 

n 0.00000 0.11439 

o 0.13184 0.00000 

p 0.00000 0.03703 

q 0.00000 0.00153 

r 0.00000 0.10202 

s 0.00000 0.11024 

t 0.00971 0.14483 

u 0.04514 0.00000 

v 0.00000 0.01617 

w 0.00000 0.02298 

x 0.00000 0.00446 

y 0.00000 0.02599 

z 0.00000 0.00110 

space 0.33413 0.01178 

log [P(observations | lambda)]  

 

= -137300.054917 

 

Table 1: Final trained HMM for English Text 
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Matrix B is N x M i.e. it has 2 rows and 27 columns. Matrix B is shown vertical for 

simplicity. Two rows in matrix B represent two states. Here first row has higher values 

for all vowels and zero or smaller values for consonants. In the second row, vowels have 

zero values and consonants have larger values. Matrix B in table 1 shows the separation 

of consonants and vowels in two hidden states. This shows that HMM is able to detect 

the English language pattern.  

 

Next step is to check whether HMM is able to distinguish between English texts and 

other texts. For this check, HMM was tested against some other language text. Text for 

this experiment is collected from Hindi language. Table 2 shows values of all matrices 

for non-English language text.  
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Observations from other texts  

Matrix Pi    

0.91991 0.08009 
 

Final Matrix A 

0.48633 0.51367 

0.4912 0.5088 

Final Matrix B 

A 0.04451 0.04297 

B 0.08326 0.08377 

C 0.04328 0.04313 

D 0.04029 0.04035 

E 0.04614 0.04603 

F 0.0459 0.04626 

G 0.04887 0.04904 

H 0.05464 0.0548 

I 0.06322 0.0635 

J 0.03252 0.03244 

K 0.02737 0.02735 

L 0.00000 0.00000 

M 0.03028 0.03021 

N 0.02731 0.02741 

O 0.02733 0.02739 

P 0.02587 0.02597 

Q 0.03171 0.03165 

R 0.03166 0.0317 

S 0.03166 0.0317 

T 0.03456 0.03456 

U 0.03161 0.03175 

V 0.03315 0.03309 

W 0.03023 0.03025 

X 0.03448 0.03464 

Y 0.04027 0.04037 

Z 0.04615 0.04602 

space 0.01373 0.01367 

log [P(observations | lambda)] = -160022.815487 

Table 2: Final trained HMM for other texts 
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In table 2, matrix B does not distinguish between vowels or consonants as it is not an 

English text. Also table 3 shows that there are different logarithmic probabilities of 

English text and other text. 

Logarithmic probability for English Text Logarithmic probability for other text 

-137300.054917 -160022.815487 

 

Table 3: Comparison of logarithmic probabilities 

 
HMM easily distinguishes between English and other texts. All related observations are 

discussed in more detail in the next section. 

3.2.1 HMM observations 

Hidden Markov Model testing is carried out for 200 to 500 iterations for English text and 

other text. This section summarizes the changes in matrices A, B, andπ . At the end, 

matrix A had similar distribution of numbers in both the states for plain English texts. 

Matrix A had row values ranging from 0.19 to 0.808 and 0.69 to 0.302. Matrix A and B 

varied with plain English texts observation sequences and with number of iterations.  

 

1. At the end of all the iterations, all vowels {A,E,I,O,U} had higher values in state one 

along with very small values for C,G,K,L,P,T and Y in state one. But in state two all 

these vowels had zeros (0) and other characters had bigger values which had zeros or 

very small values in state one. After increasing the number of iterations to 500 and later 

to 1000, small values were changed to zero. Hence training a model may require more 

number of iterations. 
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2. The final logarithmic probability was similar in case of plain English text. Parameters 

such as number of iterations or seed value were affecting the final value of the 

probability though not making significant difference to B matrix. 

3. "Space" had similar distribution in both the states throughout the HMM. 

 

3.2.2 Limitations of HMM 

Though HMM is able to detect English text pattern, there are still few limitations over 

HMM which could affect its efficiency. Few factors like observations, observation 

length, and number of iterations do affect the trained matrices values and logarithmic 

probability. Following are some HMM limitations based on above factors. 

1. If the observation sequence is small then the final probability value changes 

drastically as compared to the probability of the observation sequence with 50,000 

characters even though both are plain English texts.  

2. When the seed value was changed, the probability value was also changed. 

3. HMM mainly depends upon the total count of characters present in the 

observation sequence. So if all the characters are evenly distributed then HMM 

does not give appropriate probability value.  

4. HMM shows different values for the final trained model and probability for the 

same observation string due to variations in input values of observation string 

length, seed number, and iterations. 

From above limitations, it seems that observation sequence, its length, iterations, and 

seed value affect HMM results and logarithmic probability. To avoid these problems, we 

can consider constant values for few factors like iterations and seed value. And before 
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comparing HMM results of two texts, observation sequence length should be same to 

compare results and probabilities adequately.  

3.3 HMM based virus detection 

In [6], an effective virus detection scheme based on HMMs is developed and analyzed. 

There were many test cases executed to check the effectiveness of HMM based detection. 

Datasets consisted different virus files, CYGWIN files, and NGVCK metamorphic virus 

files belonging to IDAN virus family. It is proven that NGVCK creates varied morphed 

copies maintaining the existing functionality of the base virus [6]. Figure 4 shows the 

graph of the NGVCK virus pair with highest similarity score of 21%.  

 

 

Figure 4: Similarity graphs of the NGVCK pair 

 

After creating the variants using NGVCK, the HMM was trained. In [6], a five fold cross 

validation technique is used to train the HMM. In this, the whole dataset is divided into 5 

subsets. For training purpose, 4 datasets are used and the fifth subset is used to test the 
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trained HMM model. This process is repeated for 5 times. At the end of the experiment, it 

was observed that HMM had higher probabilities for similar virus files and low 

probabilities for benign and metamorphic virus files. For 200 metamorphic viruses, 25 

models were trained to classify viruses and normal files. HMM was able to detect 23 

models out of 25 models and was able to distinguish between viruses and normal files. 

 

HMM based detection was tested against a morphing engine in [7]. For 5% subroutine 

code insertion in the metamorphic virus files, scores calculated using HMM based 

detection technique showed 3 false positives and 6 false negatives amongst 40 normal 

files and 40 metamorphic virus files. When 15% of the subroutine was copied from 

normal file to metamorphic virus file and scores were calculated using HMM. There were 

26 false negatives and 33 false positives in 40 normal and 40 metamorphic virus files. 

And for 30% of the subroutine code insertion, there were 36 false negatives and 35 false 

positives which shows that HMM based detection was not able to distinguish between 

normal files and metamorphic virus files with 30% of subroutine code insertion. 

 

Above scores show that the morphing engine is very effective in morphing the 

metamorphic virus files and is able to defeat the HMM based detection. It is very 

important to check our graph technique against this morphing engine as well. 
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4. Graph technique for metamorphic virus detection 

Next subsection discusses the graph based malware detection technique from [4] along 

with our proposed graph technique. Rest subsections will focus on the implementation 

details, flow chart, and algorithm of our graph technique. 

 

4.1 Related work 

As discussed in paper [6], HMM based virus detection was effective in classifying 

metamorphic viruses and benign files. HMM is able to detect NGVCK metamorphic 

virus copies with less false positives and negatives. In paper [7], an engine is 

implemented to morph copies of metamorphic viruses to make them undetectable by the 

HMM. This engine was tested against HMM based detection technique, and engine was 

able to defeat the HMM based virus detection. In the HMM based detection, these 

morphed metamorphic virus copies were able to evade the detection and increased the 

false positive and negative rates. 

 

As proposed in [4], virus detection can be carried out by creating graphs according to the 

assembly instructions present in files and comparing those graphs using graph kernel 

technique. Graph kernel is used to find the similarity between two graphs. Graph kernel 

has a feature Hφ  for each possible graph H where )(GHφ  measures how many graphs 

have the same structure as graph H [38]. In [4], Spectral kernel and Gaussian kernel were 

used. Spectral kernel is using graph’s global structure like smoothness, diameter, and 

number of components to find the similarity matrix. Gaussian kernel considered local 
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structure of the graph where it takes the squared difference between corresponding edges 

in weighted adjacency matrices. Once the similarity matrix is constructed using graph 

kernels and their combination, Support Vector Machine (SVM) is used for classification. 

SVM maximizes the margin where hyperplane can be separated [39]. Critical element is 

support vector and for such inputs it identifies in which of the two classes it belongs to.  

 

In paper [4], the test data sets contain different types of viruses. It used 1,615 instances of 

malware and 615 instances of benign software. Tests were carried out against this 

technique and top five antivirus softwares and results were compared. Results showed 

that the combined graph kernels were 96.41% accurate in classifying normal files and 

viruses.  But there were 47 false positives and 33 false negatives. 

 

Compared to the above technique, our proposed technique differs significantly in finding 

the similarity check and in the classification techniques used. In our method, comparison 

between the two graphs or matrices is much simpler than the technique proposed in [4]. 

We will discuss our technique in more detail in further sections. 

4.2 Proposed solution 

The proposed graph technique includes graph creations based on traces of assembly 

language instructions. Mostly viruses are in the form of executable files. We have a set of 

disassembled virus and benign files. In this graph technique we are creating an instruction 

array to keep track of all instructions present in a file. This array is initialized using an 

existing instruction set file. As tracing progresses, this array is appended with new 

assembly instructions found in the file. A successive instruction set represents any two 
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same or different instructions coming after each other (subsection 4.3 discusses this in 

more detail). There is another matrix which is used to store counts of such successive 

instruction sets. In this matrix, rows and columns will represent instructions. Before 

tracing starts, this whole matrix is initialized to zero. Both the array and the matrix are 

updated for each instruction. Assembly file contains a sequence of combinations of 

instructions and related operands. Instruction performs defined operations on the 

operands or using the operands. Following is an example of an assembly language 

instruction with operands.  

MOV EAX, 20H 

Here “MOV” is an instruction and “EAX” and “20H” are operands. MOV instruction 

copies 20H into EAX which is a register. There are more than 130 assembly language 

instructions for a particular processor [40]. Operands can be different forms like registers, 

memory operands, flags etc. There could be 3000 different combinations of instructions 

and different operands [4]. If we create a graph based upon such combinations of 

vertices, graph will become too large to compare. Instead we considered only instructions 

to represent vertices in the graph. The program ignores comments, variables, and 

instruction operands. Once the complete file is traced and matrix is updated, next step is 

to repeat this process for another file. For second file, another matrix will be created. 

Both the matrices will have same number of rows and columns as both matrices will use 

the same array which has list of all distinct instructions present in both the files. This 

matrix can be represented as a bi-directed graph. Subsection 4.3 discusses the matrix 

operations in more detail. Once both the matrices are ready with respective counts, next 

step is to calculate the similarity score between these matrices. This score is calculated 
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using a formula shown in equation 1. Last step is to classify whether these files are 

similar or different.  

4.3 Implementation details 

This subsection gives detailed information about the implementation of the technique. 

Our technique is based upon assembly language instructions. Every processor has its own 

assembly language instruction sets [8]. So if we use specific/fixed set of instructions, then 

it might not be possible to compare or differentiate any other assembly language 

instruction set. Hence we considered to collect all new instructions while tracing the files. 

When any instruction which is not present in the matrix is found, it will get appended at 

the end of the matrix and this will increase the length of the matrix and the array. Hence 

the length of the matrix is nothing but the total number of distinct instructions found in 

the software / malware. As mentioned, this matrix contains counts of successive 

instructions. For successive instructions example, consider there is an instruction ADD in 

the code segment of the file. If that instructions is present in the matrix, and if it is 

preceded by another instruction MOV, then its count in the matrix with the combination 

of previous instruction (MOV row) and current instruction (ADD column), will be 

increased. For example, Table 4 shows a code segment, based on which, a matrix will be 

created. The total number of distinct instructions is 17 and those are listed below. All 

distinct instructions will represent an individual node in the graph. All these instructions 

push, mov, sub, and, test, jz, int, fnstcw, movzx, or, fldcw, call, leave, retn, align, xor, 

and lea will have outgoing and incoming edges representing some numbers which are 

counts of those instructions coming after each other. 
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Instruction (Operator) Operand 

Push Ebp 

Mov ebp, esp 

Sub esp, 8 

And esp, 0FFFFFFF0h 

Mov eax, ds:dword_404000 

Test eax, eax 

Jz Short loc_401013 

Int 3 

Fnstcw [ebp+var_2] 

Movzx eax, [ebp+var_2] 

And eax, 0FFFFF0C0h 

Mov [ebp+var_2], ax 

Movzx eax, [ebp+var_2] 

Or eax, 33Fh 

Mov [ebp+var_2], ax 

Fldcw [ebp+var_2] 

Mov [esp+8+var_8], offset sub_401050 

Call sub_401960 

Leave, Retn, Align 10h 

Push Ebp 

Mov eax, 10h 

Mov ebp, esp 

Push Edi 

Push Esi 

Push Ebx 

Sub esp, 7Ch 

Mov edi, [ebp+arg_0] 

Mov esi, [ebp+arg_4] 

And esp, 0FFFFFFF0h 

Call sub_401930 

Call j___main 

Mov [ebp+var_4C], 0 

Mov [esp+88h+var_88], offset unk_404090 

Call j_CORBA_exception_init 

Mov dword ptr [esp+88h+var_84+4], esi 

Xor edx, edx 

Mov eax, offset off_402000 

Mov [esp+88h+var_78], edx 

Mov [esp+88h+var_7C], eax 

Mov dword ptr [esp+88h+var_84], edi 

Mov [esp+88h+var_88], offset aOafClient ; "oaf-client" 

Call j_poptGetContext 

Mov ebx, eax 

Lea esi, [esi+0] 

Table 4: Assembly language instruction traces for graph creation 
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After tracing above instructions and finding all the counts, matrix looks like as shown in 
Table 5. 
 

 
 

Table 5: Matrix created using assembly language instruction counts 

 

In table 5, blank cells represent zeros. Sparse matrix contains more zeros and very less 

non-zero values. Thus this matrix becomes a sparse matrix due to less number of non-

zero values. Rows in this matrix will represent the nodes and values in that row 

correspond to values of the edges going out from that node to other nodes. Now if we 

keep all these counts as it is and calculate the difference, then this technique can easily be 

defeated. It is because, if we add more and more dead code to the .asm file, it will simply 

increase the count and will lead to incorrect score. 

 

In a matrix if each row sums to one, then this matrix is called row stochastic matrix. 

To avoid this problem and to find the probability, we decided to make that matrix, row 

stochastic. Stochastic matrix is used for non-deterministic or probabilistic calculations 
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[9]. By taking sum of a row and dividing each value in that row by that sum makes it row 

stochastic. The sparse row stochastic matrix looks like as shown in table 6. 

 
 

 
Table 6: Normalized sparse matrix to make it row stochastic 

 
 
Table 6 shows the probability of transition from one instruction to another instruction. 

This way whole successive instruction count is stored in the matrix. Now this matrix can 

be represented in a graph format as shown in figure 5. 
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Figure 5: Bi-directed graph created using the matrix in Table 6 

 
 
Reason behind creating a graph is we want to find the probability of one instruction 

coming after another or same instruction. After constructing the matrix (graph) for a file, 

next step is to create another matrix with the counts of successive instructions present in 

other file. We use the Equation 1 to measure the similarity between two files. 
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Equation 1: Formula for calculating similarity score [11] 

 
 
Threshold will be a range or a value which will be useful in classifying benign file and 

virus file. If the score calculated by this formula is lower than the threshold that means 

compared files have similar structures in nature. Else if score is higher than the threshold 
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that means files are different from each other. In this way technique will find whether a 

given file is a malware or benign software. 

 

4.4 Graph technique algorithm 

Below is the algorithm to briefly explain the proposed graph technique. 
 
1. Trace assembly language instructions for the first file 

2. Initialize an array with most frequent assembly language instructions present in an 

“InstSet.txt” file. 

2. Create a matrix with memory allocated for all instructions in the above array and 

initialize all cells with zero. 

3. The matrix will be appended dynamically whenever a new instruction is found 

4. While tracing the program, keep counting the number of successive instructions which 

are coming after each other. Store this count in the matrix. 

5. Repeat steps 3 and 4 until it reaches end of the file. 

6. Repeat steps from 1 through 5 for another file. 

7. To calculate the similarity score between these two files (matrices), use the formula in 

Equation 1. 

8. This similarity score will decide whether the given files are similar or different. 

4.5 Flow of the graph technique 

Figure 6 shows the flow of the graph technique implementation. Combinations of any 

two files from the following sets will become inputs to the program. A simple text file 

containing more frequent instructions will be used to initialize the matrix. Then the 

program creates matrices for both the files. Those matrices are sent as an input to another 
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module which calculates the similarity score. This score is then used to classify whether 

the files are similar or different. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Flow of the graph technique 

 
 
 

5. Similarity score calculation and analysis 

5.1 Data collection 

Three different sets are used to test our graph technique. First set has 200 IDAN virus 

files which belong to one metamorphic virus family. Second set consists of 41 benign 

files which are nothing but CYGWIN files [13]. Third set contains 25 different virus 

files. These files do not belong to any family. All these sets were created in [6] to analyze 

HMM based detection technique.  
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As per results in [6], metamorphic viruses can be detected using HMM based detection 

technique. But according to [7], this technique can be defeated by few morphing 

techniques like dead code insertion, junk code insertion, and instruction substitution 

methods. According to [7], 30% subroutine code insertion similar to dead code insertion 

evades metamorphic virus detection. Percentage of the subroutine code inserted is 

calculated as per the total number of instructions present in subroutines of a file.  

 

There are two considerations in choosing this dataset. First consideration is we want to 

compare this technique with HMM based detection technique [6]. For this we will have 

to use the same dataset, to adequately compare these two techniques. Second 

consideration, as discussed in subsection 3.3, is NGVCK metamorphic viruses have 

already been tested for variation in their structures of all generations [6]. 

Our aim is to check if our graph technique works for simple metamorphic virus detection, 

then next step would be to check if it can be defeated by a morphing engine implemented 

in [7]. 

5.2 Test cases 

Our program compares two files to find their similarity score. This graph technique is 

implemented to detect metamorphic viruses. Hence there are four important comparisons 

of different files.  

a. Metamorphic virus versus metamorphic virus 

b. Normal file versus normal file 

c. Benign file versus metamorphic virus file 

d. Benign file versus other viruses 
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5.2.1 Metamorphic virus versus metamorphic virus 

In this combination, we are comparing two metamorphic virus files from the same family 

(IDAN). We have 200 IDAN metamorphic virus files created using NGVCK. After 

comparing one metamorphic virus file with another metamorphic virus file, we got 

around 100 scores. 

 

 
 

Figure 7: Similarity scores of metamorphic virus files 

 
Figure 7 shows 100 similarity scores between 200 metamorphic viruses. It shows 0.173 

as minimum and 0.525 as maximum score for metamorphic virus files (similar files).  

In this case, similar file score range is from 0.173 to 0.525. 
 

5.2.2 Normal file versus normal file (benign files) 

In this combination, we are comparing two benign (normal) files. We have around 41 

benign files representing CYGWIN files. After comparing one CYGWIN file with only 

one CYGWIN file, we get around 20 scores. 
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Figure 8: Similarity scores for normal files 

 

Maximum similarity score between benign files is 0.468 and minimum similarity score is 

0.023. In both the combinations from 5.2.1 and 5.2.2, scores approximately lie in the 

range from 0.023 to 0.525. 

 
 

5.2.3 Benign file versus metamorphic virus 

This combination is the most important combination. If our graph technique is able to 

find a similarity score outside the above range, then we will be able to distinguish 

between metamorphic virus files and benign software files. 

 

For this combination we have 41 instances of benign files and 200 instances of 

metamorphic virus files. As this is a one to one comparison, we are using 41 instances of 

both the files. Figure 9 shows the graph for 41 metamorphic virus files compared with 41 

benign files. 
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Figure 9: Similarity score for normal versus metamorphic virus file 

 

Figure 10 shows the similarity score between metamorphic virus file and benign file 

ranges from 0.588 to 0.966. Clearly from above three combinations, metamorphic virus 

files and benign files are less similar as their scores have higher values as compared to 

that of two benign files and two metamorphic virus files. 

 

Maximum score range for similar files (two benign files and two metamorphic virus files) 

is 0.525 and minimum score range for different files (one benign versus one metamorphic 

virus file) is 0.588. This shows that there is a threshold of 0.063 between similar files and 

different files. There are one more combinations which are not very important in this 

scenario, but can be useful in further improvements. 
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5.2.4 Benign file versus other virus 

This combination is also important as the virus we are comparing does not belong to any 

family. To see if this graph technique is able to detect that this virus and benign files are 

different, we compared virus file with benign file.  

 

We have 41 benign files and 26 virus files which do not belong to any virus family. To 

have one to one comparison, we considered 26 virus files and 26 benign files. Figure 10 

is the graph created after calculating the scores of 26 virus and benign files. 

 
 

Figure 10: Graph for normal file versus other viruses 

 

This graph technique also differentiates between normal viruses and normal (benign) 

softwares. The range of the similarity score is 0.563 to 0.86. This range is closer to the 

third combination (metamorphic virus Vs benign file) range 0.588 to 0.966. This graph 

technique distinguishes between a benign file and any malware present in the dataset. 
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5.2.5 Combined graph 

Figure 11 shows combination of all graphs. 

 
 

Figure 11: Graph for all types combined 

 

There is a threshold between similar file scores and different file scores. Table 7 shows 

minimum scores and maximum scores for all cases explained till now. 

Metamorphic files versus metamorphic files 

 Minimum Score Maximum Score 
Similar Files 0.173 0.525 
 
Benign files versus benign files 

 Minimum Score Maximum Score 
Similar Files 0.023 0.468 
 
Benign files versus metamorphic files 

 Minimum Score Maximum Score 
Different Files 0.588 0.966 
 
Benign files versus other viruses 

 Minimum Score Maximum Score 
Different Files 0.563 0.860 

Table 7: Maximum and minimum scores 
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We have compared files with one to one mapping. But now we will compare one file 

with all other files using many to many mapping. 

 

5.3 Comparing 10 benign files with 10 metamorphic files 

For this combination, we are taking 10 benign files and 10 metamorphic virus files. We 

will get 100 different observations from many to many comparisons. Figure 12 shows 

graph of 100 scores for 20 different file combinations. In figure 12, match case is grayed 

out as those records are temporarily disabled to show only non-match case. Figure 15 

shows the complete graph. 

 

 
 

Figure 12: Showing graph for normal file versus metamorphic virus file 

 

Minimum score here is 0.555 and maximum score is 0.933. Score 0.555 is greater than 

0.525 which is the maximum score for similar files. Graph technique easily identifies 

different file or similar file. 
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5.3.1 Average score calculation 

If we take the average of 10 scores for a particular file compared with different type of 

files, we can surely differentiate between metamorphic virus files and benign files using 

this graph technique. We took average of each benign file by adding all ten scores and 

dividing it by 10. It can be seen in figure 13. 

 

 
Figure 13: Graph plotted after average score calculations 

 

In figure 13 minimum average score is 0.6464 and maximum average score is 0.844. 

Minimum average score is larger than threshold 0.525. Before taking average, minimum 

score was 0.555 which was closer to threshold 0.525 as compared to the minimum 

average score of 0.6464. It gives confirmed results of similarity or differentiation. 
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5.4 Comparing 10 metamorphic virus files 

Mapping for this comparison will be many to many. Any two metamorphic virus files 

compared with each other using this graph technique will give the same score even if 

order of the files is changed. So here we will get 45 distinct scores from many to many 

mapping of 10 virus files. Figure 14 shows the graph with non-match case disabled 

(grayed out). Figure 15 shows the complete graph. 

 

 

Figure 14: Metamorphic virus versus metamorphic virus 
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Figure 15: Graph showing match and non-match case together 
 

Figure 15 shows both match case versus non-match case. There is a threshold of 0.06 

between match case and non-match case. No false positives or false negatives were 

found. 

 

But now there is a need to check if the formula is effective for metamorphic virus 

detection. To test its strength, we made some changes in parameters of the formula and 

calculated the scores with one to one mapping between a set of 41 benign files and 

metamorphic virus files and another set of 100 metamorphic virus files. 

 

5.5 Parameter variations in the formula 

5.5.1 First variation 

Now we need to test formula for its strength. In the first variation, we took the square of 

the difference and then went on adding it to the cumulative sum.  
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Equation 2: Squaring the difference and taking the summation 

 

This change in the formula is tested against the same dataset. After calculating score 

using this changed formula, graph in figure 16 was plotted. Normal file option is disabled 

for time being. 

 

 

 

Figure 16: Result of first variation for match case 

 

The scores for similar files are ranging from 0.003 to 0.007. Scores for different files are 

shown in figure 17. 
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Figure 17: Result of first variation for non-match case 

 

Scores are ranging from 0.0054 to 0.0085.  

 Minimum Score Maximum Score 
Similar Files 0.003 0.007 
Different Files 0.0054 0.0085 

 

Table 8: First variation scores 

 
 

 Threshold = 0.006 
False Positives 2 
False Negatives 17 

 

Table 9: First variation - false positives and negatives 
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Figure 18: Result of first variation 

 

In figure 18, scores are overlapping for different and similar files. This formula change is 

not much effective, as there are many false negatives though less false positives. 

5.5.2 Second variation 

In this variation, we are keeping the above change as it is but removing n2 from it. As n is 

the total number of distinct instructions present in both the files, it might not affect much 

in similarity score.  
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Equation 3: Removed n
2
 from Equation 2 

 

After removing n2 from the formula, we got figure 21 for similar and different files. 
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Figure 19: Result of second variation 

 
 

 Minimum Score Maximum Score 
Similar Files 10.241 26.072 
Different Files 25.159 48.695 

 

Table 10: Second variation scores 

 
 

 Threshold = 25 
False Positives 0 
False Negatives 2 

 

Table 11: Second variation - false positives and negatives 

 

Figure 18 and figure 19 show that this formula also works but not as accurate as the 

formula in equation 1, that is, no threshold to differentiate between similar or different 

files but very less false positives and negatives.  
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5.5.3 Third variation 

In this change, we are removing n2 from Equation 1. For every score calculation, we are 

dividing by the square of the total number of distinct instructions present in both the files. 

The value of n is approximately similar in all the cases. The score might not get affected 

due to removal of the n2 term.  
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Equation 4: Removing n
2
 from Equation 1 

 

 

Figure 20: Result of third variation 

 

The only difference is that values are in thousands range with a separation of 146 and no 

false positives or false negatives.  

 Minimum Score Maximum Score 
Similar Files 585.056 2084.291 
Different Files 2230.528 6783.549 

Table 12: Third variation score 
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5.5.4 Fourth variation 

Till now we have seen that value of n2 does not affect much. Another small change could 

be removing n2 and only keeping n which is nothing but total number of distinct 

instructions present in both the files. 
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Equation 5: Keeping only n in Equation 1 

 

 

Figure 21: Result of fourth variation 

 
 

 Minimum Score Maximum Score 
Similar Files 10.087 33.083 
Different Files 37.659 77.971 

 

Table 13: Fourth variation score 

 

No false positives or false negatives appeared in figure 21 with threshold of 4.576. 
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5.5.5 Fifth variation 

In this variation, the term n2 is kept constant as (110)2 and graph is plotted in figure 22. 
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Equation 6: Replaced N
2
 with (110)

2
 in Equation 1 

 

 

Figure 22: Result of fifth variation 

 

Though there are no false positives or negatives present, threshold 0.012 is not larger 

enough. This proves that Equation 1 is more effective.   

 Minimum Score Maximum Score 
Similar Files 0.048 0.172 
Different Files 0.184 0.56 

 

Table 14: Fifth variation score 
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6. Observations 

From all above test cases, we observed that the graph technique differentiates between 

metamorphic virus files and benign files.  

 

Graph technique was tested against many types of files. The similarity score distinguishes 

between similar and non-similar files. When two virus files not belonging to any virus 

family are compared, results show that their score fall in similarity range. When two 

metamorphic virus files from the same family are compared, again the score falls in the 

similarity range. When two benign files are compared against each other, score classifies 

them as similar files. 

 

But when a benign file is compared against a simple virus or metamorphic virus, results 

immediately show that it belongs to different score range. When this score calculation is 

computed using variations in the formula, all figures from section 5.5 show that formula 

in equation 1 fits the best as compared to other variations. 
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Figure 23: Equation 1 results for both the cases 

 

Parameter Variations Threshold False Positives False Negatives Score range 

Without variation 0.063 0 0 0.173 – 0.966 
First variation NA 2 17 0.003 – 0.0085 
Second variation NA 0 2 10.241 – 48.695 
Third variation 146 0 0 585.056 – 6783.549 
Fourth variation 4.576 0 0 10.087 – 77.971 
Fifth variation 0.012 0 0 0.048 – 0.56 

 

Table 15: Comparison between parameter variations 

 
To check which variation was the most effective, all score ranges are normalized. 

Parameter variation 1 and 2 are removed from the comparison as there is no clear 

threshold between similar and different files. Table 16 shows all threshold values. 

Parameter variation Threshold False Positives False Negatives Score range 

Without variation 0.0630 0 0 0.173 – 0.966 
Third variation / 10000 0.0146 0 0 0.0585 – 0.6783 
Fourth variation / 100 0.0457 0 0 0.1008 – 0.7797 
Fifth variation 0.0120 0 0 0.048 – 0.56 

 

Table 16:  Comparison between normalized parameter variations 

In equation 1, threshold is higher as compared to other variations. 
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7. Analysis of graph technique 

Following are the key features of this technique. 

• Common instruction is present in both the files. Range of total difference for a 

common instruction (row) is 0 to 2. 

• The sparse matrix is normalized to make it a row stochastic matrix. This 

normalization helps in calculating the probability of similarity. If the matrix is not 

normalized, then this technique can be attacked by increasing the number of 

instructions using dead or junk code insertions. 

• If an instruction is present in one file but not in the other file, then it is a distinct 

instruction. The difference of rows representing distinct instructions is one.  

 

Due to all the above features, detection rate of the graph technique is close to 100%.  

HMM virus detection technique [6] was also successful in detecting NGVCK 

metamorphic virus files. But HMM detection technique failed when morphing engine 

implemented in [7] was used to morph metamorphic virus copies by inserting 30% of 

dead and junk code. 

 

Next step in this project is to create an attack on this graph technique by compromising 

its features and by using morphing engine from [7] to morph metamorphic virus files. 
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8. Attacks on the graph technique 

A metamorphic virus file may contain some instructions which are uncommon (not 

present) in benign files. If we try to replace or remove those instructions to make 

metamorphic virus file look like a benign file, then test that virus file against a benign 

file. This might give us score which falls in the similar score range. Removing such 

instructions will also lower the score.  

8.1 Removing distinct instructions 

Distinct instructions which are not present in benign file but present in virus file are 

removed from the virus file to make it look like a normal file. Almost 80% of distinct 

instructions are removed from a virus file, and scores are calculated. Figure 24 shows the 

different file scores before and after the attack. 

 

Figure 24: Graph for different files after instruction removal attack 



 49 

 

 Minimum Score Maximum Score 
Score before the attack 0.588 0.966 
Score after the attack 0.511 0.94 

 

Table 17: Different file scores 

 

Minimum score fell below the threshold for different files. There is one false negative. 

 Threshold = 0.5 
False Positives 0 
False Negatives 1 

 

Table 18: Number of false positives / negatives after the attack 

 
 

From table 18 it is clear that, this attack is able to remove the threshold but it is not 

successful in defeating the virus detection. 

 

 

Figure 25: Graph to compare similar and different files after attack 
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8.2 Using a morphing engine 

8.2.1 Morphing engine based on subroutine code insertion and 

instruction substitution 

In [7], morph engine results are really good in terms of junk and subroutine code 

insertions. Dead instructions are a set of instructions which are intentionally kept at a 

place where control never comes and those instructions will not be executed. False loop 

condition is never true and control does not enter in the loop through out the execution. 

When dead instructions are placed into the code segment, they do not get executed due to 

a new jump or a false loop condition. In [7], junk code insertion denotes dead instructions 

added in between a code segment. Before the dead instructions, a new jump instruction is 

added which points to the original code and avoids dead code execution. There is one 

more type of dead code insertion which is subroutine code insertion. A function in the 

morphing engine copies subroutines from normal file and pastes it into the virus copy to 

make it look similar to the normal file. As this subroutine is not called anywhere in the 

virus file, it becomes a dead code. Instruction substitution though not carried out on a 

higher percentage, morphs the virus copy. Instruction substitution is not of much 

importance here as it constitutes to 2-3% of the complete code.  

 

Here we have two major cases, junk code insertion and subroutine insertion. After 

modifying the morphing engine in [7] to satisfy current requirements, scores for 30% and 

40% morphing are calculated and following is a 30% morphed graph. 
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Figure 26: 30% subroutine code inserted in metamorphic virus files 

 

In figure 26, similar file scores are getting merged with different file scores at some 

extent. Almost 4 files fall into false positive range. Similarly figure 27 is a graph for 40% 

subroutine code insertion case. It seems that this attack performs better than instructions 

removal attack.  

 

Figure 27: 40% subroutine code inserted in metamorphic virus files 
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8.2.1.1 Comparing HMM and graph based detection 

We will compare these results with the results stated in [7]. Figure 28 shows the result for 

30% subroutine code insertion tested against HMM based detection technique. 

  Minimum score Maximum score 
Similar Files 0.173 0.525 
Different Files 0.428 0.926 

 

Table 19: Scores for graph based technique 

 
False Positive False Negative 

4 0 

 

Table 20: False positives / negatives in graph based technique 

 
Table 19 and 20 shows results of our graph technique for morphed metamorphic viruses. 
 

 
False Positives False Negatives 

35 36 

 
Table 21: HMM based detection results with 30% subroutine insertion 
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Figure 28: HMM based detection results with 30% subroutines copied [7] 

 

Table 21 and Figure 28 show that HMM virus detection technique was failing for 30% 

subroutine copying from normal file. But our graph technique works much better as 

compared to HMM based detection technique. Graph based detection technique has 4 

false positives. In [7], HMM based detection failed for 30% subroutine code with 36 false 

negatives and 35 false positives. This way, second attack is also failing to break our 

graph technique and to evade virus detection.  

8.2.2 Morphing engine based on block dead code insertion 

In the block morphing, we are capturing a random block from benign file and appending 

that code into metamorphic virus. The size of the block depends upon the inputs such as 

percentage of morphing, virus and benign files, and the file sizes. First we need to count 

the total number of lines present in the virus file. To count the number of lines, we parse 
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the whole virus file ignoring comments, variable declarations, and blank lines. Then 

according to the given percentage input we calculate the total number of lines to be 

copied. Percentage value ranges from 0 to 1. For example, if the percentage value entered 

is x and total number of actual instruction lines is n, then total number of lines to be 

copied from benign file is n * x. If n is 700 and x is 0.2 then total number of lines copied 

from a benign file is 140. After appending the chunk of code in the metamorphic virus 

file, we calculate the similarity score for the metamorphic virus file as well as the benign 

file from which the chunk of code is copied. Figure 29 shows scores for all 40 morphed 

metamorphic viruses scored against 40 benign files for percentages ranging from 0.1 to 1. 

 
Figure 29: Scores for block morphed metamorphic viruses 

 
There is huge drop in scores for different kind of files. For 100% of morphing, the score 

is below the threshold of 0.525. Till 30%, scores are not affected much. There are only 4 

false positives and 6 false negatives as shown in figure 30.  
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Figure 30: Metamorphic and benign versus morphed metamorphic virus 

 

These scores are calculated when a morphed metamorphic virus is compared with the 

benign file from which the chunk of code is copied. Hence these two files look similar as 

we increase the percentage. Figure 31 shows a graph where metamorphic virus file is 

compared with the benign file from which the code is not copied.  

 

Figure 31: Metamorphic versus other benign 
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In figure 31, most of the scores are above the threshold of 0.5. It shows that even if the 

metamorphic virus file is morphed using benign code, it still can be detected using this 

graph technique. 

8.2.2.1 Comparing HMM and graph based detection for block morphing 

For this comparison, we have calculated scores individually for all block morphed copies 

of metamorphic virus files and benign files. To calculate HMM scores we used the HMM 

detector from [6]. Around 800 scores were calculated for benign files and metamorphic 

virus files for all percentage cases. Figure 32 shows 30% block morphed scores for 

metamorphic virus files and benign files. 

 

 
Figure 32: HMM - 30% block morphed scores 

 
In figure 32, there are many false positives and false negatives.  
 

  Minimum score Maximum score 
Morphed Metamorphic files -2.620 -43.488 
Benign files -3.437 -31.602 

Table 22: HMM - Minimum and maximum scores 
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From table 22, it is clear that all benign file scores lie inside the range of morphed 

metamorphic virus file scores. HMM is not able to distinguish between virus and benign 

files as there is no clear threshold to distinguish. If we consider a particular threshold of 

say -3.800 where > -3.800 are metamorphic virus files and < -3.800 are benign files, then 

values of false positives and false negatives are calculated as shown in table 23. 

False Positive False Negative 

1 9 

Table 23: HMM - 30% false scores 

 

Values of false positives and false negatives depend upon the threshold. If we increase or 

decrease the particular threshold then false scores are affected. Table 24 shows the false 

scores for 100% block morphing. 

 

Figure 33: HMM - 100% block morphed results 

Here if we consider threshold of -5.000 then table 24 shows the counts of false positives 

and false negatives. 
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False Positive False Negative 

11 3 

Table 24: HMM - 100% false scores 

 

From above figures and tables, it is clear that block morphing is not able to completely 

evade HMM based metamorphic virus detection. When we compare HMM based 

detection with graph based detection against block morphing engine, graph based 

detection is definitely more accurate than HMM as the numbers of false positives and 

false negatives are very less in case of graph based detection. 

8.2.3 Morphing engine based on random dead code insertion 

In the random morphing, we are capturing a random block from benign file and evenly 

distributing the whole chunk of instructions into metamorphic virus. The size of the 

chunk depends upon the inputs such as percentage of morphing, virus and benign files, 

and the file sizes. It is similar to block morphing in calculating the total number of lines 

present in the virus file. Then according to the given percentage input we calculate the 

total number of lines to be copied. Percentage calculation is also similar to block 

morphing. Main difference between these two morphing engines is how the metamorphic 

virus file morphed using the code copied from benign file. In random morphing, the 

copied code is evenly distributed through out the metamorphic virus file depending upon 

a factor “after_lines”. Value of “after_lines” is calculated by dividing length of the virus 

file with total number of lines to be copied. For example if the morphing percentage is 

100% then each statement from the chunk of code is inserted after each instruction in the 

virus file. Hence total number of lines in both the morphing engines will be same 
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according to the percentage value. Figure 34 shows scores for all 40 randomly morphed 

metamorphic viruses scored against 40 benign files for percentages ranging from 0.1 to 1. 

 

Figure 34: Randomly morphed metamorphic viruses versus benign files 

 

Random morphing did not remove the threshold between similar and different files, and 

instead improved the similarity score between different types of files. Here the score for 

all percentages is higher than 0.5. Hence this technique is able to distinguish between 

morphed metamorphic virus files and benign files. 

 

8.2.3.1 Comparing HMM and graph based detection for random morphing 

For this comparison, we have calculated scores individually for all random morphed 

copies of metamorphic virus files and benign files. Around 800 scores were calculated for 

benign files and metamorphic virus files for all percentage cases. Figure 35 shows 30% 

random morphed scores for metamorphic virus files and benign files. 
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Figure 35: HMM - 30% random morphed results 

 

If we consider a threshold of -5.0 and > -5.0 are metamorphic viruses and < -5.0 are 

benign files, then table 25 shows false score statistics. 

False Positive False Negative 

11 5 

Table 25: HMM - 30% false scores 

 

Figure 36 shows score ranges for 100% randomly morphed metamorphic virus copies and 

benign files. 
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Figure 36: HMM - 100% random morphed results 

 
If we consider a threshold of -5.000 then table 26 shows false scores. 

 
False Positive False Negative 

11 5 

Table 26: HMM - 30% false scores 

 
In random morphing, the total count of false positives and false negatives is larger than 

that of block morphing. Random morphing is more effective than block morphing in 

evading the HMM based metamorphic virus detection.  

 

8.3 Reason behind all morphing results for graph based 

detection 

In block morphing, the whole chunk is copied. That means the count of successive 

instructions is moving towards equality. It results in morphed metamorphic virus file to 

look like benign file from which the code is copied. But score between two similar files 

also has some non-zero value. So if another benign file is compared with the morphed 
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metamorphic virus file, then the score is still high which shows both the files are 

different. Figure 37 gives detailed information. 

 

Figure 37: Block morph example 

 
In random morphing, the overall chunk is scattered in the whole metamorphic virus file. 

This distribution is even and statements are inserted after particular number of lines. If 

there is increase in the count of successive instructions, then the score will also increase. 

And due to new insertions of statements the count for those successive instructions will 

increase. Figure 38 shows detailed information. 

 

Normal1.txt 
MOV 

ADD 

SUB 

Virus1.txt 
PUSH 

JZ 

INT 

Bmorph_virus1.txt 

PUSH 

JZ 

INT 
MOV 

ADD 
SUB 

Normal2.txt 
MOV 

ADD 

JNZ 

SUB 

Less 
different 

More different 

Different 
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Figure 38: Random morph example 

 
Whenever there is increment in the count of successive instructions, score will increase. 

If the score is high, that means both the files are much different in appearance or nature. 

Normal1.txt 
MOV 
ADD 
SUB 

Virus1.txt 
PUSH 
JZ 
INT 

Bmorph_virus1.txt 

PUSH 
MOV 

JZ 

ADD 
INT 

SUB 

Normal2.txt 
MOV 
ADD 
JNZ 
SUB 

More different More different 

Different 

Morphed 
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9. Conclusion 

Graph based detection technique distinguishes between viruses, benign files, 

metamorphic viruses, and randomly morphed metamorphic viruses. There is a threshold 

to distinguish between similar and different files with no false negatives or false 

positives. Graph based detection technique results show 100% detection with zero error 

rates. 

 

Similar and different file scores are affected due to variations in the formula. First 

variation lowered the accuracy of the technique with 17 false negatives and 2 false 

positives. Second variation showed better results as compared to first variation. It has 

only two false negatives. Third and fourth variations show a separation between similar 

and different types of files but the threshold value is small. Third and fourth variations 

have less impact on the results of the graph based detection technique. From the 

normalized score, equation 1 is the most effective formula with maximum threshold.  

 

In total, four attacks are carried out on graph based detection technique. First attack is 

instruction removal attack. This attack is not much effective in defeating the graph based 

virus detection as there is only one false positive. Second attack is to morph metamorphic 

viruses using a morphing engine based on subroutine insertion and instruction 

substitution to evade virus detection by graph based detection technique. This attack not 

only removed the threshold, but also created false alarms. There are 4 false positives due 

to the second attack. Second attack shows good results as compared to first attack. Graph 
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based detection results in second attack are compared with HMM based virus detection 

scores for morphed metamorphic viruses.  

 

For 30% of the subroutine code insertion, HMM based detection was showing 36 false 

negatives and 35 false positives for 40 benign files and 40 metamorphic viruses. In graph 

based detection technique only 4 false positives and no false negatives are observed for 

40 benign files and 40 metamorphic virus files. Though 4 benign files are caught as a 

virus, metamorphic virus detection is 100%. 

 

For third and fourth attack, we created our own morphing engines to test graph based 

detection and HMM based detection. In the third attack, the morphing engine appends the 

virus file with a chunk of code copied from benign file. In block morphing, the graph 

based technique failed to detect all virus and benign files after 70% of morphing. But 

when the morphed copies were compared against other benign files from where the code 

is not copied, then the graph based technique was much effective in differentiating 

between morphed metamorphic virus files and benign files till 100% morphing. There 

were 3 false positives in 100% block morphing when compared with other benign file 

from which the code is not copied to morph the metamorphic virus file.  

 

In fourth attack, morphing engine is inserting each statement from the chunk of code 

copied from benign file, into virus file at a particular interval. This in effect increases the 

count of successive instructions. So the similarity score between randomly morphed 
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metamorphic virus and benign virus file is increased, which shows that both these files 

are much different. 

 

Graph based detection technique proved to be better in detecting metamorphic viruses as 

compared to HMM based virus detection technique. For graph based detection technique, 

the numbers of false positives and false negatives are very less as compared to HMM 

based virus detection technique.  
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10. Future work 

Currently graph based detection technique is detecting NGVCK metamorphic viruses 

from IDAN family. We used an existing set of benign files, metamorphic virus files and 

other virus files. This set is limited in terms of file counts for viruses and benign 

software. Going forward, it would be useful if larger number of files is tested against this 

graph based detection technique. Every year millions of new malware are created [41]. 

So with larger data sets, it would be beneficial to consider more recent list of malware.  

 

In this paper, we concentrated on metamorphic viruses as they are the most difficult 

viruses to detect. This view can be broadened to other types of viruses like polymorphic 

virus, macro virus, resident virus etc.  

 

Any detection technique does not detect all types of malware. Another improvement 

would be to incorporate this graph based detection technique with other effective 

malware detection techniques to detect malware. This might prove to be effective and 

accurate. 
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Appendix A: More frequent assembly instructions [21] 
 
Instructions Use 

push Push data onto stack 

mov Move data from one place to another 

cmp Compare operands 

jne Jump if not equals 

clc Clear the carry flag 

xor Exclusive OR 

adc Add with Carry 

inc Increment by 1 

loop Loop control 

Jc Jump on carry 

jmp Simply jump to the location 

pop Pop data from stack 

leave Leave stack frame 

ret Return from procedure 

sbb Subtraction with Borrow 

jnc Jump if no carry 

enter Enter stack frame 

fld Floating point load 

fcomip Compare 

jna Jump if condition 

fcomp Compare and pop 

pusha 
Push all general purpose registers onto 
stack 

call Call procedure 

add Addition 

popa Pop all general purpose registers from stack 

Je Jump if equals 
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Appendix B: Additional scores and graphs 

 
 

Figure 39: Graph with all comparisons 

 
Benign files versus benign files 

 

File 1 File 2 Score 

IDAR0.asm  IDAR1.asm  0.227 
IDAR2.asm  IDAR3.asm  0.337 
IDAR4.asm  IDAR5.asm  0.344 
IDAR6.asm  IDAR7.asm  0.023 
IDAR8.asm  IDAR9.asm  0.357 
IDAR10.asm  IDAR11.asm 0.255 
IDAR12.asm  IDAR13.asm 0.246 
IDAR14.asm  IDAR15.asm 0.468 
IDAR16.asm  IDAR17.asm 0.14 
IDAR18.asm  IDAR19.asm 0.138 
IDAR20.asm  IDAR21.asm 0.326 
IDAR22.asm  IDAR23.asm 0.431 
IDAR24.asm  IDAR25.asm 0.316 
IDAR26.asm  IDAR27.asm 0.289 
IDAR28.asm  IDAR29.asm 0.112 
IDAR30.asm  IDAR31.asm 0.231 
IDAR32.asm  IDAR33.asm 0.454 
IDAR34.asm  IDAR35.asm 0.431 
IDAR36.asm  IDAR37.asm 0.191 
IDAR38.asm  IDAR39.asm 0.424 
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Family of Metamorphic Viruses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Other viruses 

File 1 File 2 Score 

IDAV0.asm  IDAV1.asm  0.007 

IDAV2.asm  IDAV3.asm  0.016 

IDAV4.asm  IDAV5.asm  0.012 

IDAV6.asm  IDAV7.asm  0.003 

IDAV8.asm  IDAV9.asm  0.023 

IDAV10.asm  IDAV11.asm 0.245 

IDAV12.asm  IDAV13.asm 0.236 

IDAV14.asm  IDAV15.asm 0.264 

IDAV16.asm  IDAV17.asm 0.333 

IDAV18.asm  IDAV19.asm 0.211 

IDAV20.asm  IDAV21.asm 0.174 

File 1 File 2 Score 

IDAN0.asm  IDAN1.asm  0.395 
IDAN2.asm  IDAN3.asm  0.354 
IDAN4.asm  IDAN5.asm  0.437 
IDAN6.asm  IDAN7.asm  0.384 
IDAN8.asm  IDAN9.asm  0.327 
IDAN10.asm  IDAN11.asm 0.29 
IDAN12.asm  IDAN13.asm 0.293 
IDAN14.asm  IDAN15.asm 0.173 
IDAN16.asm  IDAN17.asm 0.214 
IDAN18.asm  IDAN19.asm 0.419 
IDAN20.asm  IDAN21.asm 0.283 
IDAN22.asm  IDAN23.asm 0.335 
IDAN24.asm  IDAN25.asm 0.339 
IDAN26.asm  IDAN27.asm 0.331 
IDAN28.asm  IDAN29.asm 0.406 
IDAN30.asm  IDAN31.asm 0.525 
IDAN32.asm  IDAN33.asm 0.235 
IDAN34.asm  IDAN35.asm 0.409 
IDAN36.asm  IDAN37.asm 0.298 
IDAN38.asm  IDAN39.asm 0.272 
IDAN40.asm  IDAN41.asm 0.414 
IDAN42.asm  IDAN43.asm 0.247 
IDAN44.asm  IDAN45.asm 0.287 
IDAN46.asm  IDAN47.asm 0.332 
IDAN48.asm  IDAN49.asm 0.286 
IDAN50.asm  IDAN51.asm 0.333 
IDAN52.asm  IDAN53.asm 0.298 
IDAN54.asm  IDAN55.asm 0.218 
IDAN56.asm  IDAN57.asm 0.291 
IDAN58.asm  IDAN59.asm 0.357 
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Benign files versus metamorphic virus files 

 

File 1 File 2 Score 

IDAR0.asm  IDAN0.asm  0.702 

IDAR1.asm  IDAN1.asm  0.738 

IDAR2.asm  IDAN2.asm  0.933 

IDAR3.asm  IDAN3.asm  0.706 

IDAR4.asm  IDAN4.asm  0.82 

IDAR5.asm  IDAN5.asm  0.675 

IDAR6.asm  IDAN6.asm  0.782 

IDAR7.asm  IDAN7.asm  0.588 

IDAR8.asm  IDAN8.asm  0.635 

IDAR9.asm  IDAN9.asm  0.761 

IDAR10.asm IDAN10.asm 0.701 

IDAR11.asm IDAN11.asm 0.677 

IDAR12.asm IDAN12.asm 0.722 

IDAR13.asm IDAN13.asm 0.666 

IDAR14.asm IDAN14.asm 0.856 

IDAR15.asm IDAN15.asm 0.714 

IDAR16.asm IDAN16.asm 0.615 

IDAR17.asm IDAN17.asm 0.64 

IDAR18.asm IDAN18.asm 0.632 

IDAR19.asm IDAN19.asm 0.7 

IDAR20.asm IDAN20.asm 0.725 

IDAR21.asm IDAN21.asm 0.7 

IDAR22.asm IDAN22.asm 0.705 

IDAR23.asm IDAN23.asm 0.66 

IDAR24.asm IDAN24.asm 0.881 

IDAR25.asm IDAN25.asm 0.803 

IDAR26.asm IDAN26.asm 0.746 

IDAR27.asm IDAN27.asm 0.663 

IDAR28.asm IDAN28.asm 0.632 

IDAR29.asm IDAN29.asm 0.695 

IDAR30.asm IDAN30.asm 0.77 

IDAR31.asm IDAN31.asm 0.759 

IDAR32.asm IDAN32.asm 0.643 

IDAR33.asm IDAN33.asm 0.725 

IDAR34.asm IDAN34.asm 0.966 

IDAR35.asm IDAN35.asm 0.806 

IDAR36.asm IDAN36.asm 0.705 

IDAR37.asm IDAN37.asm 0.783 

IDAR38.asm IDAN38.asm 0.896 

IDAR39.asm IDAN39.asm 0.79 

IDAR40.asm IDAN40.asm 0.912 
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Figure 40: 30% junk code inserted 

 

 
 

Figure 41: 30% dead code inserted 

 



 78 

 
 

Figure 42: 40% dead code inserted 

 

 
 
 

Figure 43: 40% junk code inserted 
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Figure 44: Consolidated block morph HMM results for metamorphic viruses  

 
 

 
Figure 45: Consolidated block morph HMM results for benign files 
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Figure 46: Consolidated random morph HMM results for metamorphic viruses 

 
 

 
Figure 47: Consolidated random morph HMM results for benign files 
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