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Promoter

Prediction Based on

E. coli Characteristics

This project uses the characteristic in TATA-less regions on E. coli sequences to
predict the promoter region before TSS, which indicate that the real gene has

been located. It uses several well-known algorithms and methods such as the
sliding window algorithm, and a clustering method to predict promoters. It also
contains D2K algorithm and method to compare predicted result with other
online promoter package result.

Li Wen
Dr. Sami Khuri
12/16/2011
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Introduction

Recent promoter predictions

A promoter is a piece of DNA sequence which frequently appears before its
associated gene in an E. coli sequence. Researchers predict the location of a
promoter when trying to locate a gene in a given sequence. These researchers use a
variety of algorithms to predict locations of promoters. These algorithms include
machine learning, artificial neural network, the Markov model, the weight matrix, etc.
Abeel et al apply machine learning [10][13] and Bland et al use artificial neural
networks [8] to classify and output the predicted promoter location of any given
unknown sequence. Burden et al apply the weight matrix algorithm [5] to identify
motifs in the promoter region. Burden et al also use Markov model [5] to find the
shortest path to the promoter location. Most of the researchers use the combination
of artificial neural network, machine learning, and Markov model to increase the true
positive prediction results [8].

Some researchers provide additional information when predict promoter location.
For example, Gan et al introduced the idea of using non-CpG [6] region information
as CpG region for prediction. Gan et al found the equal significance of non-CpG
region in their experiment. Burden et al use the distance between TLS and TSS for
prompter prediction [5]. The distance between TSS and TLS provide additional clues
of promoter location which can increase the true positive of prediction. Davuluri et al
are interested in finding the first exon [4], since it is the most difficult promoter
location to find. First Exon Finder—FirstEF [4] uses CpG information to find the first
donor site for first gene exon predict.

Data used for promoter prediction varies. Wang et al use the comparison of human
and mouse genome for prediction [14] [4]. Laser et al use mammal and plant
genome for prediction [26]. Most of the data used in promoter prediction is E. coli [8],
especially E. coli K12 for its promoter richness [30]. In my research, | used E. coli from
NCBI [30] database and plant data that | retrieved form plantDB [3]. Plant data are
only used for testing and training purpose.

The researchers discussed above using their algorithms and data were able to
reliably predict the location of a promoter.

The lack of using TATA-less regions in researches

TATA box is a piece of DNA sequence that usually appears in promoter region.

Originally, it has been used to locate promoter locations [2]. However some

researchers prefer not user TATA box as a signal of the promoter region. Burden et al

state that the TATA box is not an effective resource for promoter prediction [5]. The

data sequences they used in their experiment are mixed with TATA-rich, and
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TATA-less promoters; their analysis shows no strong relation connects TATA-less
regions with promoter regions. For example, in the paper “Improving promoter
prediction”, Burden et al said that the characteristic of TATA box is limited and cannot
be used to recognize when indel happens [5]. Also, the definition of TATA box says
that less than 20% of human promoters have TATA box, which leads the rest of the
promoter regions unsearchable by using TATA box as searching factor [21]. Burge et
al show in their experiment only 70% of core promoter contains TATA box [23].
Therefore, most researchers ignored a large amount of available data—TATA-less
region during promoter prediction process.

Motive of using non-TATA region

The idea of using non-TATA region for promoter prediction comes from one of the
research papers—“A pattern-based nearest neighbor search approach for promoter
prediction using DNA structural profiles”. In their research, Gan et al discovered that
non-CpG-island region contains similar characteristics with CpG-island region [6]. Gan
et al researched CpG-island region by compute the gravity of CpG in every promoter
region in given sequences. Researchers did the same calculation for non-CpG-island
region. The results show that non-CpG-island region provide equally important
prediction information. For any given unknown sequence, the promoter can be
predicted by using both CpG-island and non-CpG island classes to increase prediction
result.

In my research | will use information on non-TATA regions for promoter prediction.
TBP (TATA binding protein) is used to bind sequences with TATA box, and | am looking
for the regions in TATA-less sequences that will be bind with other binding proteins in
TFIID (transcription factor II D) [22]. Promoter regions usually contain TFIIB
recognition element (BRE), TATA box, Inr, and downstream promoter element (DPE).
Most of promoters miss one of these elements, and for promoters that do not have
TATA box will have a high probability of having DPE [23].

State of theory

Thus far, no research has focused on using non-TATA regions for promoter prediction.
TATA box is used for promoter prediction in many papers for sequences contain TATA
box. For sequences without TATA box information, existing algorithms cannot do
much analysis in the data mining step of the prediction. Sequences without strong
TATA box information are basically ignored during data mining step.

In this paper, | studied the characteristic of non-TATA or less-TATA region. | found the
characteristic in TATA location of non-TATA regions, to get clues as to predict
promoter region based on both TATA and non-TATA information. The model of this
project was trained and acts like a polymerase. Polymerase does not use TATA box
regions, but it was based on the structure or chemical statement of TSS in order to
open the double helix, and start coping gene. This initial location indicates that a real
gene is many nucleuses away, and waiting to be copied. Finding the initial location
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will be used as characteristic of the TATA box in this paper. These characteristics will
be coded in the model to detect any given E. coli sequence from NCBI.

| hope to show that the predicted gene location will be close to real gene location in
NCBI database, or get more true positive values than several popular online
prediction tools. These tools include EasyGene, GenScan, Virtual Footprint, and
Glimmer (the original prediction that used by NCBI).

Theory Testing (Approach)

Software and algorithms used during theory testing step

For this research | used a combination of commercial and custom software. The
commercial software is SAS—a well-known business analytical software. I'll first try
to find the significant of non-TATA region information by using SAS. For this research,
| also created a custom Perl program—called E. coli Gene Finder (EGF), which
encodes machine learning, data mining, five folds, and the artificial neural network
algorithm. | used this software combination to find the most important
characteristics of the non-TATA region in my training data. | also use these algorithms
to find the threshold which define the decision tree. The EGF is adjusted in the
theory testing step to filter out a promoter sequence out of any given E. coli
sequences. The steps of using SAS for sequences are listed in the steps section below.
During model training step, fivefold method will be used.

Data set used in theory testing step

The data set | used for training my model purpose is plant promoters that are
obtained from PlantProm DB [7]. 170 of them are TATA rich plant sequences and 130
of them are TATA-less plant sequences. Once the significance of non-TATA
information is discovered by using SAS and my program, I'll use E. coli data sets for
both my training and testing data in the machine learning step. The reason to choose
promoter data set from PlantProm DB are: first, they provide a clear plant data for
both TATA rich promoter region, and TATA-less promoter region. | choose the plant
data with the intention that the theory could be applied to other species.

Pretest on TATA region

The basic characteristic of TATA box is it matches the expression 5'-T AT A (T/A) A
(T/A) ---3’. Data in TATA rich promoter are input in an online promoter prediction
service—BDGP [3]. It is a neural network promoter prediction web service that
developed by Berkeley Drosophila Genome Project. It uses the combination of a
neural network and weight pruning to search for consensus elements, such as TATA
box, CpG Island, CAT box, etc. When testing 170 TATA rich sequences, TATA rich
sequence’s characteristic is clearly displayed in the similar location of each of
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submitted sequence—25 base pair upstream of transcription start site. None TATA
rich sequences—130 of them, also have been tested by using the same service, but
no characteristic are identified. The target of using SAS is to find some valuable
information around the location where TATA usually appears; since in reality, when
polymerase is walking along on the DNA double helix, it will find the initial point not
the letter TATA inside promoter region.

Steps of finding characteristic
Data of plant promoter are obtained from PlantProm DB [7] to test my hypotheses.
Steps of finding TATA and non-TATA data:

1.

3.

Get both TATA promoter and TATA-less promoter data from PlantProm DB
1.1 Base URL: http://mendel.cs.rhul.ac.uk/mendel.php?topic=plantprom
1.2 175 TATA rich location: http://mendel.cs.rhul.ac.uk/pprom/PLPR_TATA.seq
1.3130 TATA less location:
http://mendel.cs.rhul.ac.uk/pprom/PLPR TATA-less.seq
Filter out the known promoter parts from both data sets
2.1 Write EGF (Perl program) to filter the two original data sets
2.1.1 Change the input and output file names of both data files
2.1.2 Delete the unwanted original data file
2.2 Extract the promoter parts
2.3 Output two generated promoter data sets
2.3.1 Match all the word character lines in the file
2.3.2 Go to a new line for a new sequence
2.3.3 Both TATA rich and TATA less sequences were processed
Generate statistics on both promoter sets
3.1 Perform a relation test on TATA promoter data set
3.1.1 Find the average location of TATA box for both “TATA” and “TATAA”
3.1.1.1 Get TATA location in each sequence
3.1.1.2 Get average location by using below formula:
average= 2 locations/total number of sequence
where locations are cutting off from 160 since less than 160 will be
out of promoter region. Average = 171. This formula was coded
and tested inside the main Perl program in data testing section.
The results are given in Figure 1 and Figure 2.
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Figure 1. Test result for TATA location for TATA rich promoters in file
TATApromoter175.txt. First column is the sequence number from 1
to 175, followed by the TATA location that is detected by the
program in that sequence. Location number less than 160 is
ignored since it is out of promoter region. The average of
remaining sequence that matches promoter region definition is
calculated as 171.08333.

ICCACTATATAAATCAEEECTCATTTTCTCECTCCTCAacagEcTCAlLILY
icaattctagattttgttataaaattcacatattgtatgagtataATACAT
itgggagctataaaaagoctigtagcatgatcatcatoccttoctcACCCAT
itasacactataasaacccactgcaacaacctigtatcaacgocattGAAAGD
tctcgttatatatagataaccaaagcgatagacaaacaagtaagt TAAGAD
itctacatttcactatatatataccaacttagocttgocttctocatcATAATC
tgccgtgctgracctataaattcacatgcaccggoatgocactccACACAA
icgggttocctctataaatacatttocctacatocttoctottctoctcACATCC
iccttgctttctaaatatacatacatatacttgocctattacgoaadGTCAC
rcctttatctcactataaatgocacgatgatttctocattgtttctcACAALA
cacaccccctoccctataaataccaggcacctagtacacttgtaacCATCAG
tggcatcgacttcctataaataccaagcacgtagaactcttgtaalCATCA
tgccatccactgoctataaataccaagoacgogggacacttgtggCCATCA
tggcatcgactgocctataaatacgaagocgoggtacacttcttagCCATCA
tgecatcgactgocctataaataccaagcacgtcgaacacttgtaalCATCA
tcgagtcccctgoctataaataccaagcacgtggtacgcttgtagCCATCA
tcgagtcccctgocctatamataccaagcacgtagtacccttgtagCCATCA
ctcgtcaccttactataaatctoctoctoctoctoctoctoctoctoctoctoctgAACCAG
tctctocctoccggccaatataaacaccaattctcactctcacttttTATACT
catgctgcagcacactataasatacctggoccagacacacaagotgaATGCAT
cgagtttgtgactatasaacctctoccacttggttcttcactoctcACTGTT
ttccattaatcccctatataaaggactoccatatgoctcaccattcACTCAT
cagtaaggcccccaactaatataaaaaccagttattggetgtg ttACTCAT
tcctaatcacaggcattataaatggcacaggcaattagoctocatc TACACA
taacccactctataaaaatcaccctgatccttocctatgaaatccalGTCOC
cccagctataaatacgtoctoccctoccttctocttoctocctcatecgCCCTCA
ictgtaaagccatttatatacacttagtgocaaagoccatgaaactCAAGLC

Figure 2. The graph shows that the TATA location (in green) is
almost at the same location for each sequence. The capitalized
sequence is the start of TSS.

3.1.2 Find average location of TATAAA box
3.1.2.1 Get TATAAA location in each sequence



3.1.2.2 Get average location by using below formula:
average= 2 locations/total number of sequence
where locations are cutting off from 160 since less than 160 will
be out of promoter region. Average = 174. Results are given by
Figure 3 and Figure 4.
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Figure 3. Test result for TATAAA location for TATA rich promoters in
file TATApromoterl175.txt. First column is the sequence number
from 1 to 175, followed by the starting point of TATA location in
that sequence. Location number less than 160 is ignored since it is
out of promoter region as before. The average TATA start point is
calculated as 173.8556

tctcactataaatgracgatgatttctocattgtttctcACAlA
ictccctataaataccaggcacctagtacacttgtaacCATCA
zacttcctataaataccaagcacgtagaactcttgtaaltCATC
cactgcctataaataccaagcacgcgggacacttgtggCCATC
ractgcctataaatacgaagccgcggtacacttcttagCCATC
ractgcctataaataccaagcacgtcgaacacttgtaaltCATC
ccctgoctataaataccaagoacgtggtacgottgtagtCATC
cctgoctataaataccaagoacgtagtacccttgtaglCATC
cttactataaatctoctoctoctoctoctoctoctoctoctoctotghACCA
tccggocaatataaacaccaattctcactotoacttitTATAC
tagcacactataaatacctggccagacacacaagotgaATalA
rtgactataaaacctctocccacttggttcttcactoctcACTGT
iatcccctatataaaggactccatatgoctcaccattcACTCA
rcccccaactaatataaaaaccagttattgggtgtpttACTCA
cacaggcattataaatggoacaggcaattagocctcatcTACAC
ctctataaaaatcaccctgatoccttocctatgasatocalaTol
staaatacgtctoccctoocctictocttoctoctcateglCOTC

Figure 4. The graph—from program notepad, shows that the
TATAAA location (in green) is almost at the same location for each
sequence with several nuclides length difference. The capitalized
sequence is the start of TSS.
3.1.3 Result: the location of TATA box in these plant sequences is around
170, since the data starts from -200 of TSS, the relative location of
TATA to TSS will be around -30 (-30=200-170). This confirms that
promoters containing TATA box are right before TSS, around -30
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location [1][2].
3.2 Perform the same test on TATA-less promoter data set

(TATAlessPromoter130.txt)

3.2.1 Theory: Get sub-sequence from -35 (get from -30-5 above) with length
20 out of each sequence. The idea of getting the information out of
TATA-less sequences on the same location where TATA box appear in
TATA-rich sequence is the motivation of polymerases. The polymerase
has to be initialed before face the real gene; and that initialization
must happen on the similar location of each sequence, and it doesn’t
matter whether it contains TATA or not. Therefore, this section will get
other characteristics in addiction to TATA box out of TATA-less
sequence. The finding will be used to predict gene in TATA-less
sequences.

3.2.2 Find characteristic

3.2.2.1 It cannot be done by using the same approach since it is TATA less
sequence. TATA are all over the sequences. It is shown in Figure 5.
atatatcttttcattttgtataattgagattattaaacasagocttaatttCTAGTAL
ccagctccagtccggracccgatataaagcggcaggcacttggattgoctgACGAGAT
taaaagatactgattaatccagagggtttatatctacgocgtctoccattgATTATTI
tgcccagagcatcccacgactacaaaacacggctgeccggageattataaCACGATI
caatatgccaatccacgtgtatttaaggcgtcacatagctcggoctotatACTTTGE
gtgtccacaatcagtctccatccattcctatataacaagcagotcgagacATAAAAL
aggccacccacccgoctatttaagocgogoctocccoctocattcocctoc AAGAAGS
cagagcactggggttttgcaactatttattggtccttctggatctoggagflAlCC
cgtatgcatctoctttacttataattcggacagogogaatoocctatgogocAGCTCAT
tccacactggccactoccctgcacttctataaacctttgtagcatatocttcACTCTTL
ttaatatattatttttatttattttattcatttatgtccaacaaattcatTTGATAL
aacaaaactacagtacttttctacaaatcaaatgtaaatcaattccatttCATTACT
tctacgtgcgoccttgggcctacatatgocctgctgtgggagtacccgtgcACAACAL
ctttctctctocctocctocttcataaaamaaccttctcactgatocccatccAGAAAASL
gtatcatcaaaccaacctctctoctctccactctactcatccoccttatctglGTATC

tgatcatagagcatattataagagagtgaaaactaatggaggttggoctcAAGAAGT
etattaattttataasttratctttatraraatertaatetattteracalhl CAATL

Figure 5. In TATA less file, the TATA characteristic cannot be used
since their location is not fixed, and some sequences don’t have
any TATA sequences.

3.2.2.2 Get the promoter region (-35, -1) with TSS region (+1, 40), and find
characteristics from the same data by using SAS, where all
characters are converted to numbers,
[a,c,t,8,A,CT,G)/[1,2,3,4,5,6,7,8]. SAS is the data analysis software,
it can tell information out of given data. Next section will try to get
characteristic by using SAS.

3.2.3 Relational test by using SAS to get characteristics

3.2.3.1 Pearson correlation coefficient is tested between promoter region
(X2-X35) and TSS region (X36-X86). Pearson tests are done
between every pair of column. Some of the columns are related
with correlation value bigger than 0.9, such as the correlation
between X17 and X37 is 0.9783.



3.2.3.2 Given X17, what is the value for X37? In other words, how to

predict X37 of TSS region by using X17 of promoter region? We
need to find a line that best fits the regression, so that the
regression testing is done by using dependent variable X37 and
independent variable X17 to minimize the sum of squared vertical
distance from each data point to the line (residual). The formula
we used is:
X37 =a+b* X17

where “a” is intercept and b is slope. The dependent variable—b is
not significant enough to predict the independent variable X37.

3.2.3.3 Similar test for codon—3 nucleotides a pair, instead of single

nucleotide are also finished. No significant results are found
between codons.

3.2.3.4 Similar test for first TSS codon of each single nucleotide contains a

b)

c)

d)

e)

percentage of the promoter regions which means testing a
nucleotide in the first TSS codon that appears in the promoter
region. Half of the total length of the promoter region (33/2=17) is
used to prune noisy data. Noisy data is defined as outstanding
data—the first 3 nucleotides of TSS is less than half of the total
promoter nucleotide. Steps to calculate first 3 TSS single
nucleotides are list as below.

Get number of each of the first 3 nucleotides of TSS in

promoter region. Such as Saa = number of first nucleotide

used in promoter region.

Sum them for each sequence. Sdd = sum of all three

nucleotides usage.

Get percentage of above sum = Sdd / promoter region

length

Sum the percentage for all sequences with total usage

bigger or equal to half of the promoter length. Stotal =

Stotal + Sdd for every $Sdd >=17.

Take the average = Stotal / number of sequences with

Sdd >=17.

3.2.3.5 Test Result.
3.2.3.5.1 The result shows that most of the promoter region

contains more nucleotides that belong to the first 3 TSS. In
this case 130 TATA-less sequences are tested, 97 of them
contains high usage of the first 3 TSS with average usage
equal to 0.7085.
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Figure 6. Test result for TATA less promoters
3.2.4 Conclusion: From this experiment we can see that even though the
sequences don’t have TATA box as characteristic to signal promoter
region, the nucleotide usage in promoter region can be used as a clue
of TSS region. From Figure 6, sequence 128, it clearly shows that the
‘tga’ usage is 31 out of 33, there is only one ‘c’ used before TSS. This
finding can be used as a secondary characteristic to indicate a real
gene in TATA-rich sequence. And for the same reason, it can be used
as the main characteristic to predict real gene from TATA-less

sequence.

4. Analyze the results and get characteristic for both data set

4.1 For TATA rich sequences, use TATA as consensus sequence to identify the
promoter region.

4.2 For TATA less sequences, use first 3 TSS nucleotides to signal the TSS position.
Since the finding depends on individual nucleotides, it is not very significant,
therefore it cannot be used as a characteristic to locate promoter region in
general.

5. Working with the data on protein level
5.1 Translate both TATA rich and TATA-less sequences into amino acids
equivalents and see if any significance appears up in the next attempt. The
idea behind this transition is when polymerase bind to the TATA boxes, it is
not attracted by the nucleotides of TATA or TATAAA, and instead it is attracted
by the product of the nucleotides. Therefore, if polymerase can bind to the
promoter region without TATA box as common notation, then it needs to find
similar protein to bind. The TATA-less region needs to have such a protein to
attract polymerase for initiation of TSS.
5.2 Test the TATA rich sequences without using TATA as characteristic
5.2.1 Translate each sequence to its amino acid equivalent by using hash
table [1]. In order to find the relationship between the first amino acid
with a promoter region, use the number to represent amino acids
instead of the real protein name[15][16].

5.2.2 Clean the data by filtering all sequences containing at least a quarter
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azl2 ==t:11==>28

==c:11==>25




523

524

of the first amino acids of the TSS region; and the resulting data after
this step looks like Figure 7 below. Only 142 out of 175 met the
requirement.
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Figure 7. TATA rich file numerical protein product representation

Find the location that is most closely associated with the first amino
acid in TSS by using the sliding window algorithm [1]. For each 10
amino acid (because the length of TATA box) in each sequence, the
maximum appearance of the last number in this sequence will be
counted; and the middle location of that maximum number will be
calculated by using below formula:

Peak of the first aa in TSS in promoter region = Max (appearance in
each 10 amino acid)

Location of the max = the peak location + 5; 5 means set the location
to the middle of the window, since the sliding window size is 10.
Thresholds: data will be cut if it does not meet the thresholds in two
conditions. If the maximum total appearance is less than 6 (half of the
sliding window) and the location is not close to TSS region. In this case
the threshold for location is 33, which is 32 amino acids long to TSS;
otherwise, the location of such peak cannot be characterized. Below is
the running result with above thresholds.
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Figure 8: Test result of the max appearance and the average location
in TATA rich file. The average peak in one sequence contains about 72%
of the first amino acid of TSS. The peak appears around the 50" amino
acid, which is very close to the TATA box location exams before.

5.3 Search for similar characteristic in TATA-less file, so this can be used to detect
promoter region for any given unknown sequence.

5.3.1 Translate the TATA-less file into its protein equivalent [15] [16].

5.3.2 Clean the data by filtering all sequences containing at least a quarter
of the first amino acid of TSS region; and the result data after this step
is represented in Figure 9 below. Only 107 out of 130 meet the
requirement.
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1aa
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Figure 9. TATA-less file numerical protein product representation
5.3.3 Find the location that is most associated with the first amino acid in
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TSS by using the same algorithm and formula as in 5.2.3. Test result on
TATA-less file is showed in figure 10 below.
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Figure 10. Test result of max appearance and average location in TATA
-less file. The average peak in one sequence contains about 73% of the
first amino acid of TSS. The peak appears around the 51th amino acid,
which is very close to the results in TATA rich file.
5.4 Discussion
Further testing needs to be done by using the five folds method [2]. We
randomly select 20% of sequences from TATA-less file, and test if the finding
will give the right TSS position.
5.4.1 Test TATA rich sequence by using five folds
5.4.1.1 Five Fold run results

cachiES
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9
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I
L}
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And the average location of that window is: SH.1876923@76923
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Average max number of first aa in the sequence is: 7.15384615384615
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Figure 11. Randomly choose 80% of data out of 175 TATA rich
sequences, and run the same program. The maximum of first aa is
about 7.15, and average location is around 50.
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Figure 12. Random choose 80% data out of TATA rich sequences
again, and run it again. The maximum of first aa is about 7.22, and
average location is around 51.

5.4.1.2 Discussion
Based on the above two observations by using the five fold
method, we can see that the results are similar to what we get by
testing all 175 sequences. It tells that the maximum of first aa is
about 7, and the peak location is around 50 in TATA rich
sequences.

5.4.2 Test TATA less sequence by using five folds
5.4.2.1 Five Fold run results
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Figure 13. First run against TATA less sequences by using five fold
methods. The maximum number of first aa is about 7.3, and the
average location is about 50.6.
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Figure 14. Second run against TATA less sequences by using five
fold methods. The maximum number of first aa is about 7.3, and
the average location is about 51.2.
5.4.2.2 Discussion
Based on above two tests against TATA lass sequences by using
Five Fold method, we can see that it shows the similar maximum
number of first aa and average location with the results getting
from all 130 sequences.
5.4.3 Conclusion
If we use these findings to detect the promoter region in either TATA
rich or TATA-less sequences, then the first step is to partition the data
in two classis[2] [17]. Sequences with the clear TATA box characteristic
will go to the TATA rich class. And sequences without such
characteristics will go to the TATA less class. In TATA rich class, use TATA
box to find the location for promoter and TSS. In TATA less class, use
the finding to detect the promoter region.

Since the finding in both TATA rich and TATA-less file is very close, then
no classification will be needed, which means use the finding directly.

Which method will provide the most accurate result? Compare the
two results; also compare the results with online tools. For E. coli data
that needs to be used later, ORF needs to be found first.

6. Use the finding in section 5 to test the prediction accuracy on both TATA rich and
TATA-less files by using five-fold method [2]. Using 4/5 as training data, and the
rest 1/5 as test data to test the prediction accuracy.

6.1 Test the finding in TATA rich file
6.1.1 Random select 1/5 to be testing data, and 4/5 as training data among
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TATA rich file.

6.1.2 Input 4/5 data to get the location of the peak value of the first TSS
codon. This was covered in section 5.4.1.

6.1.3 Use the location to predict the 1/5 data’s TSS and compare it to the
real TSS of each and get the accuracy. See the test result below by
using 20% of given TATA rich data.
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Figure 15. Test result of 1/5 of 175 TATA rich data. It is similar with 4/5
and all TATA rich data. Therefore the maximum number and the
average location can be decided as 7 and 50.
6.2 Test the finding in TATA-less file
6.2.1 Random select 4/5 of TATA less sequences as training data. Please see
the results 5.4.2.
6.2.2 Test 1/5 out of 130 TATA less data.
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6.2.3 Discussion
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The results are close to what we expected, which means we can use
the characteristic in real E. coli data from NCBI.

6.3 Conclusion
The characteristic found in both TATA-rich and TATA-less sequence provide
similar results as show in this section. The results indicate that gene can be
predicted by using first “aa” to detect the start of a gene in about 50 nuclides
away from the peak. The algorithm will be discussed in the Algorithm section.
7. Signals or characteristics that can be used for promoter detection.
7.1 Ideas that been using in this project

7.1.1

7.1.2

7.1.3

7.14

7.1.5

Inr: finding Inr without DPE will provide the same result with finding
Inr with DPE, since TBP will bind Inr with DPE for the lack of TATA box.
The consensus sequence of Inr is PyPyAN(T/A)PyPy, where Py is
pyrimidine (C or T), N is any base (A, C, G, T), the underline A is TSS
[23].

DPE: downstream promoter elements located about 30bp
downstream of TSS with consensus sequence G(A/T)CG in Drosophila
when there are no TATA box.

Start Codon: in 5-10% of cases, the initiator will pass the first start
codon, and use the next one [23 page 539]. A hair-pin before AUG will
make this AUG a start codon. This information can be used to justify
the start codon location in the late of the process. When AUG at the
beginning of MRNA, it is start codon; if AUG in the middle of mRNA, it
codes for methionine.

T here are only 15 TFIIBs, each will bind to different sequence in
promoter region. If | can find what they bind in TATA less region, then
I'll be able to locate promoter region. The chemical reaction of TBP
with TATA box is explained in [25].

C C box: upstream of TATA box are GC box with GGGCGG and CCGCCC
in -47 to -61 and -80 to -105 region[23].

7.2 Ideas that can be used in for other researchers

7.2.1

7.2.2

Use RNA secondary structure to find correlations in sequences, need
more test to support this idea

TBP (TATA binding protein) binds to the minor groove of TATA box, and
then other element of TFIID may bind to region without TATA box [23].
Compares to other steps like A-U, or G-C, T-A is much easier to distort
to initial the transcription. TBP works on both TATA rich and TATA less
promoters; TBP is not TATA sensitive, but temperature sensitive [23].
Substituting C for T and | for A in the sequence will get the same result
since the minor groove of C and | is the same as with T and A. “What
about the promoter that lack a TATA box?” [23]. TBP will bind to
initiators, DPEs, or GC box to secure TFIID’s functionality with the help
from TAF (TBP associated factors) 150 and TAF 250. According to figure
11.13[23], TBP will find either TATA box, Inr with DPE, or GC box to
bind on the sequence; therefore, there will be three clusters with
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7.2.3

7.2.4

7.2.5

7.2.6

each.

Polymerase melting DNA based on Figure 11.5 can also be used to
detect promoter region. Polymerase trying to find the weak
connection to melt, for any T-A pair it passed, it will provide 25%
damage (from TATA, and ATAT it hits four same base pair, and it melts
the double strand). Without TATA box, in any location, if the damage
adds up to 1, then it will melt the DNA. For example, in Inr, if the
sequence is TTAGTT, then the pairs for Inr will be AATCAA, so the
calculation will be 25%+25%+25%-25%+25%+25% = 1; then the Inr is
melt by polymerase. AT rich region that located before TSS in the
promoter region is important as CG contents; it acts as enhancer [26].
So AT-rich can be used to locate the promoter without TATA box; or
TATA box is just part of AT-rich. In progress, program is partially done.
Shine-Dalgarno sequence AGGAGGU [23]: after TSS and before start
codon, it will attract ribosomes to the nearby AUG to start translation.
Eukaryotes do not have a SD sequence, but use a cap called elF4E at
the 5’ end, that help attract ribosomes [23].

Testing E. albertii: genes are overlapping, for example ealbertiil.txt
with gi number 169405087 contains many genes with end location
mixed with the start location of next gene. 687-2534, 2518-2724,
2721-4313, etc. And genes predicted are in different reading frames.
Try to use start codon + 3n+ end codon, and the next start codon is
not +3 but any.

Use AT rich as melting point, and CG as looking location. For example,
for any given sequence, first search for the melting point by using
sliding window algorithm find rich AT region; and then combine the
result with CpG island profile in the same sequence to decide if the
region is most likely to be the promoter region before TSS.

The D2K Algorithm

Software and algorithms used

| use EGF (E. coli Gene Finder, Perl program) as detection tool in this step. The
purpose of this research is to explore the use of TATA-less regions for promoter
prediction and based on existing algorithms and methods to find an algorithm which
performs as well as or better than the existing approaches. As a result of my research
and testing of existing algorithms and methods, | discovered an algorithm D2K
(double k-mean with k=2) which performs better than most of online promoter
predictors.

D2K Algorithm depends on the findings of TATA-less regions in Theory Testing section,
and implemented in clustering step in this section. Improved promoter prediction
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will use the characteristic from both TATA-rich regions and TATA-less regions to

increase true positive prediction result. During data mining step, k-mean with k=2

will be used since in this case there are only two classes during data classification.

K-mean is a well known clustering algorithm, it partitioning all observation into r

clusters where each observation belongs to the nearest mean. D2K indicates that

k-mean will be use twice as explained below.

1. First clustering will partition the given sequences into 2 clusters, based on the
characteristic of TATA box. Sequences with clear TATA box information are
grouped as resolved sequence. It will be discussed in detail in section 3 below.

2. Second clustering process the reminder unresolved sequence in order to detect
more promoter regions that do not contain TATA box. By combine both results,
EGF use k-mean one more time to get the probabilities of six reading frames. The
probability of the highest reading frame will be recorded as detected promoter
region. It will be discussed in detail in section 5 below.

Data set used in algorithm step

For Eukaryotes, since promoter contains core promoter (TATA -35, TFIIB—upstream
of TATA, Inr, and downstream promoter element—DPE) and upstream promoter
element [23], all four elements will be considered. For TATA less promoters, GC box
or DPE will appear. Combine both CG content and TATA box information to locate the
promoter region in Eukaryotes is the next step of this project.

Based on the clustering algorithm introduced in chapter 16 [2], a sub solution—E.
coli Gene Finder (EGF) of promoter prediction is finished on E. coli sequences. For E.
coli uses E. coli Gene Finder from cs123b, where -10 (TATAAT) and -35(TTGAC) can be
easily found. For any short E. coli sequence from NCBI, the program will predict the
location of possible genes.

Steps of detecting promoter region

1. Data preparation. One method that can make the DNA data independent in the
prepare data level is PCA (principal component analysis). There are dependencies
in DNA analysis, such as the properties of some data may not be truly
independent. Another example is some genes are co-expressed. Samples of such
data are against the principle of data mining, in which each pieces of data must
be independent [17]. One way to minimize the dependency effect is to use
PCA—principal component analysis. PCA will transform those data into
components, which are independent of each other. New variables will become
linear combination of its raw data [18]. PCA usually reduces the raw data
principle to two or three components, which contain the most of the variations
and ignore others, so those components can be used to classify sample
experiments. For example, M sequences with N genes in each will create a matrix
X =N * M. After passing through PCA, the formula will be changed to

X=UeV'

Where U is the expression level of every gene, ¢ is the Ath eigengene that is
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expressed in the Ath eigensample, and V' is the expression level in each sample.

Then the data can be plot for each gene/protein pair. The PCA step used in this

project will test only one sequence on six frames each run, so M = 6 each time a

new sequence entered in the program. N is the number of genes that will be

predicted in each frame, and N varies in each frame. The matrix will become X =
6N. A group of results will be chosen out of six in the clustering step.

Distance definitions. There are three distances calculated in our program: the

length of gene, the distance between TATA box and TSS, and the distance

between -35 element and TSS. In this step we do not use any of Euclidean,

Pearson, or Mahalanobis; instead we use the direct distance by finding the

difference between two locations.

Clustering. Since there are only TATA rich and TATA less two classes in the data set,

| am using k-means to classify our data with K=2. We partition the data set into

two clusters with the number of TATA boxes as classifier. K is the number of
clusters and it is fixed when use k-means clustering method. The centroids of
clusters are random assigned and then relocated during each cycle, and then
finalized when the centroids stop change. To make k-means more accurate, it
must be run several times. A similar way to cluster TATA rich and TATA less data
will use SVM (supervised clustering with support vector machines). SVM can be
used to classify data in one of two classes [17]. After SVM has all the training data,
the unknown data will be classified into one group among the training data.

Therefore, that unknown data will have the characteristic of the group to which it

was assigned. In our program we treat k-mean and SVM in the same way since

there are only two final classes.

Significance of differential expression. We use this step to evaluate our test

results. | compare my test results with several online gene predictors, and

provide statistic comparison between the findings. Statistical testing measures to
measure true positive (TP) [18], and false discovery rate (FDR) [18]. It will be
explained in detail in the discussion section.

Improvement after getting first result—the second K-mean clustering process

5.1 The original design can only get less than 80% of gene compare to real gene
in NCBI data base. In order to detect more genes from given sequence, the
cluster algorithm is refreshed with a second K-mean clustering process to
classify the remaining TATA-less group.

5.2 The original cluster decision was made by using 175 TATA-rich plan
sequences, and 135 TATA-less plan sequences as training data.

5.3 Both k-mean and DBSCAN [17] are used to predict more location of gene
during this step, since only testing can tell which algorithm will give a better
result. However, they both do not predict more gene in this step since the
number of object is too small for cluster.

5.4 There are six reading frames need to be tested for each given sequence.
Using k-mean will get the probability of each reading frame. The reading
frame with the highest probability is recorded as final predict result.
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Implementation

Steps to research non-TATA:

1.
2.

Get E. coli sequences from NCBI

Design: Structuring the data requires translating data to its RNA form. This gene
predictor follows the tradition gene finding process with additional clustering and
statistical methods from chapter 16 [1]. It first gets the RNA forms of a given data, finds
all orfs from six reading frames by using PCA, then EGF decides which orfs are real genes,
depending on some of the consensus sequence characters. The last step is to choose one
frame out of six frames by using the cluster algorithm to pick one with the highest
probability. To show how accurate the result is, we compare the detected genes with
NCBI, EasyGene, and GenScan in two categories: true positive and false discovery rate.
Result and discussion depends on the genes find by all four packages.

Bioinformatics Analysis: To choose the best frame out of six is a statistic process based
on the characteristic of a real gene. For example, one way to say the finding is a real gene
is to find a TATA box in its promoter region. The sum of the number of resulting genes
with TATA box before TSS will be calculated to decide the probability of this frame is the
best among others.

Produce for testing D2K

1.

w

Construct the table of findings with the probability on the same data promoter
prediction data.

Choose several findings with the highest value to build a profile.

Put the findings in step 2 in the program.

Test the same data in EGF and some online popular tools, such as EasyGene,
Genscan, etc.

Compare the results with discussion.

Integrating D2K into a web application

1.

3.

Choose the right platform
As recommended by Dr. Tseng, this project will use LAMP (Linux, Apache, MySQL,
PHP) platform to perform the result of detection. In addition, the Zend
framework will be used to minimize the amount of code need to be implemented.
I will process data using EGF and excel then extract the data using PHP to get real
data from EGF, and partial data from excel.
Design Ul: user can select several available accession numbers from left menu to
see what has been predicted, and also have the chance to see the prediction
from other online prediction, such as Virtual footprint, EasyGen, etc. It will show
each gene’s start and stop location in NCBI, Glimmer and other above online tool.
It also displays the start and stop gene location that predicted by using EGF. User
can easily compare the predicted results. TP and FDR will show the standing of
EGF among other promoter predictors.
Coding: PHP, Perl, HTML, XHTML, JavaScript, JQuery, YahooSiteBuilder, etc.
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4.

3.1 Combine LAMP with YahooSiteBuilder

The original design is to try to get result from other online web gene finder
and put the result on one web page for any given E. coli sequence. However, |
have spent some time on each of the online gene predictor; | recognized that
it is hard to accomplish this goal (within one semester). For example, Virtual
footprint is PHP based software suite, it does not support automatic
promoter analysis. The user has to go through several steps to get the result
of a given sequence. For EasyGen, the predicted result may come from email
instead of instance result. Therefore, it is not effective to implement an
automatic web result compare tool. To fully support the main origin of this
paper, it is redesigned as a web representation tool, to support the main goal
of this research.

3.2 YahooSiteBuilder with Excel

Since most result were processed by using excel, displaying data from excel to
a web browser made it more user friendly. To achieve this display, | insert an
iframe inside YahooSiteBuilder page. This iframe can upload an excel and
display it on a web browser.

Testing: using accession number from section “Result and Conclusion”

5. Improving:
5.1 Adding more data from NCBI to test
5.2 Choose a nice layout for each sequence
5.3 Make an index page with
5.3.1 Links to each sequence result page
5.3.2 Short summary of this paper
5.3.3 Purpose of this web implementation
5.3.4 How to use, etc.
Result

Twenty different E. coli Data are tested, and genes locations are listed. Start and Stop is the

result of E. coli Gene Finder. The last row is the number of genes found in each. Please see

appendix 4 for detail running result of each promoter predictor.

Result
1.  Accession number 300901746
Glim | Glim Virtual | Virtu
mer mer Footprint al
NCBI | NCBI EasyGe | EasyGene | Genscan | Genscan P
Start | Stop | Start | Stop Start | Foot
start | stop ne start | stop start stop .
print
Stop
38 | 4363
4383 | 5129 | 4383 | 5129 86 4363 89 6890
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5188 | 6048 | 5188 | 6048 | 5188 | 6048 5614 6048 5470 | 5483
6151 | 6711 | 6151 | 6711 | 6151|6711 6151 6711
6840 | 7052 | 7176 | 6922 6856 | 7098
7285 | 7758 | 7222 | 7758 | 7222 | 7758 7271 8893 7439 | 7452
7804 | 8013 | 7804 | 8013 | 7783|8013 7592 | 7605
8051 | 8641 | 8051 | 8641 | 8212 | 8409 8153 8641
8881 | 9141 | 8881 | 9141 | 8881|9141 8903 8942
9429 | 10298 | 9429 | 10298 | 9574 | 9804
10450 | 10310
23 | 10717
9 9 8 4 3 3
Table 1: Result of gene search for 300901746
2. Accession number 403342
Glim | Glim Virtual | Virtu
NCBI NC | mer mer EasyGene | EasyGen | Genscan | Genscan Footprint al
start Bl Start | Stop | Start | Stop start e stop start stop Start Foqtp
stop rint
Stop
278 | 1372 278 | 1372 278 | 1372 431 1372 309 5512 66 79
1396 | 1785 | 1396 | 1785 1396 1785 975 988
1904 | 4777 | 1904 | 4777 1904 | 4777 1988 4777 4202 4215
3 3 2 3 1 3
Table 2: Result of gene search for 403342
3.  Accession number 325965637
NCBI | NCB Glim | Glim EasyGe | EasyGen | Genscan | Genscan V|rtuf31I V|rtuf31I
start I stop mer | mer ) Start | Stop ne start | e stop start stop Footprin | Footprin
Start | Stop t Start t Stop
138 | 1580 | 138 | 1580 254 2669 1197 1210
1592 | 2515 | 1592 | 2515 | 1592 | 2515 1600 1613
2564 | 3646 | 2624 | 3646 | 2564 | 3646 2672 4851
3661 | 4644 | 3661 | 4644 3730 4644
4823 | 5935 | 4751 | 5935 | 4751 | 5935 4868 6091 5390 5403
5 5 3 1 3 3
Table 3: Result of gene search for 325965637
4.  Accession number 346421495
Glim | Glim Virtual | Virtu
NCBI NC | mer mer EasyGene | EasyGen | Genscan | Genscan Footprint al
start BI Start | Stop | Start | Stop start e stop start stop Start Fogtp
stop rint
Stop
546 88 210 81| 323 69 516
1 1 0 1 0
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Table 4: Result of gene search for 346421495
5. Accession number 260765442

Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan P
BI Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
1026 0 0 1026 232 1026 66 1079
0 1 1 0
Table 5: Result of gene search for 260765442
6. Accession number 167509193
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan
Bl Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
1| 519 128 498 174 | 392 50 1557 272 285
1 1 1 0 1 1
Table 6: Result of gene search for 167509193
7. Accession number 354515243
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan P
Bl Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
1| 253 214 92 17 26
1 0 0 0 1 1
Table 7: Result of gene search for 354515243
8. Accession number 354515242
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan
Bl Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
225 | 796 141 | 788 225 788 332 855 679 692
1 0 1 1 1 1
Table 8: Result of gene search for 354515242
9. Accession number 354515240
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan
BI Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
104 | 808 35| 277 204 874 257 266
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542 | 736 381 390
418 427
1 0 2 0 1 3
Table 9: Result of gene search for 354515240
10. Accession number 354515237
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan
Bl Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
1| 458 67 | 264 9 458 705 920 251 260
589 | 818 589 34 322 | 573 397 406
451 460
2 1 2 1 1 3
Table 10: Result of gene search for 354515237
11. Accession number 145467
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan P
Bl Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
9| 386 123 395 267 280
450 | 1688 489 | 1688 450 | 1688 564 1714 406 419
2024 2191 1682 | 1695
1 1 2 0 3 3
Table 11: Result of gene search for 145467
12. Accession number 342315677
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan P
Bl Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
145 154
224 233
674 322 | 621 400 685 351 360
0 1 0 1 3
Table 12: Result of gene search for 342315677
13. Accession number 341941295
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan
Bl Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint

Stop
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111299 1| 1299 132 1361 572 585
1 0 1 0 1 1
Table 13: Result of gene search for 341941295
14. Accession number 41745
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan
Bl Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
227 | 1621 227 | 1621 227 | 1621 280 1645 900 909
1 1 1 0 1 1
Table 14: Result of gene search for 41745
15. Accession number 41727
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan
Bl Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
1971|2459 | 1971 | 2459 | 1971 | 2459 2064 2459 1998 2037 1908 | 1971
1 1 1 1 1 1
Table 15: Result of gene search for 41727
16. Accession number 41592
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan
Bl Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
300 | 1505 300 | 1505 300 | 1505 432 1505 319 1524 1575 | 1588
1 1 1 1 1 1
Table 16: Result of gene search for 41592
17. Accession number 41580
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan
BI Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
31| 1107 31| 1107 31 1107 132 1181 959 972
1 0 1 1 1 1
Table 17: Result of gene search for 41580
18. Accession number 414745
NG Glim | Glim Virtual | Virtu
NCBI Bl mer mer Start | Sto EasyGene | EasyGen | Genscan | Genscan Footprint al
start stop Start | Stop P start e stop start stop Start | Footp

rint
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Stop
334 | 561 334 | 561 605 2881 632 641
578 | 2899 821 | 2899 | 2890 | 3135 821 2899 2944 3146 2992 | 3001
2 1 2 1 2 2
Table 18: Result of gene search for 414745
19. Accession number 312761
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan
Bl Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
31| 474 31| 474 31 474 178 187
502 | 1884 502 | 1884 742 1884 502 1911 1354 | 1363
1958 1963 2067 | 2076
2 0 2 2 2 3
Table 19: Result of gene search for 312761
20. Accession number 297393
Glim | Glim Virtual | Virtu
NC | mer mer Footprint al
NCBI EasyGene | EasyGen | Genscan | Genscan P
Bl Start | Stop | Start | Stop Start | Footp
start start e stop start stop .
stop rint
Stop
27 36
721 | 1905 492 728 721 | 1905 721 1905 759 1997 984 993
1120 | 1129
1 1 1 1 1 3
Table 20: Result of gene search for 297393
Discussion:
TP is true positive which means the gene is predicted when there is a gene, the bigger value
the better result. And the formula is
TP = number of genes predicted / total genes in NCBI of this sequence
FDR is false discovery rate which provides the rate of false location in prediction, the smaller
the value the better. And the formula is
FDR = total location shift predicted / number of genes predicted
Accession Glimmer | Glimmer | EGF | EGF | EasyGen | EasyGene | Genscan | Genscan | VFP VFP
Number TP FDR TP | FDR e TP FDR TP FDR | TP FDR
0.8
147 | 0.44444 0.33333 | 2785.66 | 0.3333 | 642.33
300901746 58.77778 | 888 1397.75
.25 4 3 7 33 33
89
0.6
0.33333 1580.3
403342 0 | 666 0 1 79 4171 1
3 33
67
325965637 0| 06| 24 0.2 69 0.6 | 906.333 0.6 1146
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346421495 1 136 1 112 0 1103 1 38 0 1103
260765442 0 1027 1 0 1 231 1 118 0 1027
167509193 1 106 1| 46 0 520 1 1087 1 37
354515243 0 254 0| 254 1 254 1 52 1 211
354515242 0 1021 1| 92 0 8 1 166 1 350
354515240 0 912 2| 678 0 912 1 166 3 1227
354515237 0.5 1243 1| 640 0.5 1399 5 241 1.5 359
145467 1 909 2 12§ 0 1268 3 5743 3 3481
342315677 0 675 1] 268 0 675 1 410 3 792
341941295 0 1300 1 0 0 1300 1 193 1 143
41745 1 0 1 0 0 1848 1 77 1 39
41727 1 0 1 0 1 93 1 395 1 551
41592 1 0 1 0 1 132 1 38 1 1358
41580 0 1138 1 0 1 0 1 175 1 793
414745 1 5652 2 242 1 5652 2 204 2 2106
312761 2891 1 0 1 240 3443 15 4334
297393 1 1406 1 0 1 0 130 3 1663

Table 21: Result for TP and FDR comparison

Charts of above data

discovery rate among the other predictors.

From the above table we can see that EGF predicts most of the real genes with a lower false

TP Result

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20

MCBI

Gene5can

B NCBI

u Glimmer
B EGF

B EasyGene
B GeneScan

uVFP

less.
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Figure 1: TP result. X axis is the 20 different genes, and y axis is the number of genes
predicted/ gene in NCBI database. NCBI results are all 1s, since they are the number of genes
in the database. For other predictors, some predicted more than expected, and some are
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Figure 2: TP result average. TP Average = TP result /number of experiments (20). To see the
performance of each predictor, it is better to use an averaged data for comparison. Series 1 is
the default genes existed in NCBI database, Series 2 is the percentage of genes found by
Glimmer, Series 3 is the percentage of genes found by using E. coli Gene Finder, Series 4 is
the percentage of genes found by EasyGene, and Series 5 is the percentage of genes found
by GenScan, Series 6 is the percentage of genes found by Vertual Foot Print. In this case, the
closer the better; therefore EGF and GenScan are more closer to NCBI database.

FDR Result

6000 W NCBI

3000 m Glimmer

4000 = EGF

3000 M EasyGene

2000 M GeneScan
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1 2 3% 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3: FDR Result. FDR = sum of number of position shift / number of gene predicted. X
axis is the 20 genes used in this project; Y axis is the number of false gene locations. The data
represent the difference between the predicted gene location with the gene location in the
database, therefore the smaller the better.
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Figure 4. FDR average. FDR Average = sum of FDR/ total number of predicted gene (20).

Series 1 is the default false gene location in NCBI which is 0, Series 2 is the miss calculated
gene location by Glimmer, Series 3 is the false predicted gene location by EGF, Series 4 is the
false gene location that was predicted by EasyGene, Series 5 shows the wrong gene locations
as predicted by Genscan, and Series 6 is the false prediction by Virtual Foot Print. EGF
predictes the less FDR among other predictors.

Final results can be improved by checking the start codon condition. For example, if
there is a hairpin structure before AUG; then this AUG will be most likely the start of
a gene. Or, if there is another AUG just few codon after a start codon; then the start
codon will be passed and this AUG will become the start of a gene [24]. This step can
be done to either locate promoter phase or improve the result phase.

Related topics:

Cancer: the cancer is caused not only by a single mutation, but several mutations on
the chromosome. It can be explained by the exponential growth of some cancer
cause death growth with age. One example is the colon cancer death raise in “One
Renegade Cell” page 47 [27]. If colon cancer is caused by 3 mutations, then the
formula will be 2°. If it takes about 2 years for one mutation to happen, then after 16
(23%2) years, someone who has all the mutations will develop colon cancer. If it
caused by 4 mutations, then the time needed are 32. Off cause, mutations that
happened not related to colon cancer will result in no colon cancer even when more
than 4 mutations are detected in one sequence. To prevent colon cancer or any other
cancer, couples of analysis need to be done. First, all mutations required by colon
cancer need to be defined. Second, use examples (someone who has colon cancer
family history, does not have colon cancer yet), and find out the difference. Third,
prevent the last (one or more) mutation from happening by providing some
treatment or medicine.
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Conclusion

The prediction made by this program works only for some E. coli sequences as we can see
from the data from NCBI. Compare each predicted gene with NCBI, EGF predicts more real
gene than other online predictor, and it also gives less wrong prediction than other predictor.
Even though the results look better than some of the online packages prediction, it still has
the limitation on predictions. For example, it can’t predict short gene (length less than 60
nucleotides) and overlapping gene (gene inside gene). Those genes do exist in NCBI database
which include the E. coli gene | used in this paper. It is just the start point of this project by
using the basic characteristic that found in E. coli; further study on other related organisms
needed to broader the search power of the system. After all the ideas have being finalized in
section “steps to find characteristics 7”, then the prediction will be enhanced by adding more
idea in the original program.
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Appendix 1—Training Data

1. 175 TATA rich sequences
http://mendel.cs.rhul.ac.uk/pprom/PLPR TATA.seq

2. 130 TATA less sequences
http://mendel.cs.rhul.ac.uk/pprom/PLPR TATA-less.seq
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Appendix 2—List of NCBI Accession Number
of Testing Data

ecoli41580
ecoli41592
ecolid1727
ecoli41745
ecolil45467
ecoli297393
ecoli312761
ecoli403342
ecoli414745

. ecolil67509193
. ecoli260765442
. ecoli300901746
. ecoli325965637
. ecoli341941295
. ecoli342315677
. ecoli346421495
. ecoli354515237
. ecoli354515240
. ecoli354515242
. ecoli354515243
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Appendix 3—D2K Algorithm Coding in EGF

# This program take any E.coli sequence from NCBI and find genes from it

#if(lopen(infile, 'ecoli356875267.txt')){
if(lopen(infile, 'ecoli297393.txt")){
print "error opening input file\n";
exit;
}
if('lopen(outfile, ">out.txt')){
print "error opening output file\n";
exit;
}
if(lopen(outfilel, '>outl.txt")){
print "error opening output file\n";
exit;
}
Sdata = <infile>;  #ignore FASTA comment
while (Sdata = <infile>){
chomp Sdata;
Sseq = Sseq . Sdata;

# Sseq is the nontemplate strand from the 5' end
# first three reading frames come from Sseq

# other three reading frames come from the reverse complement
Scomplement = Sseq;

Scomplement =~ tr/ACGTacgt/TGCAtgca/; # complement of strand
Sreversecomplement = reverse(Scomplement); # reverse of compement
Sreversecomplement =~ s/T/U/g; # convert to RNA

Sseq =~ s/T/U/g; # convert to RNA

# find ORF in original sequence
Sfoundorf =0;

# find ORF in reversecomplement
Sstop = 0;

print "seq strand\n";
Sseq_result = findORF(Sseq);
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print "\n\n reversecomplement strand\n";
Sreversecomplement_result = findORF(Sreversecomplement);

#print "reverse complement result: Sreversecomplement_result";
#print "seq result: Sseq_result";

if ((Sreversecomplement_result < 0) && (Sseq_result < 0)){
print outfile "ORF not found\n";

}
#find orf
sub findORF{
my(Sseq) = @_;
Sfound = 0;

# set the starting position of the reading frame
for(Sframe = 0; Sframe < 3; Sframe++){
Sstart = Sframe;
StataCount = 0;
#SmissingStart = substr(Sseq, 4383, 3);
#SmissingStop = substr(Sseq, 5129-3, 3);
#print "missing gene: SmissingStart--SmissingStop";
print "\n frame: ";
print Sframe;
print "\n";
SfindPromoter = 0;#one promoter per sequence
while (Sstart < length(Sseq)){

# find start codon in reading frame
Sstart = findStartStop(Sseq, Sstart,0);
if (Sstart == -1) {last;}
#print "start: Sstart ";
#print "\n";
# look for stop codon at least 60 codons out or 180nt
if ((Sstart = -1) && (Sstart+180<=length(Sseq)-3)){
Sstop = findStartStop(Sseq, Sstart,1);
# print " stop: Sstop";
#print "\n";
if (Sstop >= Sstart+180){ # length of the gene > 60 codon

#StotalLength = length(Sseq);

SrealStart = (Sstart +1);

SrealStop = (Sstop +3);

#SstartString = substr (Sseq, SrealStart, 3);
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#SstopString = substr (Sseq, SrealStop-3, 3);
print "start-stop SrealStart--SrealStop \n"; # SstartString---SstopString \n";
print outfilel "Sframe start-stop SrealStart---SrealStop \n";
Statalocation = findTata(Sseq, SrealStart);
if (StatalLocation !=-1) {StataCount = StataCount +1;}

Sfound = 1;

if (Sfoundorf == 1){

print outfile "\n ---Next--\n";

Sfoundorf = 1;

# printed assuming first position is 1

print outfile "ORF found in reading frame ",Sframe+1, " Start Loc: ",

Sstart+1, " Stop Loc: ", Sstop+1, " and Shine-Dalgarno is
found or not (-1): ", findShine(Sframe, Sstart, $Sseq), ". \n";
print outfile substr(Sseq, Sstart, Sstop+3-Sstart);

#print promoter info

if (findPromoters(Sseq, Sstart)==1){

print outfile "\n ORF supported by promoters\n";
SfindPromoter = 1;

}
else{
if (SfindPromoter = 0){
print outfile "\n ORF not supported by promoters\n";}
else {
print outfile "\n ORF is in the operon\n";}
}
}
if (Sstop !=-1) {Sstart = Sstop;}
}

Sstart = Sstart + 3; # use Sstart + 3 in E. coli, and Sstart -15 in E.
albertii

}
StataCount = StataCount/6;
print "\n Probability of using frame Sframe is StataCount.\n";
print outfilel "\n Probability of using frame Sframe is StataCount.\n";

}
if (Sfound == 0){return(-1);}
elsif (Sfound == 1){return(1);}
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sub findStartStop{ #combine find start and stop of orf
my(Sseq, Sstart, Schoice) = @_;
for (Si=Sstart; Si<=length($seq)-3; Si+=3){
if (Schoice){ #start
if ((substr(Sseq, Si, 3) eq "UAA")
| | (substr(Sseq, Si, 3) eq "UAG")
| | (substr(Sseq, Si, 3) eq "UGA"))}{
return(Si);
}

}
else{ #stop

if ((substr(Sseq, Si, 3) eq "AUG")
| | (substr(Sseq, Si, 3) eq "GUG")
# || (substr(Sseq, $i, 3)eq "UGA")
| | (substr(Sseq, Si, 3) eq "CUG")
| | (substr(Sseq, Si, 3) eq  "UUG")){
return(Si);
}
}
}

return(-1);

sub findShine{ #find shine-dalgarno sequence
my(Sframe, Sstart, Sseq) = @ _;
#print "frame ",Sframe+1," \n";
Sposition = (Sstart -5)*3 + 2;
Sstring = substr(Sseq, Sposition, 7);
#print "\n String is >>> Sstring <<< \n";
#print "\n String is >>> Sseq <<< \n";
return index(Sstring, "AGGAGG");

sub findPromoters{ #find promoter
my(Sseq, Sorfstart) = @_;

# modified to work with exercise 1 program
Selement35 = "UUGACA";
Selement10 = "UAUAAU";

# initialize the search position for the -35 element
Ssearch35 = 0;

39



# check distance from translational start site
while (Ssearch35 < Sorfstart-85){
if (index(substr(Sseq, Ssearch35, length(Selement35) +10) , Selement35)> -1){
# element -35 found, initialize search position for -10 element
Selementdist = 15;
Ssearch10 = Ssearch35 + length(Selement35) + Selementdist;
while (Ssearch10 < Sorfstart-60 && Selementdist <= 19){
if  (index(substr(Sseq,  Ssearch10, length(Selement10)+10) ,
Selement10)> -1){
# valid -10 element found, return success
return (1);
}
# continue searching for -10 element
Ssearch10++;
Selementdist++;
}
# -35 element not found, continue searching
Ssearch35 = Ssearch35 + length(Selement35);
}
else{
# -35 element not found, continue searching
Ssearch35++;

}

# valid promoters not found - return 0
return(0);

sub findTata{ #find TATA box
my(Sseq, Sstart) = @_;
StataRegion = Sstart - 20;
Sstring = substr(Sseq, StataRegion, 20);

#print " tata-->Sstring  StataRegion "
#print index(Sstring, "UAUU"); #find TATA box location

return index(Sstring, "UAUU");

close (infile);
close (outfile);
close (outfilel);
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Appendix 4—Result Comparison

1. ecoli41580

Submit new Data |

GLIMMER (+wer. 2.02: iterated) predictions:

orfID start erid frame score

EN Command Prompt ‘

frame: A
start—stop 31—1187

Probability of uwsing frame B is B.
frame: 1
Probability of wusing frame 1 is @.

frame: 2

l" Probability of uwusing frame 2 is B.

$#gff-version 2
##source-version easygene-1.2b
##date 2011-12-06

##Type DNA

# model: AP02 Aeropyrum pernix

# seqname model feature start end score +/- startc odds
#

gi 41580 _emb X56807.1  APO2 CDS 31 1107 2.51355e-10 + #BTG 47.3481
#

Gn. Ex Ty

ouboptimal exons with pr

ArcA | Escherichia coli (strain K12) 282 201
ArcA | Escherichia coli (strain K12) 789 798
ArcA | Escherichia coli (strain K12) 1108 1117
ArgR | Escherichia coli (strain K12) 959 972
ArgR | Escherichia coli (strain K12) 260 273
ArgR | Escherichia coli (strain K12) 117 130
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B.36
623
6.08
9.00
8.45
835

TGITACTGAT
GGITRATTAC
TGITACTGCA

TATACC

TGCATGACCATTAC

TGACTATTIITICG



2. ecoli41592

Submit new Data |

GLIMMEE (ver. 3.02: iterated) predictions:
orfID start end frame score

»gi 41592 |emb [¥17499. 1| E. coli gltS gene
or£00001 308 129 -3 0. 65
or£00007 300 1505 +3 3. 4B
or£00005 44 1674 -3 2. 21

@ Command Prompt ‘

frame: 1
start—stop 1187—-1384

Prohabhility of using frame 1 is

frame: 2
start—stop IAA——1565

Probahility of using frame 2 is

reversecomplement strand

##gff-version 2
##source-version easygene-1.2b
##date 2011-12-06

##Type DHA

# model: AP02 Reropyrum pernix

# seqgname model feature start end =core +/- ? startc odds
3

gi 41592 emb X17499.1  APO2 CD5 432 1505 1.249302e-09 + 0 #GTG 38.9893
3

n...End .Len Fr Fh I/Ac

suboptimal

ArcA | Escherichia coli (strain K12) 174 183 - 733 TGTTARTGRR
ArcA | Escherichia coli (strain K12) 129 138 - 656 AGTTATATAR
ArcA | Escherichia coli (strain K12) 172 181 + 6.51 TGTTCRTTAR
ArgR | Escherichia coli (strain K12) 1575 1588 - 943 TGARTCARTACGCR
ArgR | Escherichia coli {strain K12) 1575 1588 + 8.94 TGCGTATTEATICA
ArgR | Escherichia coli (strain K12) 1582 1595 + 8.88 TGATTCATARTTTA
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3. ecoli41727

| Submit new Data |

GLIMNEE (wer. 3.02: iterated) predictions:
orfID start end frame score

>2i 41727 |lemb |X65013. 1| E. coli DN&A sequence of hlyT (rfaH, =frBE) locus and ORF

orfO0001 Ldg 13 -1 .08
orf0000Z 1504 B20 -2 9. 3T
orf00003 1971 2459 43 6. 04
orf00005 296 2664 -3 9. 07
or£O00006 3262 2a50 -1 5.11
orf00003 35TZ2 3282 -3 11. 32
or 00003 1568 3550 -1 3. 84

EN Command Prompt ‘

start—stop 1175——1534
start—stop 33B5——3511

Probhabhility of using frame 1 iz HA.
| frame: 2
start—stup 230—1196
start—stop 1272—1634
start—stop 1971——2459

Prohahility of using frame 2 iz HA.

[ i T

$#gff-version 2
##=zource-version easygene-1.2b
##date 2011-12-06

##Type DNZ

# model: AP02Z Aeropyrum pernix

# segname model feature start end score +/- ? startc odds
#

gi_ 41727 emb X65013.1  APO2 CDS 2064 2459 1.25157 + o #ATG 1.9585

gi 41727 emb X65013.1  APO2 CDs 620 1654 9.34302e-07 = 0 $TTG -0.035

#

Intr

Intr

Init

Prom

Prom

ArcA | Escherichia coll (strain K12) 1908
ArcA | Escherichia coll (strain K12) 330
Arch | Escherichia coli (strain K12) 1862

1917 - 129 LGTTRATTAT
19 + 129 TGITRARRAT
1871 + o7 TGITARATTA
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4. ecoli41745

| Submit new Data |

GLIMNER (ver. 3.02: iterated) predictions:

orfID start end frame score

3gi 41745 |emk |VOOZEE. 1| E. coli specificity gzene of EccK restriction enzyme (hsdS)
orf00001 2351 230 +3 4. 29

orfO0002 227 1621 +2 3.50
orfO0004 1914 1753 -1 2. 58
orfO0005 1983 2189 +3 1. 26
=eq strand . -

frame: @
start—stop 1273——1488
start—stop 17922022

Probhability of wusing frame B iz B.166666GGG6HGGGY .

frame: 1
start—stop 22V——1621

Probability of wusing frame 1 is @.

$#gff-version 2
##=zource—-version easygene-1.2b
##date 2011-12-06

##Type DNA

# model: APD2 Aeropyrum pernix

# segname model feature start end score +/- ? startc odds
#

i

Suboptimal

Ezrnum T

ArcA | Escherichia coli (strain K12) 424 433 + 6.59 TGTTARAGAR
ArcA | Escherichia coli (strain K12) 838 847 + 622 AGTTAATGGA
ArcA | Escherichia coli (strain K12) 9200 909 + 621 AGTTARATTT
ArgR | Escherichia coli (strain K12) 526 539 + 853 TGAATGTAGTTICG
ArgR | Escherichia coli (strain K12) 715 728 - 812 TGATITITIGIICG
ArgR | Escherichia coli (strain K12) 2418 2431 - 8.08 TIGGATAATCTITAG

® 2003-2008 by Richard Munch « Institute of Microbiology + Technical University of Braunschweig « rmuench(atitu-bs.de
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5. ecolil45467

Submit new Data

»gi|145467 |gb |[M12788. 1 |ECOCCA E. coli cca gzene encoding tENA nucleotidvltransferase, complete cds

GLIMMEE (ver. 3.02: iterated) predictions:
orfID start end frame score
or£00001 2068 386 +3 3.13

ar 00006 489 1688 +3 Z.91
arfO0008 2015 1869 -3 1.63

or 00009 2236 2033 -2 4. 26

@ Command Prompt ‘

Probability of uwszing frame @

frame: 1
start—stop 1685——1986

Probability of uwszing frame 1

frame: 2
start—stop ?7—386
start—stop 458—1688

Probahility of using frame 2

$#gff-version 2
##source—version easygene-1.2b
##date 2011-12-05

##Type DNA

# model: AP0Z Reropyrum pernix

4% sSegname model feature start end score +/= ? startc odds
k3

#

ArcA | Escherichia coli (strain K12)
ArcA | Escherichia coli (strain K12)
ArcA | Escherichia coli (strain K12)
ArgR | Escherichia coli (strain K12)
ArgR | Escherichia coli (strain K12)
ArgR | Escherichia coli (strain K12)

©2003-2008 by Richard

1682

406

Minch

1289 B
108
181 B
1695 B
280
419 +

+ Institute of Microbiology - Technical University of Braunschweig » rmuench(at)tu-bs.de
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7.04

6.66
638
929
912
858

TGTTARGITA
TGTTATCGAT
GGTTERRAGE
TGAATGAGTATTGE
TGCATGATGATGET

TGTICTIATTATIAG



6. ecoli297393

| Submit new Data |

GLINMER (ver. 3.0%2; iterated) predictions:

orfID start end frame score

orf00002 344 171 -3 1.1%
orf00003 492 728 +3 4,99
orf00006 145 06 -1 2,95

i =N

=eq strand

frame: @
start—stop 721—1985

| Probability of using frame 8 is @.

frame: 1
start—stop 15%47——1735

Probabhility of using frame 1 iz 8.

frame: 2
—

$#off-version 2
##3ource-version easygene-1.2b
$idate 2011-12-06

##Tvpe DR

% model: AP02 Reropyrum pernix

# seqname model  feature start end 3care +- ? starte odds
i

gi 297393 emb X57081.1 AP0Z (D3 721 1805 1,37835%e-10 + 0 $T6  37.81386
i

1. 02 Plva -

1.01 Sngl

ArcA | Escherichia coli (strain K12) 934 993 + 101 TGITARMRAC
ArcA | Escherichia coli (strain K12) vij % + 548 TEITGAMEAA
ArcA | Escherichia coli (strain K12) 12 12 - 515 TGITCAREAA
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7. ecoli312761

Submit new Data |

GLIMMEE (ver. 3.02: iterated) predictions:

orfll start end frame score

-

BN Command Prompt

ceq strand

frame: @
start—stop 31—474
Nztart—stop 5A2—-1884

Prohahility of using frame B iz B.166666G66GGGEGT .

frame: 1
start—stop 41—274
start—stop ?V1—1219

Probabhility of using frame 1 iz 8.

$#off-version 2
##30urce-version sasygene-1.2b
$4date 2011-12-06

$4Type DA

% model: AP02 Reropyrum pernix

3 seqname model feature start end score +- ? startc odds
i

gi 31276l emb X72677.1 APDZ  CD3 3 474 0.728413 + 0 $AIG  -0.9831
gi 31276l emb X72677.1 AP0Z  CD3 142 1884  7.06481e-09 + 0 $ATG  18.5812
i

Grn. FEx Type S in ...End .Len Fr Ph I/Ac

1.01 Term

1. 02 PlyvA

ArcA|Escherichia coli (strain K12) 2067 2078 + 6.81 TGITAATTIR
ArcA | Escherichia coli (strain K12) 1354 1383 - 655 LGTTARACAT
ArcA| Escherichia col (strain K12) 178 167 - 5.50 TETTAATGET
ArgR | Escherichia coli (strain K12) 1240 1283 - 91 TGRATAATCAICEC
ArgR | Escherichia coli (sfrain K12) 37 400 + 8.86 TGARTTACTGIRCE
ArgR | Escherichia coli (strain K12) 1217 1230 + 8.42 TGAGTARACGITCT
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8. ecoli403342

| Submit new Data |

GLIMMEE (ver. 3.02; iterated) predictions:
orfID start end frame score

orf00001 HaY a4 +Z 4, &0

EX Command Prompt -i \ = | B |

C:lzeps Jerry~DDezktopsli wen 20818%c=z123bh Term Project>perl PromoterFinder_perl
=eq strand

frame: @

start—stop 1393——-1785
start—stop 4201-—-4476
Prohahility of using frame B8
frame: 1

start—stop 278——1372
start—stop 198044777

Probabhility of uszing frame 1 iz B.166666666666G6GY.
frame: 2

start—stop Z2A37--2383

start—stop 26782975

Frohahility of using frame 2

(=

$#gff-version 2

##source-version easygene-1.2b
##date 2011-12-05

##Tvpe DNA

# model: AP02 Aeropyrum pernix

# segname model feature start end =core +/— ? startc odds

#

gi 354515237 _gb JF918432.1 LPO2 CDS ] 458 0.328944 + 0 $GIG 3.2777
#

1.01 Init +

Intr

Intr

1.04 Intr

ArcA| Escherichia coli (strain K12) 397 406 - 6.05 TGTICARRRR
ArcA| Escherichia coli (strain K12) 251 260 + 5.92 LGTTACAGAT
ArcA | Escherichia coli (strain K12) 451 460 - 585 TGTTAGCCTT
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9. ecoli414745

Submit new Data |

GLIMMEE (ver. 3.02: iterated) predictions:
orfID start end frame score

orfO000% 82l 2899 +2 3,00

W Command Prompt ‘

frame: @
start—stop 334561
start—stop 28980——3135

Probability of using frame B iz B.

frame: 1

start—stop S566——2899

start—stop 38563247

Probability of using frame 1 iz 8.

frame: 2

.

$#gff-version 2
##source-version easygene-1.2b
##date 2011-12-06

##Type DNA

# model: APO2 Aeropyrum pernix

# segname model feature start end score /- ? startc odds
#

gl 414745 emb X71063.1 APO2 CDs 821 2899 1.91988e-21 + 0 #1TG 69.001

#

n...Bnd .Len Fr Fh I/

1.01 Tnit

Intr

suboptimal

ArcA | Escherichia cali (strain K12) 47 58 - H TGTTARTGAA
ArcA | Escherichia cali (strain K12) 632 841 - 6.96 GGETTARAATAA
ArcA | Escherichia cali (strain K12) 2092 3001 - 693 CGTTARTCAT
ArgR | Escherichia coli (strain K12) 183 186 - 973 TGAATARTARTCTG
ArgR | Escherichia coli (strain K12) 3204 217 - 928 TGCATTTTTATGRE
ArgR | Escherichia coli (strain K12) 2265 2278 + 9.04 TGCATGARGATAAC
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10. ecolil67509193

Submitnew Data

GLIMMER (ver. 3.02; iterated) predictions:
orfID start end frame score

orf00002 128 438 -3 6. 38

frame: 1
start—stop ?5——-316

Probability of using frame 1 is 8.

frame: 2
start—stop 174392

Probability of uszing frame 2 iz B.1666666GGLEGHG66Y.

C:sUzerssJerprysDesktopsli wen 2018%c3123bNTerm Project?

$#gff-version 2
##source-version easygene-1.2b
##date 2011-12-05

$##Type DNR

$# model: AP02 Aeropyrum pernix

$# segname model feature start end score +/- ? starte odds
F

3

Explain the output. Go back.

EXONS

1 NIGMAMCGTT TIAGTCTGEC TATICTGRCS CTGGTIGTTS CAACCGRCGC ACRAGCTGCC ACTGAAAMG TCRAGRTGAR &0
#1 CCICRTCACS TCGCARGESS TABGRCASTC ANTTGRTAGE GTCACCATIA CTGARACCG TARRGGICTS GAGTITICEC 160
161 CCGRICTGRA AGCATTACCC CCUGGTGRAC ATGGCTTCCA TATICATGCC AMMGGARGCT GCCAGCCAGC CACCARMGAT 240
241 GECRRAGCCA GCRCUGCGEA ATCCECRGRC CERMMSWIPOWICAAAR TACCGETARR CATGARGGR. CAGRAGETGC 320
321 CGGRCACTIA GRCGATCTGC CTGCACTGET CGICANTAAT GACGGCARAG CTACUGATGC CGICATCRCS CCICICTER 400
401 ATCACTGRA TGMAATCAAA GACRMAGCGC TGATGRTCCA CRTTGGCEGC GATAATATGT CCRATCAMCC TMAACCRCTS 480
481 GGCBETGRCG GTGAACGCTA TRCCTGIGET GTANTTAAG

AIOR | Escherichia ool stiainK12) m 2% . 921 TGRATCARGATGCC
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11. ecoli260765442

Submit new Data |

GLIMMER (wver. 2.02; iterated) predictions:

orfID start end frame score

C:~Users~Jerry-Desktop~li wen 2018 c:123h~Term Projectperl PromoterFinder.perl
zeq strand

frame: @A

I Probhabhility of using frame B iz A.

frame: 1
start—st 118——318

Prohabhility of using frame 1 iz A.
L —

##gff-version 2
##source—version easygene-1.2b
##date 2011-12-05

#3#Type DNR

# model: AP0Z Reropyrum pernix

# seqname model feature start end score +/- ? startc odds

#

gi_ 260765442 gb GQS06530.1 LPOZ CDs 232 1026 0.000487696 + 4] #TTG -5.3721

#

1 >»GIIIGEIGR .|ESCHERIC HIACOLISTR RINKCHITOB IASEGENE,C OMPLETECDS GIGGGICCAG TARTGTIGGR 80
81 TGTCGRAAGGT TACGAACTGG ACGUGGAAGA GUGTGARATA CTGGCGCATC CGCTGGIGGG AGGGCTGATT CICTTTACGC 160
161 GTRACTATCR TGATCCTGCC CAGTTACGTG AACTGETGCS CCAGATCCGC GCAGCTICGC GCRATCGICT GGTGGIGECG 240
241 GTTGATCAGG RARGGTGGACG CGTGCAGCGT TTTCGTGAAG GTTTTACCCG CTITGCCAGCG GCGCAATCAT TCGCIGCGCT 320
321 GICAGGRATG GRAGAGGGIG GCRRACTGGC GCAGGAGGCA GGIIGGITGR TGGCCAGCGR ARTGRICGCTI ATGGAIATIG 400
401 RATATCAGCTT TGCGCCTGTG CTGGATGTCG GGCATATCAG CGCGGCGATT GGCGAGCGTT CITATCATGC CGATCCACARR 480
481 RARAGCCCTGE CRATTGCCRG COGGTTTATT GATGGTATGC ATGARGCCGE ARTG CG RCCGGGRRAC ACTTCCCAGG 560
561 ACRCGGIGCER GTAACGGCAG ACTCARCACRR RGARACACCG TGCGATCCAC GICCRCRAGC GGRGRITCGC GCTARAGATA 640
841 TGTICGGTCTIT CAGTTCCTTA ATCCGCGARA ATARACTCGA CGCCATTATG CCTGCGCARTG TGATCTACARG TGATGTTGAT 720
721 CCGCGTCCGE CGAGCGGTTIC TCCCTACTGE CTGARRACCS TTTTGCGTCA GGRACTGGGET TTIGACGGCG TGATTTICTC 800
801 TGACGATTTZ TCGATGGARG GIGCCGCGAT TATGGGCAGT TATGCCGRAAC GCGGGCAGGC TTICACIGGRI GCGGGIIGCG 880
881 ATATGATCCT GGTCTGCAAT AATCGTARAG GGGCCGTCAG CGTGTTAGAT ARTCTGTCAC CGATCRAGGC AGRACGTGTT 960

961 ACACGTTTGT ATCATARRGG TTCATTTTCG CGACAGGAAC TGATGGACTC GECTICGCTGG ARAGCGATCR GCACCCGICT 1040
1041 GRATCAGTTE CATGRACGCT GGCAGGARGR GARAGCAGET CACTAR

® 2003-2008 by Richard Minch » Institute of Microbiology » Technical University of Braunschweig « r.muench(at)tu-bs.de
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12. ecoli300901746

GLIMMEE (wer. 3.02; iterated) predictions:
orfID start end frame sScore

>gi 300901746 |ref |[NZ_ADTTO1000E60. 1| Escherichia coli MS 198-1 E_co0lilossS—1-1.0_Contdld. 2,
orfO000z 3B 4363 +2 E. 04

orfO0005 433 Elza  +3 4. 91
or£O000a Els8 s0ds  +1 4. 43
orfO0011 5151 BT11 +1 11.1%5
orfO0014 T1TE 5922 -1 5. 61
orfO001% TZ222 TreE  +1 T.TO
orfO001T TEO4 2013 +1 571
orfOOola 2051 2641 +2 10. 51
orfO0020 22881 2141 +1 2,17
orfO0021 24293 10298 +3 .12
orfO00Z23 10450 10310 -2 2. B8
orfO00Z6 23 10717 -1 0. 34

oo
— e — ———

Probability of wusing frame 2 is @.

IC:~Users~Jerry~Desktop~li wen 2018%cs123b~Term Project>per]l PromoterFinder.perl
zeg strand

frame : 5]

start—stop 5188——6B848
start—stop 6151—6711
start—stop 6856——7A?8
start—stop F222——7758
etart—stop 7YEI——8BO013
start—stop 8212——84809
start—stop 8881——92141
start—stop 29574——9804

Probability of using frame B iz B_.333333333333333 .

frame: i
start—stop 38— 63
start—stop <4442——4654
start—stop 5282——5557
etart—=stop S58B64——6B061
—

EasyGene 1.2 Server - prediction results

ke Technical University of Denmark

#¥gff-version 2
##source—version easvgene-1.2b
##date 2011-04-30

##Tvpe DNA

# model: APO2 Aeropvrum pernix

# segname model feature starc end score = 2 starto odds

#

gi_300901746_ref NZ_ ADTJO1000560.1_ apo2 cps 26 4363 3.083862-45 + o #GTG 296.097
gi_300901746_ref NZ ADTJO1000560.1_ apo2 cps 5614 6048 0.218941 + o #ATG 7.4309
gi_300901746_ref NZ ADTJO1000560.1_ apo2 cps 6151 6711 0.158231 + o #ATG -9.0152
gi_300901746_ref NZ ADTJO1000560.1_ apo2 cps 8153 8641 1.61256 + o £#TTG -15.2881

#

Explain the output. Go back.

ArcA | Escherichia coli (strain K12) 7598 7605 + 7.09 TGTTRATCAG
Arca | Escherichia coli (strain K12) 5886 5895 - 6.99 TGTTAATCCA
Arca| Escherichia coli (strain K12) 5160 5169 - 6.79 TGTTTATTAA
ArgR | Escherichia coli (strain K12) 7439 7452 - a4s TGCATCAATATTTA
ArgR | Escherichia coli (strain K12) 5470 5483 - a19 TGATTATCARTACA
ArgR | Escherichia coli (strain K12} 7592 7605 + 9.18 TGAATGTTARTCAG
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13. ecoli325965637

| Submit new Data |

GLIMMEERE (wver. 3.0Z2; iterated) predictions:
orfID start end frame score

gl |354515257 |2k |JF918452. 1| Escherichia coli class I integron dihvdrofe
orfoo0ol LEg 34 +2 4. 50

=tart—stop B173I— 523

Probability of wusing frame B is @A.

frame =
1592——2515
2564—— 3646
4751——59235%
6389 ——6648
=tart—stop 74380——7638
start—stop YV6E3I1——7E13

Probability of uwusing frame 1 iz B_1666666606666667_

Frame = 2
=start—=stop 129——1580
start—stop 1599—1723
start—stop 7BE6——8B339
=tart—=stop BIFT—B6IF

Probability of wusing frame 2 is @.

$#gff-version 2
##source-version easygene-1.2b
##date 2011-12-05

##Tvpe DNA

# model: AP02 Aeropyrum pernix

# segname model feature start end =core +/— ? startc odds

#

gi 354515237 _gb JF918432.1 LPO2 CDS ] 458 0.328944 + 0 $GIG 3.2777
#

TGATATCCCG

ARACATTTGA 160
AACGTCCTRG 240
320
400
420
TGEACAGCTT TCITTGIGET TTTGCTGLGC 560
561 GCIGCCGCTG AACTTRACGT TAGGCATCAT GGGIGARTTT TTCCCTGCAC AAGTTITCAR GCAGCIGICC CACGCICGCG 640
641 CGGIGAICGA GCGCCAICTG GCTGCGACAC TGGACACAAT CCACCTGIIC GGATCIGCGR TCGATGGRGG GCIGAAGCCG 720
721 TAGACTTGCT CGTGACCSTC RGCGCCGCAC CTAACGATIC AG GCGCTARTGC TCERTTTSCT 200
&01 TCA
ArcA| Escherichia coli (strain K12) 397 406 - 6.05 TGTICARRRR
ArcA| Escherichia coli (strain K12) 251 260 + 5.92 LGTTACAGAT
ArcA | Escherichia coli (strain K12) 451 460 - 585 TGTTAGCCTT
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14. ecoli341941295

Submit new Data |

GLIMMEE (wer. 3.02: iterated) predictions:
orfID start erid frame score

Eﬁc°mm“dmefJ’II:=:;-lr o

C=~Users~Jerry-Desktopsli wen 2818%cs123b~Term Project>perl PromoterFinder.perl
zeqg strand

frame: @
=tart—stop 1—1299

Probabhility of uzing frame B i=s @.

frame: 1

Probabhility of uszing frame 1 is @.

[=

$#gff-version 2
##source-version easygene-1.2b
##date 2011-12-05

##Type DNA

# model: AP0OZ Aeropyrum pernix

# sSegname model feature start end score +/ = ? startc odds
#

3

.Len Fr Ph I/Ac Do/T C

1. 01 Term

suboptimal exons with prob

Exroum Type 5 .E . Ve DofT C

ArcA| Escherichia coli (strain K12) 530 539 - 596 CGITARTGAR
ArcA | Escherichia coli (stain K12) 628 637 + 6.4 TGTTCATTAR
Arch | Escherichia call (sfrain K12) 44 43 + 670 CCITATITAR
ArgR |Escherichia coll (strain K12) 51 588 + 8.6 TGCTTAATITICCR
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15. ecoli342315677
Submit new Data |

GLIMMER (wver. 2.02; iterated) predictions:

orfID start end frame score

=Y Command P rDmEtL

C:=“UsersJerry-Desktopsli wen 2018 cs123bs\Term Project>perl PromoterFinder.perl
seq strand

frame: @A
start—stop 322—621

Prohahility of using frame B iz A.

frame: 1
Prohahility of using frame 1 iz A.

frame: 2

$#qff-version 2
$#3ource-version easygens-1.2b
tHdate 2011-12-05

$#Type DNR

$ model: AP0Z Zeropyrum pernix

$ zeqname model  feature start end gcore 4- ? gtarte odds
3

3

in ...End .Len Fr Ph I/4c Do/T CodRg

1.0 Intr

Suboptimal exons with probability > 1.000

Ezrum Type 5 .Begin ...End .Len Fr Ph B/&c Do/T CodRg P....

AtcA | Escherichia cali(sram K12) 1 10 + B89 TeTAICIAM
AtcA | Escherichia ool (srain K12) ol Pt + G4 TGTTTATAN
AtcA | Escherichia ool (srain K12) £l Bl - 802 TETTATAGIT
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16. ecoli346421495

GLIMMER (wer. 3.02; iterated) predictions:
orfID start end frame score

»gi 346421495 |gb | JN411912. 1| Eacherichia coli strain 0@ beta-lactamase (blalTX-M) zene, partial ods
arfo0001 454 27 +1 5. 64
arfo0002 a3 210 +1 11.91

frame: 2
start—stop B1--323

Probability of uwszing frame 2 iz B.

C:lserssJerry~Desktopsli wen 2818%cs123b5\Term Project>

EasyGene 1.2 Server - prediction results

e Technical University of Denmark

##gff-version 2
##zource-version easygene-1.2b
##date 2011-11-29

##Type DNZ

# model: AP02 Aeropyrum pernix

# seqname model feature start end score +/- ? startc odds
#

#

Explain the output. Go back.

n...End .Len Fr Fh

1.01 Init

CAT’

CTGCCTGCTT

© 2003-2008 by Richard Minch « Institute of Microbiology » Technical University of Braunschweig « r.muenchiat)tu-bs.de
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17. ecoli354515237

Submit new Data |

GLIMMEE (ver. 3.02; iterated) predictions:
orfID start end frame score

orf00001 HaY a4 +Z 4, &0

|

reversecomplement strand -

frame: @

=tart—stop 67——264

start—stop 322573

Probability of using frame B is B.

frame: 1

Probability of uwsing frame 1 iz B.

frame: 2

$#gff-version 2
##source-version easygene-1.2b
##date 2011-12-05

##Tvpe DNA

# model: AP02 Aeropyrum pernix

# segname model feature start end =core +/— ? startc odds

#

gi 354515237 _gb JF918432.1 LPO2 CDS ] 458 0.328944 + 0 $GIG 3.2777
#

..End .Len

1.01 Init

ArcA| Escherichia coli (strain K12) 397 406 - 6.05 TGTICARRRR
ArcA| Escherichia coli (strain K12) 251 260 + 5.92 LGTTACAGAT
ArcA | Escherichia coli (strain K12) 451 460 - 585 TGTTAGCCTT
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18. ecoli354515240

Submit new Data |

GLIMMEE (wer. 3.02: iterated) predictions:
orfID start end frame score

frame: 1
=tart—stop 35277
start—stop 542—Y36

Frohahility of using frame 1 is BA.166666GG6GGGAGY .

frame: 2
start—stop 42—-254

Probabhility of using frame 2 iz 8.

C:“lUzeprs Jerry~DDezktopsli wen 2018%c=z123bh“Term Project>

l

$#gff-version 2
##source-version easygene-1.2b
##date 2011-12-05

##Type DNA

# model: APF0Z2 Aeropyrum pernix

# seqname model feature start end score +/- ? atartc odds
3

¥

1.01 Intr +

suboptimal exons

Es

81 TATC G AATAAG 180
161 TTGTTAGEEA GTG: 240
241 © T A 320

721

a01

800

ArcA | Escherichia coli (strain K12) 257 266 - 7.29 TGTTIRATCRA
ArcA | Escherichia coli (strain K12) 418 427 + 721 TGTTRACTAT
ArcA | Escherichia coli (strain K12) 381 390 + 6.86 TGTTARRTCR
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19. ecoli354515242

Submit new Data |

GLIMMER (wver. 2.02; iterated) predictions:

orfID start end frame score

Probability of using frame @

frame: 1
B Frobhahility of wsing frame 1

frame: 2
start—stop 141—788

Prohahility of using frame 2

$#gff-version 2
##=zource—-version easygene-1.2b
##date 2011-12-05

##Tvpe DNA

# model: AP02 Reropyrum pernix

# seqname model feature start end score +/- ? startc odds

#

gi 354515242 gb JF918434.1 LFOZ CDs 225 T88 0.00194172 + 0 $4TG 18.9505
#

1 TCGATIGARR GGIGGITIGIA ARTGRTGTTA CAATGTGTGA GRAGCAGICT ARATTCTICG TGARATAGTG ATTTTTGAAG &0

81 CTAAT. CACACGTGG BATTTAGGAA ARACTTATAT CTGCTGCTIENENEREYICECIMBSICNeNE. GGTGCARATC 160

161 ARACACACTG ATTGCGICTG ACGGGCCCGE CACCTTTTT GCTTITARTT ACGGRACTGE TTICATGATG ARAAAATCGT 240

241 CIGCIGCIG C. CTCCACATT TGCTGCCGCA ARRACAGRAC RACAGATIGC CGATATCGIT 320

321 400

401 480

481 560

561 &40

641 GCAGATCCCC GATGACGTTA GGGATARAGC GCCGCRARTGG ACTCCGGGCG 720

721 CTAAGCGACT TTACGCTAAC TCCAGCATTG CAGRATGRAGT TACGAA
ArcA | Escherichia coli (strain K12) 140 149 - 6.29 TGITGACRARR
ArcA | Escherichia coli (strain K12) 129 138 - 628 GGTTRRRTTT
ArcA | Escherichia coli (strain K12) 486 495 - 6.09 CGTTARACGT
ArgR | Escherichia coli (strain K12) 679 692 + 895 IGCATITTIIATCAR
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20. ecoli354515243

Submit new Data |

GLIMNERE (ver. 3.02: iterated) predictions:

orfID start end frame score

Probability of using frame B iz A.

frame = 1

Probability of using frame 1 iz @A.

frame = 2

Probability of using frame 2 iz @A.

C-~Uzers~Jerry~Desktop~li wen 28018~c=123b~Term Project>

##gff-version 2
##source-version easygene-1.2b
##date 2011-12-05

##Type DA

# model: AP02 Aeropyrum pernix

% segname model  feature start end zcore +/- ? atartc odds
#

#

in ...Efnd .Len Fr

1.01 Intr

Subo ot imal

Exn 5 . n...End .Len Fr

1 GITIGAGCTG GRCTCTENRYNSRRYRCCTT CRCCGHATR CTGRACRHE ATGCCATIGC COGRRRIGAA ATAGCRCIR: 8
B1 GUGATCCERT AGCAARATAC TGGCCTGARC TCACGERCAR GCAGIGRCAG GCRTICGCR TGCTGOATCT GXCARCCTAT 180
161 ACCECAGECE GICTRCCRTT ACARRTECCE GATGRRRICA CREATACCEC CICICIRCTG CCTTTIRIC AMMACTGRCR 240

241 GLCGCARIG: ARG

Arch | Escherichia cal (sirain K12) 7 i

=

All TITTACTTAL
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Appendix 5—Web Application

1. Home page

Home
About E. coli Gene Finder

E. coli1 Summary:

This project uses the characteristicin TATA-less regions on E. coli sequences
E. coli2 to predict the promoter region before TSS, which indicate that the real gene
has been located. It uses several well-known algorithms and metheds such as
the sliding window algorithm, and a clustering method to predict promoters. It
also contains D2K algorithm and hod to dicted result with
other online promoter package result.

E.coli3

Cover: ;
TP > Start and Stop location

> TP
> FDR

Project Overview

The prediction made by this program is only for some E. coli sequences as
we can see from the data from NCBI. Even though the results lock better
than two of the online packages prediction, it still has the limitation on
predictions..

Algorithm D2K

Algorithm depends on the finding of TATA-less region, the steps during
classification and istics. Imp d p prediction will use the
characteristic from both TATA-rich regions and TATA-less regions to
increase truth positive prediction result.

2. One example

Home stop Glimmer start Glimmer stop Start Stop EasyG
4383
E. coli1 5188 6048 5188 6048 5188 6048
6151 6711 6151 6711 6151 6711
6840 7052 7176 6922 6856 7098
ol 7285 7758 7222 7758 7222 7758
7804 8013 7804 8013 7783 8013
E. coli3 8051 8641 8051 8641 8212 8409
8881 9141 8881 9141 8881 9141
o 9429 10298 9429 10298 9574 9804
9 9 8
0 58. 77777778 147. 25
< m | »
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