
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2012

Desktop Sharing Portal Desktop Sharing Portal

Ming-Chen Tsai
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tsai, Ming-Chen, "Desktop Sharing Portal" (2012). Master's Projects. 230.
DOI: https://doi.org/10.31979/etd.zpxq-4e9b
https://scholarworks.sjsu.edu/etd_projects/230

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/230?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Desktop Sharing Portal

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Ming-Chen Tsai

May 2012

2

Copyright © 2012

Ming-Chen Tsai

All Rights Reserved

3

Acknowledgement
I would like to thank Dr. Soon Tee Teoh for his excellent guidance throughout

this project work and my committee members, Dr. Mark Stamp and Raj Chandran for

their time and effort in reviewing the research content. Lastly, I thank my families for their

love and support that enabled me to complete this research.

4

Abstract

 Desktop sharing technologies have existed since the late 80s. It is often

used in scenarios where collaborative computing is beneficial to participants in

the shared environment by the control of the more knowledgeable party. But the

steps required in establishing a session is often cumbersome to many. Selection

of a sharing method, obtaining sharing target’s network address, sharing tool’s

desired ports, and firewall issues are major hurdles for a typical non-IT user. In

this project, I have constructed a web-portal that helps collaborators to easily

locate each other and initialize sharing sessions. The portal that I developed

enables collaborated sessions to start as easily as browsing to a URL of the

sharing service provider, with no need to download or follow installation

instructions on either party’s end. In addition, I have added video conferencing

and audio streaming capability to bring better collaborative and multimedia

experience.

5

Table	
 of	
 Contents	

1.	
 Introduction ... 7	

1.1	
 Related	
 Work ...7	

1.2	
 Project	
 Description...10	

2.	
 Design	
 and	
 Implementation..12	

2.1	
 Protocols	
 Considered... 12	

2.1.1	
 RDP ..12	

2.1.2	
 NX	
 Technology..13	

2.1.3	
 TrueRemote ...13	

2.1.4	
 SPICE...13	

2.1.5	
 VNC/RFB ...14	

2.2	
 Frontend	
 Components... 14	

2.2.1	
 Sharing	
 Data	
 Transmission ...15	

2.2.2	
 Conferencing ...18	

2.2.3	
 Audio	
 Transmission ...18	

2.3	
 Backend	
 Modules .. 22	

2.3.1	
 Image	
 Access	
 Detail	
 File ...22	

2.3.1	
 Maintainer ..22	

2.3.2	
 Backend	
 Starter..23	

2.3.3	
 Database ..24	

2.3.4	
 Resource	
 Units..25	

2.3.5	
 Service	
 Deployments ...29	

3.	
 Portal	
 Workflow..31	

3.1	
 Enrollment ...31	

3.2	
 Creating	
 a	
 new	
 room ...33	

3.3	
 Collaboration	
 Room ...35	

3.4	
 Video	
 conference...36	

3.5	
 Audio	
 streaming ..38	

4.	
 Evaluations	
 and	
 Usability ..39	

4.1	
 Sharing	
 Environment ..39	

4.2	
 Video	
 Conference	
 Popup..39	

4.3	
 Audio	
 Stream	
 Delay..40	

5.	
 Conclusion...41	

5.1	
 Future	
 Research...41	

References ...42	

6

List of Figures

- RemoteFX Architecture... 8	

- YouOS Web Operating System .. 9	

- Google+ Hangouts .. 10	

- Portal Modules ..12	

- Remote Desktop Data Path ..17	

- Wsproxy Startup Message ..17	

- Source Code: HTML5 audio element.. 19	

- Audio Stream Data Path ... 20	

- DarkICE Configuration Parameters...21	

- IceCast Configuration Parameters ..21	

- Source Code: Database Schema..24	

- Portal on EC2s ..26	

- Amazon AWS - Resources Panel ...27	

- Amazon AWS Datacenter Locations...29	

- Amazon AWS - Management Console ... 30	

- Enrollment Workflow ... 31	

- Enrollment Screenshot.. 32	

- Create New Room... 33	

- Create New Room Screenshot ...34	

- Main Lobby Room Index Screenshot .. 34	

- Collaboration Room .. 35	

- Video Conference Workflow..36	

- Room with Video Chat .. 37	

- Audio Streaming Workflow..38	

- Video Device Access Request Popup... 40	

7

1. Introduction
Technical difficulties for establishing desktop sharing sessions are

common issue in many IT scenarios. As mentioned in [1], situations such as how

to escalate user’s browser or operating system in order to allow sharing access

privilege, adjusting firewall configuration to enable network traffic, or locating the

machine’s network IP address and sharing port for the other party - all has

proven to be technically advanced for most Internet users. The Remote Desktop

solution is a narrow area in the computer software field. Its history of origin dates

back to 1987 by Netop [11]. Up until the early 2000s, almost all solutions required

software installation and administrator approval on the client side. Only the more

recent Java based browser-plug-in solutions take advantages of cached approval

in browser to silently initiate sharing sessions upon user acknowledgement. With

the growing trend of emerging web standards, and focus on cross-browser

compatibility, remote desktop solutions can be re-introduced in new forms.

1.1 Related Work

Options for providing a computing environment over the Internet have

been explored in the past. More recently, companies providing virtualization

solutions have developed similar technologies, and their differences against

remote desktops are also noted in this section.

VDI – Virtual Desktop Infrastructure, a term introduced by VMWare,

services virtualized desktop operating systems through centralized servers.

Some of the VDI’s goals include lessening time needed to provision new client

system, centralized location for all client data which allows easier data-backup

and management since all client data are stored in a single data storage area. It

also allows reduced cost in terms of creating new client systems. Such that when

a new client is needed, an older system can be plugged into the infrastructure

and be used as a thin, dumb terminal and allowing the server to provide a

virtualized desktop which is more powerful. Technologies from other companies

8

that provide similar technologies include XenDesktop from Citrix [17], and

RemoteFX from Microsoft Windows Server 2008 [18].

Different from Remote Desktop Systems, a virtualized desktop client may

not always need to have constant network connections. Such solutions are

hybrid-VDIs, in that not all clients are thin or dumb ones. There are also client-

hosted VDI solutions that transfer a VDI image data to local client for its own

operating need without requesting further resource from central server. In this

case, the local client-hosted solution would require its own storage space. High-

performance GPU/CPU is also desired in some cases, such as RemoteFX where

the technique is to forward the graphics device commands directly to client’s end.

Figure 1 - RemoteFX Architecture

Web Operating Systems – The ideology behind such solutions is to

provide an environment where online browsing activity can be shared. A web

operating system is neither a remote desktop, nor a virtualized system. It is a

client owned operating environment that resides within a web browser, such that

9

the internals of the operating system has no resemblance of a typical one such

as Windows or Linux. When a user opens a web browser to access a resource

inside a web operating system, he/she is directly accessing the resource from

his/her browser. Data that are stored “locally” on the web operating system is

transferred to server through web transfer protocols – such as HTTP, where the

hosting entity stores the user profile data and its data storages. Some of the

more notable solutions in this area include YouOS [19] and Synaptop [20]. Both

of which also provides API interface for external developers to write applications

that can be used inside such operating systems.

Figure 2 - YouOS Web Operating System

Video Conferencing Systems – It is worth mentioning that the video

conferencing capability provided by the portal is similar to current offerings such

as Google+ Hangouts [22], VoxWire [23], or FlashMeeting [24]. The portal,

10

through TokBox, takes the approach of providing such capability in a basic way

and not superior to the above offerings.

Figure 3 - Google+ Hangouts

1.2 Project Description

 With the growth of the Internet, virtual gaps between individuals are

diminishing. Uploaded contents are growing at phenomenal rate, and the

equivalent growth rate is true for websites and apps that are focused towards

consuming of the uploaded contents. This brings increasing opportunities for

collaborated desktop sharing environments where participants are brought

together to collaboratively browse and share experiences through the Internet.

In this project, using HTML5 standards and open source technology

incorporate after careful analysis. I have constructed a desktop sharing portal

that hides away the need for technical knowledge required in order to conduct

11

collaborative browsing. In contrast to what a VDI would offer, the portal gives

emphasis on usability-friendliness. Consider the cases where VDI services

require not-so-thin clients, and oblivious to the client’s network topology, I have

developed the portal with the goal of serving current Internet users who do not

have the optimal network setting and neither a powerful GPU client hardware.

And unlike a Web Operating System, the portal offers more freedom in terms of

application connectivity – since almost any desktop applications can easily be

installed and used in the shared portal environment. To enable this, I

implemented 4 types of portal components of which their individual tasks are

service request fulfiller, image warehouse maintainer, bookkeeping data store,

and image units, where the image units can be swapped between different

operating systems such as Windows or Linux. I have also developed the frontend

module such that it allows videoconferencing capabilities, and audio streaming

feature so that it encourages tighter participant interactions during sharing

sessions.

12

2. Design and Implementation
 I have implemented the portal to be composed of 4 types of modules, and

developed the frontend module in PHP, HTML, JavaScript and CSS on Apache

httpd2, backend module in Java SE6, virtual images using Ubuntu and Windows

using shell scripts, and data storage using MySQL 5.

Figure 4 - Portal Modules

2.1 Protocols Considered
A key component for this portal is the protocol used for delivering remote

desktop. Below, I present my analysis on the protocol options in the context of

the portal usage and outline each protocol’s strength and weaknesses.

2.1.1 RDP

 Microsoft’s Remote Desktop Protocol [7] was first introduced during the

release of Windows NT 4.0 in July 1996. The main strength for RDP is that it is

deeply embedded in Microsoft operating systems, meaning the majority of the

Internet users today. The RDP today offers a strong suite of features – audio

redirection, file transfer redirection, and printer redirection. Some of its

13

weaknesses includes, due to popularity, is that it is often the target of malicious

attacks. Another downside is that it is not supported on hosts that are non-

Windows operating system.

2.1.2 NX Technology

 Developed by the Italian company NoMachine [15], NX technology allows

X Windows System based system. It is based on the Differential X Protocol

Compressor project, and capable of delivering improved X display performance

even through slow dial-up link. However, there is currently not a HTML5 based

NX client, and the open source effort has stalled due to company business

direction. Therefore, it is removed from the list of choices to be considered for our

portal usage.

2.1.3 TrueRemote

 TrueRemote, developed IchiGeki in Japan [16], is based on a proprietary

video codec called “GaeBolgVideoCodec” to provide high speed video and audio

remote desktop experience. It currently works on Microsoft Windows platform,

and provides the performance improvement by optimization at GDI and Direct3D

levels. But due to its limited offering on only Windows operating system, and IP

protection, it is not considered for the portal usage.

2.1.4 SPICE

 Simple Protocol for Independent Computing Environments [8] is an open

source project led by RedHat. SPICE was initially designed by Qumranet Israel in

2008 to focus on richer remote multimedia experience of which older protocols

such as VNC or RDP was not initially designed for. SPICE requires the guest

operating system to be a virtualized one. It transmits virtualization level

commands directly to the client for rendering tasks on both video and audio data.

But the weakness of SPICE is that the client side is required to have a high

performance-rendering chip in order to guarantee smooth processing of

commands received. Also, the current state of SPICE client requires library driver

installation that could increase technical complexity on end user’s end in our

scenario.

14

2.1.5 VNC/RFB

 Virtual Network Computing [4] is a highly popular open source remote

desktop protocol that has been ported to most operating systems. The protocol

behind VNC is RFB – Remote Frame Buffer protocol [5]. The original RFB

protocol is simply a graphics display transmission protocol, meaning that it lacks

what RDP or SPICE offers. However, many variants of RFB have been

developed to incorporate those features. Such as UltraVNC for adding file

transfer capability, multi-monitor support, or TigerVNC for transfer rate

adjustments on different display needs. The weakness of the RFB protocol lies in

its image frame based transmission protocol. In comparison to other protocols

that sends higher-level system commands, RFB data is graphics based hence

taking up more data bandwidth need. Though at the same time, this transmission

method has shown to have good flexibility such that any client system can easily

process the buffer display commands that are received.

 Our choice of protocol is VNC due to its ease of portability. As seen with

projects such as [2] and [3], bringing RFB data directly to user browsers is now

achievable with HTML5. Previously, the client side permission would be required

for installation need, which would introduce room for complexity and higher

chances of incompatibilities.

2.2 Frontend Components
I have developed the frontend components that consist of the following.

Apache2 webserver is used with mod_php enabled. PHP server enabled with

MySQL database connectivity. User profile registration handling and profile data

insertion to database is handled by the registration handler I wrote using PHP,

and SQL queries. Its job is to receive profile data and processing requests for

new user profile data against member profile table. If an account already exists,

registration request will be rejected.

Users do not have to provide a password during the sign up stage. A

random password is generated and sent in an email to the user’s email account

15

in order to ensure authenticity. User passwords are hashed using MD5 before

being stored into database table. No password is stored in plaintext form. I

developed the portal landing, lobby, and room pages in HTML, CSS and uses

JavaScript and jQuery in order to provide a web UI immediate display capability.

This removes the need for page refresh before seeing new content updates. I

have written the create-room or remove-room handler such that when the

request is received, a forked “getJSON” jQuery call is made out to separate

removeImage or createImage PHP handlers, where the actual room ownership

grant or removal actions are completed against database.

Since HTTP is a stateless protocol, I used PHP’s session management to

keep track of the user’s states between the portal pages in order to serve the

user correct page contents. During the login phase, when the user enters

password characters into the password textbox, it is masked to provide privacy.

This is developed using the standard HTML password textbox feature. The

entered username and password field data fields are string-escaped first before

being used for MySQL query in order protect against Sql-Injection attack. In order

to authenticate login request, I wrote a query process in PHP to MD5 hash the

incoming plaintext password first before using SQL query to check against

member profile table and to determine whether to allow or disallow a user login.

I have added page analytic JavaScripts to all the pages in order track page

usage statistics.

In order to provide real-time room current condition in the main lobby

page, I employed JavaScript and jQuery’s “.attr()” method to cause the thumbnail

image to be constantly queried by the browser with time interval of 1 second

between each query. I used Chrome’s embedded Developer Tools’s query

history to determine whether the query implementation would be too aggressive

or not. 1 second interval implementation in this situation seems suitable in our

scenario.

2.2.1 Sharing Data Transmission

Before WebSocket and Comet (another web transmission protocol that

allows efficient 2-way data transmission) were standardized by W3C, most

16

browsers would use Java Applets with TCP/IP traffic to achieve desired

streaming data transmission. In the portal’s scenario and with the decision of

using VNC/RFB protocol, I have developed the following in order to provide

sharing room that can be used by multiple participants.

In the main image page, I wrote sharing image queries to check whether

this image is indeed owned by the user through PHP, and MySql queries. After

which, a data row is inserted into ds_session table to denote the time of which

this sharing usage session started, and also the member_id and image_id.

noVNC [2] embeds both the RFB protocol JavaScript library, and the

Websock library to provide the WebSocket based connection between browser

and the proxy server. Since HTTP does not provide streaming based bi-

directional data transmission. I installed and configured vncserver to wait for

connection on port 5901 with a required password set on the Linux image that is

to be used for sharing room. In the backend module’s startup script that I have

written, it initiates a websocket proxy server. The websocket proxy server’s job is

to route traffic between the websocket, on browser’s end, and the TCP socket,

on Linux image’s end. In our case, this proxy pipes sharing image traffic between

the web browser and the VNC server.

17

Figure 5 - Remote Desktop Data Path

The above Figure shows the image data flow path between remote desktop and

the user’s browser through various layers. Different from a typical VNC

connection, the data flow from “TCP to VNC Server” onwards goes through

base64 transformation and travels using WebSocket protocol in order for the

HTML5 based browser to render without any native VNC client need.

Figure 6 - Wsproxy Startup Message

18

2.2.2 Conferencing
I have developed the room-sharing page with the following items in order

to allow videoconference session creation, access token creation, publish or

subscribe to a video session.

I imported TokBox’s PHP library in order to be allowed access to their

application interface. A one-time API key is used here which was received during

a one-time sign-up process. A TokBox session object, hereafter referred to as

Tsession, is generated after successful initialization. Its initial state is empty. In

order to start receiving notification events, event listeners need to be registered

to the Tsession object. Event listener registrations are done by calling a setup

function I have written, which adds the listeners to the Tsession object. The setup

function is invoked when “Start Video Chat” is clicked.

The 2 listeners registered are named sessionConnectedHandler, and

streamCreatedHandler. The sessionConnectedHandler listener is called when

the initial connect request has been acknowledged by TokBox. I implemented the

listener such that when it is called, a new HTML div element is created on the

sharing-room page. A unique div id is set before being added, so that when

session publishing starts, I can specify published content to use the new div just

added by its id. In order to correctly display the video box, I first created a pointer

div element which points to the pre-designated video showing area at the bottom

of the page by using document.getElementById(). The newly created div, by

session establishment in previous step, is then added as a sibling node to the

pointer div by using [new_div_node].parentNode.insertBefore(div,

[new_div_node].nextSibling). In streamCreatedHandler’s case, I implemented the

listener to first ignore the stream notification if the session is the one of which the

user is publishing – notification events are received for all new created streams.

After which I utilized the same techniques for adding the video box for notified

new stream.

2.2.3 Audio Transmission

Using the experience from SPICE protocol analysis, I explored how to

achieve the same audio streaming capability even though the choice of protocol,

19

RFB/VNC, does not provide such feature. I narrowed the selections of open

sourced audio capturer down to Ices2 and DarkIce. Here are the findings after

installation, configuration and experimental streaming runs.

Both Ices2 and DarkIce captures audio directly from audio device

hardware interface - /dev/sdp. Ices2 captures audio and streams in ogg/wave

format, DarkIce streams in mp3 format. Due to the yet concluded HTML5

standard on which audio format would be the most suitable for general public

use, I have defaulted the portal to use DarkIce, which streams mp3. Since

DarkIce streaming is an OS user-level only stream, I needed to install a

broadcaster to publish and serve the stream. I found IceCast, being the most

stable of such open source project.

I have configured the audio quality to sub-optimal settings to balance

network traffic load and quality of audio stream. This being 22050 sample rate

per second, 16 bits per sample, and stereo channel. Which is roughly similar to

the standard FM radio channel audio quality, but not matching CD quality. On the

sharing room page, I embedded a HTML5 “audio” element that plays the audio

stream automatically when the element is loaded by an HTML5 compliant

browser. Audio stream authentication between DarkIce and IceCast is allowed. I

configured this using the default password. Since all 3 data communication

channels are separate and the sharing image is inside AWS’s cloud firewall, I

emphasis less concern on possibly exploited streaming service but more on the

convenience of service setup once server number increases.

Figure 7 - Source Code: HTML5 audio element

20

Figure 8 - Audio Stream Data Path

21

Figure 9 - DarkICE Configuration Parameters

The DarkICE configuration file specifies how the audio is captured – such as

from which interface, sampling rate, audio format, and buffer settings.

Figure 10 - IceCast Configuration Parameters

22

2.3 Backend Modules

2.3.1 Image Access Detail File

I created an initial image access detail file that is to be read by the

Maintainer when the Maintainer process starts. Each line listed in the image

access file maps to an available sharing image entry. The entry has information

regarding the sharing image server’s VNC address, VNC port, thumbnail

snapshot storage location, and its public access URL. The database connection

URL is also stored in the image access detail file.

2.3.1 Maintainer

I developed the Maintainer process and placed it as the backbone of the

portal; it manages sessions and images on periodic basis. I implemented the

Maintainer using Java SE 6. I designed the Maintainer to be composed of 2 types

of job runners – database job runner and snapshot job runner. Both job runners

are extended from Java’s TimerTask class. I have defined them both to run on 5

seconds intervals. The following describes what I have implemented when a job

starts.

Database Job Runner
 I have written the Database Job runner to interact with ds_image table in

MySQL database. When the Database Job run starts, I loop through the images

list that was previously retrieved from the initial image access file reading and

check to see for the currently pointed image if there is an entry for it in ds_image

table already. If not, I then proceed to a SQL Replace query to insert this

available image into the ds_image table.

Snapshot Job Runner

When the Snapshot job runs, I similarly loop through the same list of

sharing images and updates each of the thumbnail image files. I start by taking a

vncsnapshot of the current condition; a large vnc snapshot jpeg file is produced

at the end of this stage. The values used from image detail file in this step

include vnc server password, snapshot’s storage path, and vncscreen number on

the image server. During implementation for this feature, I encountered stale

23

cache issue on Linux operating system when trying to freshen thumbnail image.

Therefore, to ensure that every thumbnail request would always get the latest

image, I first use a jpeg converter, from open source project ImageMagick, to

convert the large jpeg file to a smaller temporary jpeg file that is separate from

what the page would serve. Then in the subsequent stage, I would move the

smaller temporary file to overwrite the file of which the page serves to lobby user

who is viewing the page with thumbnails.

2.3.2 Backend Starter

 I have created a Backend Starter script that acts as the parent process for

all the Backend Module activities and also the websocket proxies. When the

script is run, I first kill all existing Maintainer or websocket proxy processes to

ensure fresh backend state. Then I forward the Image Access Detail file content

to Maintainer process. In addition to that, for each entry in the file, a websocket

proxy server in the background thread would be started through the AWK

function that I have written. This dramatically lessens the work that would be

needed to administer startup, refresh, and cleanup of any residual Maintainer or

websocket processes that were started during previous test runs.

24

2.3.3 Database

I have designed the necessary schema for the portal to be contained

within 4 tables currently. The portal currently uses one database, and it is

implemented on a MySQL server.

Figure 11 - Source Code: Database Schema

The following are the 4 database tables that I have created for use in the current

portal design:

• “ds_member” for Storing user profiles. Its primary key is the auto-

generated member_id. There is a 1-to-1 relationship between actual user

and each row in ds_member table. Access to this table is only from

Frontend module.

• “ds_member_image” for tracking member image ownership data.

• “ds_image” for tracking currently available sharing image details.

25

• “ds_session” to keep track of ongoing session being used in portal.

In the frontend main lobby page, I have written the following query as part of the

PHP procedure to determine the user’s image ownership.

• "SELECT di.id, dmi.member_user, dmi.screenpath, di.access_url FROM

ds_member_image as dmi join ds_image as di on dmi.screenpath =

di.screenpath WHERE member_user = (username)” The user being

queried does not currently have an image if the returned result is 0 row.

I have also written the following query that displays to the user the current status

of sharing rooms they currently own.

• “SELECT dsm.user FROM ds_member as dsm join ds_session as dss on

dsm.id = dss.member_id and dss.image_id = (image_id)” This query

effectively retrieves all the users that are currently using the room with

“image_id”.

2.3.4 Resource Units

 I devised each of the portal’s sharing room to be an EC2 instance on

Amazon Web Services Cloud [9] after these considerations. First consideration is

the room growth being proportional to the number of registered users. If user

volume growth outpaces virtual image hosting capacity, a new user’s image

creation would be denied. Hence it is important that the portal be able to scale

horizontally if such scenarios occur, and only a cloud-based provider could

immediately fulfill this need. Second is Amazon’s “Free Usgae Tier” offering

which is unavailable amongst other providers such as GoGrid or RackSpace.

26

Figure 12 - Portal on EC2s

Note that each of the service modules in above figure is a separate Amazon EC2

instance. I utilized virtual image replication techniques provided by Amazon

AWS’s administrative service, which are similar to what is found in products such

as VMWare Workstation Servers [10].

27

Figure 13 - Amazon AWS - Resources Panel

Amazon’s AWS panel gives the user a one-place dashboard to view

resource usage statistics. EC2 is in term what a server instance would be, EBS

(Elastic-Block-Storage) is the storage unit that can be used for EC2 instances. I

investigated into the various services offered by Amazon AWS, and analyzed the

pros and cons of the different options.

The portal Resource Units uses the “Micro instance” which is free under

usage hours 750 per month, and charges start to incur after the threshold is

reached. Paid options exist which provides more memory and computing power

for better instance types. MySQL database instance can be setup either on the

28

EC2 instance itself or through the offered special database service instance. The

benefit of using their specially designed database instance is when performance

improvement or scaling is needed; the instance panel can manage these needs

easily by click of buttons to replicate instance across the datacenters or query

caching. I chose to host the portal’s database instance on a EC2 by myself due

to the reason of gaining better understanding of how to tune the database

configuration and options in order to achieve desired performances, and also to

save from specialized database instance costs.

29

2.3.5 Service Deployments

 The portal components are uploaded to Amazon, using EC2 instances

and distributed datacenter solutions provided. The benefit of this approach is that

low latency can be achieved between user client and sharing environment that is

closely located to the user.

Figure 14 - Amazon AWS Datacenter Locations

Referencing the EC2 instances that were mentioned previously in Resource

Units section. Consider the scenario where a portal unit is placed in Tokyo and

another one is placed in Seattle. When a user in China requests access to the

portal, host lookup turns to the portal server in Tokyo, and allows connection with

lowest network latency to occur as opposed to server in Seattle. The frontend

portal-landing page I have developed is capable of checking the user’s current

location to determine which datacenter is most suitable for assigning the new

room for in order to have quickest image access speed.

30

Figure 15 - Amazon AWS - Management Console

I uploaded the test environment portal to Amazon’s AWS after local development

and testing has completed. I packaged the component files into individual

compressed archive files before transferring them onto EC2 instances. The

Management Console snapshot above provides options to easily launch new

cloud instances by choosing from Amazon standard system or community-based

templates. These templates are in different Windows versions, and Linux flavors.

31

3. Portal Workflow
 In this section, I will outline major workflows through the portal.

3.1 Enrollment

The diagram below outlines the components involved when a user registers or

sign-up to the service. User profile data is gathered by the Frontend page and

stored to a database behind it.

Figure 16 - Enrollment Workflow

List of expected user clients includes current prominent browsers on desktop

computers, such as Internet Explorer or Firefox, or browsers on mobile devices

such as iPad. The minimum requirement is a HTML5 compliant browser.

32

The portal-landing page is displayed with 2 main options - login or sign-up

to continue portal usage. Depending on the user’s current membership status,

he/she would proceed to fill out the top portion of the page for login action. If the

user does not have an account, the bottom portion allows registration process to

occur. After which, an email with login password will be sent to the user. Once

the user logs into the service, he/she will be allowed to change the password.

Figure 17 - Enrollment Screenshot

33

3.2 Creating a new room

The Backend module of the portal maintains the currently available rooms

that are ready to be “owned” in the database. When a create room requests

arrives, the Frontend checks the database to determine if usage room exists

before granting room ownership to user.

Figure 18 - Create New Room

The concept of a room here translates to a virtual image with remote desktop

capability enabled.

34

Figure 19 - Create New Room Screenshot

 Figure below shows user “ming” owning 2 rooms – Room0 and Room1.

Room1’s usage statistics section shows a “Current User” section. It shows that

there are currently 2 users using the room – “testuser” and “tester3”. Note that

the thumbnail screenshots of the Rooms refreshes every second to give up-to-

date showing of what programs are currently opened.

Figure 20 - Main Lobby Room Index Screenshot

35

3.3 Collaboration Room
 Upon entering the Collaboration Room, the desktop environment is

immediately ready for user to control. In the Collaboration Room, multiple users

are allowed to control the desktop environment together in the page provided in

Figure below. Desktop control is only given to the user who is giving the most

recent update on keyboard or mouse activities.

Figure 21 - Collaboration Room

Concerns on speed, latency and responsiveness regarding Room usage is

addressed in Evaluation section.

36

3.4 Video conference

 Users who enter a Collaboration Room can start or join an ongoing

videoconference by clicking on the “Start Video Chat” button at top of page.

Every Room is equipped with a unique Video Chat session id. Note that the

actual desktop sharing data channel is separate from the videoconference data

channel. In that sense, if videoconference transmission fails due to Video server

issue, desktop sharing would still continue.

Figure 22 - Video Conference Workflow

37

The Figure below shows an ongoing desktop sharing session with 2

videoconferencing users. The number of desktop sharing participants is at least

2, whose video screens are shown, but possibly more if they do not have Video

Chat turned on. Users are free to join and leave the room as they desire. No

disruption occurs to members in the room when any participant leaves.

Figure 23 - Room with Video Chat

38

3.5 Audio streaming
 In addition to desktop sharing and videoconference data channels, Audio

Streaming provides audio that is sourced from the sharing environment through

yet another transmission channel. Similar to videoconference, the unique Audio

Streaming session ID is tied to the room. All the users who requests for Audio

Stream that are in the same Room are given the same audio stream.

Figure 24 - Audio Streaming Workflow

39

4. Evaluations and Usability
User evaluations were conducted on typical Internet users for duration of

less than an hour for each session. Many questions were raised from these

sessions. The following is the list of items that was accepted and contributed to

revamp of the portal and pushed the portal to its current form:

4.1 Sharing Environment

The sharing environment is found to be easy-to-use by most users. With the

exception of users on mobile devices where they touch-based controlling and

smaller screen-size might be more difficult for them to participate

• After a room is created, how can it be easily shared to my social profiles?

o In the portal’s current form, simply by copying the Address Bar Url

will be sufficient. Social profile integration can also be achieved to

enable this. This option shall be explored as a further research

item.

• Do I must have Adobe Flash player installed in order to start/join a

videoconference?

o The current implementation relies on TokBox, which unfortunately

is a Flash-based solution. Google’s WebRTC [25] is a project that

could change that. One of its goals is to remove the need for 3rd-

party plug-in installation for web-based multimedia content.

4.2 Video Conference Popup

 A minor annoyance brought up by most users is the “Adobe Flash Player

Settings” popup when video chat is started. There is unlikely to be a way around

this popup. This is a mandatory check is required on user side for preventing any

unwanted usage of client’s device hardware. This could possibly be removed

with a global system wide permission setting that eradicated the need for

approving on each device access instances.

40

Figure 25 - Video Device Access Request Popup

4.3 Audio Stream Delay

Due to the multi-layer components involved in delivering audio stream, multiple

staged buffering is causing a long delay of audio streamed. This resulted in non-

synchronized desktop multimedia experience, where the audio is often 10

seconds behind the display. This remains an issue to be addressed in the current

portal, but otherwise is acceptable to participants who do not require display to

be synchronized with audio stream.

41

5. Conclusion
 In this project, I have explored and implemented some of the frontier

collaboration technologies that exist on the Internet today. By analyzing the

various remote display protocols, implementing the newly evolved HTML5 web

standards, leveraging Amazon AWS’ cloud infrastructures, and incorporating

early-stage Internet videoconferencing service. The portal is built with careful

considerations using the latest and up-to-date Internet technologies.

 The Desktop Sharing Portal I developed in this research is designed to be

a collaboration tool on the Internet. The portal presented provides an easy-to-use

web based social environment where desktop-sharing activities can occur.

Compared to other sharing services, the portal is a smarter infrastructure that

places concern on user’s experience.

The advantages include - no technical setup steps required, collaboration

room access speedup by serving a room quickest to the user’s location, real-time

statistics on Room statuses, multi-party conferencing capability during ongoing

sharing session, and audio streaming. In summary, the presented portal provides

a platform that allows desktop sharing collaboration in an efficient and convenient

manner.

5.1 Future Research

Google WebRTC integration for audio and video conferencing capability

without requiring 3-rd party plug-in would be a beneficial improvement that could

be made to the portal. But this will be largely dependent on what WebRTC evolve

to. Social Profile Integration with 3-rd party websites can also be considered to

allow easy user lookup and Room activity information sharing.

42

References
[1] Tae-Ho Lee, Hong-Chang Lee, Jung-Hyun Kim, and Myung-Joon Lee,

“Extending VNC for effective collaboration,” Strategic Technologies, 2008.

IFOST 2008. Third International Forum on, 23-29 June 2008, page 343-

346.

[2] VNC Client using HTML5 (Websocket, Canvas).

http://kanaka.github.com/noVNC/

[3] HTML5 Client-less Remote Desktop. http://guac-dev.org/

[4] RealVNC. http://www.realvnc.com

[5] The RFB Protocol. http://www.realvnc.com/docs/rfbproto.pdf

[6] OpenTok API. http://www.tokbox.com/

[7] Microsoft Remote Desktop Protocol. “MSDN Network Documentation”

http://msdn.microsoft.com/en-us/library/aa383015.aspxk

[8] SPICE Protocol. http://spice-space.org/docs/spice_protocol.pdf

[9] Amazon Web Services. http://aws.amazon.com/

[10] VMWare. “Understanding Full Virtualization, Paravirtualization, and

 Hardware Assist.”

http://www.vmware.com/resources/techresources/1008

 [11] “Comparison of Remote Desktop Software”, Wikipedia.

 http://en.wikipedia.org/wiki/Comparison_of_remote_desktop_software

 [12] Open Source Relational Database Management System. MySQL.

 http://mysql.com/

 [13] Live Audio Streamer. http://darkice.org/

 [14] Streaming Media Server. http://www.icecast.org/

 [15] The Network Computing Company. http://nomachine.com/	
 	

	
 	
 	
 	
 	
 	
 [16] High Speed Remote Desktop. http://blog.x-row.net/?p=47

	
 	
 	
 	
 	
 	
 [17] Citrix XenDesktop.

http://www.citrix.com/English/ps2/products/product.asp?contentID=163057

&ntref=prod_cat

 [18] Microsoft Windows Server 2008 Remote Desktop Services Features.

43

http://www.microsoft.com/en-us/server-cloud/windows-server/remote-

desktop-services-features.aspx

 [19] YouOS. http://www.youos.com/html/static/manifesto/what.html

 [20] Synaptop. http://www.synaptop.com/

 [21] Kenneth Van Surksum, “Microsoft RemoteFX for VDI Architectural

Overview,” 17 Feb 2011,

http://www.microsoft.com/download/en/details.aspx?id=13864

 [22] Google+ Hangouts.

http://www.google.com/tools/dlpage/res/talkvideo/hangouts/

 [23] VoxWire Webconferencing. http://www.voxwire.com/	

	
 	
 	
 	
 	
 	
 [24] FlashMeeting Webconference. http://flashmeeting.e2bn.net/

 [25] Google WebRTC. http://www.webrtc.org/

	

	

	

	Desktop Sharing Portal
	Recommended Citation

	Microsoft Word - Desktop Sharing Portal.docx

