San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2012

ONLINE MONITORING USING KISMET

Sumit Kumar
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

b Part of the Computer Sciences Commons

Recommended Citation

Kumar, Sumit, "ONLINE MONITORING USING KISMET" (2012). Master's Projects. 243.
DOI: https://doi.org/10.31979/etd.rexc-dkr7
https://scholarworks.sjsu.edu/etd_projects/243

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/243?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

ONLINE MONITORING USING KISMET

A Project
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Sumit Kumar

May 2012

© 2012
Sumit Kumar

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

ONLINE MONITORING USING KISMET

by

Sumit Kumar

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2012

Dr. Mark Stamp Department of Computer Science
Dr. Chris Pollett Department of Computer Science

Dr. Cay Horstmann Department of Computer Science

ABSTRACT
Online Monitoring using Kismet

by Sumit Kumar

Colleges and universities currently use online exams for student evaluation. Stu-
dents can take assigned exams using their laptop computers and email their results
to their instructor; this process makes testing more efficient and convenient for both
students and faculty. However, taking exams while connected to the Internet opens

many opportunities for plagiarism and cheating.

In this project, we design, implement, and test a tool that instructors can use to
monitor the online activity of students during an in-class online examination. This
tool uses a wireless sniffer, Kismet, to capture and classify packets in real time. If
a student attempts to access a site that is not allowed, the instructor is notified
via an Android application or via Internet. Identifying a student who is cheating
is challenging since many applications send packets without user intervention. We
provide experimental results from realistic test environments to illustrate the success

of our proposed approach.

ACKNOWLEDGMENTS

I would like to thank Dr. Mark Stamp for trusting me with this idea and for his

continued support and guidance throughout the course of the project.

I would like to thank my committee members Dr. Chris Pollett and Dr. Cay
Horstmann for providing their valuable feedback. I would also like to thank Kevin
Ross for his help in setting up the lab environment to test this project and Debra J.

Caires for helping me in project report.

TABLE OF CONTENTS

CHAPTER

1 Introduction 1
1.1 Project Motivation 2
1.2 Aim and Objective 6

2 Background and Related Work 8
2.1 Typesof Online Test 8
2.2 Typesof Cheating 9
2.2.1 Using Spyware 9

222 Using IM. 10

2.2.3 Connecting to Different Network 10

2.2.4 Changing IP/MAC Address 10

2.2.5 Using Proxy Server 11

22.6 Using VPN oo 11

2.3 Sniffing and Packet Snifferso 11
2.4 Sniffing Tools 13
241 Wireshark oo 13

242 TCPDump. 13

24.3 NetStumbler 14

244 Kismeto 15

2.5 Related Worko 17
25.1 SeCOnE 17

vi

2.5.2 Triangulation oL 19

3 Design e 22
3.1 Approach 22
3.2 Development Tools 23

321 Kismet 23
322 Tshark o 30
3.2.3 XAMPP Server 31
3.2.4 Eclipse for Android application 32
325 Python 33
3.3 Software Design 33
3.3.1 Online Test Design 33
3.3.2 Kismet .pcapdump Parser 36
3.4 System Design 36
3.5 Database Design 38
3.6 Mobile Application Design 40

4 Implementation and Results 45
4.1 Experiment 1o 45
4.2 Experiment 2 47
4.3 Experiment 3 49
4.4 Experiment 4 52

5 Conclusion 59

6 Future Work 60

vil

Figure

10
11
12
13
14
15
16
17
18
19
20

21

LIST OF FIGURES

MAC address changing software
Wireshark Snapshot oL
TCPDump capture snapshot
NetStumbler screenshot
Kismet Screenshot
System architecture of SeCOnE
Students cheating by taking help from outside
Students cheating being at a particular distance
Student trying to cheat by communicating with neighbor student

Kismet architectureo oo
Kismet Startup GUL
Kismet Startup GUL
Kismet GUI for adding sources
Kismet GUI for adding sources
Kismet GUI showing packet capturing
XML log file showing card type
XML log file showing network information
XML log file showing clients information
Home page of the online test
System Designo

Database Design

viil

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Android Application main screen L. 41

Adding a website to the white-list 42
Adding a website to the black-list 43
Student Details oL 44
Experiment 1 System Architecture 46
Experiment 2 System Architecture 48
Experiment 3 System Architecture 51
Database entries for all the students 52
Results of Experiment 4 54
Results of Experiment 4 55
Results of Experiment 4, 55
Results of Experiment 4 56
Results of Experiment 4, 56
Results of Experiment 4 57
Results of Experiment 4 57
Results of Experiment 4 58
Results of Experiment 4 58

X

CHAPTER 1

Introduction

An online test is an activity where an individual uses a computer connected to
Internet and completes an exam. For example, there may be a portal or website where
students submit their answers to exam questions. In some cases, the answers may be

evaluated automatically and results are shown for students to view immediately.

The benefits of an online test include the following.

e Online tests are more efficient, from both the instructor’s and student’s per-

spectives.

e The online exams are more secure as each student might have a different set
of questions so they are not be able to help one another during an exam. Al-
though a paper based text can also have different question sets, which requires
substantial human effort, an online test can be easily configured to generate

sets in an automated manner.

e The administration of online exams is easier, provided monitoring can be com-
pleted using a computer. The instructor would be freed from spending excess

time trying to detect cheating.
e Online tests are environmentally friendly, as they reduce need for paper.
Increasingly, colleges and universities are using online exams for student evalu-

ation [4, 13, 23, 25]. These online tests are generally taken by students using their

laptops. Since students are connected to the Internet during the tests, this creates

many opportunities for cheating. The main aim of this project is to develop an appli-
cation that can be used by instructors to monitor an online exam and, thereby, detect
possible cheating. In our application, the instructor provides a white-list of websites
that students are allowed to access. Any attempt to access a website that is not on

the white-list is logged and the instructor is notified in real time.

1.1 Project Motivation

At San Jose State University (SJSU) most instructors use paper exam. Very
few instructors administer their exams online and essentially this is very restricted
and the environment is manually controlled. After considering the above benefits
regarding online tests and the current scenario of our college, a tool was designed

that can be easily used by professors for administering online exams.

Online exams can be helpful for students and professors even though they give
students an opportunity to cheat during the exam. Since students will now be given
a test on their own laptop, they can at any time connect to the Internet and look
for the answers to the exam’s questions. If cheating, the instructor can challenge the
student and can easily close their browser. Thus, it becomes essential to stop students

from cheating. There are many ways students can cheat:

Connecting to the Internet and searching on common search engines such as

Google, Yahoo, Bing and/or DogPile.

Connecting to a proxy server and searching for answers from a search engine.

Using a peer-to-peer chat client during the exam for chatting among other

students.

Connecting to IRC or forums in order to ask questions regarding exam solutions.

The above list is not complete as there are more ways a student can cheat. Most
cases revolve around being connected to an external IP. If there is a way this activity

can be detected, we can successfully make the test more secure.

Following the above guidelines there has been an attempt to solve the problem
of cheating during exams within our college. A tool was developed [32] which can
monitor applications running on remote systems. The main aim [32] was to use
client/server architecture to develop a tool that displays the student’s details and
any websites visited during the test to the instructor. Using this tool, the instructor
can add sites to the white-list and the blacklist as well as monitor all the student’s
activities during the exam. By viewing at the logs and the reports, the instructor can

easily determine if any student was trying to cheat.

For this project students were asked to connect to a specific SSID which
was created by a wireless USB router called Windy31. This router was con-
nected to the instructor’s machine and students were required to connect solely to
Windy31 router. The students are required to have Windows™Operating System
for the test. Once connected to Windy31 router, students were asked to switch
off their Windows™firewall and anti-virus. They were also required to change the
Windows™workgroup to MSHOME. After setting the above changes students were
asked to install a program that was written in Java; they also were required to have
Java installed on their machines. This tool uses technology Remote Method Invo-
cation RMI (explained below) to call remote methods on the server. Using this
technology Java RMI can send all student’s computer details to the server, such as
how many processes (software) are running, and how many windows in the browser

are opei.

The tool was divided into two parts client and the server program. The client

program needs to run on student computers; each student was given an executable
file to run on their own machine. Once installed successfully, the server part of the
software was also installed on the instructor’s machine. The client program uses the
Windows™ “tasklist.exe” to get information regarding all the running processes on
the students’ computers. It then makes a list of all the applications running on the
student’s machine along with their headers and then sends it to the server. The client
program sends this data by using a Remote Method Invocation [17, 26]. RMI, a Java
application programming interface, enables the programmer to create distributed Java
applications where the methods of remote Java objects can be invoked by any other
Java virtual machine. This process means that the students computer can call a
method or function of an object that is present on the server (instructor’s computer).
The server exposes these methods and objects that can be called by any client that
is connected. By these methods the students can obtain a list of all the running

programs on their computers and the server is able to extract useful information.

A Graphical User Interface (GUI) was also developed for instructors so they
can see and monitor their students who are connected to the router and what pro-
grams were running on their system. Using this GUI, the instructor can add websites
to white and black lists. The GUI that was on the server, also on the instructors
computer, was able to generate notifications by opening a pop-up window displaying
details of students activity. Any student who connects to the system or disconnects
from the system or opens any restricted websites opens a pop-up window on the

server. This way instructor was able to monitor any given test.

Using GUI professors were able to track student activities; however instructors
were not able to have full control over student activity. Students were still able to

disconnect from the router and connect to another wireless network. By connecting

to another network students can easily search on the Internet for answers to their
questions and then again re-connect to the instructor’s router. Their activities during

that period remain hidden from the instructor.

Currently installing software on student laptops, restricting students to a
Windows™operating system, and connecting to an MSHOME workgroup, switch-
ing off the firewall and anti-virus for the duration of the test does not seem practical.
It may not be practical for our college, as students have different operating systems
such as MAC OSX, Ubuntu and others. Installing software on multiple systems raises
the issue of privacy and security concerns. Also, the server was only able to connect

a few students at one time.

An idea presented [32] looks very interesting and the approach to solve the
problem of monitoring online test seems good; however solution is not practical
enough to be implemented within our college. The barrier against implementing
within our college is that students use many different operating systems: Windows
7, Mac OS-X, Ubuntu, Fedora and others. Students using the latest version of
Windows™ (Windows 7) can’t use this software as the User Access Control (UAC)
built-in will not allow the software to obtain the list of processes from the task man-
ager. The older version of Windows™(Windows XP) does not allow students to
change the name of the running application. The tool will always report the wrong
name to the server. By looking at the logs, the instructor will never know if the name
is a real application or if it is some other application. The Windy31 wireless adapter
is also a major reason why this can’t be used within our college. There is a limit on
the number of computers connecting to the USB wireless adapter. In a class where
more than 25 students have to take test, this tool will not be able to connect all the

computers to the server. If students are not connected to the server, then they cannot

be monitored and the main purpose of this project is defeated. Students can easily
disconnect from the wireless network, connect to another wireless network, search for
their answers, and then come back and connect to the original network. This activ-
ity will only generate an alert message on their instructor’s computer; the instructor
cannot tell what the student did during that period when he/she was disconnected
from the test network. Also, if the student has more than one network card, they can
connect to the test server with one and another network with the other; the student
will still be able to cheat. The above shortcomings were taken as a challenge and
became the main motivation for our project. There were other projects taken into
consideration for our project. These projects will be discussed in detail in Chapter 2

Related work.

1.2 Aim and Objective

The main aim of this project is to build a monitoring tool that can help instruc-
tors conduct online tests within the classroom and monitor students in real time.
Students will take an online test using their laptops and will be connected to the
Internet. Although students have Internet access, they will be allowed to use only a
few websites. The tool should be able to monitor all the sites a student visits and
should alert and generate proper notification, if a student tries to open any restricted

site.

To monitor all the activities in the network, the monitoring tool should be able
to capture all the packets flowing through the network. To capture all the packets,
a wireless sniffer should be used. Only those packets should be filtered out that
belong to the student taking the exam and these packets should be scanned for any

restricted activity. The packet’s data will tell us all the details that we want to know

about the student’s activity. The main objective of our project is to use a wireless
sniffer to capture all the packets when students are taking online tests and then scan
them to find out if any student has tried to open any link that was not allowed.
An additional mobile application will be developed that can help instructors obtain
instant notifications on their Android phones if any suspicious activity occurs during

the exam.

CHAPTER 2

Background and Related Work

To design an online monitoring tool it is essential to know the required compo-
nents. Therefore, in this section we will explore and study the different components
that may be required for our project. We discuss the following in the remainder of

this chapter:

Types of online tests

Various types of cheating possible in an online test

Packet sniffers

Related work

2.1 Types of Online Test

The online tests can be referred to as Computer-Assisted Assessment or
Computer-Aided Assessment (CAA) and Computer Based Assessment (CBA) [13].
The term CAA is mainly used to refer to a test where a computer is used in the
assessment process. CBA is mainly used to refer to tests where automated responses
are generated by the system after evaluating the student’s answers. These two ob-
jective based online tests can be referred to as formative and summative tests [13].
The formative tests are the exams that a tutor gives while teaching a course that
gives information about the learning state of each student. This type of information
gathering helps students, as well as tutor, to improve a student’s learning process.

Summative tests are conducted at the end of the course/module and give a measure-

ment of how much a student has learned from that course/module. There are many
tools available on the market today, that are designed according to the above points.

The main features of any good online tests should be:

e The exam should be secure so that the content of the exam is not be revealed

until the exam starts.

e The exam should be able to create multiple question sets from a pool of questions

so that each student gets a different set of questions.
e The exam should set the same level of difficulty for all created sets.
e Supervising, managing and controlling the exam should be easy.

e If possible, an automated evaluation of the answers is used for giving instant

feedback about the student’s performance.

2.2 Types of Cheating

Online tests are useful but they are also vulnerable. A student can try and cheat
on the exam and pass which can discourage honest students. There are many ways a

student can cheat in an online test. The main methods used are as follows:

2.2.1 Using Spyware

Spyware [34, 35] is a type of malware that can secretly gain access inside a com-
puter and can collect information about that computer. The computer user might not
be aware of the spyware and that it is collecting the user’s personal data without their
knowledge. Collected data can then be used by the person who installed the spyware

on that computer. Using a malware program, a student can spy on a professor’s

computer containing exam questions. Students can also gain more information about
quizzes and other tests that a professor might be planning to give. After obtaining
the information, students might use it for themselves to perform well on their exam

or they might also try to sell the information to others for monitory gains [25].

2.2.2 Using IM

Students can use instant messaging (IM) software to chat among themselves

during the exam. They can discuss exam questions and collaborate on answers.

2.2.3 Connecting to Different Network

Students can disconnect from the exam network (one they are not allowed to
use the Internet) and can connect to another open network in order to search the
Internet. After searching, they can again connect to the original exam network and

can submit their answers.

2.2.4 Changing IP/MAC Address

Students can change their IP/MAC address while taking the exam; thereby they
are not visible to any monitoring system. Changing the network adapter settings can
help a student become untraceable. IP addresses can be changed easily, but a MAC
address is an unique value associated with the network card. Although it’s unique,
there are a few software programs that can help students change it. For example in
Figure 1, a tool known as “Technitium MAC Address Changer” [36] can help a user
change their MAC address.

10

Ml Technitium MAC Address Changer v4.5 - by Shreyas Zare

File ©ptions Donate Help
M hitp [/donate.technitium.com
Metwark Connections Changed | MAC Address Link Status Speed | &
Local Area Connection & Mo Disabled Disabled
Local Area Connection 3 Nao 00-04-61-FE-FE-FE Up, Operational 100 Mbps
Local Area Connection 4 Na Disabled ~ Disabled
Wireless Metwork Connection 2 No 00-11-95-F4-C6-31 Up, Mon Operational 11 Mbps —
Local Area Connection No 00-D0-D7-10-58-84 Up. Operational 100 Mbps &
Network Connection Details
Conngction Local Area Connection 3 IP Addiess [1] | Subnet Mask
Dievice Mame .. Y14 Rhing Il Fast Ethermet Adapter 19216812 25.295.290.0
Hardware 1D poivwen_1106kdev_30E5&subsps 30051695
Canfiguration 10 . .{33865CE 3-EC92-4C02-8E90-14E124F 1F 309}
MAC Address 00-04-61-FE-FE-FE [Original] -
EPOX Computer Co. Ltd. (000461) Addiess: 11 | |Gateway (1) sl
19216811 20
Enter New MAC Addiess Below
[on 30 <26 411 42 {35 Random MAC Address
30 411 GERMANT IR
= DNS Server [2)] - |
[V Automatically Restart Network Connection To Apply Changes
192168.1.1
Change Mow ! | Close | J
P
Disable | Erable DHEE | ccadi>s | <<Bomove
Carfiguration Presets
= | Cieate /Edi | \

Figure 1: MAC address changing software
2.2.5 Using Proxy Server

Using a proxy server [28] a student can redirect Internet traffic through a com-
puter or a router. Students can also setup their own proxy or they can use one of
the many free proxies available on Internet to redirect traffic. In this way, they can

redirect all their traffic for searching and finding answers during the exam.

2.2.6 Using VPN

Students can setup a virtual private network (VPN) at their home that is en-

crypted. Using this encrypted VPN students can search for the answers to exam

questions and still remain unnoticed.

2.3 Sniffing and Packet Sniffers

Sniffing [37] is a technique where data flows through a network and can be cap-

tured and analyzed for information gathering. The tools that help capture the data

11

flowing within a network are known as Sniffers. These tools are either software or
hardware [33]. The sniffers are also capable of reading packets flowing through the
network if the network is not encrypted. There are mainly three types of sniffing

methods [31]:

Type 1 - IP based Sniffing: in this type of sniffing a network card is put into
promiscuous mode. In this mode all the packets flowing around the network card are
passed to a computer rather than frames. These packets can then be analyzed based
on an IP address. For example, a tool known as an “IP Sniffer 1.99.3” [16] can sniff

all the IP packets flowing around within the network.

Type 2 - MAC based Sniffing: is a type of sniffing similar to the IP based
sniffing however the packets are now analyzed by matching a MAC address. For
example, a tool known as “Wake-on-LAN Packet Sniffer” [22] can help in sniffing all

the packets by matching a MAC address in a given network.

Type 3 - ARP based Sniffing:is a method of sniffing that is a little different
from the above two. In this method the network interface card is not put into a
promiscuous mode. This is because the ARP packets are stateless. First, the ARP
cache of the host whom we want to sniff is poisoned. Next, the ARP packets are
sent to the computer sniffing packets directly, rather than going to the destination
directly. This method is used in a switched network. The IP of the sniffer computer
is put into the victim’s computer in such a way that it will always send the packet to
the sniffer computer first; the sniffer can then store the packet and later can analyze
it. This type of sniffing is also known as, Man in the middle attack. Tools such as

Ettercap and AntiSniff can help in ARP sniffing.

12

2.4 Sniffing Tools

There are many different tools that are used to sniff packets within a network for
either managing networks or for finding weakness within the network. These tools are
also used by hackers to gather information about a given network. Next, we discuss

the most common sniffers.

2.4.1 Wireshark

Wireshark [38] is the most well-known and used open source network packet
analyzer. It was originally known as Ethereal. Wireshark provides a good user
interface to show the details of captured packets. As shown in Figure 2, Wireshark can
give detailed information about the packet captured such as source address, protocol
name, header details and the body of the packet. Wireshark is used for many purposes

such as:

Testing network security

Troubleshooting network problems

Studying network protocols

Debugging network software

There is also a command line version of Wireshark called TShark which we have

used in our project.

2.4.2 TCPDump

TCPDump is an UNIX based tool that is also used for packet sniffing. TCPDump

also works similar to Wireshark [10]. It is a network analyzer that was developed by

13

e Captin g = WiresTiark

File Edit View Go Capture Analyze Statistics Help

= S R Res2¥yFTLEEBF QA FVEX O
EElIte:: [| =][+ Expression... [_f;lear] @’applyl
No. . Tirne Source Dastination protocol Info =
WO 13w, ¥o1107 WLSLI UII_-'l.'h‘ LUrLee oIuduLdsiL e WU 11dS 1392, 100, L. ZJ97 TELL 32,100, 1.00 E
47 139.931463 ThomsonT_08:35:4f Wistron_07:07:ee ARP 192.168.1.254 is at 00:90:d0:08:35:4f
48 130,931456 192,168.1.68 192,168, 1,254 DS Standard query A www,google,.com B
49 139.975406 192.168.1.254 192.168.1.68 DNS Standard query response CNAME www.l.google.com A 66.102.9.99
S0 1329.976811 152.168.1.68 56.102.9.99 TCP 62216 > http [SYN] Seq=0 Win=8152 Len=0 MSS=1450 WS=2
51 140.079578 66.102.9.99 152.168.1.68 TCP http = 62216 [SYN, ACK] Seq=0 Ack=1 Win=5720 Len=0 MS5=1430 |
52 140.079583 192.168.1.68 66.102.9.99 TCP 62216 > http [ACK] Seq=1 Ack=1 Win=65780 Len=0
53 140.080278 192.168.1.68 66.102.9.99 HTTP GET feomplete/search?hl=en&client=suggests]s=trusbq=mécp=l H
54 140.086765 192.168.1.68 66,102.9.99 TCP 62216 > http [FIM, ACK] Seq=805 Ack=l Win=55780 Len=0
55 140.086921 192.158.1.68 65.102.9.99 TCP 62218 > http [SYN] Seq=0 Win=8192 Len=0 MS5=1460 WS=2
56 140.197484 £6.102.9.99 192.168.1.68 TCP http = 62216 [ACK] Seq=l Ack=805 Win=7360 Len=0
57 140.197777 66.102.9.99 192.168.1.68 TCP http = 62216 [FIN, ACK] Seq=1 Ack=806 Win=7360 Len=0
S8 140.197811 152.168.1.68 65.102.9.99 TCP 62216 > http [ACK] Seq=B06 Ack=2 Win=65780 Len=0 L
En 1an momin Es 160 0 Ao 100 180 1 Eo Ten hern ~ 59910 Tovm arvl Can—n Asb-1 LHA-S790 L an—n MCC-1aD0 17

L3
b Frame 1 (42 bytes on wire, 42 bytes captured)

b Ethernet II, Src: Vmware 38:eb:Oe (00:0c:29:38:eb:0e), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
b Address Resolution Protocol (regquest)

o000 ff ff ff £f ff ff 00 Oc 25 38 eb Oe OB 06 0O O1

e
0l 00 Oc 29 38 eb Oe cO a8 39 80

0010 OB 00 O6 04 0D
0020 OO0 00 OO0 00 OO0 00 cO a8 35 02
etho: <live capture in progress= Fil... Packets: 445 Displayed: 445 Marked: 0 Profile: Default

Figure 2: Wireshark Snapshot

Van Jacobson and is mainly operated through a command line interface. TCPDump
analyses all important network protocols such as TCP, UDP, IPV4, ICMPv4, IPv6,
ICMPv6 and SNMP. As shown in Figure 3, we can see that TCPDump can capture

packets within the network as well as display the source and destination IP addresses.

2.4.3 NetStumbler
NetStumbler [14] is also a packet sniffer designed for WindowsTM that can detect
LANs and WANs using 802.11b, 802.11a and 802.11g standards. NetStumbler is
mainly used for:
e Wardriving

e Verifying network connections

e Finding network strengths in any region

14

Eile it Yiew Terminal Taps Help

Figure 3: TCPDump capture snapshot

e Detecting unauthorized access points

NetStumbler sends a probe request every second and listen for the response. The
response contains information about the network such as SSID, BSSID and MAC.
This type of sniffing is also known as active sniffing since the probe requests that are
sent to the wireless access point can be tracked easily. NetStumbler can also detect
the physical location of network devices by using a GPS device. As shown in Figure
4, we can see that NetStumbler can sniff networks as well as help in wardriving shown

by the graph (below).

2.4.4 Kismet

Kismet [21] is an open source network packet sniffer, packet analyzer, network

detector and also an intrusion detection system. It works with any card that supports

15

3 Metwork Stumier - merge 2ns1
15 Edn e Cotions Wondow Hep)
jd e e R

A= 3
2| wac ch | wer | Type] S510 | Homs [verdee spie | s | Lotude [Lozl
B o00nFInE | AP AwWave Heppry tanuls Agera Lucent| Orinoes)
@ n0sotbFozees 3 AP ArWare AtrWavelne Agers [Lices) Wasld L
CECE L AP Ariowe APZ Prnter's Inc Momtgisview Agers (Lucest) Crinoco 27 =
3.5 AP Ariave AP| Printer's Ine Moantanview Agers L Waalapl £l
6 Yes AP Aln? Cisen (Aironat) 1 MIT4I3E20 WL
@ 00L0IDLELATE |1 AP Algha Agers (Lugent) WameLd L O
@ 004006300508 | AP alpha Chicn (Aran 32 HITAIATHE W
QE}JMSEEEE b Yes AP omdwlin Cisco {Aironat)
e AP Argela’s Alrport Arena Angifa’s Animal Town Agere Lucend) Wl A MITAAEBAT W
B 00022000885 AP Angebas Alrpee Arena Hitoshi's Hengever Haven Agre (Lusent) Wavel A 48 MATA430TI W
AP ey Gemfek (D-Link) 1

@ onoza0a7 A0T

@ Op4mRezaTOR Yes AP AN et Metwerds n
e Yz AP Apariment gerd (Lucent) Orinoen E
Q040063 2406 =
: ﬂl]llﬂi';]""‘*:' AP AppleMenwark 0BaboR Mignet Base Station 13
9_304_?;3;,3'_ AP Al lenaark [5dbT 1) 5
PSR AP Apple Meraar 112538 Agere Lisest) Drinocs 3 “Iﬂ
Ll]} | v

@ 006010724745
sk Aln?
@ 2k alphe
A k- pmdhon 1 z
<k dnget's Arport 4 i A ,
Pt | (M 00001
dr=de Aparteant -1
b Apnle Metwark 00
£ 4 Apple Mewerk 17

bk resemines e

Figure 4: NetStumbler screenshot

a raw network monitoring mode also known as a rfmon mode. Kismet can also sniff
packets following the 802.11b, 802.11g, or 802.11n wireless standards. It is very easy
to configure Kismet; there is a very detailed packet capture data since it can hop
through all the channels and can analyze the entire wireless network. Kismet can
also detect hidden networks as shown in Figure 5. The main benefits of Kismet over

others are as follows:

e [t puts the card into a monitoring mode which is not attached to any network

16

e [t scans all the wireless networks passively so it remains undetected
e [t can scan the entire spectrum and all the wireless networks nearby
e [t generates different types of logs thus giving full information about the network

Kismet Sort View Windows
Kismet
Elapsed
Networks
12

Packets
1990

Pkt/Sec
67

Data Filtered
0 mbit a
econnect in

INFO: Detec 3SSID 80:1F:5C:45:38:
Y mbit

Figure 5: Kismet Screenshot

2.5 Related Work

There are many projects aimed at detecting online exam cheating. Some exam-

ples that were studied for this project are as follows:

2.5.1 SeCOnE

The research work as described in [15] helps in monitoring students who are
taking online tests at a remote location where a proctor is not present. Since the
proctor is not present, a computer system “Exam Admin Group Agent” and “Ex-
aminee Group Agent” are used to monitor these exams as shown in Figure 6. This

research attempted to remove human presence completely by using a secure online

17

exam management. The researchers used an enhanced Security Control system during
the Online Exam (SeCOnE), which is based on group cryptography and e-monitoring

scheme [15].

Exam Admin Group Agent (4,) Examinee Group Agent (A:)

;

{
\L =y <§}

() Exa |||I1uw.~\

e
o8 -
-“_" T Moving Piciures, —

(Ss)

Marker (Cy) Vaoice,
Screen shot
&> i

Monitor
Server (Suy)

Proctor (Cp)

Examinee Group (G)

Exam Admin Group (G,)

Figure 6: System architecture of SeCOnE

The components of a SeCOnE system can be explained as follows: This system
uses a webcam to identify and authenticate the student. The photos taken during
registration, and the current image from the webcam is verified to authenticate the
student taking the exam. The verified data is saved for the exam and the photo
can be used easily identify the student taking exam. The audio and video of the
person taking the exam is continuously recorded. This audio and video data is then
saved during the exam for later analysis. This is done to reduce cheating during
the exam. Many screen shots of the student taking the online exam are taken and
stored in parallel with the audio and the video. Audio and video captured makes
it easier for the proctor to determine what exactly an examinee is doing on their
computer. During the exam all computer ports are also disabled on the student’s
computer taking the online test except for the ports required for the online exam.
This prevents the student from accessing the Internet and finding answers online or

through popular search engines. The port that is open is then used to send student’s

18

IP address of the student to the exam administrator.

This method places quite a few restrictions on the student’s computer during the
exam. The use of a webcam to record audio and video, along with blocking all the

ports of a student’s computer, is just not practical for an online test experience.

2.5.2 Triangulation

The tool in [23] is designed to prevent cheating when students take online exam
on their laptops. When students use their laptops to take an exam, the risk of
cheating increases and it becomes more important to monitor these exams. Using
their laptop students can use many methods to cheat during an exam. The first
half of the report explained possible ways a student can cheat online during their
exam. The second half of the report discussed the various methods and solutions that
can help in detecting and preventing online cheating. This report will now explain
how directional antennas were used to measure the wireless signal strength and a
methodology called “triangulation” in order to pin-point any student’s computer. By
measuring the signal strength and location of a student, small tests were performed

to determine whether the system can detect any cheating within an exam hall.

As shown in Figure 7, students can seek help from an outside resource. The
outside resource may be a wireless access point having open Internet access, or a friend

or an expert that will help to find solutions for the questions on the examination.

As shown in Figure 8, students can communicate with each other within the
examination hall. Students can be seated at some distance from one another. By
communicating with each other they can discuss exam questions and collaborate on

answering them.

19

3

Figure 8: Students cheating being at a particular distance

As shown in Figure 9, students can also communicate with neighbouring stu-
dents in the same exam hall. In a similar situation mentioned above, students can
communicate with each other, but not with others outside the network to discuss

exam questions.

- b
@b @b @b
b wh wb
b wh ab

Figure 9: Student trying to cheat by communicating with neighbor student

All three types of attack were resolved by using Triangulation. This technology

is used for detecting the location of a particular student by using basic trigonometry.

20

Different types of antennas were used to find the location of a wireless signal which
was the devices used by students taking the exam. The antenna and an USB wireless
card was used to measure the signal strength. Kismet on BackTrack Linux was used
for capturing packets. The packets captured by Kismet were saved in a .pcapdump
file. Wireshark was used to filter the captured packets based on a MAC address of a

wireless network card and signal strength.

21

CHAPTER 3

Design

3.1 Approach

The goal of our project is to build an online test monitoring tool that students
can take exams using their laptops. Students will be allowed to access only a few
websites that are white-list. Websites, other than white-list sites will not be allowed.
The monitoring tool should detect if any student tries to cheat by opening any web-
site which is not on the white-list. Currently students can cheat by either opening
blacklisted websites, which are not allowed, or they can connect to some other wire-
less network in order to open those websites. In either case, they would be opening a

restricted website on their laptop.

The main approach for making the Online Test Monitoring tool is to notify the

instructor when:

a student has disconnected from the test network

a student opens up a non-white listed web site

a student switches between wireless networks

storage of the IP/MAC address of all students connected to the test server is

complete

The above points can be achieved by sniffing packets within the network, used
by students taking the test. For this Kismet [5, 19, 21] was used to sniff all the

packets. As discussed in Chapter 2, Kismet is a wireless packet sniffer that can

22

analyze network traffic used by students taking the test. Although “Kismet” can
detect which TP/MAC address is connected to which access point, it still cannot
detect which IP/MAC address belongs to an individual student. Thus, we need to
obtain a method to identify their IP/MAC address. For capturing the name/IP/MAC
address of a student, students were given a login page before the online test begins in
order to type in their name and student ID then submit. As soon as they submit, the
PHP code on the server will capture their name, IP, and MAC address then store this
information within the database. We now have obtained a mapping of each student’s
IP/MAC address. We now read the Kismet log files for submitted IP/MAC addresses
in order to get information about the students who are taking the test. The student’s
Mac address (from the database) is looked up in the “netxml” file obtained from
Kismet. This xml file has the list of all wireless clients connected to the network.
The student’s IP address obtained from the database is matched with the IP address
present in the logs (.pcapdump) which was obtained from Kismet. The .pcapdump
is the raw dump of all the packets flowing through the network and needs further
processing to extract useful information. For this feature we used another tool called
Tshark to read the Kismet pcapdump file. Tshark is a command line version of
Wireshark with all the same features. By converting the log from pcapdump to text,
we obtained details regarding the activities of every IP/MAC address taking the test.
Based on the activities of each IP address, the list of websites viewed by a student

was extracted from the logs and further reports and notifications were generated.

3.2 Development Tools
3.2.1 Kismet

In our project Kismet is used to capture all the packets flowing within the net-

work. Since Kismet remains completely passive while capturing packets, it was the

23

best choice for our project. Kismet identifies the network by passively collecting data

packets and detecting hidden networks via data traffic as shown in Figure 10.

Rogue AP

B
\‘Q\.\
~
i
Attacker
7 4
41
A

Legitimate Kismet Drone Legitimate S
8 & AP Sensor AP @

Wireless User

Administrator

Wireless User

Figure 10: Kismet architecture

Kismet can also operate in a distributed architecture, can have a server called
“kismet_server,” and a client called “kismet_client” that can be connected to indi-
vidual servers. There can be many servers and clients running at the same time,

configured to monitor different parts of the network.

PR YW

Kismet can generate several types of log files such as: “.dump,” “.csv,” “.xml,”
“netxml,” “nettxt” and “.pcapdump”. Using these log files one can gain quite a bit

of information about the wireless network hardware as well as the software in use.

In summary, the features of Kismet include [1]:

e can scan wireless access points passively

can detect hidden access points

can detect “cloaked” access points

also provides GPS support to geo-locate access points

24

e logs all information in the form of log files (.csv, .netxml, .nettext, .gps, and

.pcapdump)

e raw packets flowing through the network are stored in .pcapdump file

The following procedure is used to run Kismet:

Step 1 - To start Kismet we can either click on the icon or type the command

“sudo kismet” into the command prompt.

Step 2 - As shown in Figure 11 and 12 (below), a GUI will open in the terminal
and will prompt the user to start the Kismet server. “Yes” and “Start” is pressed to

start the program.

¥ Terminal
File Edit Terminal Help
~ Kismet Sort View Windows

Figure 11: Kismet Startup GUI

Step 3 - As shown in Figure 13, Kismet will prompt the user that there are no

25

* Terminal
File Edit View Terminal Help
~ Kismet Sort View Windows

Kismet

Mot
Connected

' (Connection

' (Connection

Figure 12: Kismet Startup GUI

sources defined on which Kismet will capture packets. After “Yes” is pressed user
is prompted to “Add Sources” as shown in Figure 14. In our project, the wireless
interface is used so the source will become “wlan0”. To configure Kismet on any other
source we can use the command “iwconfig” to discover different network sources on

that computer and then add that particular source.

The sources can also be defined in the Kismet configuration file “kismet.cont” as

follows: “ncsource=wlan(0” if the source is a wireless card.

Step 4 - Once the source is added, Kismet will show the list of all the visible
nearby wireless network and start capturing packets as shown in the Figure 15. The
list of networks will also contain any hidden networks and will appear as <Hidden

SSID> in the list. By clicking on the name of the wireless network a table below

26

* Terminal
File Edit View Terminal Help

one fram
g b

ERROR:

Figure 13: Kismet GUI for adding sources

the list will show the number of devices connected to that network. There is also
a horizontal bar at the bottom of the Kismet Ul that shows data packets passing
through the network. This bar shows that Kismet is capturing all the packets from

any nearby visible wireless networks.

When Kismet runs, it generates multiple log files one of which is as “.netxml”
log file. This log file contains details about the network infrastructure and hardware.

It consists of the following three important parts:
Part 1 Wireless card type information

This part of XML shows information about the computer’s wireless card which
has the Kismet server running on it. As shown in Figure 16, wlan0 was the card

interface and sjsu was the card name.

27

* Terminal
File Edit View Terminal Help

INFO:

INFO:

INFO:

INFO:

INFO:

INFO: 1 nnection to the GPS
INFO: g
INFO:

INFO:

ting

:1ng dumpfi

ml log fil
t log file

INFO: No p ources defi ADD SOME using the Kismet
et config file

ERROR

INFO:] SErY E)

ERROR: Coul nnect to the (
ould not conn to the

Figure 14: Kismet GUI for adding sources

Part 2 List of wireless networks

This part of XML gives information about the list of wireless networks visible
to the Kismet server. As shown in Figure 17, the XML file also provides other
useful information about available networks such as the BSSID, UUID, Channel, and

Frequency.
Part 3 List of wireless clients connected

This part of an XML gives information about all the wireless clients connected
to the network. There can be multiple wireless clients connected to a single wireless
network; this XML file will give us a complete list of all clients connected to each
access point. As shown in Figure 18, this XML file also shows us each client’s MAC

address. Using this MAC address, our tool will search for all the access logs from the

28

1 FriApr27, 1:27PM
% (Terminal
Tern
smet Sort View Windows

14.17

Networks
1

ki
44

Pht/Sec
17

Filtered

[}

hannel 8, 54

channel @

Kismet-20111107-15-27-15-1.alert 344 bytes plain text document Mon 07 Nov 2011 03:47:15 PM PST

L lnnl tyt 2 7 MR nlain fayt darument Mon 07 Ko 2011 03:35:10 PM PST.
"Kismet-20120427-13-13-04-1.alert" selected (0 bytes) -

root - File Browser [=] Terminal

Figure 15: Kismet GUI showing packet capturing

[EASISU\CS298\ Kisrmet-20120427-13-13-04-1.netxml - Notepad-++
Elle Edit Search View Encoding Language Settings Macro Run Plugins Window ? X
o 3 Ta G o Ty i ity 2 x| BEREE1E3| | =av=@g >
[l AEADNIE S| [l Endridiizntestsmi | [2aho| [l s26hestsal | IS READHESS B Kamet-20120427-13-1304 T et |
<?xml version="1.0" encoding="I50-8859-1"2>
<!DOCTYPE detection-run SYSTEM "http://kismetwireless.net/kismet-3.1.0.dtd"> |

<detection-run kismet-version="2011.03.R2" start-time="Fri Apr 27 13:13:04 2012">

<card-source uuid="7lcaTcic-30a5-11el-86£2-47044517e201">
<card-scurce»wlan:name=3jsu, </card-socurce>
<card-name>sjsu</card-name>
<card-interface>wlanlmon</card-interface>
<card-typeriwlagn</card-type>
<card-packets>19229¢/card-packetay>
<card-hoprtrue</card-hop>

<card-channels>l,s, 9,13, 48, 64, 5560, 5640, 2, 6,10, 36,52, 5500, 5580, 5660, 3, 7, 11, 40, 56, 5520, 5600, 5620, 4, 8,12, 44
60,5540, 5620, 5700</card-channels>
</card-source>
<wireless-network number="1
Apr 27 13:14:58 2012">
<55ID first-time="Fri Apr 27 13:13:32 2012" last-time="Fri Apr 27 13:14:58 2012">
<type>Beacon</type>
<max-rate>54.000000</max-rate>
<packets>8</packets>
<beaconrate>10</beaconrate>

type="infrastructure” first-time="Fri Apr 27 13:13:32 2012" last-time="Fri

Nermal test file length : 676176 lines: 18027 Ln:8 Col:29 Sel:0 UMNLX ANSI INS

Figure 16: XML log file showing card type

packet dump log file.

29

] EASISUNCS298\Kismet-20120427-13-13-04-1 netxml - Notepad++ o &)
File Edit Search View Encoding Language Seftings Macro Run Plugins Window I X

o= o e & & DB [80 Bg| % x| BE| IEE._J | @ 2 | = avEigy

I READHERD| B Anadvisnicston| B 25| B S26a 85| B READNESE] B Kimet 20120427-1313-04-1 nebari |

14 </card-source> -
15 <wireless-network number="1" type="infrastructure” first-time="Fri Apr 27 13:13:32 2012" last-time="Fri
Apr 27 13:14:58 2012">
16 <55ID first-time="Fri Rpr 27 13:13:32 2012" last-time="Fri Apr 27 13:14:58 2012">
17 <type>Beacon</ type>
18 <max-rate>54.000000</max-rate>
19 <packets»E</packetss
<beaconrate>10</beaconrate>
<encryption>WEA+PSK</encryption>
<encryption>WEA+AES-CCM</encryptions
<dotlld country="U5 ">
<dotlld-range start="1" end="11" max-power="27"/>
</dotlld>
<essid cloaked="true"></essid>
</55ID>
<BSSID>00:02:CF:B7:75:E2</BSSID>
a9 <manuf>ZygateCod/manui>
<channel>11</channel>
<frequhz>2462 8</fregmhz>
<maxseenrate>l000</maxseenrates
<packets>
<LLC»8</LLC>
«data>0</data>
<crypt>0</ceypt>
<total»8</total>
<fragments>0</fragments>
] <retriesri</retries>
</packeta>
<datasize>0</datasize>
<snr-info>
<last_signal dbm>-83</laat_signal dbm>
<last_noise_dbm»0</last_noise_dbm>
<last_signal_rasi>0</last_signal_rssis
<last_noise_rssi»0</last_noise rssix
<min_signal_dbm>-90</min_signal dbm>
<min_noise dbmr0</min_noise_dbm>
49 <min_signal_rssi>1024</min_signal_rssi>
0 <min noise_rssi»l024</min noise rssix
51 <max_signal_dbm>-85</max_signal_ dbm>

52 <max neise dbm>-256</max noise dbm>

o

o L W W W L L W R N R R R RN R R RS
R ol i = -] .

S el el

Normal text file length: 676176 lines : 18027 Ln:8 Col:29 Sel:0 UNIX ANSL INS

Figure 17: XML log file showing network information

3.2.2 Tshark

The command line version of Wireshark is known as Tshark [38]. Kismet, while
capturing packets, generates a “.pcapdump” file. This .pcapdump file contains raw
packets captured from the network. The information present in .pcapdump file is
not in a readable format as it’s a raw dump of all the packets flowing through the
network. When this file is opened using Wireshark, the packet details can be seen,
however for an automated solution this will not work as it requires manual scanning
of the logs by Wireshark. Thus tshark was used to filter the .pcapdump file and show

packet details.

Tshark was configured to filter only the HT'TP and TCP protocols by changing

30

Q{ EA\SJISUNCS298\Kismet-20120427-13-13-04-1 netxml - Motepad++
File Edit Search View Encoding Language Seftings Macro Run Plugins Window I

PR

s lle @ & Db |t % | % x| EE| ==l B

I READHERD| B Anadvisnicston| B 25| B S26a 85| B READNESE] B Kimet 20120427-1313-04-1 nebari |

oo |

X

|=av =gy

T v = T =]

mhEeE88ES

</seen-card>
<wireless-client number="1" type="fromds" first-time="Fri Apr 27 13:14:58 2012" last-time="Fri Apr 27
13:14:58 20127>
<client-mac>00:02:CF:B7:75:E2</client-mac>
<client-manuf>ZygateCo</client-manufs
<channel>11</channel>
<frequhz>2462 8</fregmhz>
<maxseenrate>1000</max3eenrate>
<packets>
<LLC>8</LLC>
<datar0</data>
<crypt>0</crypt>
<total>d</total>
<fragments>0</fragments>
<retriea»f</retries>
</packets>
<datasize>0</datasize>
<snr-info>
<last_signal_dbm>-89<¢/last_signal_dbm>
<last_noise_dbm»0</last_noise_dbm>
<last_signal_rssi>0</last_signal_rssi>
<last_noise_rssix0</last noise rssix
<min_signal_dbm>-80</min_signal_dbm>
<min_necise_dbm>0</min_ncise_ dbm>
<min_signal_rssi>1024</min_signal rssi>
<min_noise_rssi>1024</min_noise_rssi>
<max_signal dbmr-85</max signal dbm>
<max_noise_dbmy-256</max_noise_dbms
<max_signal rssix0</max signal rssix
<max_ncise_rssi>0</max_noise_rssi>
</snr-info>
<seen-card>
<seen-uuid>T7lcaTcdc-90a5-11el-86£2-47044517e201</seen-uuid>
<seen-time>Fri Apr 27 13:14:58 2012</seen-time>
<seen-packets>E</seen-packets>
</seen-card>
</wireleas-client>
</wireless-network>
<wireless-network number="2" type="infrastructure” first-time="Fri Apr 27 13:13:25 2012" last-time="Fri
Apr 27 13:33:00 2012">

Normal text file

length: 676176 lines : 18027 Ln:8 Col:29 Sel:0 UNIX ANSL

INS

the configurations in Wireshark. After filtering, the file is saved as a .txt file. The

Figure 18: XML log file showing clients information

following command is used to convert .pcapdump file into .txt file.

$ tshark

The above command will take the Kismet.pcapdump file and convert it to a

normal readable text file. This text file is then parsed to extract the access logs of

-r Kismet.pcapdump > log.txt

the students giving the tests.

3.2.3 XAMPP Server

The online test has to be hosted on a web server.

have an active connection with a database server in order to store student’s IP/MAC

31

The web server should also

addresses, as well as online test questions and answers. XAMPP [9, 40] was chosen for
this purpose as it is a complete bundle of Apache web server and MySQL database
server. XAMPP also has support of PHP, perl, and Python so the server side scripting
can be easily done on this server. XAMPP is also very easy to install and configure
on any machine as its open source; therefore XAMPP was the best choice for our
project. There are many tools that come with XAMPP server that aids in rapid
software development. phpMyAdmin is one such tool that gives an easy web interface

to a MySql database. The database creations and other operations are seamless.

Thus, an online test was hosted on this web server and the database was also

created on the same machine.

3.2.4 Eclipse for Android application

A mobile application was also designed for Android to help instructors gain
instant notification of any unwanted activity on their Android Smart Phone [27].
The main idea behind designing the Android application was to help instructors
roam in the classroom and still be able to get student’s notification (alerts) about
any unwanted activity. Instructors could stay at a computer running Kismet to watch
for notification alerts, however having an application on their Smart Phone means an
instructor cab remotely monitor the exam. They can leave the examination hall and

still be able to monitor the exam.

Eclipse was used to build an Android application that can obtain notifications
[17] from the Kismet server. The application was designed in such a way that it
can help instructors remotely control an online test. The various features of the

application are as follows:

32

Any website can be added within a white-list or a blacklist;

The list of websites in the white-list or a blacklist can be viewed;

The list of students taking an exam can be seen;

The details of each student can be retrieved;

e And Kismet server logs can also be seen.

Proper notification will be generated on the application if there is suspicious

activity.

3.2.5 Python

The logs, generated by Kismet are usually large in size and converting them into
text that can be parsed and processed is challenging. To accomplish this, Python [29]
was chosen as it is a scripting language and has an automatic memory management
that can help in parsing large sized files. Python is open source and is also easy to

code in Python.

3.3 Software Design

In this section the design of the online test and the design of the autonomous

Kismet .pcapdump parser will be discussed.

3.3.1 Online Test Design

The online test was designed in such a way that the student’s details, along with
their IP/MAC address, are stored within the database for use with a Kismet log

parser. The online test was designed using AMP (Apache MySql PHP). PHP was

33

used since it’s easy to write server side code and its easily configured with Apache.
The database was created in MySQL. The following are the key factors for the online

test design:

The site should let the student Login/Register with their name and their unique

student ID;

The site should capture the MAC/IP address of every student;

The IP/MAC address should also be captured as soon as the student begins

taking the test;

e The server should allow long polling from all the students taking the test;

And the database should be accessible by the machine running Kismet.

Keeping the above things in mind, the online test site was designed with a front

page as shown in Figure 19.

This front-end was designed using HTML/JavaScript/JQuery, along with PHP
as the server side scripting language. The database used was MySQL. XAMPP was
used to host this online test therefore the database and the web server were on the

same machine.

Students have to first register on the website. As soon as the student registers on
the site, their IP/MAC address was stored in the database and also a session variable
is set with these values. From this point forward whenever a student logs-out and
logs-in again to the test, their IP address and MAC address are captured and stored

within the database.

34

x
& € | © localhost3080/cs266/test.php +# @A g

[Design Patterns---Ja... [Pollett Aug 25, 2010 ... (D) SISU Catalog Mark Stamp's SISUf.. | Computer Science | .. San Jose State Unive.. » (] Other bookmarks

CS 266 Midterm

Your Test Welcome Sumit Kumar | Logout

Answer the following questions:

T T T T

ENIGMA

What is ENIGMA?
() British Cipher Machine
) Russian Cipher Machine
©) German Cipher Machine
© American Cipher Machine

.,
e

SAN JOSE STATE
UNIVERSITY

I —

Figure 19: Home page of the online test

All web pages within the online test contain a code for an Ajax call every 5-
seconds to a specific server-side PHP code that always compares the student’s IP /-
MAC address stored in database with their present IP/MAC address set during the
session. So if the addresses do not match,then the student might have changed the

network or have applied MAC spoofing, and they can be flagged.

The server also maintains a list of all the current IP/MACs that have started the
test and are constantly polling the server. If the server does not receive a poll from
any of the IP addresses on the list, it flags that IP as disconnected. Further checks on
that disconnected IP are done to discover if that IP has been disconnected genuinely
or the student has disconnected. As soon as an IP is flagged, a separate code on the

Kismet server will run and will try to scan the full network to determine the MAC

35

address associated with this IP. The MAC address is then tracked for any suspicious

activity.

3.3.2 Kismet .pcapdump Parser

To read the .pcapdump file tshark was used. With tshark the text file generated

contains the details of the packet’s source and destination IP/MAC. This should be

done continuously until the test is over. Therefore, a Python code was written which

does the following (in order) after the test has started:

3.4

. Obtain the list of student’s IP/MAC address taking the exam;

Retrieves the white-listed IP/MAC addresses from the database;
Converts a .pcapdump file to a .txt file by running a shell command,;

Reads the text file generated line-by-line;

. And for each line, checks that it contains student’s IP/MAC taking the test

If found, then checks which student’s IP/MAC is the IP/MAC is pointing to

If the student IP/MAC points to another IP/MAC that is not in the white-list,
then that student’s IP/MAC address is stored in a separate table within the

database

Goto step - 3 and repeat

System Design

When Kismet runs, it makes the wireless card operate in a monitoring mode.

This means that the network card can only monitor the activities within the wireless

36

network. It will not be able to connect and exchange data with any other computer

which also means that no other computer can reach the computer running Kismet.

The approach was to have the Kismet server running on a machine and a Python
script continuously parsing the log file and querying the data from the database server.
In order to query the database, the machine running Kismet should be able to connect
to the remote machine. However this is not possible using a wireless network card as
it is in a monitoring mode. To accomplish this P2P Ethernet connection was made
between these two machines: one machine running Kismet and one machine running

the XAMPP server, which is also the database server as shown in Figure 20.

As shown in Figure 20, we have a web server that hosts the online test and a
database server that stores student information, as well as the test details. Students
taking the test, while in the examination hall, can use their laptops having any
operating system on it. The students will need a web browser that can open the
online test. Once online, students will connect to an access point where the web
and database servers are also connected. The access point has a connection to the
Internet through a firewall whereas; the Kismet server only has a connection to the
database server. Once the test begins, the students will connect to the web server and
the database server will log their IP/MAC addresses. The Kismet server will capture
all the packets and look for all the IP/MAC addresses retrieved from the database
server. It will also check if individual IP addresses from the exam hall are using any
website other than the authorized white listed sites. The instructor will have a mobile
device that can receive notifications form the Kismet server. If the Kismet server sees
any suspicious activity, then it will generate a notification and send that as a push

notification to the Android application on the instructor’s Android device.

37

Android

Web Server Database Server Kismet Server —
Application

Internet

Instructar

Sniffing
Packets

Students in the classroom

Figure 20: System Design

3.5 Database Design

The online test has to store all student’s information. For this purpose a database
was chosen, as the data can be stored persistently and can be easily retrieved if there
are any system failures. For our project MySql was chosen as the database since
it comes bundled with the XAMPP server. To store logically separated information,
different tables were used. Figure 21 illustrates the various tables within our databases

and their relations.
Table Description:

student _info: This table stores student’s information for those who are regis-

tered for the online test.

student_ip_mac: This table stores current student’s IP/MAC addresses. So
if a student has registered with a different machine and logged-in with a different

machine, the new IP/MAC addresses of the different machine will be stored.

ip_accessed: This table stores all the remote IPs accessed by all student IPs

38

ﬂ'a cs266tes student_info ﬂo cazo6test successful_cheaters

@ id : int(22 <) studentid : text
) namevg tezct E memod_; text
| studentid * exT — —:! studentip : text
) emal : text —L! studentmac : text

password : text
| mac_address : text
ip_address : text

u‘c cs2botestip_accessed
=l student_ip : text

2l remote_ip : text
ao -..n.r,:r.»;.-:.student_b_n'lac
2l studentid @ text — —————
=l mac_address : text 08 c=266ies changed_ip
Zl ip_address : text il name : text
ez USEr_id : teXt

:l previous_ip : text
:l previous_mac : text

08 coeates wi_sites 5) new_ip : text
=l ip - text =l pew_mac : text
= url : text

Figure 21: Database Design

within the database.

successful_cheaters: This table is created to store the method of cheating by

any student if they remain undetected during the test but were successful at cheating.

changed_ip: This table is created to store the IP/MAC address of any student

if they were caught while changing their IP/MAC address.
wl_sites: This table stores the list of all the white-listed sites with their IP

The above table names were chosen keeping in mind their use. The information
stored within the table can be easily assessed by looking at the name of the table.
The Kismet server retrieves the data from the database and can easily query these
tables as it only reads data from selected tables. If more information is needed, then it
can make further queries to the other tables that have a relation between themselves,

thus retrieving additional information.

39

3.6 Mobile Application Design

To aid the instructors in obtaining quick notifications during the exam, a mobile
application can be useful. The instructor can physically roam in the exam hall and
still keep an eye on students taking the exam. If the system generates an alert, the
instructor can immediately see it. The instructor can also remotely configure the
system by adding and deleting websites from any given list. To accomplish all the

above, an Android application was designed with the following main features:

Websites can be added on the go during the examination;

A student’s access data can be viewed;

Full system logs can also be viewed;

And notification is received if there is any suspicious activity.

Android was chosen for developing our mobile application, as it is open source and
anyone can create, test, and run the application on any operating system. Android is
also one of the largest selling mobile operating systems. Following the above design

goals, an Android application was developed as shown in Figures 22 through 25.

The above image shows the main screen of our application which has all the
functionalities as an image button. By clicking on “Student Details” an instructor
can retrieve student details, including their IP addresses and MAC address. In order
to view the complete system log, the instructor clicks on “System Logs”. At any
time, instructor can get help by clicking on the “Get Help” button; this will help
the instructor to learn and configure the application. By clicking on the “Manage

WebSites” button, it brings up another view as shown in Figure 23 (i). This view

40

7| 5558:Android 233 [E=H|B=R(

= ml B o923
SJSU Test Monitoring Tool

Manage Student vav :
WebSites Details ON M AN

102 03 o |s-J6 [7.]s |5 [o]
o Jw [n [|y Ju s Jo |p]
| o 22
i; 40 2] o i . i 2]
|l

System Logs Get Help

Figure 22: Android Application main screen

provides features needed in order to manage required exam such as, adding websites

to the white-list and blacklist, and viewing individual lists.

Figure 23 (ii) displays the view to enter a website name. This view has an input
field where an instructor can enter the URL of the website and add it in the white-list.
By clicking the submit button, entries will be saved in the local storage as well as on
the Kismet server. By clicking on the “Back” button the user can go back to Figure
23 (i). If the user then clicks on “View Blacklisted Sites” they will open up the view

below, as shown in Figure 24 (i).

41

I 3taaardron_13 5 SRR i 37

55V Test Menitering Toel S]5U Test Monitoring Tool

| vwww.cs sjsu.ed u/~stamp|

Subrnit ‘ | Back ‘ | Resat |

Manage Web Sites

Add Elacklist

View Whitzlisr

e Blaekhist

s
(ii)
5SS Andraid 733

= W #1031
5/SU Test Mponitaring Tool

hitelisted sites

1: www.cs.sjsu.edu/~stamp

3J5U Test Monitoring Tool

2: www.cs.sjsu.edu/~pollett

Manage Web Sites

Add Whitelist

Add Dlacklist

View Rlarklist

(iii) (iv)
Figure 23: Adding a website to the white-list
Figure 24 (iv), shows the blacklisted sites that have been added in the Kismet
server database. These are sites, which if accessed by any student, will be flagged
immediately. Going back to the view in Figure 22 and clicking “Student Details” the

user gets the view as shown in Figure 25 (i) below. By clicking on any student name

we can see their details as shown in Figure 25 (ii) below.

42

ME M owil B &0

SPSU Tesr Manitaring 166l SJsU Test Manitaring 160l

| W, ask.gom

B

Manage Web Sites

Add Wehitelio

com contact find . B

_ COMmmunity campany con content
Wiewr ¥ehitsiis

Wik (Gl S0

'.ﬁﬁl.' Test manitoring Toal

1 wwnar g

£ WAL Y ahoo.com

Manage Web Sites

3 wwww.bing.com
A WWTieisD =

Ald Blackiist

Wieww W hitelizt

(iii) (iv)

Figure 24: Adding a website to the black-list

43

w ol H 628

[SjSUTest Monitaring Toal

s
[SlsUTest Monitoring Toall |
Student Details

1: Alice Name: Alice

2: Bob

55U ID: 1234

IP: 10.20.1.22

MAC: FO-7B-19-2B-3C-0D

(i)

Figure 25: Student Details

44

CHAPTER 4

Implementation and Results

This section discusses the implementation of the application developed and ex-
periments completed to test it. Various experiments were performed at different

locations in order to test the system.

4.1 Experiment 1

As shown in Figure 26, BackTrack Linux 5 was installed on one laptop. Kismet,
installed with BackTrack Linux, was configured for wlan0 and was started. A second
laptop was configured to run XAMPP and an online test was hosted. The Kismet
server was also connected to XAMPP server via an Ethernet cable in order to access
the database. Once the servers were set-up on the laptops, they both were connected
to a wireless router which was open and had no password or encryption. Since the
router was unsecured, anyone can connect to it and the packets exchanged via this
router can be read by anyone. After the three devices were set-up they were also
connected to the router. Once these devices were ready, the test was started through
the browser. The first page of the test required the user to register; therefore an
unique user was registered. As soon as each user was registered on the device, their
IP and MAC addresses were stored within the database. The test was started and the
Kismet server was already capturing packets. The Python script was then started in
order to convert and parse the log from Kismet. This Python script retrieved the IPs
for all three devices from the database and started monitoring them by identifying
their activities from the log. A special page “cheaters.php” was designed that displays

the name, IP address, and the non-white-list IP accessed by each device. This page

45

refreshes every 5 seconds and shows if it has identified anyone cheating.

XAMPP — Web & Kismet running on
[atabase server BackTrack Linux 5

Internet

Open Wi-Fi
Router without

Encryption

Devices connected to start the test from XAMPP server

Figure 26: Experiment 1 System Architecture

After the devices were set-up and connected, and students were given access to

the test, they were not allowed to open websites other than those on the white-list.

The following are the activities that were performed during the experiment:

e Activity - 1: The test was started and no other site was opened from the

computer

Expected Result: The cheaters.php, which shows the list of students who are

caught cheating, should remain empty
Actual Results: The cheaters.php was empty

e Activity - 2: Only the websites listed in the white-list were opened on the
devices.

Expected Result: The cheaters.php page should not show any username or

IP.

46

Actual Results: No name or IP was displayed on the page.

e Activity - 3: Google was opened from one of the connected PC

Expected Result: The name of the user accessing Google should display in

the cheaters.php

Actual Results: The name of the user was instantly displayed

e Activity - 4: One PC was disconnected from the test network and was con-

nected to some other Wi-Fi

Expected Result: The cheaters.php should display the user name along with

the MAC addresses of the wireless networks

Actual Results: The MAC address of the two networks was displayed against

the name of the user

Results and explanation: By looking at our results, we can determine that
there are three major ways a student can use to cheat and each was successfully

detected by the application.

4.2 Experiment 2

A second experiment was performed in the college with students enrolled in
CS266 course (Information Security). The overall architecture of the system was the
same as shown in Figure 27. The wireless router used was a special router and was not
the same as the college access point. The steps for configuring the servers were again
the same and all CS266 students were allowed to join the assigned network. Before
the students went online, Kismet had already been started. Once students registered

and started the test, Kismet was already capturing student packets. During the test,

47

students were only allowed to visit 2 sites www.sjsu.edu and www.cs.sjsu.edu. After
the test was started they were instructed to cheat. The Python code was run to parse

and read the .pcapdump file and extract information regarding student activities.

Participant 4

Participant 3

Participant 2

&

Figure 27: Experiment 2 System Architecture

The following are the activities that were performed during the experiment:

e Activity - 1: The test was started and students were told to cheat without

getting caught

Expected Result: The cheaters.php, which shows the list of students who are
caught cheating, should show only those students who tried to access any site

other than the white listed sites

Actual Results: The cheaters.php showed the list of all the students opening

multiple sites

48

e Activity - 2: The test was restarted and the students were asked to re-register.
This time they all were told not to cheat and only one student should open other

sites

Expected Result: Only that one student’s name should be displayed on the

cheaters.php

Actual Results: The name of many students showed on the cheaters.php

including the one student opening other sites

Results and explanation: There were many false alarms showing that a stu-
dent was cheating, but were actually not. The main reason for the false alarm was due
to the software installed on student laptops. The software might be sending requests
for an update to their server of which students were unaware. There were also many
plugins embedded within web browsers, such as Chrome and Firefox. These plugins
may be sending packets to a remote server and since the white list does not have

those IPs, students were being blacklisted.

4.3 Experiment 3

By reviewing our results in the above two experiments, we can clearly see that
our project was able to handle large amount of traffic within the college. It was also
able to retrieve all students connected on a test server that was hosting the online
test. One major problem, that of scalability of our system, was tested and our system

proved to be fast and better as compared to our previous attempt [32].

The main problem that remains with our system is the amount of false positives.
Due to various software and operating systems sending anonymous packets without

user notification, it becomes important for our system to immediately filter false

49

positives. To accomplish this, our Python script was modified to look for traffic on
port number 80 that is the Hypertext Transfer Protocol (HTTP) in the text file
generated from the .pcapdump file. The assumption was that software updates, OS
updates, and/or anti-virus or browser plugin updates will not get to port 80 of the
server. For example, the Chrome plug-in updates will not go to www.google.com:80
but will go to some other port on the Google server. Similarly the OS updates will not
go to www.microsoft.com:80 but may be routed to some other port on the Microsoft
server. Any student who is trying to cheat using the Internet will surely visit the
web server from their browser. They will go to port 80 of the server so we can safely
neglect any traffic going on other ports. There may be cases that the webserver is not
configured on the default port but on port 8080. So our Python script was modified
further to check for these non-standard web server ports. All other traffic was still

logged for each student and can be analyzed later by the instructor.

Experiments conducted after these enhancements showed better results as many

of the false positives did not occur this time.

In our third experiment we conducted a test in CS165/265 class (Cryptography
and Computer Security) with 25 students. We further enhanced our system architec-
ture as well. A web server (cs17.cs.sjsu.edu) was configured inside our college campus
to host the online test. This web server was not accessible outside the college network.
This eliminated the need of having two laptops in the classroom for our monitoring
tool. The students connect to the college wireless network and take the test by open-
ing the link cs17.cs.sjsu.edu in their web browser. The laptop running Kismet was
configured with two wireless adapters, one for sniffing packets and the other to con-
nect to the college network to access the database on the server csl7.cs.sjsu.edu as

shown in Figure 28.

20

cs17.cs.sjsu.edu

Internet

Kismet running on a laptop with
two wireless network adapters

Students taking test in the class

Figure 28: Experiment 3 System Architecture

Results and explanation: Once the test was complete, the log from Kismet
was analyzed along with the database entries for all the students. It was observed
that all the students had the same IP address in the database as shown in Figure 29.
Due to this the packets captured by Kismet cannot be classified. Since the packets

cannot be classified, we cannot determine the activities of students in the exam.

The reason for getting the same IP address was due to the fact that all the access
points in the building are connected to a router and this router is natting the student’s
IP address to the test server csl7.cs.sjsu.edu. So our test server will always get the
IP address of the router as the student’s IP. So this experiment was not completely
successful as it was not able to tell us about the student activities although we had

the packet details.

o1

id userMame ip_address
userl 130651172
user2 130651172
user3 130651172
userd 130.65.11.72

9 users 130.65.11.72
10 useré 130.65.11.72
11 user? 130.65.11.72
12 user8 130.65.11.72
13 userd 130.65.11.72
14 user10 130.65.11.72
15 userll 130.65.11.72
16 user12 130.65.11.72
17 usertd 130.65.11.72
18 userld 130.65.11.72
19 userls 130.65.11.72
20 userl6 130.65.11.72
21 userl? 130.65.11.72
22 userld 130.65.11.72
23 userld 130.65.11.72
24 user20 130.65.11.72
25 user21 130.65.11.72
26 user22 130.65.11.72
27 user23 130.65.11.72
28 user24 130.65.11.72
29 user25 130.65.11.72

-~ o o ow

Figure 29: Database entries for all the students

4.4 Experiment 4

With the same setup as shown in Figure 28, another experiment was conducted
with the students enrolled in the course CS46B (Introduction to Data Structures).
There were 83 students who were taking the test and the sniffer was capturing the
packets in the class room. This time the students were also asked to submit their
IP address at the end of the test. Their IP addresses were then manually entered in
the database and the Python script was run to convert the Kismet packet dump to
parsable text file. A PHP web page was created to extract meaningful data from the

text file by searching student IP address.

Results and explanation: The PHP web page showed the name of all the
students who took the test and the IP addresses accessed by their laptop during the
exam. After analyzing the logs we can see that the number of false positives due to
the software and Operating System updates went down drastically. But there were

still quite a bit of false positives. The reason was unclear but it might be because

52

of some software updating over HT'TP. We could also see a lot of GET request with
safebrowsing in it. This might be due to the Firefox plugin sending updates over the
web to check for malicious websites. The IP addresses accessed by the students were
also resolved to find their hostname to get a more details about the access. Thus it
was clear from the results that most of the activities where the student tried to cheat

were detected successfully as shown in Figures 30 through 36.

The top activities that were flagged are as follows:

e Student 12, 34, 47 accessing Piazza (Ask Answer Explore Whenever) website.
This website is a place where student can come together to ask, answer and

explore questions.

Student No.12 - 10.185.195.212 -> 184.73.248.186
Student No.34 - 10.185.193.89 -1> 184.73.248.186
Student No.47 - 10.185.205.119 -> 184.73.248.186

e Student 18, 39 accessing Java API docs from an IP whose domain name

couldn’t be looked up.

Student No.18 - 10.185.209.79 -r> 198.189.255.201 as shown in Figure 32
Student No.39 - 10.185.200.69 ->> 198.189.255.224 as shown in Figure 34
Student No.50 - 10.185.210.47 ->> 198.189.255.201 as shown in Figure 36

e Student 26, 33 using googletalk plugin to chat in the exam.

Student No.26 - 10.185.201.236 ->> 173.194.25.57 as shown in Figure 32
Student No.26 - 10.185.201.236 ->> 173.194.25.70 as shown in Figure 32
Student No.33 - 10.185.203.245 -> 74.125.224.78 as shown in Figure 33

93

e Student 12 accessing www.facebook.com

Student No.12 - 10.185.195.212 -> 69.171.234.37 as shown in Figure 31

e Student 8 accessing www.oxytube.com

Student No.8 - 10.185.206.17 ->> 50.116.55.164 as shown in Figure 30

This access may not be an attempt to cheat as there are browser plug-ins for
Firefox which might be sending auto-update packets to the server. Just like
we have lots of access to 74.125.224.72 (www.google.com) for safebrowsing as

shown in Figure 30 and 34

Some activities were not detected by our tool as we were only sniffing the HTTP
traffic. There were couple of students who submitted identical files as their answers
and our tool was not able to detect it. This shows that they might have communi-
cated through some channel other than HTTP. This means that our tool needs to be

modified for tracking the traffic other than the HTTP as well.

Student No.8 - 10.185.206.17 -> 67.210.118.65 - HTIP - GET -
/sjsu/spring2012/cs46b/85c74e3d/Sum.java - HTTP/1.1

Student No.8 - 10.185.206.17 -> 74.125.224.98 - HTIP - GET -
/safebrowsing/rd/ChNnb29nLW1hbHdhcmUtc2ZhhdmFyEAEY6ZYFIICXBSoIdksBAP___ wcyBmILAQD_Hw -

HTTP/1.1

Student No.8 - 10.185.206.17 -> 74.125.224.98 - HTIP - GET -
/safebrowsing/rd/ChNnb29nL W1hbHdhecmUtc2hhdmFy EAAY 8egEIMDp BCo NfzQ BAP. AZIGCTQBA
P8_ - HTTP/1.1

Student No.8 - 10.185.206.17 -> 74.125.224.98 - HTIP - GFET -
/safebrowsing/rd/ChFnb29nLXBoaXNoLXNoYXZhchABGNGMBICgjQYqBpSGAQD_HzINUYYBAP. B

w - HTTP/1.1
Student No.8 - 10.185.206.17 -> 74.125.224.98 - HTIP - GET -
/safebrowsing/rd/ChFnb29nLXBoaXNoLXNoYXZhchAAGIVBDCCU_AwgBQ4-AwB_MgULPgMABw -
HTTP/1.1
Student No.8 - 10.185.206.17 -»> 50.116.55.164 - HTTP - GET -
Jext/youtube_downloader_update.xml?x=id%3Dbaghcaockjpiflfgfddiobkomaakiphhg%26v%3D11.0%26uc
- HTTP/1.1

Figure 30: Results of Experiment 4

o4

StudentNo.12 - 10.185.195.212 -> 69.171.234.37 - HTTP - GET -
/ajax/hovercard/user.php?id=100000689465501&__a=1&endpoint="%2Fajax%2Fhovercard%2Fuser.php%3Fid%3D10000068946
5501&_ user=100001116249104 - HTTP/1.1

StudentNo.12 - 10.185.195.212 -> 198.189.255.216 - HTTP - GET - /hprofile-ak-
snc4/161396_100000689465501_93803835_n.jpg - HTTP/1.1

StudentNo.12 - 10.185.195.212 -> 69.171.234.37 - HTTIP - GET -
/ajax/pagelet/generic.php/PhotoViewerInitPagelet?_a=1&ajaxpipe=18&ajaxpipe_token=AXi11]_EKz7ApSqv&data=%7B%22fbid%
22%3A%22240501232717414%22%2C%225et%22%3A%22a8.212223438878527.33964.212208148880056%22%2C% 22type%22
%3A%221%22%2C%2251Z2e%2 2% 3A%22500%2C500%22%2C%22theater®%22%3Anull%7D&__user=100001116249104&__adt=6
- HTTP/1.1

StudentNo.12 - 10.185.195.212 -» 69.171.227.72 - HTTP - GET -
/pull?channel=p_100001116249104&seq=13&partiticn=1&clientid=3d 1c1e8e&cb=2uxj&idle=32&state=active - HTTP/1.1

StudentNo.12 - 10.185.195.212 -> 184.73.248.186 - HTIP - GET -
/logic/push?id=h2dmdx8x8hwogt1=13373685076808&t2=1337368507680&01=gxp7dSjx06x1yi&o2=h2ch&vOrxx51ge&t=1337368
440123 - HTTP/L.1

StudentNo.12 - 10.185.195.212 -> 69.171.227.72 - HTTP - GET -
/pull?channel=p_100001116249104&seq=19&partition=18&clientid=3d1cle8e&cb=dj3u&idle=93 - HTTP/1.1

StudentNo.12 - 10.185.195.212 -> 69.171.227.72 - HTTP - GET -
/pull?channel=p_100001116249104&seq=14&partiticn=1&clientid=226ela4&cb=m12l&idle=21&state=active - HTTP/1.1

StudentNo.12 - 10.185.195.212 -> 208.46.17.24 - HTTP - GET - / - HTTP/1.1

StudentNo.12 - 10.185.195.212 -> 72.246.53.65 - HTTP - GET - / - HTTP/L.1

StudentNo.12 - 10.185.195.212 -> 69.171.234.21 - HTTIP - GET -
/ajax/pagelet/generic.php/MoreStoriesPagelet? a=1&ajaxpipe=18&ajaxpipe_token=AXi11]_EKz7ApSqV&data=%7B%22filter%22
%3A%22h_nor%22%2C%220ldest%22%3A1337376330%2C%220ldestMR%022%3A1337300300%2C% 2 2last_seen_time%22%3A1
337376484%2C%22scroll_count®%22%3A1%2C%22scroll_position%22%3A11%2C%22last_viewstate_id%22%3A%22-
7837595259991462488%22%2C%2 2delay_load_count%22%3A30%7D& user=100001116249104& adt=3 - HTTP/1.1

StudentNo.12 - 10.185.195.212 -» 69.171.227.72 - HTTP - GET -
/pull?channel=p_100001116249104&seq=20&partition=18&clientid=65b8edcc&cb=3n5l&idle=10&state=active - HTTP/1.1

Figure 31: Results of Experiment 4

Student No.18 - 10.185.209.79 -> 74.125.224.78 - HTTIP - GET -
/safebrowsing/rd/ChFnb29nLXBoaXNoLXNoYX ZhchAAGIH8 DCCAKAOqQWWILPgMA,

PzIGAT4DAPS8D - HTTP/1.1
StudentNo.18 - 10.185.209.79 -> 198.189.255.201 - HTTP - GET - /javase/7/docs/api/java/lang/Object.html -
HTTP/1.1

StudentNo.18 - 10.185.209.79 -> 67.210.118.65 - HTIP - GET -
/s1sw/spring2012/cs46b/85c74e3d/PhoneNumberReader.java - HTTP/1.1

Student No.24 - 10.185.202.4 -> 143.127.102.125 - HTTP - GET -
/brief?url=http:%2F%2Fcs17.cs.sjsu.edu%2F&&v=2.5 - HTTP/1.1

StudentNo.26 - 10.185.201.236 -> 173.194.25.57 - HTTP - GET -

Jedgedl/googletalk/googletalkplugin/2.9.10.7526/googletalkpluginaccel.msi?ms=nvh&mt=13373676 15&cms_redirect=yes -
HTTP/1.1

StudentNo.26 - 10.185.201.236 -> 173.194.25.70 - HTTP - GET -

/edgedl/googletalk/goocgletalkplugin/2.9.10.7526/googletalkpluginaccel.msi?ms=nvh&mt=1337367615&cms_redirect=yes -
HTTP/1.1

StudentNo.26 - 10.185.201.236 -> 67.210.118.65 - HTTP - GET - /favicon.ico - HTTP/1.1
StudentNo.26 - 10.185.201.236 -> 208.80.152.211 - HTTP - GET -
/wikinedia/en/math/2/6/8/26887d99dbc1e32bbfa34256341735d9.png - HTTP/1.1

StudentNo.26 - 10.185.201.236 -> 208.80.152.211 - HTTP - GET -
/wikipedia/en/math/f/3/9/f39d56274a6581e102d27a7ceb5cb2c2.png - HTTP/1.1

Figure 32: Results of Experiment 4

95

z

StudentNo.28 - 10.185.194.214 -> 67.210.118.65 - HTTP - GET -
/sisu/spring2012/cs46b/85c74e3d/BinarySearchTree.java - HTTP/1.1

StudentNo.29 - 10.185.210.177 -> 184.178.143.164 - HTTP - GET - /GetYLChromeBoot2.ashx - HTTP/1.1
StudentNo.29 - 10.185.210.177 -> 67.210.118.65 - HTTP - GET - /favicon.ico - HTTP/1.1
StudentNo.29 - 10.185.210.177 -> 184.178.143.164 - HTTP - GET -
/GetClientData.ashx?key=null&id=f43e8302-1e39-40bb-b31e-
35456¢cba3762&loc=http%3A//horstmann.com/sjsu/spring2012/cs46b/85c74e3d/ - HTTP/1.1
StudentNo.29 - 10.185.210.177 -> 67.210.118.65 - HTTP - GET - /favicon.ico HTTP/1.1
StudentNo.29 - 10.185.210.177 -> 67.210.118.65 - HTTP - GET - /favicon.ico HTTP/1.1
StudentNo.29 - 10.185.210.177 -> 67.210.118.65 - HTTP - GET - /favicon.ico - HTTP/1.1
StudentNo.29 - 10.185.210.177 -> 67.210.118.65 - HTTP - GET - /favicon.ico - HTTP/1.1
StudentNo0.29 - 10.185.210.177 -»> 74.125.224.112 - HTTP - GET -
J/complete/search?sugexp=chrome, mod=0&client=chrome&hl=en-
Us&g=horstmann.com%%2Fsjsu%2Fspring2012%2Fcs46b%2Fs - HTTP/1.1
StudentNo.29 - 10.185.210.177 -> 67.210.118.65 - HTTP - GET - /sjsw/spring2012/cs46b/ - HTTP/1.1

StudentNo.30 - 10.185.197.34 -> 67.210.118.65 - HTTP - GET - /sjsu/spring2012/cs46b/85c74e3d/ -
HTTP/1.1

StudentNo.32 - 10.185.209.224 ->» 67.210.118.65 - HTTP - GET -
/5lsu/spring2012/cs46b/85c74e3d/BinarySearchTree.java - HTTP/L.1

StudentNo.32 - 10.185.209.224 -> 67.210.118.65 - HTTP - GET - /favicon.ico - HTTP/1.1
StudentNo.32 - 10.185.209.224 -> 67.210.118.65 - HTTP - GET - /favicon.ico - HTTP/1.1

StudentNo.33 - 10.185.203.245 -> 67.210.118.65 - HTTP - GET -
/sisu/spring2012/cs46b/85c74e3d/Sum.java - HTTP/1.1

StudentNo.33 - 10.185.203.245 ->» 67.210.118.65 - HTTP - GET -
/51sM/spring2012/cs46b/85c74e3d/BinarySearchTree.java - HTTP/1.1
StudentNo.33 - 10.185.203.245 -> 74.125.224.78 - HTIP - GET -
Jedgedl/googletalk/googletalkplugin/2.9.10.7526/googletalkpluginaccel.msi - HTTP/1.1

Figure 33: Results of Experiment 4

StudentNo.34 - 10.185.193.89 -> 184.73.248.186 - HTTP - GET -
/logic/push?id=h2djwfwwrbu0&t1=1337369667915&t2=1337369667915&01=gxp7d9jxo6x1yi&o2=h2deldkikbp1378t=1337369
663447 - HTTP/L.1

Student No.34 - 10.185.193.89 -> 74.125.224.72 - HTTP - GET -
/safebrowsing/rd/ChNnb29nLW1hbHdhemuUtcZhhdmFyEAEY6ZYFIICXBSoldksBAP____wcyBmILAQD_Hw - HTTP/1.1

Student No.34 - 10.185.193.89 -> 74.125.224.72 - HTTP - GET -

/safebrewsing/rd/ChNnb29nLW 1hbHdhcmUtc2hhdmFyEAAY8egEIMDpBCoNfZQBAP. AZIGCTQBAPS_ - HTTP/1.1
Student No.34 - 10.185.193.89 -> 74.125.224.72 - HTIP - GET -
/safebrowsing/rd/ChFnb29nLXBoaXNoLXNoYXZhchABGNGMBICgjQYqBpS GAQD_HzINUYYBAP. Bw - HTTP/1.1

Student No.34 - 10.185.193.89 -> 74.125.224.72 - HTTP - GET -
/safebrowsing/rd/ChFnb29nLXBoaXNoLXNoYXZhchAAGINSDCCK_AwyBQk-AWAD - HTTP/1.1

Student No.34 - 10.185.193.89 -> 74.125.224.72 - HTIP - GET -
/safebrowsing/rd/ChFnb29nLXBoaXNoLXNoYXZhchAAGIVBDCCU_AwqBg0-AwD_ADIFCz4DAAM - HTTP/1.1

Student No.34 - 10.185.193.89 -> 184.73.248.186 - HTTP - GET -
/logic/push?id=h2djwfwwrbu0&t1=1337371303359&t2=1337371303359&01=gxp7d9jxo6x1yi&o2=h2de1dkikbp1378t=1337371
298430 - HTTP/L.1

Student No.34 - 10.185.193.89 -> 184.73.248.186 - HTTP - GET -
/logic/push?id=h2djwfwwrbu0&t1=1337374627320&t2=1337374627320&01=gxp7d9jxo6x1yi&o2=h2deldkikbp 1378t =1337374
620381 - HTTPR/1.1

Student No.39 - 10.185.200.69 -> 74,125.224,102 - HTTP - GET -

/safebrowsing/rd/ChNnb29nLwW 1hbHdhemuUtc2ZhhdmFyEAAY8egEIMDpBCoNfzQBAP. AZIGCTQBAP8_ - HTTP/1.1
Student No.39 - 10.185.200.69 -> 199.47.219.150 - HTTP - GET -
/subscribe?host_int=145819350&Ns_map=96851500_249181214463532,87619277_205582992209613&t5=1337370782 -
HTTP/1.1

Student No.39 - 10.185.200.69 -> 198.189.255.224 - HTTP - GET -
/lavase/6/docs/api/javaslang/System.html - HTTR/1.1

StudentNo.41 - 10.185.208.127 -> 199.7.50.72 - HTIP - GET -
/MFEWTZBNMEswWSTAIBgUrDgMCGgUABBTS qZMG5MBTASrdzkbCnNwuMAdSVgQUz5mpensmSEvIjo%2FX8AUM7 %2 BPSpS0CEFBII
1IKTxuZfpKH1QnrsXI%30 - HTTP/1.1

Figure 34: Results of Experiment 4

o6

Student No.42 - 10.185.198.195 -> 204.9.163.247 - HTTP - GET -
/uif0/5.8.0.158./en/getlatestversion?ver=5.8.0.158&uhash=11bae699d39adf3367593b9b 3d352968b&google-
chrome:notoffered;disabled - HTTP/1.1

Student No.42 - 10.185.198.195 -> 6£7.210.118.65 - HTTP - GET -
/515u/spring2012/cs46b/85c74e3d/LinkedList.java - HTTP/1.1

Student No.42 - 10.185.198.195 -> 62.75.183.27 - HTTP - GET - /485/claymecre.html - HTTP/1.1

Student No.42 - 10.185.198.195 -> 176.31.248.182 - HTTP - GET - /Manga Viewer/Legend_of Tyr - HTTP/1.1

Student No.42 - 10.185.198.195 -> 176.31.248.182 - HTTP - GET - /Manga_Viewer/Magician - HTTP/1.1

Student No.42 - 10.185.198.195 -> 176.31.248.182 - HTTP - GET - /Manga._Viewer/Ncblesse 100- - HTTP/1.1

Student No.42 10.185.198.195 -> 176.31.248.182 - HTTP - GET - /Manga. Viewer/Superior Day - HTTP/1.1

Student No.42 - 10.185.198.195 -> 176.31.248.182 - HTTP - GET - /Manga Viewer/TAL - HTTP/L.1

Student No.42 - 10.185.198.195 -> 176.31.248.182 - HTTP - GET - /Manga. Viewer/The_ God. of High_ School -
HTTP/1.1

Student No.42 - 10.185.198.195 -> 62.75.183.27 - HTTP - GET - /408/gamaran.html - HTTP/1.1

Student No.42 - 10.185.198.195 -> 62.75.183.27 - HTTP - GET - /97/gantz.html - HTTP/1.1

Student No.42 - 10.185.198.195 -> 199.19.78.170 - HTTP - GET - /read/_/9757/cradle-of-monsters_chi_by death-
toll-scanlations - HTTP/1.1

Student No.42 - 10.185.198.195 -> 199.19.78.170 - HTTP - GET - /read/_/9943/ouroboros_chl_by_death-toll-
scanlations - HTTP/1.1

Student No.42 - 10.185.198.195 -> 199.19.78.170 - HTTP - GET - /read/_/97877/queen-
emeraldus_v1_chl by _happyscans - HTTP/1.1

StudentNo.43 - 10.185.193.167 -> 67.210.118.65 - HTTP - GET - /sjsw/spring2012/cs46b/85c74e3d/ - HTTP/1.1
StudentNo.43 - 10.185.193.167 -> 65.55.53.190 - HTTP - GET -
/StageOnefbluej_exe/3_0_5_0/4e1fd833/ntdll_dll/6_1_7601_17725/4ec49b8f/c0000005/00033ab3.htm?LCID=1033&05=6.1.7601.2.
00010300.1.0.3.17514&SM=Hewlett-
Packard&SPN =HP%20Pavilion%20dm4% 20Notebook% 20PC&BY =F.26&MRK=103C_HP_cNBE_Pavilion%20dm4%20Notebook%20PC_Y53
35KV_0U_QCNU035123M_EFU1006752BIS_4A_[146A_SHP_V58.1F_F.11_T100708_WU3-
0_L409_M3894_J500_7Intel_8655_92.40_%23100830_N10EC8168_(XH124UA%23ABA)_XMOBILE_CN10_Z&MID=EC404F0A-3E87-
4BD9-98A3-DC570E6901EARHCU=427 - HTTP/1.1
StudentNo.43 - 10.185.193.167 -> 67.210.118.65 - HTTP - GET - /sjsu/spring2012/cs46b/85c74e3d/ - HTTP/1.1
StudentNo.43 - 10.185.193.167 -> 198.189.255.215 - HTTP - GET - /minitrifla - HTTP/1.1

Figure 35: Results of Experiment 4

Student No.45 - 10.185.196.36 -> 74.125.224.98 - HTIP - GET -
/safebrowsing/rd/ChNnb29nLW 1hbHdhemUtc2hhdmFyEAEY6ZYFDCXBSoldUsSBAP wB8yBmILAQD_Dw - HTTP/1.1

Student No.47 - 10.185.205.119 -> 205.234.175.175 - HTTP - GET - /images/piazza/dashboard/feed-icons3.png -
HTTP/1.1

StudentNo.47 - 10.185.205.119 -> 205.234.175.175 - HTTP - GET -
J/images/dashboard/common/default_ancnymous.png - HTTP/1.1

StudentNo.47 - 10.185.205.119 -> 205.234.175.175 - HTTP - GET -
/images/dashboard/common/default_user.png - HTTP/1.1

StudentNo.47 - 10.185.205.119 -> 207.171.163.159 - HTTP - GET - /photos/gqlgzelrVLB/1327851828.png -
HTTP/1.1

StudentNo.47 - 10.185.205.119 -> 184.73.248.186 - HTTP - GET - /images/dashboard/common/spinner_blue.gif -
HTTP/1.1

StudentNo.47 - 10.185.205.119 -> 198.189.255.225 - HTIP - GET - /pki/crl/products/microsofiroctcert.crl -
HTTP/1.1

StudentNo.50 - 10.185.210.47 -> 198.189.255.201 - HTTP - GET - /javase/6/docs/api/java/util/Iterator.html -
HTTP/1.1

StudentNo.50 - 10.185.210.47 -> 199.47.218.147 - HTTP - GET -

/subscribe?hgst int=232057978&n1s_map=128126920_81732505544&5=1337376075 - HTTP/1.1

StudentNo.51 - 10.185.193.87 -> 67.210.118.65 - HTTP - GET - /sjsu/spring2012/cs46b/85c74e3d/Sum.java -
HTTP/1.1

StudentNo.51 - 10.185.193.87 -> 67.210.118.65 - HTTP - GET - /favicon.ico - HTTP/1.1

StudentNo.51 - 10.185.193.87 -> 67.210.118.65 - HTTP - GET - /favicon.ico - HTTP/1.1

StudentNo.51 - 10.185.193.87 -> 198.189.255.225 - HTTP - GET - /minitd.flg - HTTP/1.1

StudentNo.51 - 10.185.193.87 -» 198.189.255.225 - HTTP - GET -
/streaming/norten$202009$20streaming$20virus$20definitions_1.0_symalllanguages_livetri.zip - HTTP/1.1

StudentNo.51 - 10.185.193.87 -> 198.189.255.225 - HTTP - GET -
/streaming/norton$202009%20streaming$20virus$20definitions_1.0_symalllanguages_livetri.zip - HTTP/1.1

StudentNo.51 - 10.185.193.87 -> 67.210.118.65 - HTTP - GET - /favicon.ico - HTTP/1.1

Figure 36: Results of Experiment 4

o7

StudentNo.52 - 10.185.197.133
10.185.197.133 ->
/subscribe?host_int=164694389&ns_map=47438349_52875389819405&ts=1337370411
10.185.197.133 -> 199.47.219.148 -
/subscribe?host_int=164694389&ns_map=47438349_52875389819405&t5=1337371909
10.185.197.133 ->
/subscribe?host_int=164694389&ns_map=47438349_52875389815405&t5=1337372077
10.185.197.133 -> 199.47.2159.148 -

Student No.52 -

Student No.52 -

Student No.52 -

Student No.52 -

-> 67.210.118.65 -
199.47.219.148 -

199.47.219.148 -

HTTP -
HTTP

HTTP

HTTP

HTTP

GET -

GET

GET

GET

GET

Jfavicon.ico - HTTPR/1.1

HTTP/1.1

HTTP/1.1

HTTP/1.1

/subscribe?host_int=1646594389&ns_map=47438349_52875389819405&ts=1337372742 - HTTP/1.1

Student No.52 -

10.185.197.133 -> 199.47.219.148 -

HTTP

GET

/subscribe?host_int=164694389&ns_map=47438349_52875389819405&t5=1337376136 - HTTP/1.1

StudentNo.54 - 10.185.199.162 -> 4.28.136.36 - HTIP - GET - /bases/ay/kdb/i386/kdb-i386-0607g.xml.dif -
HTTP/1.0

StudentNo.54 - 10.185.199.162 -> 67.210.118.65 - HTTP - GET - /favicon.ico - HTTP/1.1

Student Ne.61 - 10.185.192.201 -> 74.125.224.102 - HTTP GET -

fsafebrowsing/rd/ChNnb29nLW 1hbHdhcmUtc2hhdmFyEAEY6ZYFICXBSoldksBAP____wcyBmILAQD_Hw - HTTP/1.1

Student No.61 -

10.185.192.201

->

199.47.217.144 -

HTTP

GET

/subscribe?host_int=159855852&ns_map=113183872_7065629353088,113188999_51652796551,124832565_416736660277,1191

39741_5414687452573&ts=1337371136
10.185.192.201

Student No.61 -

HTTP/1.1
-> 6£67.210.118.65 -

/s]su/spring2012/cs46b/85c74e3d/BinarySearchTree.java -

Student No.61 -
Student No.61 -
Student No.61 -

10.185.192.201
10.185.192.201
10.185.192.201

-> 67.210.118.65 -
-> £7.210.118.65 -
-> 67.210.118.65 -

HTTP

HTTP/1.1

HTTP
HTTP
HTTP

GET

GET
GET
GET

ffavicon.ico - HTTPR/1.1
/515u/spring2012/cs46b/85c74e3d/ - HTTP/1.1
ffavicon.ico - HTTPR/1.1

StudentNo.62 - 10.185.201.68 ->

Student No.70 -
StudentNo.70 -
Student No.70 -

HTTP/1.1
Student No.70 -
Student No.70 -

HTTP/1.1
StudentNo.70 -
Student No.70 -
StudentNo.70 -
StudentNo.70 -
StudentNo.70 -

HTTP/1.1
StudentNo.70 -
StudentNo.70 -

/edgedl/chrome/install/1084.46_1025.168/chrome_updater.exe -

StudentNo.70 -

65.54.87.100 - HTTP - GET

- /pki/mscorp/arl/mswmm(s).qrl - HTTP/L.1

Figure 37: Results of Experiment 4

10.185.208.159
10.185.208.159
10.185.208.15%

10.185.208.159
10.185.208.159

10.185.208.159
10.185.208.159
10.185.208.159
10.185.208.159
10.185.208.159

10.185.208.159
10.185.208.159

10.185.208.159

-> 67.210.118.65 -

-> 74.125.224.122 -
HTTP -
/ct/0_0_0_6281744_0_7396/us/0/1/0/0/0/0/15/242/784/0/pixel .gif?v=7 14&ttid=2&d=ad.doubleclick.net&m=5&r=68443 -

-

->
-

-
-
>
->
-

->
-

50.17.214.54 -

74.125.224.122
74.125.224.122

74.125.224.122
74.125.224.122
74.125.224.79 -
74.125.224.79 -
212.96.161.250

67.210.118.65 -
74.125.224.97 -

-> 74.125.170.240 -
/edgedl/chrome/install/1084.46_1025.168/chrome_updater.exe?ms=nvh&mt=1337374813&cms_redirect=yes - HTTP/1.1

HTTP -

HTTP

GET

GET

GET -

HTTP GET
HTTP GET
HTTP GET
HTTP GET
HTTP - GET
HTTP - GET
HTTP GET
HTTP - GET
HTTP - GET
HTTP/1.1
HTTP GET

/favicon.ico - HTTP/1.1

/simgad/17235009215521256804 - HTTP/1.1

/simgad/1530130418844188652 - HTTP/1.1
/pagead/images/ad_choices_en.png -

/pagead/images/ad_choices_i.png - HTTP/1.1
/simgad/17279640298767510112 - HTTP/1.1
Jveexp3/redir.html - HTTP/1.1
Jveexp3/iframe.html - HTTP/1.1
/softw/12free-vip1l/update/avg12infowin.ctf -

Jfavicon.ico - HTTP/1.1

StudentNo.72 -

10.185.198.174

>

67.210.118.65 -

/sisu/spring2012/cs46b/85c74e3d/PhoneNumberReader.java -

StudentNo.79 -

StudentNo.79 -

StudentNo.79 -

StudentNo.79 -

10.185.209.65 -> 74.125.224.70 -
/safebrowsing/rd/ChNnb29nLw1hbHdhecmUtc2ZhhdmFyEAEY6ZYFDCXBSoldksBAP___wcyBmILAQD_Hw - HTTP/1.1
10.185.209.65 -> 74.125.224.70 -
/safebrowsing,/rd/ChNnb29nLW1hbHdhcmUtc2hhdmFyEAAY8egEIMDpBCONfZQBAP.
10.185.209.65 -> 74.125.224.70 -
/safebrowsing,/rd/ChFnb29nLXBoaXNoLXNoYXZhchABGNGMBICgjQYqBpSGAQD_HzINUYYBAP. Bw - HTTP/1.1
10.185.209.65 -> 74.125.224.70 -
/safebrowsing/rd/ChFnb29nLXBoaXNoLXNoYXZhchAAGIvBDCCU_AwgBQ4-AwB_MgULPgMABW - HTTP/1.1

HTTP - GET
HTTP/1.1
HTTP - GET -

HTTP -

HTTP -

HTTP -

GET -

GET -

GET -

AZIGCTQBAP8_ - HTTPR/1.1

Figure 38: Results of Experiment 4

o8

CHAPTER 5

Conclusion

In this project we designed an application that was able to track students’ activ-
ities taking an online test. We used a well-known wireless sniffer Kismet [21] which
made most of our tasks automated and simple. After conducting our experiments,
our results demonstrate many improvements over previous work completed within

our college [32].

The proposed method of wireless sniffing, during an online exam, is fast and can
easily handle quite a number of students and their traffic. This solution can easily
be ported to any exam hall for conducting online exam. The proposed solution of
online testing also removes the dependency on paper tests and manual work required
for checking student answers. Since this solution does not require any software in-
stallation on a student’s computer, its set-up is quick and does not require additional
attention except for the part where a student needs to connect to the test server. Since
students can easily go online and start the test, it makes an instructor’s job easier.
Test monitoring requires less attention, as all activities performed by the student are
being logged by Kismet. The real time update on the web page, displaying the name
and details of a student involved in cheating, makes this system very friendly and

useful for instructors.

29

CHAPTER 6

Future Work

The project can be of immense use if there could be a way to read the packet
contents flowing through the network. This project can be modified to capture packets
and scan for key words from the test. Students might have found or set-up their own
proxy server on a non-standard port and might be using it to search the answers.
Therefore, if a keyword is found from the packet belonging to the student IP taking
exam and that packet is going to a non-white-listed website, that student can be
flagged. Keywords taken form exam questions can also be placed in the database
for the sniffer to capture all the packets from that data. This can determine if the

student is using help outside the classroom in an attempt to cheat.

Due to false alarms, in a real class full of students, the algorithm for flagging
students as cheaters has to be modified in order to capture data going on port 80 and
some other non-standard ports like port 8080. The HTTP data is more important;
however all other data should be logged as it might be used for post-test analysis.
Due to these false positives the white list of each IP should also be modified to include
broadcast addresses. We should also extend our tool to track the non-HTTP traffic as

well. This will give us more data if a student tries to cheat using some other channel.

60

1]

2]

[11]

[12]

[13]

LIST OF REFERENCES

A. Etter, (2002). A Guide to Wardriving and Detecting Wardrivers. SANS In-
stitute, 8-9

Analyzing network traffic with tepdump http:
//tournasdimitriosl.wordpress.com/2011/02/19/
analyzing-network-traffic-with-tcpdump-part-1/

Android Developers Portal, Android Notification, May 20, 2012 http://
developer.android.com/guide/topics/ui/notifiers/notifications.html

A. Nigavekar, & W. Harris, (2010). Examinations and the Role of Technology:
Emerging Directions. New Delhi: EDGE-ValueNotes

B. Haines, F. Thornton, & M. Schearer. (2008). Kismet Hacking. Massachusetts:
Syngress

Change MAC address, May 20, 2012 http://lantoolbox.com/articles/
find-and-change-spoof-your-mac-address-in-windows-xp/

C. Hurley, (2007). Penetration Tester’s Open Source Toolkit. Burlington: Syn-
gress Publishing, Inc

C. Pan, K. Yang, & T. Lee. (2004). Secure Online Examination Architecture
Based on Distributed Firewall. IEEE Intenational Conference on e-Technology,
e-Commerce and e-Service, 533-536

D. Dalibor Dvorski, March 2007. Installing, configuring and developing with
XAMPP

F. Fuentes, & Kar, D. (2005). Ethereal vs. tcpdump: a comparative study on
packet sniffing tools for educational purpose. Texas: Texas A&M University-
Corpus Christi.

G. Cluskey, C. Ehlen, & M. Raiborn, (2011). Thwarting online exam cheating
without proctor supervision. Journal of Academic and Business Ethics, 1-6.

G. Costagliola, V. Fuccella, M. Giordano, & G. Polese, (2009). Monitoring On-
line Tests through Data Visualization. Knowledge and Data Engineering IEEE
Transactions on, 21(6), 773,778,782

G. Costagliola, & V. Fuccella, Online testing, current issues and future trends.
Journal of e-Learning and Knowledge Society, pp 81-83

61

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

[27]

28]
[29]
[30]

G. Villegas, (2008). Analysis of Tool for conducting Wireless Penetration Testing.
Texas: Texas A&M University-Corpus Christi.

. Jung, & Yeom, H. (2009). Enhanced Security for Online Exams Using Group
Cryptography. IEEE transactions on education, 52, 341-343

IP Sniffer, May 20, 2012 http://www.scanwith.com/download/IP_Sniffer.
htm

Java RMI example, May 20, 2012 http://www.javacoffeebreak.com/
articles/javarmi/javarmi.html

J. Castella-Roca, J. Herrera-Joancomarti, & A. Dorca-Josa, (2006). A secure
e-exam management system. First International Conference on Availability Re-
liability and Security ARES06, 5-8

J. Murray. (2009). An Inexpensive wireless IDS using Kismet and OpenWRT.
SANS Institute, 8-9

J. Sung (2009). U-Learning Model Design Based on Ubiquitous Environment.
International Journal of Advanced Science and Technology, pp. 77-86

Kismet, a wireless packet sniffer, May 15, 2012, https://www.kismetwireless.
net/

MAC Sniffer, May 20, 2012 http://www.filebuzz.com/fileinfo/40152/
Wake_on_LAN_Packet_Sniffer.html

M. Frandsen, (2010). Detection of cheating when students use their own comput-
ers during examinations. Denmark: Technical University of Denmark (DTU).

M. Kershaw, (2009). Kismet Documentation. Retrieved July 11, 2011, from
http://www.kismetwireless.net

N. Rowe, (2004). Cheating in Online Student Assessment: Beyond Plagiarism.
Online Journal Of Distance Learning Administration, 7(II), 4.

Oracles Java RMI, May 20, 2012 http://www.oracle.com/technetwork/java/
javase/tech/index-jsp-136424.html

Peter Kemper, Android Notifications, May 20,2012 http://www.cs.wn.edu/
~kemper/cs301/slides/all.pdf

Public Proxy Server, May 20, 2012 http://www.publicproxyservers.com/

Python, programming language, May 20, 2012 www.python.org
R. McRee, (2006). Security Analysis with Wireshark. ISSA Journal, 39-45.

62

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

R. Spangler, (2003). Packet Sniffer Detection with AntiSniff. Wisconsin: Univer-
sity of Wisconsin - Whitewater

S. Anandan, Online Application Monitoring Tool, Master’s report, Department
of Computer Science, San Jose State University, 2010,

Sniffing, methodology and definition, May 15, 2012 http://en.wikipedia.org/
wiki/Packet_sniffing

Spyware, definition, May 20, 2012 http://en.wikipedia.org/wiki/Spyware

Spyware, overview and their types, May 15, 2012, http://www.us-cert.gov/
reading_room/spywarehome_0905.pdf

Technitium MAC Address Changer, configuration and installation, May 24, 2012
http://www.technitium.com/tmac/index.html

T. King, (2002). Packet Sniffing In a Switched Environment. Information Secu-
rity, 1-6

Wireshark and Tshark, a wireless sniffer, May 15, 2012, http://www.wireshark.
org/docs/man-pages/tshark.html

Wireshark screenshot, May 15, 2012 http://en.wikipedia.org/wiki/File:
Wireshark_screenshot.png

XAMPP server, configuration and installation, May 15, 2012 http://www.
apachefriends.org/en/xampp.html

63

	ONLINE MONITORING USING KISMET
	Recommended Citation

	tmp.1337956973.pdf.bobyw

