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ABSTRACT

Online Monitoring using Kismet

by Sumit Kumar

Colleges and universities currently use online exams for student evaluation. Stu-

dents can take assigned exams using their laptop computers and email their results

to their instructor; this process makes testing more efficient and convenient for both

students and faculty. However, taking exams while connected to the Internet opens

many opportunities for plagiarism and cheating.

In this project, we design, implement, and test a tool that instructors can use to

monitor the online activity of students during an in-class online examination. This

tool uses a wireless sniffer, Kismet, to capture and classify packets in real time. If

a student attempts to access a site that is not allowed, the instructor is notified

via an Android application or via Internet. Identifying a student who is cheating

is challenging since many applications send packets without user intervention. We

provide experimental results from realistic test environments to illustrate the success

of our proposed approach.
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CHAPTER 1

Introduction

An online test is an activity where an individual uses a computer connected to

Internet and completes an exam. For example, there may be a portal or website where

students submit their answers to exam questions. In some cases, the answers may be

evaluated automatically and results are shown for students to view immediately.

The benefits of an online test include the following.

• Online tests are more efficient, from both the instructor’s and student’s per-

spectives.

• The online exams are more secure as each student might have a different set

of questions so they are not be able to help one another during an exam. Al-

though a paper based text can also have different question sets, which requires

substantial human effort, an online test can be easily configured to generate

sets in an automated manner.

• The administration of online exams is easier, provided monitoring can be com-

pleted using a computer. The instructor would be freed from spending excess

time trying to detect cheating.

• Online tests are environmentally friendly, as they reduce need for paper.

Increasingly, colleges and universities are using online exams for student evalu-

ation [4, 13, 23, 25]. These online tests are generally taken by students using their

laptops. Since students are connected to the Internet during the tests, this creates

1



many opportunities for cheating. The main aim of this project is to develop an appli-

cation that can be used by instructors to monitor an online exam and, thereby, detect

possible cheating. In our application, the instructor provides a white-list of websites

that students are allowed to access. Any attempt to access a website that is not on

the white-list is logged and the instructor is notified in real time.

1.1 Project Motivation

At San Jose State University (SJSU) most instructors use paper exam. Very

few instructors administer their exams online and essentially this is very restricted

and the environment is manually controlled. After considering the above benefits

regarding online tests and the current scenario of our college, a tool was designed

that can be easily used by professors for administering online exams.

Online exams can be helpful for students and professors even though they give

students an opportunity to cheat during the exam. Since students will now be given

a test on their own laptop, they can at any time connect to the Internet and look

for the answers to the exam’s questions. If cheating, the instructor can challenge the

student and can easily close their browser. Thus, it becomes essential to stop students

from cheating. There are many ways students can cheat:

• Connecting to the Internet and searching on common search engines such as

Google, Yahoo, Bing and/or DogPile.

• Connecting to a proxy server and searching for answers from a search engine.

• Using a peer-to-peer chat client during the exam for chatting among other

students.

• Connecting to IRC or forums in order to ask questions regarding exam solutions.
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The above list is not complete as there are more ways a student can cheat. Most

cases revolve around being connected to an external IP. If there is a way this activity

can be detected, we can successfully make the test more secure.

Following the above guidelines there has been an attempt to solve the problem

of cheating during exams within our college. A tool was developed [32] which can

monitor applications running on remote systems. The main aim [32] was to use

client/server architecture to develop a tool that displays the student’s details and

any websites visited during the test to the instructor. Using this tool, the instructor

can add sites to the white-list and the blacklist as well as monitor all the student’s

activities during the exam. By viewing at the logs and the reports, the instructor can

easily determine if any student was trying to cheat.

For this project students were asked to connect to a specific SSID which

was created by a wireless USB router called Windy31. This router was con-

nected to the instructor’s machine and students were required to connect solely to

Windy31 router. The students are required to have WindowsTMOperating System

for the test. Once connected to Windy31 router, students were asked to switch

off their WindowsTMfirewall and anti-virus. They were also required to change the

WindowsTMworkgroup to MSHOME. After setting the above changes students were

asked to install a program that was written in Java; they also were required to have

Java installed on their machines. This tool uses technology Remote Method Invo-

cation RMI (explained below) to call remote methods on the server. Using this

technology Java RMI can send all student’s computer details to the server, such as

how many processes (software) are running, and how many windows in the browser

are open.

The tool was divided into two parts client and the server program. The client
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program needs to run on student computers; each student was given an executable

file to run on their own machine. Once installed successfully, the server part of the

software was also installed on the instructor’s machine. The client program uses the

WindowsTM“tasklist.exe” to get information regarding all the running processes on

the students’ computers. It then makes a list of all the applications running on the

student’s machine along with their headers and then sends it to the server. The client

program sends this data by using a Remote Method Invocation [17, 26]. RMI, a Java

application programming interface, enables the programmer to create distributed Java

applications where the methods of remote Java objects can be invoked by any other

Java virtual machine. This process means that the students computer can call a

method or function of an object that is present on the server (instructor’s computer).

The server exposes these methods and objects that can be called by any client that

is connected. By these methods the students can obtain a list of all the running

programs on their computers and the server is able to extract useful information.

A Graphical User Interface (GUI) was also developed for instructors so they

can see and monitor their students who are connected to the router and what pro-

grams were running on their system. Using this GUI, the instructor can add websites

to white and black lists. The GUI that was on the server, also on the instructors

computer, was able to generate notifications by opening a pop-up window displaying

details of students activity. Any student who connects to the system or disconnects

from the system or opens any restricted websites opens a pop-up window on the

server. This way instructor was able to monitor any given test.

Using GUI professors were able to track student activities; however instructors

were not able to have full control over student activity. Students were still able to

disconnect from the router and connect to another wireless network. By connecting
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to another network students can easily search on the Internet for answers to their

questions and then again re-connect to the instructor’s router. Their activities during

that period remain hidden from the instructor.

Currently installing software on student laptops, restricting students to a

WindowsTMoperating system, and connecting to an MSHOME workgroup, switch-

ing off the firewall and anti-virus for the duration of the test does not seem practical.

It may not be practical for our college, as students have different operating systems

such as MAC OSX, Ubuntu and others. Installing software on multiple systems raises

the issue of privacy and security concerns. Also, the server was only able to connect

a few students at one time.

An idea presented [32] looks very interesting and the approach to solve the

problem of monitoring online test seems good; however solution is not practical

enough to be implemented within our college. The barrier against implementing

within our college is that students use many different operating systems: Windows

7, Mac OS-X, Ubuntu, Fedora and others. Students using the latest version of

WindowsTM(Windows 7) can’t use this software as the User Access Control (UAC)

built-in will not allow the software to obtain the list of processes from the task man-

ager. The older version of WindowsTM(Windows XP) does not allow students to

change the name of the running application. The tool will always report the wrong

name to the server. By looking at the logs, the instructor will never know if the name

is a real application or if it is some other application. The Windy31 wireless adapter

is also a major reason why this can’t be used within our college. There is a limit on

the number of computers connecting to the USB wireless adapter. In a class where

more than 25 students have to take test, this tool will not be able to connect all the

computers to the server. If students are not connected to the server, then they cannot
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be monitored and the main purpose of this project is defeated. Students can easily

disconnect from the wireless network, connect to another wireless network, search for

their answers, and then come back and connect to the original network. This activ-

ity will only generate an alert message on their instructor’s computer; the instructor

cannot tell what the student did during that period when he/she was disconnected

from the test network. Also, if the student has more than one network card, they can

connect to the test server with one and another network with the other; the student

will still be able to cheat. The above shortcomings were taken as a challenge and

became the main motivation for our project. There were other projects taken into

consideration for our project. These projects will be discussed in detail in Chapter 2

Related work.

1.2 Aim and Objective

The main aim of this project is to build a monitoring tool that can help instruc-

tors conduct online tests within the classroom and monitor students in real time.

Students will take an online test using their laptops and will be connected to the

Internet. Although students have Internet access, they will be allowed to use only a

few websites. The tool should be able to monitor all the sites a student visits and

should alert and generate proper notification, if a student tries to open any restricted

site.

To monitor all the activities in the network, the monitoring tool should be able

to capture all the packets flowing through the network. To capture all the packets,

a wireless sniffer should be used. Only those packets should be filtered out that

belong to the student taking the exam and these packets should be scanned for any

restricted activity. The packet’s data will tell us all the details that we want to know
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about the student’s activity. The main objective of our project is to use a wireless

sniffer to capture all the packets when students are taking online tests and then scan

them to find out if any student has tried to open any link that was not allowed.

An additional mobile application will be developed that can help instructors obtain

instant notifications on their Android phones if any suspicious activity occurs during

the exam.
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CHAPTER 2

Background and Related Work

To design an online monitoring tool it is essential to know the required compo-

nents. Therefore, in this section we will explore and study the different components

that may be required for our project. We discuss the following in the remainder of

this chapter:

• Types of online tests

• Various types of cheating possible in an online test

• Packet sniffers

• Related work

2.1 Types of Online Test

The online tests can be referred to as Computer-Assisted Assessment or

Computer-Aided Assessment (CAA) and Computer Based Assessment (CBA) [13].

The term CAA is mainly used to refer to a test where a computer is used in the

assessment process. CBA is mainly used to refer to tests where automated responses

are generated by the system after evaluating the student’s answers. These two ob-

jective based online tests can be referred to as formative and summative tests [13].

The formative tests are the exams that a tutor gives while teaching a course that

gives information about the learning state of each student. This type of information

gathering helps students, as well as tutor, to improve a student’s learning process.

Summative tests are conducted at the end of the course/module and give a measure-
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ment of how much a student has learned from that course/module. There are many

tools available on the market today, that are designed according to the above points.

The main features of any good online tests should be:

• The exam should be secure so that the content of the exam is not be revealed

until the exam starts.

• The exam should be able to create multiple question sets from a pool of questions

so that each student gets a different set of questions.

• The exam should set the same level of difficulty for all created sets.

• Supervising, managing and controlling the exam should be easy.

• If possible, an automated evaluation of the answers is used for giving instant

feedback about the student’s performance.

2.2 Types of Cheating

Online tests are useful but they are also vulnerable. A student can try and cheat

on the exam and pass which can discourage honest students. There are many ways a

student can cheat in an online test. The main methods used are as follows:

2.2.1 Using Spyware

Spyware [34, 35] is a type of malware that can secretly gain access inside a com-

puter and can collect information about that computer. The computer user might not

be aware of the spyware and that it is collecting the user’s personal data without their

knowledge. Collected data can then be used by the person who installed the spyware

on that computer. Using a malware program, a student can spy on a professor’s
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computer containing exam questions. Students can also gain more information about

quizzes and other tests that a professor might be planning to give. After obtaining

the information, students might use it for themselves to perform well on their exam

or they might also try to sell the information to others for monitory gains [25].

2.2.2 Using IM

Students can use instant messaging (IM) software to chat among themselves

during the exam. They can discuss exam questions and collaborate on answers.

2.2.3 Connecting to Different Network

Students can disconnect from the exam network (one they are not allowed to

use the Internet) and can connect to another open network in order to search the

Internet. After searching, they can again connect to the original exam network and

can submit their answers.

2.2.4 Changing IP/MAC Address

Students can change their IP/MAC address while taking the exam; thereby they

are not visible to any monitoring system. Changing the network adapter settings can

help a student become untraceable. IP addresses can be changed easily, but a MAC

address is an unique value associated with the network card. Although it’s unique,

there are a few software programs that can help students change it. For example in

Figure 1, a tool known as “Technitium MAC Address Changer” [36] can help a user

change their MAC address.
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Figure 1: MAC address changing software

2.2.5 Using Proxy Server

Using a proxy server [28] a student can redirect Internet traffic through a com-

puter or a router. Students can also setup their own proxy or they can use one of

the many free proxies available on Internet to redirect traffic. In this way, they can

redirect all their traffic for searching and finding answers during the exam.

2.2.6 Using VPN

Students can setup a virtual private network (VPN) at their home that is en-

crypted. Using this encrypted VPN students can search for the answers to exam

questions and still remain unnoticed.

2.3 Sniffing and Packet Sniffers

Sniffing [37] is a technique where data flows through a network and can be cap-

tured and analyzed for information gathering. The tools that help capture the data
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flowing within a network are known as Sniffers. These tools are either software or

hardware [33]. The sniffers are also capable of reading packets flowing through the

network if the network is not encrypted. There are mainly three types of sniffing

methods [31]:

Type 1 - IP based Sniffing: in this type of sniffing a network card is put into

promiscuous mode. In this mode all the packets flowing around the network card are

passed to a computer rather than frames. These packets can then be analyzed based

on an IP address. For example, a tool known as an “IP Sniffer 1.99.3” [16] can sniff

all the IP packets flowing around within the network.

Type 2 - MAC based Sniffing: is a type of sniffing similar to the IP based

sniffing however the packets are now analyzed by matching a MAC address. For

example, a tool known as “Wake-on-LAN Packet Sniffer” [22] can help in sniffing all

the packets by matching a MAC address in a given network.

Type 3 - ARP based Sniffing:is a method of sniffing that is a little different

from the above two. In this method the network interface card is not put into a

promiscuous mode. This is because the ARP packets are stateless. First, the ARP

cache of the host whom we want to sniff is poisoned. Next, the ARP packets are

sent to the computer sniffing packets directly, rather than going to the destination

directly. This method is used in a switched network. The IP of the sniffer computer

is put into the victim’s computer in such a way that it will always send the packet to

the sniffer computer first; the sniffer can then store the packet and later can analyze

it. This type of sniffing is also known as, Man in the middle attack. Tools such as

Ettercap and AntiSniff can help in ARP sniffing.

12



2.4 Sniffing Tools

There are many different tools that are used to sniff packets within a network for

either managing networks or for finding weakness within the network. These tools are

also used by hackers to gather information about a given network. Next, we discuss

the most common sniffers.

2.4.1 Wireshark

Wireshark [38] is the most well-known and used open source network packet

analyzer. It was originally known as Ethereal. Wireshark provides a good user

interface to show the details of captured packets. As shown in Figure 2, Wireshark can

give detailed information about the packet captured such as source address, protocol

name, header details and the body of the packet. Wireshark is used for many purposes

such as:

• Testing network security

• Troubleshooting network problems

• Studying network protocols

• Debugging network software

There is also a command line version of Wireshark called TShark which we have

used in our project.

2.4.2 TCPDump

TCPDump is an UNIX based tool that is also used for packet sniffing. TCPDump

also works similar to Wireshark [10]. It is a network analyzer that was developed by
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Figure 2: Wireshark Snapshot

Van Jacobson and is mainly operated through a command line interface. TCPDump

analyses all important network protocols such as TCP, UDP, IPV4, ICMPv4, IPv6,

ICMPv6 and SNMP. As shown in Figure 3, we can see that TCPDump can capture

packets within the network as well as display the source and destination IP addresses.

2.4.3 NetStumbler

NetStumbler [14] is also a packet sniffer designed for WindowsTM that can detect

LANs and WANs using 802.11b, 802.11a and 802.11g standards. NetStumbler is

mainly used for:

• Wardriving

• Verifying network connections

• Finding network strengths in any region
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Figure 3: TCPDump capture snapshot

• Detecting unauthorized access points

NetStumbler sends a probe request every second and listen for the response. The

response contains information about the network such as SSID, BSSID and MAC.

This type of sniffing is also known as active sniffing since the probe requests that are

sent to the wireless access point can be tracked easily. NetStumbler can also detect

the physical location of network devices by using a GPS device. As shown in Figure

4, we can see that NetStumbler can sniff networks as well as help in wardriving shown

by the graph (below).

2.4.4 Kismet

Kismet [21] is an open source network packet sniffer, packet analyzer, network

detector and also an intrusion detection system. It works with any card that supports
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Figure 4: NetStumbler screenshot

a raw network monitoring mode also known as a rfmon mode. Kismet can also sniff

packets following the 802.11b, 802.11g, or 802.11n wireless standards. It is very easy

to configure Kismet; there is a very detailed packet capture data since it can hop

through all the channels and can analyze the entire wireless network. Kismet can

also detect hidden networks as shown in Figure 5. The main benefits of Kismet over

others are as follows:

• It puts the card into a monitoring mode which is not attached to any network
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• It scans all the wireless networks passively so it remains undetected

• It can scan the entire spectrum and all the wireless networks nearby

• It generates different types of logs thus giving full information about the network

Figure 5: Kismet Screenshot

2.5 Related Work

There are many projects aimed at detecting online exam cheating. Some exam-

ples that were studied for this project are as follows:

2.5.1 SeCOnE

The research work as described in [15] helps in monitoring students who are

taking online tests at a remote location where a proctor is not present. Since the

proctor is not present, a computer system “Exam Admin Group Agent” and “Ex-

aminee Group Agent” are used to monitor these exams as shown in Figure 6. This

research attempted to remove human presence completely by using a secure online
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exam management. The researchers used an enhanced Security Control system during

the Online Exam (SeCOnE), which is based on group cryptography and e-monitoring

scheme [15].

Figure 6: System architecture of SeCOnE

The components of a SeCOnE system can be explained as follows: This system

uses a webcam to identify and authenticate the student. The photos taken during

registration, and the current image from the webcam is verified to authenticate the

student taking the exam. The verified data is saved for the exam and the photo

can be used easily identify the student taking exam. The audio and video of the

person taking the exam is continuously recorded. This audio and video data is then

saved during the exam for later analysis. This is done to reduce cheating during

the exam. Many screen shots of the student taking the online exam are taken and

stored in parallel with the audio and the video. Audio and video captured makes

it easier for the proctor to determine what exactly an examinee is doing on their

computer. During the exam all computer ports are also disabled on the student’s

computer taking the online test except for the ports required for the online exam.

This prevents the student from accessing the Internet and finding answers online or

through popular search engines. The port that is open is then used to send student’s
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IP address of the student to the exam administrator.

This method places quite a few restrictions on the student’s computer during the

exam. The use of a webcam to record audio and video, along with blocking all the

ports of a student’s computer, is just not practical for an online test experience.

2.5.2 Triangulation

The tool in [23] is designed to prevent cheating when students take online exam

on their laptops. When students use their laptops to take an exam, the risk of

cheating increases and it becomes more important to monitor these exams. Using

their laptop students can use many methods to cheat during an exam. The first

half of the report explained possible ways a student can cheat online during their

exam. The second half of the report discussed the various methods and solutions that

can help in detecting and preventing online cheating. This report will now explain

how directional antennas were used to measure the wireless signal strength and a

methodology called “triangulation” in order to pin-point any student’s computer. By

measuring the signal strength and location of a student, small tests were performed

to determine whether the system can detect any cheating within an exam hall.

As shown in Figure 7, students can seek help from an outside resource. The

outside resource may be a wireless access point having open Internet access, or a friend

or an expert that will help to find solutions for the questions on the examination.

As shown in Figure 8, students can communicate with each other within the

examination hall. Students can be seated at some distance from one another. By

communicating with each other they can discuss exam questions and collaborate on

answering them.
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Figure 7: Students cheating by taking help from outside

Figure 8: Students cheating being at a particular distance

As shown in Figure 9, students can also communicate with neighbouring stu-

dents in the same exam hall. In a similar situation mentioned above, students can

communicate with each other, but not with others outside the network to discuss

exam questions.

Figure 9: Student trying to cheat by communicating with neighbor student

All three types of attack were resolved by using Triangulation. This technology

is used for detecting the location of a particular student by using basic trigonometry.
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Different types of antennas were used to find the location of a wireless signal which

was the devices used by students taking the exam. The antenna and an USB wireless

card was used to measure the signal strength. Kismet on BackTrack Linux was used

for capturing packets. The packets captured by Kismet were saved in a .pcapdump

file. Wireshark was used to filter the captured packets based on a MAC address of a

wireless network card and signal strength.
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CHAPTER 3

Design

3.1 Approach

The goal of our project is to build an online test monitoring tool that students

can take exams using their laptops. Students will be allowed to access only a few

websites that are white-list. Websites, other than white-list sites will not be allowed.

The monitoring tool should detect if any student tries to cheat by opening any web-

site which is not on the white-list. Currently students can cheat by either opening

blacklisted websites, which are not allowed, or they can connect to some other wire-

less network in order to open those websites. In either case, they would be opening a

restricted website on their laptop.

The main approach for making the Online Test Monitoring tool is to notify the

instructor when:

• a student has disconnected from the test network

• a student opens up a non-white listed web site

• a student switches between wireless networks

• storage of the IP/MAC address of all students connected to the test server is

complete

The above points can be achieved by sniffing packets within the network, used

by students taking the test. For this Kismet [5, 19, 21] was used to sniff all the

packets. As discussed in Chapter 2, Kismet is a wireless packet sniffer that can
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analyze network traffic used by students taking the test. Although “Kismet” can

detect which IP/MAC address is connected to which access point, it still cannot

detect which IP/MAC address belongs to an individual student. Thus, we need to

obtain a method to identify their IP/MAC address. For capturing the name/IP/MAC

address of a student, students were given a login page before the online test begins in

order to type in their name and student ID then submit. As soon as they submit, the

PHP code on the server will capture their name, IP, and MAC address then store this

information within the database. We now have obtained a mapping of each student’s

IP/MAC address. We now read the Kismet log files for submitted IP/MAC addresses

in order to get information about the students who are taking the test. The student’s

Mac address (from the database) is looked up in the “.netxml” file obtained from

Kismet. This xml file has the list of all wireless clients connected to the network.

The student’s IP address obtained from the database is matched with the IP address

present in the logs (.pcapdump) which was obtained from Kismet. The .pcapdump

is the raw dump of all the packets flowing through the network and needs further

processing to extract useful information. For this feature we used another tool called

Tshark to read the Kismet pcapdump file. Tshark is a command line version of

Wireshark with all the same features. By converting the log from pcapdump to text,

we obtained details regarding the activities of every IP/MAC address taking the test.

Based on the activities of each IP address, the list of websites viewed by a student

was extracted from the logs and further reports and notifications were generated.

3.2 Development Tools

3.2.1 Kismet

In our project Kismet is used to capture all the packets flowing within the net-

work. Since Kismet remains completely passive while capturing packets, it was the

23



best choice for our project. Kismet identifies the network by passively collecting data

packets and detecting hidden networks via data traffic as shown in Figure 10.

Figure 10: Kismet architecture

Kismet can also operate in a distributed architecture, can have a server called

“kismet server,” and a client called “kismet client” that can be connected to indi-

vidual servers. There can be many servers and clients running at the same time,

configured to monitor different parts of the network.

Kismet can generate several types of log files such as: “.dump,” “.csv,” “.xml,”

“.netxml,” “.nettxt” and “.pcapdump”. Using these log files one can gain quite a bit

of information about the wireless network hardware as well as the software in use.

In summary, the features of Kismet include [1]:

• can scan wireless access points passively

• can detect hidden access points

• can detect “cloaked” access points

• also provides GPS support to geo-locate access points
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• logs all information in the form of log files (.csv, .netxml, .nettext, .gps, and

.pcapdump)

• raw packets flowing through the network are stored in .pcapdump file

The following procedure is used to run Kismet:

Step 1 - To start Kismet we can either click on the icon or type the command

“sudo kismet” into the command prompt.

Step 2 - As shown in Figure 11 and 12 (below), a GUI will open in the terminal

and will prompt the user to start the Kismet server. “Yes” and “Start” is pressed to

start the program.

Figure 11: Kismet Startup GUI

Step 3 - As shown in Figure 13, Kismet will prompt the user that there are no
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Figure 12: Kismet Startup GUI

sources defined on which Kismet will capture packets. After “Yes” is pressed user

is prompted to “Add Sources” as shown in Figure 14. In our project, the wireless

interface is used so the source will become “wlan0”. To configure Kismet on any other

source we can use the command “iwconfig” to discover different network sources on

that computer and then add that particular source.

The sources can also be defined in the Kismet configuration file “kismet.conf” as

follows: “ncsource=wlan0” if the source is a wireless card.

Step 4 - Once the source is added, Kismet will show the list of all the visible

nearby wireless network and start capturing packets as shown in the Figure 15. The

list of networks will also contain any hidden networks and will appear as <Hidden

SSID> in the list. By clicking on the name of the wireless network a table below
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Figure 13: Kismet GUI for adding sources

the list will show the number of devices connected to that network. There is also

a horizontal bar at the bottom of the Kismet UI that shows data packets passing

through the network. This bar shows that Kismet is capturing all the packets from

any nearby visible wireless networks.

When Kismet runs, it generates multiple log files one of which is as “.netxml”

log file. This log file contains details about the network infrastructure and hardware.

It consists of the following three important parts:

Part 1 Wireless card type information

This part of XML shows information about the computer’s wireless card which

has the Kismet server running on it. As shown in Figure 16, wlan0 was the card

interface and sjsu was the card name.
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Figure 14: Kismet GUI for adding sources

Part 2 List of wireless networks

This part of XML gives information about the list of wireless networks visible

to the Kismet server. As shown in Figure 17, the XML file also provides other

useful information about available networks such as the BSSID, UUID, Channel, and

Frequency.

Part 3 List of wireless clients connected

This part of an XML gives information about all the wireless clients connected

to the network. There can be multiple wireless clients connected to a single wireless

network; this XML file will give us a complete list of all clients connected to each

access point. As shown in Figure 18, this XML file also shows us each client’s MAC

address. Using this MAC address, our tool will search for all the access logs from the
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Figure 15: Kismet GUI showing packet capturing

Figure 16: XML log file showing card type

packet dump log file.
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Figure 17: XML log file showing network information

3.2.2 Tshark

The command line version of Wireshark is known as Tshark [38]. Kismet, while

capturing packets, generates a “.pcapdump” file. This .pcapdump file contains raw

packets captured from the network. The information present in .pcapdump file is

not in a readable format as it’s a raw dump of all the packets flowing through the

network. When this file is opened using Wireshark, the packet details can be seen,

however for an automated solution this will not work as it requires manual scanning

of the logs by Wireshark. Thus tshark was used to filter the .pcapdump file and show

packet details.

Tshark was configured to filter only the HTTP and TCP protocols by changing
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Figure 18: XML log file showing clients information

the configurations in Wireshark. After filtering, the file is saved as a .txt file. The

following command is used to convert .pcapdump file into .txt file.

$ tshark -r Kismet.pcapdump > log.txt

The above command will take the Kismet.pcapdump file and convert it to a

normal readable text file. This text file is then parsed to extract the access logs of

the students giving the tests.

3.2.3 XAMPP Server

The online test has to be hosted on a web server. The web server should also

have an active connection with a database server in order to store student’s IP/MAC
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addresses, as well as online test questions and answers. XAMPP [9, 40] was chosen for

this purpose as it is a complete bundle of Apache web server and MySQL database

server. XAMPP also has support of PHP, perl, and Python so the server side scripting

can be easily done on this server. XAMPP is also very easy to install and configure

on any machine as its open source; therefore XAMPP was the best choice for our

project. There are many tools that come with XAMPP server that aids in rapid

software development. phpMyAdmin is one such tool that gives an easy web interface

to a MySql database. The database creations and other operations are seamless.

Thus, an online test was hosted on this web server and the database was also

created on the same machine.

3.2.4 Eclipse for Android application

A mobile application was also designed for Android to help instructors gain

instant notification of any unwanted activity on their Android Smart Phone [27].

The main idea behind designing the Android application was to help instructors

roam in the classroom and still be able to get student’s notification (alerts) about

any unwanted activity. Instructors could stay at a computer running Kismet to watch

for notification alerts, however having an application on their Smart Phone means an

instructor cab remotely monitor the exam. They can leave the examination hall and

still be able to monitor the exam.

Eclipse was used to build an Android application that can obtain notifications

[17] from the Kismet server. The application was designed in such a way that it

can help instructors remotely control an online test. The various features of the

application are as follows:
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• Any website can be added within a white-list or a blacklist;

• The list of websites in the white-list or a blacklist can be viewed;

• The list of students taking an exam can be seen;

• The details of each student can be retrieved;

• And Kismet server logs can also be seen.

Proper notification will be generated on the application if there is suspicious

activity.

3.2.5 Python

The logs, generated by Kismet are usually large in size and converting them into

text that can be parsed and processed is challenging. To accomplish this, Python [29]

was chosen as it is a scripting language and has an automatic memory management

that can help in parsing large sized files. Python is open source and is also easy to

code in Python.

3.3 Software Design

In this section the design of the online test and the design of the autonomous

Kismet .pcapdump parser will be discussed.

3.3.1 Online Test Design

The online test was designed in such a way that the student’s details, along with

their IP/MAC address, are stored within the database for use with a Kismet log

parser. The online test was designed using AMP (Apache MySql PHP). PHP was
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used since it’s easy to write server side code and its easily configured with Apache.

The database was created in MySQL. The following are the key factors for the online

test design:

• The site should let the student Login/Register with their name and their unique

student ID;

• The site should capture the MAC/IP address of every student;

• The IP/MAC address should also be captured as soon as the student begins

taking the test;

• The server should allow long polling from all the students taking the test;

• And the database should be accessible by the machine running Kismet.

Keeping the above things in mind, the online test site was designed with a front

page as shown in Figure 19.

This front-end was designed using HTML/JavaScript/JQuery, along with PHP

as the server side scripting language. The database used was MySQL. XAMPP was

used to host this online test therefore the database and the web server were on the

same machine.

Students have to first register on the website. As soon as the student registers on

the site, their IP/MAC address was stored in the database and also a session variable

is set with these values. From this point forward whenever a student logs-out and

logs-in again to the test, their IP address and MAC address are captured and stored

within the database.
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Figure 19: Home page of the online test

All web pages within the online test contain a code for an Ajax call every 5-

seconds to a specific server-side PHP code that always compares the student’s IP/-

MAC address stored in database with their present IP/MAC address set during the

session. So if the addresses do not match,then the student might have changed the

network or have applied MAC spoofing, and they can be flagged.

The server also maintains a list of all the current IP/MACs that have started the

test and are constantly polling the server. If the server does not receive a poll from

any of the IP addresses on the list, it flags that IP as disconnected. Further checks on

that disconnected IP are done to discover if that IP has been disconnected genuinely

or the student has disconnected. As soon as an IP is flagged, a separate code on the

Kismet server will run and will try to scan the full network to determine the MAC
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address associated with this IP. The MAC address is then tracked for any suspicious

activity.

3.3.2 Kismet .pcapdump Parser

To read the .pcapdump file tshark was used. With tshark the text file generated

contains the details of the packet’s source and destination IP/MAC. This should be

done continuously until the test is over. Therefore, a Python code was written which

does the following (in order) after the test has started:

1. Obtain the list of student’s IP/MAC address taking the exam;

2. Retrieves the white-listed IP/MAC addresses from the database;

3. Converts a .pcapdump file to a .txt file by running a shell command;

4. Reads the text file generated line-by-line;

5. And for each line, checks that it contains student’s IP/MAC taking the test

6. If found, then checks which student’s IP/MAC is the IP/MAC is pointing to

7. If the student IP/MAC points to another IP/MAC that is not in the white-list,

then that student’s IP/MAC address is stored in a separate table within the

database

8. Goto step - 3 and repeat

3.4 System Design

When Kismet runs, it makes the wireless card operate in a monitoring mode.

This means that the network card can only monitor the activities within the wireless
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network. It will not be able to connect and exchange data with any other computer

which also means that no other computer can reach the computer running Kismet.

The approach was to have the Kismet server running on a machine and a Python

script continuously parsing the log file and querying the data from the database server.

In order to query the database, the machine running Kismet should be able to connect

to the remote machine. However this is not possible using a wireless network card as

it is in a monitoring mode. To accomplish this P2P Ethernet connection was made

between these two machines: one machine running Kismet and one machine running

the XAMPP server, which is also the database server as shown in Figure 20.

As shown in Figure 20, we have a web server that hosts the online test and a

database server that stores student information, as well as the test details. Students

taking the test, while in the examination hall, can use their laptops having any

operating system on it. The students will need a web browser that can open the

online test. Once online, students will connect to an access point where the web

and database servers are also connected. The access point has a connection to the

Internet through a firewall whereas; the Kismet server only has a connection to the

database server. Once the test begins, the students will connect to the web server and

the database server will log their IP/MAC addresses. The Kismet server will capture

all the packets and look for all the IP/MAC addresses retrieved from the database

server. It will also check if individual IP addresses from the exam hall are using any

website other than the authorized white listed sites. The instructor will have a mobile

device that can receive notifications form the Kismet server. If the Kismet server sees

any suspicious activity, then it will generate a notification and send that as a push

notification to the Android application on the instructor’s Android device.
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Figure 20: System Design

3.5 Database Design

The online test has to store all student’s information. For this purpose a database

was chosen, as the data can be stored persistently and can be easily retrieved if there

are any system failures. For our project MySql was chosen as the database since

it comes bundled with the XAMPP server. To store logically separated information,

different tables were used. Figure 21 illustrates the various tables within our databases

and their relations.

Table Description:

student info: This table stores student’s information for those who are regis-

tered for the online test.

student ip mac: This table stores current student’s IP/MAC addresses. So

if a student has registered with a different machine and logged-in with a different

machine, the new IP/MAC addresses of the different machine will be stored.

ip accessed: This table stores all the remote IPs accessed by all student IPs
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Figure 21: Database Design

within the database.

successful cheaters: This table is created to store the method of cheating by

any student if they remain undetected during the test but were successful at cheating.

changed ip: This table is created to store the IP/MAC address of any student

if they were caught while changing their IP/MAC address.

wl sites: This table stores the list of all the white-listed sites with their IP

The above table names were chosen keeping in mind their use. The information

stored within the table can be easily assessed by looking at the name of the table.

The Kismet server retrieves the data from the database and can easily query these

tables as it only reads data from selected tables. If more information is needed, then it

can make further queries to the other tables that have a relation between themselves,

thus retrieving additional information.
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3.6 Mobile Application Design

To aid the instructors in obtaining quick notifications during the exam, a mobile

application can be useful. The instructor can physically roam in the exam hall and

still keep an eye on students taking the exam. If the system generates an alert, the

instructor can immediately see it. The instructor can also remotely configure the

system by adding and deleting websites from any given list. To accomplish all the

above, an Android application was designed with the following main features:

• Websites can be added on the go during the examination;

• A student’s access data can be viewed;

• Full system logs can also be viewed;

• And notification is received if there is any suspicious activity.

Android was chosen for developing our mobile application, as it is open source and

anyone can create, test, and run the application on any operating system. Android is

also one of the largest selling mobile operating systems. Following the above design

goals, an Android application was developed as shown in Figures 22 through 25.

The above image shows the main screen of our application which has all the

functionalities as an image button. By clicking on “Student Details” an instructor

can retrieve student details, including their IP addresses and MAC address. In order

to view the complete system log, the instructor clicks on “System Logs”. At any

time, instructor can get help by clicking on the “Get Help” button; this will help

the instructor to learn and configure the application. By clicking on the “Manage

WebSites” button, it brings up another view as shown in Figure 23 (i). This view
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Figure 22: Android Application main screen

provides features needed in order to manage required exam such as, adding websites

to the white-list and blacklist, and viewing individual lists.

Figure 23 (ii) displays the view to enter a website name. This view has an input

field where an instructor can enter the URL of the website and add it in the white-list.

By clicking the submit button, entries will be saved in the local storage as well as on

the Kismet server. By clicking on the “Back” button the user can go back to Figure

23 (i). If the user then clicks on “View Blacklisted Sites” they will open up the view

below, as shown in Figure 24 (i).
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Figure 23: Adding a website to the white-list

Figure 24 (iv), shows the blacklisted sites that have been added in the Kismet

server database. These are sites, which if accessed by any student, will be flagged

immediately. Going back to the view in Figure 22 and clicking “Student Details” the

user gets the view as shown in Figure 25 (i) below. By clicking on any student name

we can see their details as shown in Figure 25 (ii) below.
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Figure 24: Adding a website to the black-list
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Figure 25: Student Details

44



CHAPTER 4

Implementation and Results

This section discusses the implementation of the application developed and ex-

periments completed to test it. Various experiments were performed at different

locations in order to test the system.

4.1 Experiment 1

As shown in Figure 26, BackTrack Linux 5 was installed on one laptop. Kismet,

installed with BackTrack Linux, was configured for wlan0 and was started. A second

laptop was configured to run XAMPP and an online test was hosted. The Kismet

server was also connected to XAMPP server via an Ethernet cable in order to access

the database. Once the servers were set-up on the laptops, they both were connected

to a wireless router which was open and had no password or encryption. Since the

router was unsecured, anyone can connect to it and the packets exchanged via this

router can be read by anyone. After the three devices were set-up they were also

connected to the router. Once these devices were ready, the test was started through

the browser. The first page of the test required the user to register; therefore an

unique user was registered. As soon as each user was registered on the device, their

IP and MAC addresses were stored within the database. The test was started and the

Kismet server was already capturing packets. The Python script was then started in

order to convert and parse the log from Kismet. This Python script retrieved the IPs

for all three devices from the database and started monitoring them by identifying

their activities from the log. A special page “cheaters.php” was designed that displays

the name, IP address, and the non-white-list IP accessed by each device. This page
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refreshes every 5 seconds and shows if it has identified anyone cheating.

Figure 26: Experiment 1 System Architecture

After the devices were set-up and connected, and students were given access to

the test, they were not allowed to open websites other than those on the white-list.

The following are the activities that were performed during the experiment:

• Activity - 1: The test was started and no other site was opened from the

computer

Expected Result: The cheaters.php, which shows the list of students who are

caught cheating, should remain empty

Actual Results: The cheaters.php was empty

• Activity - 2: Only the websites listed in the white-list were opened on the

devices.

Expected Result: The cheaters.php page should not show any username or

IP.
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Actual Results: No name or IP was displayed on the page.

• Activity - 3: Google was opened from one of the connected PC

Expected Result: The name of the user accessing Google should display in

the cheaters.php

Actual Results: The name of the user was instantly displayed

• Activity - 4: One PC was disconnected from the test network and was con-

nected to some other Wi-Fi

Expected Result: The cheaters.php should display the user name along with

the MAC addresses of the wireless networks

Actual Results: The MAC address of the two networks was displayed against

the name of the user

Results and explanation: By looking at our results, we can determine that

there are three major ways a student can use to cheat and each was successfully

detected by the application.

4.2 Experiment 2

A second experiment was performed in the college with students enrolled in

CS266 course (Information Security). The overall architecture of the system was the

same as shown in Figure 27. The wireless router used was a special router and was not

the same as the college access point. The steps for configuring the servers were again

the same and all CS266 students were allowed to join the assigned network. Before

the students went online, Kismet had already been started. Once students registered

and started the test, Kismet was already capturing student packets. During the test,
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students were only allowed to visit 2 sites www.sjsu.edu and www.cs.sjsu.edu. After

the test was started they were instructed to cheat. The Python code was run to parse

and read the .pcapdump file and extract information regarding student activities.

Figure 27: Experiment 2 System Architecture

The following are the activities that were performed during the experiment:

• Activity - 1: The test was started and students were told to cheat without

getting caught

Expected Result: The cheaters.php, which shows the list of students who are

caught cheating, should show only those students who tried to access any site

other than the white listed sites

Actual Results: The cheaters.php showed the list of all the students opening

multiple sites
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• Activity - 2: The test was restarted and the students were asked to re-register.

This time they all were told not to cheat and only one student should open other

sites

Expected Result: Only that one student’s name should be displayed on the

cheaters.php

Actual Results: The name of many students showed on the cheaters.php

including the one student opening other sites

Results and explanation: There were many false alarms showing that a stu-

dent was cheating, but were actually not. The main reason for the false alarm was due

to the software installed on student laptops. The software might be sending requests

for an update to their server of which students were unaware. There were also many

plugins embedded within web browsers, such as Chrome and Firefox. These plugins

may be sending packets to a remote server and since the white list does not have

those IPs, students were being blacklisted.

4.3 Experiment 3

By reviewing our results in the above two experiments, we can clearly see that

our project was able to handle large amount of traffic within the college. It was also

able to retrieve all students connected on a test server that was hosting the online

test. One major problem, that of scalability of our system, was tested and our system

proved to be fast and better as compared to our previous attempt [32].

The main problem that remains with our system is the amount of false positives.

Due to various software and operating systems sending anonymous packets without

user notification, it becomes important for our system to immediately filter false
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positives. To accomplish this, our Python script was modified to look for traffic on

port number 80 that is the Hypertext Transfer Protocol (HTTP) in the text file

generated from the .pcapdump file. The assumption was that software updates, OS

updates, and/or anti-virus or browser plugin updates will not get to port 80 of the

server. For example, the Chrome plug-in updates will not go to www.google.com:80

but will go to some other port on the Google server. Similarly the OS updates will not

go to www.microsoft.com:80 but may be routed to some other port on the Microsoft

server. Any student who is trying to cheat using the Internet will surely visit the

web server from their browser. They will go to port 80 of the server so we can safely

neglect any traffic going on other ports. There may be cases that the webserver is not

configured on the default port but on port 8080. So our Python script was modified

further to check for these non-standard web server ports. All other traffic was still

logged for each student and can be analyzed later by the instructor.

Experiments conducted after these enhancements showed better results as many

of the false positives did not occur this time.

In our third experiment we conducted a test in CS165/265 class (Cryptography

and Computer Security) with 25 students. We further enhanced our system architec-

ture as well. A web server (cs17.cs.sjsu.edu) was configured inside our college campus

to host the online test. This web server was not accessible outside the college network.

This eliminated the need of having two laptops in the classroom for our monitoring

tool. The students connect to the college wireless network and take the test by open-

ing the link cs17.cs.sjsu.edu in their web browser. The laptop running Kismet was

configured with two wireless adapters, one for sniffing packets and the other to con-

nect to the college network to access the database on the server cs17.cs.sjsu.edu as

shown in Figure 28.
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Figure 28: Experiment 3 System Architecture

Results and explanation: Once the test was complete, the log from Kismet

was analyzed along with the database entries for all the students. It was observed

that all the students had the same IP address in the database as shown in Figure 29.

Due to this the packets captured by Kismet cannot be classified. Since the packets

cannot be classified, we cannot determine the activities of students in the exam.

The reason for getting the same IP address was due to the fact that all the access

points in the building are connected to a router and this router is natting the student’s

IP address to the test server cs17.cs.sjsu.edu. So our test server will always get the

IP address of the router as the student’s IP. So this experiment was not completely

successful as it was not able to tell us about the student activities although we had

the packet details.
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Figure 29: Database entries for all the students

4.4 Experiment 4

With the same setup as shown in Figure 28, another experiment was conducted

with the students enrolled in the course CS46B (Introduction to Data Structures).

There were 83 students who were taking the test and the sniffer was capturing the

packets in the class room. This time the students were also asked to submit their

IP address at the end of the test. Their IP addresses were then manually entered in

the database and the Python script was run to convert the Kismet packet dump to

parsable text file. A PHP web page was created to extract meaningful data from the

text file by searching student IP address.

Results and explanation: The PHP web page showed the name of all the

students who took the test and the IP addresses accessed by their laptop during the

exam. After analyzing the logs we can see that the number of false positives due to

the software and Operating System updates went down drastically. But there were

still quite a bit of false positives. The reason was unclear but it might be because
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of some software updating over HTTP. We could also see a lot of GET request with

safebrowsing in it. This might be due to the Firefox plugin sending updates over the

web to check for malicious websites. The IP addresses accessed by the students were

also resolved to find their hostname to get a more details about the access. Thus it

was clear from the results that most of the activities where the student tried to cheat

were detected successfully as shown in Figures 30 through 36.

The top activities that were flagged are as follows:

• Student 12, 34, 47 accessing Piazza (Ask Answer Explore Whenever) website.

This website is a place where student can come together to ask, answer and

explore questions.

Student No.12 - 10.185.195.212 -B 184.73.248.186

Student No.34 - 10.185.193.89 -B 184.73.248.186

Student No.47 - 10.185.205.119 -B 184.73.248.186

• Student 18, 39 accessing Java API docs from an IP whose domain name

couldn’t be looked up.

Student No.18 - 10.185.209.79 -B 198.189.255.201 as shown in Figure 32

Student No.39 - 10.185.200.69 -B 198.189.255.224 as shown in Figure 34

Student No.50 - 10.185.210.47 -B 198.189.255.201 as shown in Figure 36

• Student 26, 33 using googletalk plugin to chat in the exam.

Student No.26 - 10.185.201.236 -B 173.194.25.57 as shown in Figure 32

Student No.26 - 10.185.201.236 -B 173.194.25.70 as shown in Figure 32

Student No.33 - 10.185.203.245 -B 74.125.224.78 as shown in Figure 33
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• Student 12 accessing www.facebook.com

Student No.12 - 10.185.195.212 -B 69.171.234.37 as shown in Figure 31

• Student 8 accessing www.oxytube.com

Student No.8 - 10.185.206.17 -B 50.116.55.164 as shown in Figure 30

This access may not be an attempt to cheat as there are browser plug-ins for

Firefox which might be sending auto-update packets to the server. Just like

we have lots of access to 74.125.224.72 (www.google.com) for safebrowsing as

shown in Figure 30 and 34

Some activities were not detected by our tool as we were only sniffing the HTTP

traffic. There were couple of students who submitted identical files as their answers

and our tool was not able to detect it. This shows that they might have communi-

cated through some channel other than HTTP. This means that our tool needs to be

modified for tracking the traffic other than the HTTP as well.

Figure 30: Results of Experiment 4
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Figure 31: Results of Experiment 4

Figure 32: Results of Experiment 4
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Figure 33: Results of Experiment 4

Figure 34: Results of Experiment 4
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Figure 35: Results of Experiment 4

Figure 36: Results of Experiment 4
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Figure 37: Results of Experiment 4

Figure 38: Results of Experiment 4
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CHAPTER 5

Conclusion

In this project we designed an application that was able to track students’ activ-

ities taking an online test. We used a well-known wireless sniffer Kismet [21] which

made most of our tasks automated and simple. After conducting our experiments,

our results demonstrate many improvements over previous work completed within

our college [32].

The proposed method of wireless sniffing, during an online exam, is fast and can

easily handle quite a number of students and their traffic. This solution can easily

be ported to any exam hall for conducting online exam. The proposed solution of

online testing also removes the dependency on paper tests and manual work required

for checking student answers. Since this solution does not require any software in-

stallation on a student’s computer, its set-up is quick and does not require additional

attention except for the part where a student needs to connect to the test server. Since

students can easily go online and start the test, it makes an instructor’s job easier.

Test monitoring requires less attention, as all activities performed by the student are

being logged by Kismet. The real time update on the web page, displaying the name

and details of a student involved in cheating, makes this system very friendly and

useful for instructors.
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CHAPTER 6

Future Work

The project can be of immense use if there could be a way to read the packet

contents flowing through the network. This project can be modified to capture packets

and scan for key words from the test. Students might have found or set-up their own

proxy server on a non-standard port and might be using it to search the answers.

Therefore, if a keyword is found from the packet belonging to the student IP taking

exam and that packet is going to a non-white-listed website, that student can be

flagged. Keywords taken form exam questions can also be placed in the database

for the sniffer to capture all the packets from that data. This can determine if the

student is using help outside the classroom in an attempt to cheat.

Due to false alarms, in a real class full of students, the algorithm for flagging

students as cheaters has to be modified in order to capture data going on port 80 and

some other non-standard ports like port 8080. The HTTP data is more important;

however all other data should be logged as it might be used for post-test analysis.

Due to these false positives the white list of each IP should also be modified to include

broadcast addresses. We should also extend our tool to track the non-HTTP traffic as

well. This will give us more data if a student tries to cheat using some other channel.
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