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ABSTRACT 

Technology in the modern world has over-simplified the access to information. At a click of a 

button we have volumes of music accessible on the Internet. Paradoxically, the abundance of 

available options has only made music discovery and recommendations a complex problem to 

solve. With huge collections of songs in the online digital libraries, finding a song or an artist is 

not a problem. However, an actual problem is what to look for that will intuitively satisfy a 

user’s need. There exists multitude of recommendation algorithms, but many of them do not 

consider the contextual information in which a user listens to a song. This information is not 

quantifiable, but it needs to be extracted by some methods so as to provide an additional facet to 

music recommendations. There is active research in music recommendation to identify various 

factors that can influence the choice of a song. Songs that are often played together have some 

inherent correlations between them which at first, does not seem obvious. Thus, an approach is 

proposed that can extract information using a linear algebraic approach and generate context-

aware music recommendations.  
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1. INTRODUCTION 

1.1 PROBLEM STATMENT 

The current scenario of music recommendation leaves something to be desired. Research to 

implement an algorithm that would address all the facets of music has been tried for quite some 

time; but it is unreasonable to expect a system to outperform human intuition, which is difficult 

to quantify. Choices are influenced by human behavior, thus we try to find important information 

in the multiple sessions of a user's listening history, and use it to make active recommendations.  

Sometimes, user data in its unprocessed form does not reveal important relationships between 

two users/items. Also, considering the field of music, where the size of music library is ever 

increasing, we need a viable linear algebraic approach that can address the computationally 

intensive approach of recommendation. Gathering data does not require mush effort; however 

processing Big Data is problematic. An approach is required which can infer intelligently but 

using less amount of bits. Thus, the goal is to implement and analyze an algorithm which uses 

the matrix factorization approach that can surface latent features in the user's listening history 

and could enhance the listening experience.  

 

1.2 THE APPROACH 

The approach here is based on certain hypotheses about the factors that can affect the choices of 

users when they listen to songs. These factors are apparently not given much importance in 

contemporary music recommendations. The algorithm attempts to analyze user's history by 

breaking it down into small sessions and try to deduce the user’s listening context from the kind 

of songs they are listening to; or by deducing a listening template that the users follow when they 

listen to a certain genre of music during a different time of the day. Considering these factors, the 
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algorithm tries to create a more intelligent recommendation than simply suggesting a song or a 

band to listen to [12]. Generally, music recommenders suggest a song or an artist by plainly 

noting the user's behavior and the kind of songs they scan through; however, it is important to 

note that a user may not like all the albums of a particular artist or all the songs on a particular 

album. The recommendation system should work so that it will give an enriching experience to 

its listener. Music portal Last.fm is leveraged to collect information and meta-data for 

approximately thousand users. The meta-data contains all the statistics such as: day, date and 

time of play for each song, artist and album of the song, etc. Other deductions are induced as per 

the requirement of the modules used in the algorithm [18].   

The idea is to combine different behavioral patterns and try to explore ideas that might affect the 

choices of the songs that users make while listening songs.  

  

1.3 THE LONG TAIL 

Digital music libraries are increasing by thousands of songs every day and many songs, if not 

most, are getting lost in this huge pile. Thus, there are large collections of songs that people 

hardly bump into and they tend to ignore them for the most part of their listening cycle. This 

anomaly of never listening to large amounts of songs is called The Long Tail [8]. The long tail 

describes the statistical dispersion of a low-frequency population that is followed up by a high-

frequency population [21]. For the above use-case, a high-frequency population refers to the 

songs that a user most often listens to. The low-frequency songs are the ones that are rarely or 

never played. Hence, it is an important aspect of music recommenders to explore this long tail, 

and retrieve lost music.  
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1.4 LITERATURE SURVEY 

The literature studied for the project can be broadly categorized into two categories: Knowledge 

discovery through Data Mining and Music Recommendation. The latter category represents the 

concept of studying different attributes of music, identifying habits of users, and other related 

domain knowledge in order to make acute and effectual music recommendations.  

Maes and Sharadanand used “word of mouth” to make recommendations [3]. The authors 

demonstrate the use of Pearson correlation and artist-artist correlation to analyze similarities 

between the user ratings and user profiles. The system they designed gave each song a rating 

from 1 through 7, one being the lowest and 7 being the highest. To test the system and get 

acceptable outputs, they had to perform several recommendation iterations on the input data.  

In another study, CAI et al. designed a system that would recommend music based on the blogs 

or text that a user is reading [4]. Some extra data (e.g., textual information) is required to match 

the lyrics of the songs with the user content and check the type of emotions that prevail in those 

blogs. The approach was mainly influenced by classical IR (Information retrieval) techniques 

which, the author tries to find the frequency of all the terms in the documents and then use Bayes 

classifier to describe the psychology of the words that can point to a particular emotion. 

Kaji et al. used the user’s environment as an influential factor in making music recommendations 

[5].  The authors relied on the lyrics of the songs and the tags given by the users to theorize 

favorite songs to generate a playlist. The initial method used was the content-based approach, but 

gradually the system takes the user’s ratings to the previously suggested songs into consideration 

and thus modifies the recommendations.   

Song recommendations can also be influenced by the way in which a user interacts with the 

music player. It is important to note what users like to listen to, and yet it is equally important to 
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understand what a user does not like. Since humans sometimes tend to know what they don’t like 

more than compared to what they like. Pampalk et al. have used this information to make active 

recommendations in their study [7]. Skipping a song is therefore an important option to enable 

when designing a system as it can provide some user insight. Later on, the heuristic technique 

used to pick the next song depends on: the songs that match closest to the last song, using k-

nearest neighbor.  

Finally, just like the network topologies, the existing music network topologies are examined in 

order to reveal some interesting patterns in which humans perceive the correlation between songs 

[6]. All the songs, artists and bands that they listen to form the nodes of the graphs. Further 

details are then embedded into those graphs like degrees of nodes, directed or undirected graph 

etc., which then becomes the data-points on which clustering is performed.  
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2. BACKGROUND 

2.1 MUSIC RECOMMENDATION 

We are offered options among different things that we come across throughout a day. We hear 

song on a radio, see a movie, read about some books, or see different clothes/accessories. We 

form an opinion: we like them, don’t like them or sometimes we don’t even care. This happens 

unconsciously [15]. Although these all seem random, we inherently follow a pattern and we call 

it personal taste. We tend to like similar things. For example, if someone likes bacon-lettuce-

tomato sandwiches, then there are good chances that that person will also like a club sandwich 

because they are very similar– only with turkey replacing the bacon. We follow these kinds of 

patterns inherently [23]. In the crux, recommendations are all about pattern recognition and 

finding similarities.  

Music is omnipresent. It is no surprise that there are millions of songs at everyone’s finger tips. 

In fact, given the number of songs, bands, and artists coming up, music listeners are 

overwhelmed by choices. They are always looking for ways to discover new music so that it will 

match their taste. This has given birth to the field of music recommendations. In the past few 

years, there have been many services like Pandora, Spotify, and Last.fm that have come up in 

order to find a perfect solution, but haven’t been completely successful. Choices are influenced 

by interests, trust, and liking towards any particular object and these emotions are very difficult 

to quantify– especially for a machine or software [19]. Hence, it has been a very difficult 

experience for these service providers to give a fulfilling experience. Every music 

recommendations system works on a given set of hypotheses, which they believe will result in 

the effective recommendations.  
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There are two fundamental styles of music recommendations: Collaborative filtering and 

Content-based Filtering. The next section describes the two methodologies used by existing 

music recommenders. Although my approach is primarily based on Collaborative Filtering, I 

have discussed content based filtering too.   

 

2.1.1 COLLABORATIVE FILTERING 

It is an approach in which information is gathered about the users’ preferences for any particular 

item (books, videos, news articles, songs, etc.). The knowledge captured is then structured and 

used against all the unknown items and make intelligent predictions that a user might enjoy. In 

collaborative filtering, the interaction between users and items is important. The system relies on 

the past history to derive a suitable model for an entity [16]. The historical data acts as an input 

to the system. The preference or user history can be derived in two ways: 

a. Explicit Ratings: 

Here the user should be willing to express his/her preferences for an item. The preference 

can be a simple true (like) - false (dislike) method or it can be a rating system (e.g., Rate 

a book on the scale of 1-5). This method comes with an assumption that a user will be 

actively participating to provide the feedback. The data they provide is to the best of their 

knowledge as an induction of false data/ noise can hamper the performance of the 

algorithms [22].   

b. Implicit Ratings 

These are the inferred ratings which are interpreted as a result of user interactions with 

the items. These are the subtle algorithms which are used by many web-portals that are 
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working behind the curtains. Data collected by this method needs to be pre-processed as 

there is a greater probability of noise in the data.  

Collaborative filtering is very popular and is being used widely by companies like Amazon, 

Google, Yahoo, etc. Collaborative filtering methodology tries to find similarity between two 

users or items. It is independent of the attributes of those entities. Thus collaborative filtering is a 

content agnostic approach.  

Collaborative filtering can be further be categorized into following two groups: 

 

2.1.1.1 USER BASED COLLABORATIVE FILTERING 

In the user based collaborative filtering approach, we use user ratings for each item in his profile 

to infer interests and make recommendations.  

 
Figure 1: A simple user-based recommendation system showing the flow of information in 

such a system [25] 
 

The crux of this approach is to find all the neighboring users for the current target user and try to 

fill in the missing pieces in order to guess the items that the target user would like. A simple user 

based collaborative filtering is shown in Figure 1 above. 
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Figure 2: A pseudo code to implement user based collaborative filtering approach [25] 
 

As shown in Fig. 2, the idea is to find similar users using various similarity measures such as 

cosine similarity, Pearson correlation coefficient similarity, and match their profiles for item 

discovery [24]. This kind of approach is useful when the system consists of huge collections of 

items as compared to the number of users, since it would be too costly to find similarities 

between items rather than users. A point in case is amazon.com where number of items exceeds 

number of users by a big margin. 

 

2.1.1.2 ITEM BASED COLLABORATIVE FILTERING   

In the item based collaborative approach, we construct item-profiles instead of user profiles and 

find similarities between any two given items using various measures like Euclidean distance 

similarity, Tanimoto coefficient similarity, and Log likelihood similarity. A simple approach to 

this kind of filtering is shown in Figure 3 below:  

 
Figure 3: Pseudo code to implement Item based collaborative filtering approach 
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For any given item i, we compute its similarity with the one which is already present in the user 

profile to predict if the target item is worth recommending to the user or not. This type of 

approach is useful when new items are being added to the system too often. 

 

2.1.2 CONTENT BASED FILTERING 

In content-based filtering, we analyze the attributes or the content of a song in order to make 

recommendations. In the case of a song, we analyze the kind of instruments used, tempo, pitch of 

the song, and store all those information in a structured format. Now, when a user listens to a 

particular song, the system analyzes that song and finds the neighboring similar songs to make 

active recommendations. This approach is a content dependent approach because the 

methodology that is used to analyze or recommend songs would not work for analyzing books or 

videos since those items has different sets of attributes. Therefore, they should be approached 

differently. Pandora [2] is one of the music services that uses content based filtering for their 

music recommendations.  
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3. DESIGN AND IMPLEMENTATION 

The section describes the challenges in designing the algorithm, the idea behind the use of 

singular value decomposition and the actual algorithmic approach.  

 

3.1 CHALLENGES IN COLLABORATIVE FILTERING 

A Recommendation system should be intuitive and consumer driven. It should be able to provide 

good results to gain the user’s trust. The soul of the collaborative recommender system is in the 

users past history, i.e., user preferences and the history of like-minded users. The latter helps us 

to predict the unknown preferences of the new users. Using the data-points gathered from the 

above information tapestry, the system then plots a User - Item Matrix to find any correlation 

such that we can cluster with the nearest neighbor and return to the top N recommendations. 

Measurements like Cosine similarity, Euclidean distance, and Pearson correlation are used.    

A typical Collaborative filtering system would have a data bank of the user’s preferences for all 

the songs they have browsed or purchased. Essentially, we have a list of m users {u1, u2, u3 … 

um} along with a list of n songs {s1, s2, s3… sn}. As described previously, with the help of 

implicit or explicit ratings, user preferences are noted for all items i. The preference vectors of all 

the users are then converted to user-item matrix. Below is an example of such user-item matrix 

where we have captured the user preferences for an item with like-dislike ratings. 

Here, the value in each cell represents the number of times a song has been listened by a user. 

The matrix shown here is moderately sparse, however, in a real world scenarios the matrices are 

much sparser than the one shown below in Table 1:  
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 Song 1 Song 2 Song 3 Song 4 Song 5 Song 6 Song 7 Song 8 Song 9 
User 1 2 0 0 0 0 3 1 0 0 
User 2 0 4 0 1 0 0 0 0 3 
User 3 1 3 0 0 0 3 0 0 1 
User 4 0 0 0 1 1 0 1 0 0 

Table 1: A User – Item matrix 

Processing and finding the important correlation in such sparse matrices is one of the challenges 

in the recommendation system; as generally, the number of songs greatly outnumbers the number 

of users. Some of the important challenges that need to be addressed and how SVD tries to 

overcome those problems are as discussed below: 

 

3.1.1 DATA SPARSITY 

While evaluating the Last.fm dataset, Data Sparsity was one of the foremost challenges that 

needed to be overcome. Since the dataset contained around 960,000 songs against only 1000 

users, it was practically impossible for each user to listen to even half of the unique songs. Thus, 

each user vector was very light weight. One of the important factors that causes data sparsity 

problem is a cold start problem or a new-user / new-item problem. It is difficult to make any 

recommendations for a new user, because there is not a song listening history, nor user 

preferences in order to perform information retrieval algorithms and make recommendations. 

Also, the item preference vector is hugely sparse and unless that user starts providing input about 

their preferences, the system will have to make random recommendations. In the same way, new 

songs, bands or albums entered into the library cannot be suggested unless some users actively 

start using it and give explicit ratings. The Neighbor Transitivity is a problem that occurs with a 

sparse data set when the system cannot identify two similar users because they have not specified 

preferences for any of the same items. This can hamper the performance of the algorithm which 

banks on finding a similarity between two users.  
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In the classical information retrieval methodology we have seen the usage of Latent Semantic 

Indexing (LSI), which is based on Singular Value Decomposition (SVD). The dimensionality 

reduction technique which is the base of SVD is useful for recommendation systems.  Here, for 

any user-item matrix, we remove the indifferent and insignificant data, which alone are not very 

important and only increase the vector calculations. Thus, with the help of SVD, we determine 

the similarity between users by mapping them in reduced space matrices. 

 

3.1.2 SCALABILITY 

Music recommendation domain contains an ever-growing library of songs. Many classical 

algorithms suffer the scalability issues, since there are thousands of users with millions of songs 

with ratings to map to. In such a case, techniques like SVD can be used to reduce dimension of 

the data and make computation easier to scale up along with the ever-increasing database [10]. 

An incremental system can be modeled without calculating the lower dimension data from 

scratch when new user data such as preference history or ratings are added. That makes the 

algorithm very scalable [9]. 

Pearson correlation CF algorithm (item-based algorithm) calculates similarities between co-rated 

items for a particular user instead of finding it between all the pairs of items [11]. In a similar 

fashion, Model-based CF algorithms rely on clustering all the highly similar data in the database. 

If any new data is introduced the iterative approach is cluster based on coercion parameters, 

although there are certain trade-offs between prediction performance and scalability. Thus, SVD 

provides an overall computation intensive, yet adaptive approach to compute good quality 

recommendations.  
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3.1.3 SYNONYMY     

When there are songs, which are contextually very similar, but have different names and tags 

then that can lead to Synonymy. Modern recommender systems are indifferent in discovering this 

latent association and therefore the final product-rating indexes are clustered inappropriately. For 

example, a song is tagged with a ‘metallic’ tag while another song is tagged with a ’rock’ tag. 

Both the songs would sound very similar, but they would be perceived differently by the 

recommender system just because the tags given to them are different. Certainly, the degree of 

descriptiveness would vary from song to song, but Polysemy and Synonymy decreases the 

performance of the algorithms. There have been attempts to build a dictionary of related tags and 

to create intellectual and automatic expansion by inducing lyrics and instruments in the 

methodology, but it was limited to a very small increase in the performance and had potential 

trade-offs.  

The Latent Semantic Indexing (LSI) in SVD is capable of addressing the synonymy problems. 

The resulting matrices after the factorization of the user-item association results in constituting a 

semantic space that places all the associated items close to each other and extracts associative 

patterns in data in order to ignore the smaller, and less important ones [12, 13].  

 

3.2 SINGULAR VALUE DEOMPOSITION (SVD) 

Singular Value Decomposition (SVD) is an approach where we factorize a matrix into a series of 

linear approximations. These approximations will expose the underlying structure of that matrix 

[14]. SVD can be expressed from three consistent viewpoints. First, SVD transforms a matrix of 

seemingly correlated variables into an uncorrelated one that provides a better understanding of 

the relationship between all the data points which might not be obvious in their original 
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formations. This is helpful because in some cases the relationships might be confusing; or it may 

suggest another relationship between 2 songs rather than what is apparent. Secondly, SVD is 

used to identify the relationship between various songs (mapped as data points in the matrix) and 

aligns the data in the product matrix so that the data points show the maximum variation. 

Thirdly, once we have figured out the vectors having most variations, it is possible to find the 

best approximations in the original data by using fewer dimensions. (Dimensions are extracted 

once we perform SVD factorization on the User-Item Matrix.). Thus we note that SVD is very 

useful in the dimensionality reduction technique [15].  

SVD has a wide range of applications including signal processing, Latent Symantec Analysis, 

Pattern recognition, low range matrix approximation and weather prediction. Below is the 

definition of SVD theorem: 

 

3.2.1 STATEMENT OF THEOREM 

Consider a Matrix M with m rows and n columns. The SVD theorem in linear algebra states that 

such a matrix can be decomposed into a product of three matrices, which can be represented by 

following equation [15]: 

 

   

                                               Equation 1: SVD Decomposition 

Where, 

• U – orthogonal matrix of dimension m x r 

• S – diagonal matrix of dimension r x r 

• V – transpose of an orthogonal matrix V with dimension r x n 

Xmxn = Um x r  Sr x r Vr x n 
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The entire matrix is decomposed such that Ut.U = I, Vt.V = I, where I = Identity Matrix. The 

columns of Matrix U are orthonormal eigenvectors of XXt, the columns of Matrix V are 

orthonormal eigenvectors of Xt.X and Matrix S is a diagonal matrix that contains the square root 

of the Eigen value from Matrix U or V in descending order. Matrix S contains exactly r singular 

values where r is rank of Matrix X. 

To understand the idea behind SVD further, we will consider a very simple example of data 

points being plotted in a 2-dimensional graph XY. Note: We take the results of Matrix S to 

determine the number of dimensions in which we will plot the data-point from matrix U or V. 

 
           Figure 4: Plotting of regression line which is an approximation of all the data points 

 
For simplicity, we take a 2-dimensional matrix, however for practical applications; the number 

can go in tens or even hundreds.  In Fig. 4, we see a line running through an approximation of all 

the data-points. It is the best approximation as it averages all the data points perfectly by 

minimizing the distance between each point and the line. Now, if we draw perpendiculars from 

all the points to the line, and take the intersection of those lines as a new approximate 

representation of the actual points, then we would have the reduced representation with as 
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minimum variation as possible. Also, there is second approximation line possible as shown in the 

Figure 5 below.  

 
Figure 5: Alternative Regression line for approximating all the data points 

 

In the above figure, the line once again tries to capture the best possible approximation of all the 

original data points. However, the above approximation seems poor because it corresponds to the 

dimension that exhibits the least variation (i.e., the dimension which is represented along Y-Axis 

whereas, in the previous figure we drew the line that corresponded to dimension along the X-

Axis).  

To describe SVD in crux, we take the user data, such as their song listening history, and plot it 

against their other data to form user-item matrices. This matrix represents a high dimensional and 

high variable data which will be reduced to a lower dimension. It will reveal a substructure of the 

actual data in a more defined way and will order it with the most consistent to the least. The most 

important part of SVD is that it makes it suitable for a recommendation system to ignore the 

values after a particular threshold and it still can be sure that all the important relationships 

between data will be conserved.   
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3.3 LAST.FM DATASET 

The performance of the recommendation algorithm is determined by the quality of data that will 

be used to train those algorithms. The machine learning process is very data sensitive by nature; 

the computation accounts huge data sets. Runtime performance of the system in terms of 

memory and CPU usage also gets affected depending on the way data is prepared, the attributes 

selected and the order of magnitude to which the system can be scaled up. The gathering of data 

is not an issue as much as integrity of that data.  

There are various kinds of errors that can be induced: data entry errors, measurement errors, 

distillation errors and data integration errors, etc. They can be introduced while gathering and 

compiling the databases and appropriate measures should be taken as it can turn into a significant 

roadblock. Datasets that are available contains lots of noise, so it becomes of prime importance 

to filter out the data based on the requirements.  

For the purpose of this project, the Last.fm dataset has been used. Last.fm is a music web-portal 

that allows its user base, which has more than 30 million active users, to listen to millions of 

songs from its music library. All the users' activity is recorded in the Last.fm database, which in 

turn is used by the portal to make music recommendations [1].  

The dataset for this project contains activities of 1000 users whose listening history has been 

captured anonymously for the period of 2 years. For every song that a user listens to, its activity 

is recorded in the following format: 

 
 
 

 
Figure 6: User Record tuple in the dataset 

 

User_000004 2009-04-09T12:49:50Z 078a9376-3c04-4280-b7d7-b20e158f345d      A 
Perfect Circle 5ca13249-26da-47bd-bba7-80c2efebe9cd People Are People 
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The above record contains the following fields: 

a. User id (User_000004) – Since the data is captured anonymously, we assigned each 

user, a user-id of the format user_000004. 

b. Date–Time (2009-04-09T12:49:50Z) – Time of activity is recorded which will be 

used in our algorithm to determine the session in which it will belong. 

c. Album Id (078a9376-3c04-4280-b7d7-b20e158f345d) – A unique identifier is 

attributed to each Album. 

d. Album name (A Perfect Circle) – An album to which that song belongs to. 

e. Track id (5ca13249-26da-47bd-bba7-80c2efebe9cd) – A unique identifier is 

attributed to each track / song.  

f. Track name (People are People) – The songs which the user listened to. 

 

3.4 REALIZATION OF SESSION BASED ALGORITHM USING SVD 

This section describes all the stages of algorithmic implementation. The algorithm is 

implemented in JAVA along with the usage of some external libraries (JAMA and WEKA 

libraries).  

a. Session Generation stage:  

Once pre-processing of data is done, for each user i, where i is such that 0 < i < 1000, we use the 

timestamps to perform an analysis to get a suitable threshold value of a session length. We can 

define a session such that the difference between the timestamps of any two consecutive songs is 

not greater than the threshold session value decided above. Here, we are working on a hypothesis 

that the users' choices of songs is influenced by external factors and that there exists a degree of 

correlation between any two songs that are listened to in the same user-sessions. Multiple such 

sessions are formed for each user i in the database as each of them has a listening history that 

spans over two years. 
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Figure 7: Algorithmic flow 

We store all the user sessions in a flat file that falls into one of the three broad session’s 

blocks and process them to extract the pair of all the songs that are played together in that 

particular session.  

b. Constructing User-Item matrix stage: 

 Once we get the pairs of songs for each user i, we compose a user vector which consists of 

all the songs that are played in the user's history. Then we cross match it with the top 4000 

songs. We construct a user-item matrix for 1000 users x 4000 songs; so that the value in each 

cell aij in the matrix is directly proportional to the number of times a user i has listened to 

song j. We call this matrix as Matrix M, which is a sparse matrix. 

c. Applying SVD stage: 

We use the JAMA (Java Matrix Package) library for applying SVD on the above user –item 

matrix which will decompose to three sub matrices U, S and V as shown in the Fig 8 below.  

Pre-processing Data set 
 

Extract Sessions from User profile 
  

Generate user-item matrix for 1000 users and 4000 
 

 

Apply SVD on User-Item Matrix 
 

Apply clustering Algorithm to form of correlated 
 

 

Use Clustering info. And Songs-Co-Songs Matrix to 
make Recommendations. 
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JAMA is used for the linear algebraic operation in JAVA. The package provides classes to 

manipulate and construct dense and sparse matrices [23].  

 

Figure 8:  SVD decomposition of Matrix X into sub matrices U, S and V  

Matrix U consists of the user's information. It is comprised of the dimension m rows and r 

columns. Each cell in Matrix U represents a feature of each user. Similarly, Matrix V consists 

of Item (Song) information. It has the dimension of r rows and n columns, where each song is 

represented in n dimensions. One of the most important properties of Machine learning/ 

Information retrieval is its close association with Data Compression techniques. In Data 

Compression, if we can abstract out the most important concepts (clusters of songs, for 

example), then we can represent large data-points with very few bits. And the interesting part 

– its reverse also holds true! If we can manage to represent our data set in a very few bits 

then we have identified the most ‘significant’ concepts. This is where SVD plays an 

important role. We use the Matrix S that contains all the Eigen values represented in 

descending order, with topmost value being the most significant one as shown in Figure 8 

below. 

The diagram in Figure 9 shows only the top 8 Eigen vectors, however in practice there are r 

Eigen vectors where r is rank of the matrix. For experimental purposes, if we have the 

original user-item matrix of size 1000 x 4000, then we would have as many as 1000 Eigen 

values represented in Matrix S. 
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Figure 9: Eight Eigen values in Matrix S are arranged in decreasing order of their 

importance [26] 

We can decide the threshold value k such that only top k-significant Eigen values are 

preserved and rest of them are discarded so that it doesn’t contribute much to the precision of 

the algorithm. Thus, it has an analogy with data compression techniques as we require 

smaller number of bits to encode the first k values.  

The value k plays is important as it not only reduces the size of Matrix S in computation and 

it also affects the dimension of Matrix U and V. The new dimensions are as follows: 

 

 

Equation 2: SVD factorization equation after deciding threshold value k 

d. Clustering stage: 

 Now we apply the clustering algorithm on all the data points of Matrix Vk x n. We just use 

Matrix V, as our algorithmic approach is to find the similarities between all of the required 

songs and use that data as the corner stone of our recommendation system. After clustering, 

we get the group of all the similar songs. We store all the clusters into a flat file for the future 

decision making process (recommendations). For the purpose of clustering, we use WEKA 

(The University of Waikato) library. WEKA is a collection of many data processing and 

Xmxn = Um x k  Sk x k Vk x n 
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clustering algorithms. It is mostly used for data mining and machine learning algorithms 

[22]. 

e. Constructing Song – Co-song Matrix stage: 

From Making Session’s stage, for each user, we have combinations of all the songs that are 

played in each session. The entire user history consists of hundreds of such sessions. We take 

this information and plot them in the Song – Co-Song matrix. Each cell in the matrix is 

assigned a weight that is a function of number of times those songs are played together. We 

started with an approach that the choices of songs played by a user is influenced by the time 

of day, kind of work he is doing, their mood, surrounding environment (for example: it's 

raining outside, it's Christmas holiday, working out in the gym, or if they are on their way to 

work, etc.), and due to this there exists some correlation between the songs played in a single 

session. The resultant Songs-Co-songs matrix is a sparse matrix. In the next stage we will 

recommend the songs using information assembled in the previous steps. 

 

f. Recommending songs stage:  

Once we have constructed the model from Clusters and Songs – Co-Songs matrix, we can 

give recommendations based on the patterns observed in the user's history and session 

information that can be extracted from the above process.  
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4. EXPERIMENT 

To analyze the behavior of the algorithm, we take a use case similar to the real world scenario 

and trace all the algorithmic stages in this section. 

Let’s take a user scenario where we try to make recommendations based on some past 

preferences and session information gathered from all of our users. We build the model 

beforehand using the algorithm described in the previous section. To keeping things simple, we 

take a use case of just 4 users and 6 songs.  The Matrix generated will not be as sparse as it is in 

the real world scenario because the number of items (songs) that are taken into consideration are 

very less. However, to understand the flow of the algorithm this information is sufficient.  

The first stage is the preparatory stage where we take the users’ listening history and try to 

eliminate all the data inconsistencies and rearrange it according to the timestamps in descending 

order.  

  

 

 

 

 

 

 

 

 

 

Figure 10: An example of a session generated with the threshold value of 90 minutes 

User_000004 2009-03-28T10:11:10Z 0d360231-f492-46ac-baf0-4f84ac6e8b17 Air 
France 85e33d95-3523-4d80-bddc-a050d5a16e70 Collapsing At Your Doorstep 
User_000004 2009-03-28T10:02:26Z 37116914-db39-443c-981d-75d6326450f1 The 
Phenomenal Handclap Band 04efa75f-276b-4acc-84a2-555fef9099ac 15 To 20 (Radio 
Version) 
User_000004 2009-03-28T09:55:23Z dc21d171-7204-4759-9fd0-77d031aeb40c 
Frightened Rabbit 8b3c111a-b8a4-4823-9e0c-58043ed1af24 Old Old Fashioned 
User_000004 2009-03-28T09:50:02Z 2aca01cc-256e-4a0d-b337-2be263ef9302 All Girl 
Summer Fun Band 722bd5fd-1b27-4ec1-ba21-3e7dc3c514b0 Cut Your Hair 
User_000004 2009-03-28T09:44:37Z 2aca01cc-256e-4a0d-b337-2be263ef9302 All Girl 
Summer Fun Band 185b7f90-2624-49fa-bba9-910de231ab73 Video Game Heart 
User_000004 2009-03-28T09:36:39Z da785f6e-86e2-4efa-aca6-6c3cbd15d91c Glasvegas
 bdf3729c-6720-46f0-b42d-6164bb76b1b1 Daddy’s Gone 
User_000004 2009-03-28T09:13:30Z 2fb4db11-8349-47ab-b1a6-f04f011699ff The Go-
Betweens 70b543af-954c-4baa-97ad-a349214c3eeb The House That Jack Kerouac Built 
User_000004 2009-03-28T08:54:58Z 2fb4db11-8349-47ab-b1a6-f04f011699ff The Go-
Betweens c0fac49a-ab81-4457-bc02-2aa254c647c3 Was There Anything I Could Do? 
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Now, in the Session Generation stage we select a threshold limit for the session length (in 

minutes) and generate multiple single sessions for each user that will be processed in the next 

few steps. One such session for a threshold value of 90 minutes is shown above in Fig. 10. 

Furthermore, we have to make songs – co-songs pair from each session by permuting each song 

with every other song in the same session.  

Next, in Constructing the User-Item matrix stage, we plot the data for all 4 users and 5 songs 

into a matrix which is shown in Table 2, below. Each cell Cij, represents the number of times that 

a song is heard by the corresponding user. The value of each cell is directly proportional to the 

likeability of that song and the users’ inclination for any songs is derived from these values. 

 
 Ben Tom John Fred 

Song 1 5 5 0 5 

Song 2 5 0 3 4 

Song 3 3 4 0 3 

Song 4 0 0 5 3 

Song 5 5 4 4 5 

Song 6 5 4 5 5 

Table 2: User –Item matrix for 4 users and 5 Songs 

Next, in the Applying SVD stage, we use JAMA library to compute SVD of the User-Item 

matrix. The SVD operation factorizes the matrix into three sub-matrices:  U, S, and V. This 

reduced dimensional representation of the original matrix emphasizes a stronger relationship 

amongst users and items. It is also possible to reconstruct the original matrix with less 

information, however, the idea behind SVD is to analyze how many features or concepts are 

required to reconstruct it back. 
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Matrix S is a diagonal matrix where all of the features or concepts are arranged in an order of the 

most significant concept to the least significant one. It has r features, where r is the rank of user-

item matrix. In linear algebraic notion, if two vectors cannot be expressed as scalar multiple or 

sum of any other vector in the same space then those two vectors are linearly independent. For 

example, if a user who likes a song More Than You Know also likes the song All I Need to Hear, 

then the two song vectors would be linearly dependent and thus will effectively contribute only 

one to the matrix rank. To perform a similar operation we take first k singular values from Matrix 

S, where k << r.  

For this example, we take k = 2 and the matrix shown in the figure above is decomposed as 

shown below in Fig. 11:   

 
Figure 11: User-Item matrix after applying SVD decomposition 

 

Next, in the clustering stage, we use clustering algorithms from WEKA library to cluster all the 

data from Matrix V. However, before clustering we need to do some pre-processing steps to 

convert it into the format that is acceptable by clustering algorithms. The features of the songs 

are rows-dominant and thus we take transpose of Matrix S and make it column dominant. Also, 

we convert the matrix into csv format before processing it further. The cluster can be visualized 

as shown below in Fig.12.  
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Figure 12: Applying Clustering to Matrix V 

We can see in the above figure that Fred and Ben form a single cluster. It suggests that they have 

very similar listening pattern. Now, if we observe the user-matrix in Table 2, we see that Ben and 

Fred have user vectors as (5, 5, 3, 0, 5, 5) and (5, 4, 3, 3, 5, 5) respectively. It can be clearly seen 

that Ben and Fred have listened to Song 1, 2, 3, 5 and 6 for a similar number of times and thus 

they are rightfully clustered together. Using the above knowledge, we can recommend song 4 to 

Fred as he has not listened to that song yet; however there is a good chance that he will add that 

song to his listening list.  

In the same way, Song 5 and 6 are clustered together. We can see the user-item matrix in figure x, 

song 5 and 6 have a song vector of (5, 4, 4, 5) and (5, 4, 5, 5), respectively. It indicates that those 

2 songs are the most similar ones to each other as compared to other songs like song 1, 2, 3 and 

4.  

We can already make good recommendations using the SVD alone, as seen from the example 

above. However, we use the Songs-Co-songs Matrix generated in Constructing Song – Co-song 

Matrix stage of the algorithm to filter out the results further and use the session knowledge to 
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recommend songs that have strong correlation amongst each other. To construct Song- Co-Songs 

Matrix, we take all the pair of songs and construct a 6 x 6 matrix. Each cell in the matrix is given 

a value which is a function of how often they are listened together. The value is computed using 

the formula shown below: 

  

 

Equation 3: Assigning weight to each song duals 

Now, once we have both the clustering and Songs – Co-songs matrix information, we proceed to 

the Recommending songs stage. We take the listening history of a test user to whom we will be 

making recommendations. We try to find a pattern by taking every song in that user’s history and 

use the above clustering model to find the cluster that each song will belong to. Once we find a 

dominant cluster, we take all the neighboring songs in that cluster (using the clustering model 

formed above) and put them into an Array-list. Now using the Songs – Co-songs matrix, which 

gives the probability of two songs being played together, we arrange all the songs in the Array 

list in decreasing order of their weight. Thus, the song which is at top of the list is most likely to 

be liked by the user and hence it is recommended. This is how we recommend the top N songs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Weight (Song Dual) = ∑ (frequency of two songs played together) / ∑ (frequency of all 
) 
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5. ANALYSIS AND EVALUATION 

Recommendation algorithms are popular in research communities. Many researchers are 

working on various sub-problems as it is difficult to encompass all the candidate approaches into 

a single system. Thus, it is important to focus on a variety of properties that enhance user 

experience and can possibly add another dimension to the already existing approaches. We have 

discussed one such approach to recommend music and in this section we will try to evaluate the 

algorithm with some parameters as discussed below: 

5.1 OFFLINE ANALYSIS 

For the analysis purpose, we withheld some of the data (users’ listening history) of 15 users to 

perform the evaluation of song recommendations and check if it matched the benchmarks. Rather 

than caring about the degree to which a user would like to a recommended song, we sometimes 

are more interested if a user will add that song to his listening queue. This is an important aspect 

of music discovery. Therefore, we hold back partial data of 15 users and try to complete that list 

using the recommendations made by our algorithm. For every test user, depending upon the 

criteria, each song that is recommended can be categorized into one of four the groups. They are 

as shown below in Table 3.  

 Not Recommended Recommended 

Used False-Negative (fn) True Positive (tp) 

Not 

 

True Negative (tn) False Positive (fp) 

 Table 3: Table to distinguish each of the recommended songs 

Here, we can describe each of the term as: 

• True Negative (TN):  A song which is uninteresting to the user is not recommended to 

them. 

• False Positive (FP): A song is recommended by the algorithm which a user is not 

interested in. 
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• True Positive (TP): An algorithm recommends a song to the user which they are 

interested in.  

• False Negative (FN): The algorithm does not recommend a song to the user which they 

are interested in. 

In this kind of offline evaluation, all the above recommendations are not given to an actual user 

to listen to, but are just compared with the data we already have, thus, we have to assume that 

unused recommendations would not make to user’s listening list – i.e., they are unappealing to 

the users. However, this assumption can be false as some of the recommendations might be an 

interesting song with the user had not heard. However, once they are exposed to this 

recommendation they might get influenced to select it. This is one of the cases where false-

positives are escalated.   

In our algorithmic approach, we make song duals based on the sessions they are in and 

categorize them in any of the three categories depending upon the timestamp for respective 

sessions. 

 
Figure 13: True Positive Values for session based and unified session approach 

Another approach is to keep a unified list of all the possible song pairs without continuing to 

categorize them. We try to analyze both the approaches here with the help of recommendations 

made by the same algorithms, yet by considering different song-duals list. The graph for the 

number of True Positive (TP), False Positive (FP) and False Negative (FN) are as shown above.  
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In Fig, 13, the number of true positives, otherwise known as the songs that should actually be 

present in the user list, are recommended more accurately when we use the session based song-

duals list as compared to unified songs list. The blue line represents the recommendations where 

session based list was used. In most of the cases, session based list outperforms the one without 

it, which is a positive result. There were some anomalies in the case of user 10 and user 13 but 

for maximum use cases– the session based song list gives better results. 

 
Figure 14: False Positive Values for session based and unified session approaches 

 
Figure 15: False Negative Values for session based and unified session approaches 

The above Figs. 14 and 15 show a number of false positives (FP) and false negatives (FN) for all 

the 15 test users. The FP’s are the songs that are recommended to the users but they actually are 

not interested in and the FN’s are the songs in which a user is not interested and also not 

recommended to them. In both figures, number of songs recommended using session-based 

approach (blue lines) should be less than the ones using without it (red lines). Thus, the session-
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based approach generates better results. Based on the above data, we calculate Precision and 

Recall using the formula shown in Equation 4:  

                                                   

Equation 4: Precision and Recall formula 

We can compute Precision and Recall values for each user profile and plot them in the graph 

shown in Fig.16 and 17:  

 
Figure 16: Precision Values for session based and unified session approaches 

 

 
Figure 17: Recall Values for session based and unified session approaches 
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The graph shows that the session based songs list approach (showed in a blue line) has better 

precision and recall values. In addition, it outperforms the unified session based approach by 

approx. 12-18 % of most of the user profiles.  

 

5.2 COVERAGE OF THE ALGORITHM 

To measure the accuracy of recommendation algorithms, we measure the ratio of all the items 

that are finally shown up as recommendations to avoid any biasing in the results. We find the 

ratio of all the unique songs that appeared in the recommendation list compared to total number 

of songs in the dataset. That coverage corresponded to 58.29% of all the songs. However, every 

song is not equally popular. Thus, to calculate coverage in a more useful manner, it may be 

desirable to attach some importance contingent upon the popularity or utility of that item (song). 

Using this method, we won’t suggest any songs that may be less appealing to a user. Yet, at the 

same time, it is costly to miss any high profile song. The weight assigned to each song is given 

by the formula: 

Weight (song) = log (frequency of the song under consideration / summation of frequency 

of all songs) 

 

Figure 18: Coverage of algorithm for a different number of songs 
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Once all of the songs are arranged in a decreasing order of their weights, we performed the above 

evaluation again and found out that the catalog coverage increased to 61.02%. The above use 

case is for the scenario when the user-item matrix had 1000 songs. The following graph presents 

the evaluation of catalog coverage for a different size of datasets. As we can see, the coverage 

increases proportionally with the number of songs in the dataset. When the algorithm can train 

the model with more songs, the weight of the songs in the dataset gets distributed and thus the 

coverage increases. 

 

5.3 CLUSTER FORMATION AND k - VALUE EVALUATION 

Cluster formation plays an important role as it will directly affect the kind of recommendations 

made by the algorithm. For our purpose, we analyzed the cluster distribution over three 

clustering algorithms: XMeans, Simple K means and DB Scan. Out of those, DB Scan gave a 

good cluster distribution. Simple K-Means and X means had many outlier points and thus it 

resulted in distant cluster formation. 

Also, we use the clustering algorithm to group all the songs together that have significant 

features aligned together. The feature distribution becomes less concentrated as we go down to 

the Matrix S. We use clustering to visualize as shown in the diagram below: 
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(a)                                                                         (b) 
 

Figures (a), (b) and (c) represent the Eigen values in descending order as it is present in Matrix S. 

We can see from Figures (a) to (c) that feature distribution becomes more variable. For example: 

Fig. (a) has a single dominant feature, while Fig. (c) has side features which are comparatively 

more dominant than earlier cases.  

 
                                                                           (c) 

Figure 19: Song features in Matrix V 

Thus, we experiment with different values of k i.e. for k = 200, 500, 600 and 700. This analysis 

points to important patterns in deciding the threshold value of k. 
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6. CONCLUSION 

The algorithm present here is an attempt to design, implement and analyze an approach for a 

music recommendation system that takes user session into consideration while recommending 

songs. The goal was to provide an approach where we can leverage some of the Information 

retrieval techniques and the linear algebraic approach to solve big and sparse matrices in order to 

extract correct and valuable information. Many algorithmic approaches result in an exponential 

increase in mathematical calculations. An approach like SVD can benefit by reducing high 

dimensionality space into low dimensions. It also helps surface any relationship between items 

and users– which at first might not seem apparent or obvious. User tends to listen to the songs, 

which are inherently influenced by the environment or certain contexts. A mathematical 

approach is used to surface those correlations between the songs played in same session and use 

those facts to make music recommendations. The investigation outcome has shown that this 

technique can filter out noise and provide good results.    
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7. FUTURE WORK 

Music is a complex item to analyze as it contains many layers of dependent and independent 

factors that can influence a user into making some random looking choices. The approach 

presented here to solve the problem was limited by the computational resources available.  It 

would be interesting to see the use of some of the open source libraries, like Apache Mahout and 

Apache Hadoop, to facilitate the solving of bigger matrices than what is encountered here. This 

will certainly lead to better results, since more relationships can be formulated and eventually 

help in decision making.  

The clustering algorithms can be manipulated to the specific needs of the problem so that the 

clustering of songs would result in appropriate groupings. Regression analysis can be performed 

on the dataset to extract the subject’s mood and that can point to some valuable information. 

Study in the field of music psychology has revealed some very good results. However, that is 

dependent on the fact that we need to gather some good datasets (a very detailed user profile). 

The detailed user profile can then be processed to extract all the variables that will act as an input 

for this kind of research algorithm. 
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