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ABSTRACT

Social Networking for Botnet Command and Control

by Ashutosh Singh

A botnet is a group of compromised computers which is often a large group

under the command and control of a malicious user, known as a botmaster. Botnets

are generally recognized as a serious Internet threat. Botnets can be used for a

wide variety of malicious attacks including spamming, distributed denial of service,

and obtaining sensitive information such as authentication credentials or credit card

information. This project involves building a botnet centered on Twitter. Our botnet

uses individual bots controlled by commands tweeted by botmaster; the botnet can

expand in a viral manner by following affected Twitter user’s friends. This botnet is

only intended as a proof of concept and it does not perform any malicious actions.
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CHAPTER 1

Introduction

A botnet is a collection of compromised computers in a network [1]. A compro-

mised computer, known as a bot, can be used for attacks such as denial-of-service,

click fraud, identity theft, and spamming [1]. A botnet can have hundreds or thou-

sands of bots within its network [33]. Typically, a botnet has a command and control

[5] server that is used to control the bots within the network [15].

The goal of this project is to build a botnet that uses Twitter for its command and

control. Specifically, the botmaster will post tweets with pre-determined keywords.

To fetch these tweets from the botmaster account, bots will make a query to the

Twitter search engine.

To develop the command and control bot application for out botnet, we have

used Twitters Twitter4j [46] library and the Twitter authentication mechanism. In

effect, we have developed a covert channel [8] based on Twitter that enables the

botmaster to effectively communicate with the botnet.
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1.1 Previous Work

In previous work [21][37], a number of attacks using a botnet were developed.

These attacks were as follows (Table 1):

Table 1: Previous Attacks.

Index Previously Developed Attacks
1 Browsing a Webpage
2 Capturing screenshot of user’s work
3 Shutdown and Restart the system
4 Downloading and Uploading the system
5 Denial of the Service Attack

We have performed the first four listed attacks (Table 1). We implemented

the same concept for the first three attacks. For the fourth attack, instead of

downloading and uploading the file to a particular web server, we have implemented

a mechanism in order to mail the file back to the botmaster. All four attacks are

described in detail in chapter four. Apart from the listed four attacks, we have

extended the number of attacks and we have added several more functionalities in

the botnet code. The added functionalities are listed in Table 2.

Table 2: Added Functionality.

Index Added Functionality
1 A graphical user interface for the Login prompts for the botmaster
2 Email functionality
3 Changing the authentication mechanism from the Basic to OAuth [17]
4 Modified the Key generation Algorithm
5 One generic attack method to accomodate more attacks easily
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The GUI for the login prompt prevents the botmaster’s code from being misused.

Basically, the GUI adds security to the botmaster code and no other user, apart from

the botmaster, can use tweets to post commands.

The email functionality is developed using a Simple Mail Transfer Protocol

(SMTP) [31]. Java has a simple mail application programming interface (API) [17]

and, using this API, we have developed a feature to exchange messages and data with

the botmaster in an easy and efficient manner.

We have changed the authentication mechanism to authenticate our applica-

tion using Twitter’s service with Twitter’s migration of Twitter4j API from Basic to

OAuth [24] in our application. Hence, now a user’s Id and password cannot be used

for authenticating the application to Twitter’s service. This guarantees that user-ids

and passwords are secure. We have modified the key generation algorithm in our

mechanism. We have a text file with predefined keywords, approximately 313. We

calculate the system time in milliseconds and then we determine the modulus of this

value with the number of keywords. The modulus generates an index of the keyword

used at any given time. The idea of using a text file is twofold. One is that keywords

used keep changing along with the time value so fewer opportunites arise for noticing

whether malicious activity occurs on the Twitter profile. Also, another advantage is

that keywords can be used as a query object to search for tweets on Twitter’s search

engine. Apart from using previous attack ideas, we have developed several attacks of

our own and they can be viewed in the order listed in Table 3.

3



Table 3: Newly Developed Attacks.

Index New Attacks
1 Finding the last updated status of the botmaster
2 Updating and finding the recent 20 updated status of

the botmaster
3 Fetching the Twitter numeric ids, Twitter screenames

and profile pictures of the followers
4 Finding the Network Card Interface Details of the victim

computer
5 Finding the MAC addresses
6 Changing the mailing addresses of the botmaster and

bot
7 Finding the victim’s home directory path
8 Sending a text file with DOS commands to the bot

This paper is organized as follows: chapter two covers relevant background in-

formation on botnets and other related topics such as covert channels and communi-

cation protocols; chapter three discusses in detail the application we have developed

to handle a command and control structure based on Twitter; in chapter four, we

discuss various attacks that we have performed using our botnet; in chapter five we

analyze the results; chapter six mentions the experimental setup, comparison of our

botnet with Twitter-based NazBot, and the test cases we performed; finally, chapter

six contains our conclusions and suggestions for future work.
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CHAPTER 2

Background

In this section we provide the background and discuss several important aspects

of the botnet and its design. Our botnet is based on Twitter’s command control

authentication mechanism. Twitter provides a Twitter4j [46] library for gaining the

authentication. Using this library we obtain several APIs in order to build our own

Java web application and easily integrate it within Twitter’s service.

2.1 Botnet Structure

In this section we discuss the aspects of building a generic botnet. There are

several components to take into consideration including: command and control struc-

ture; infection method; communication protocol; trigger events; and functionality

[42]. Once infected, a victim’s computer typically executes a script (known as a shell

code) that fetches an image of the actual bot binary from a specified location [1].

Upon completion of the download, the bot binary installs itself into the target ma-

chine so that it starts automatically each time the victim’s computer is rebooted [28].

A simple Internet Relay Chat (IRC) [18] based on a command and control (C&C)

mechanism has proven to be highly successful and has been adopted by botnets [14].

The basic purpose behind developing an IRC [18] channel is for instant messaging

and synchronous conferencing. Traditionally, an IRC is for online chat, audio/video

conferencing, and text based multi-user chat functions. The botnet command and

control traffic is difficult to detect as it follows normal protocol usage and is similar

to normal Internet traffic where the traffic volume is low [14]. Normal Internet traf-

fic means there are very few bots within the monitored network [14]. Additionally,

5



a botmaster can use encrypted communication [14] to correspond to the bots. In

a command and control structure we see a centralized botnet where one or several

servers are used to issue commands. Command and control architecture is easy to

construct and is very efficient in nature for distributing botmaster commands.

Internet Relay Chat (IRC) channels are inherently suited for command and con-

trol mechanisms. Apart from an IRC [18] channel, we have a peer-to-peer mechanism

for communication with bots. In a peer-to-peer network any node in the network can

act as both the client and the server [13]. This is the reason why we do not have single

points of failure. Even if the botmaster within a peer-to-peer network is pulled down,

the rest of the network will continue to exist and function [13]. However, to form a

good and secure peer-to-peer network is not easy. The architecture is complex and is

the reason why many botmasters prefer a command and control structure using an

IRC [18] channel.

Figure 1 depicts that a general command and control botnet has a typical

botmaster who issues commands through Internet Relay Chat (IRC) Servers [18] to

a set of vulnerable hosts. Each vulnerable host is joined through an IRC channel

in which they can accept the bot code. After the bot code is downloaded and the

systems are exploited, they begin acting as a bot system. Now they actively look for

commands issued by the botmaster and perform as instructed by the command.

6



Figure 1: Life Cycle of a C&C Botnet.

There are several means used where a host can be exploited. These involve

a successful establishment of a backdoor channel [6] and, then using that channel,

sending commands to all vulnerable bot systems.

2.2 Command and Control

The command and control structure represents an organization of a botnet

in: the way it functions; the way it receives commands; updates its features for

performing various tasks; and the way it transmits data. The command and control

structure usually indicates how communication occurs between a botmaster and

remote bots. Botnets are typically organized into either a centralized structure or

a peer-to-peer structure. In a centralized structure, we have a central server that

is responsible for sending the commands and receiving the data from individual

bots. This, in practice, may be a system that has been compromised and can

be accessed securely by the botmaster without leaving any traces of identity.

We can have several servers acting as a botmaster throughout the lifetime of a

7



botnet and we can also frequently change them. The ability to have multiple

servers is important in case some of the botmasters are detected and brought down

by malware researchers or law enforcement agencies [9]. As we see in Figure 2,

a botmaster and two C&C servers are controlled by a single botmaster acting as bots.

Figure 2: Command and Control Architecture.

The centralized structure has been used traditionally and, more recently, we

see command and control botnets such as Proof-of-Concept (POC) Android botnet

[48], AgoBot [22], SpyBot [2], GTBot [2], and SDBot [16]. Recent malware POC

describes a proof of concept method that utilizes a short Messaging Service (SMS)

as a command & control channel [48]. It is fault tolerent since even if a smartphone

is not available on a GSM network, due to being powered off or in an out-of-service

range, when an SMS message arrives for delivery the message is queued and delivered

by the network [48]. The code [7] has been edited intentionally and is not to be used

for an attack purpose and, hence, an attacker has to develop their own functionality

for their attack purpose. In this method, [7] has tried to inject their bot code within

a smart phone (Android, iPhone, or Windows) through an SMS when they are sent

8



and received from a Telephony Stack (Userspace) to a Serial Line/Modem Driver.

After the author injects the code, they form a botnet with one master bot and some

sentinel bots; these are trustworthy long infected bots, along with some slave bots,

receiving instructions from sentinel bots in order to carry out instructions.

AgoBot is written in C/C++ with cross-platform capabilities [2]. Due to its

standard data structures, modularity, and code documentation, Agobot is simple for

an attacker to extend commands for their own purposes by simply adding new function

into the CommandHandler or CScanner class [16]. AgoBot has various commands in

order to control the victim host (e.g., using ”pctrl” to manage all the processes) using

”inst” to manage autostart programs [2]. In addition, AgoBot has following features

[22]: 1) it is IRC-based C2 framework; 2) it can launch various DoS attacks; 3) it

can attack a large number of targets; 4) it offers shell encoding function and limits

polymorphic obfuscations; 5) it can harvest sensitive information via traffic sniffing

(using libpcap, a packet sniffing library [16]), key logging, or searching registry entries;

6) it can evade detection of anti-virus software either through patching vulnerabilities,

closing back doors, or disabling access to anti-virus sites (using NTFS Alternate Data

Stream to hide its presence on victim host [16]); and 7) it can detect debuggers (e.g.,

SoftIce and Ollydbg) and virtual machines (e.g., VMware and Virtual PC) and avoid

disassembly [2].

SpyBot is written in C with no more than 3,000 lines, and contains many variants

[22]. SpyBot is an enhanced version of SDBot [2]. Aside from an essential command

language implementation, it also involves a scanning capability, host control func-

tion, and the DDoS attack modules and flooding attack (e.g., TCP SYN, ICMP, and

UDP) [2]. SpyBot’s host control capabilities are quite similar to Agobot’s in its re-

mote command execution, process/system manipulation, key logging, and local file

9



manipulation [22]. Nevertheless, SpyBot still does not have the capability breadth

and modularity of Agobot [2].

A Global Threat (GT) Bot, known as Aristotles, is supposed to stand for all

mIRC-based bots that have numerous variants and are widely used for Windows [2].

Besides some general capabilities, such as an IRC host control, DoS attacks, port

scanning, and NetBIOS/RPC exploiting, GT Bot also provides a limited set of bi-

naries and scripts for an mIRC [2]. An important binary ”HideWindow” program

is used to keep the mIRC instance invisible from the user [16]. Another function is

recording a response for each command received by remote hosts [22]. Other bina-

ries primarily extend the functions of an mIRC via a Dynamic Link Library (DDL)

[16]. These binary scripts are often stored with files in ”.mrc” or in ”mirc.ini” [22].

Although binaries are named ”mIRC.exe” they may have different capabilities due to

distinct configuration files [2]. Compared to the above examples, GT Bot only pro-

vides limited commands for the host control; a GT bot is just capable of obtaining

local system information and running or deleting local files [22].

An SDBot’s source code is not well written in C and has less than 2,500 lines;

however, its command set, and features are similar to an Agobot [16]. AgoBot is

published under a GNU Public License (GPL) [2]. Although an SDBot has no propa-

gation capabilities and only provides some basic functions for host control, attackers

still like this bot since its commands are easy to extend [22]. With the help of pow-

erful scanning tools, SDBot can easily locate the next victim [2]. For instance, by

using an NetBIOS scanner, it can randomly target a system in any predefined IP

range [22]. Since SDBot is able to send ICMP and UDP packets, it is always used for

simple flooding attacks [2].
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In a peer-to-peer method, messages are exchanged between bots. A Peer-to-peer

method differs from a C&C botnet since there is not a specific single centralized

server. Any bot in this type of structure can be used conceptually, as a command

and control server, by a botmaster using messages propagating to other bots via Peer-

to-Peer once introduced [1]. Recent examples of peer-to-peer botnet are Nugache and

Storm [29].

The developers of Storm have retrofitted and improved their codebase over the

past year, but Storm remains to be a prolific propagator of spam [2]. When Storm’s

worm is at its peak, it is deemed responsible for generating 99% of all spam mes-

sages seen by a large service provider [9]. Storm’s botnet size estimate is difficult to

gauge as it uses a peer-to-peer communication protocol and there was no compre-

hensive measurement study completed [26]. Storm’s effectivness may be attributed

to several factors that distinguish it from prior generations of malware [26]: a) smart

Social Engineering: Email links can be sent through emails that contain subject lines

displaying weather and holidays [26]; b) an ability to spread using client-side vul-

nerabilities: simply, clicking on the wrong URL link to an unsolicited email may be

enough to infect one’s computer, and the apparent pool of users willing to open and

click the URL links in the email may be in the millions [26]; and, c) an effective

obfuscated command and control protocol overlaid on the P2P network [26].

Storm is believed to have an automated distributed denial of service (DDoS)

feature in order to dissuade reverse engineering, which is triggeredbased on situational

awareness gathered from its overlay network [26].

Nugache is a new piece of malware with no command control server to target, bots

capable of sending encrypted packets, and the possibility of any peer on the network

suddenly becoming the de-facto leader of the botnet; Nugache, Dittrich knew, would
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be virtually impossible to stop [29]. No IRC channel means it is difficult to detect

and therefore block, as an IRC is used as command and control [10]. Nugache also

employs a degree of encryption and spreads and communicates in a way that aids in

hiding its activity [10].

The hybrid structure of a botnet can have a combination of both botnets de-

scribed above. This type of botnet structure is very robust and, even if several

servers are incapacitated, the rest of the botnet structure will continue to function.

We refer to this type of botnet as a hybrid structure.

It has been proposed that an advanced hybrid botnet is a peer-to-peer Botnet.

Challenges faced by the botmaster in an advanced hybrid botnet are as follows [47]:

1) how to generate a robust botnet capable of maintaining control of its remaining

bots even after a substantial botnet population has been removed by defenders [47];

2) how to prevent significant exposure of the network topology when some bots are

captured by defenders? 3) How to easily monitor and obtain the complete information

of a botnet by its botmaster; [47] 4) how to prevent (or make it more difficult) for

defenders to detect bots via their communication patterns [47]; 5) and the design

must also take into consideration issues related to a given network. Issues could be

related to IP addresses and the functionalities they perform depending on their online

or offline status.

2.3 Infection Methods

Another important part of a botnet design is the way that a botmaster employs

the distribution of its malware code and infects other systems, thus making them

work as bots. There are various common bot infection methods:

1) Client Application Vulnerabilities: exploiting security bugs to download and install
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malicious program [27]. Another method of ”infection” is through exploiting security

holes within Internet Explorer (IE) [30]. Even if a user does not click on a link within

a web page, a malicious site can deliver its payload of malware [30]. CoolWebSearch,

one of the most notorious pests in recent times, is suspected to be installed by pop-

ups exploiting security holes in IE [30].

2) Exploiting Network Services: this is accomplished by scanning local or IP addresse

subnet in an attempt to exploit network services (RPC, MSSQL etc.) [27].

3) Network Shares: this is accomplished by looking for unsecured computers (default

passwords, public shares) in nearby networks [27].

4) Spam or Unsolicited e-mail: The botnet sends the e-mail with its malicious code

attachments or sometimes with URL links that hide browser exploits [27]. A botmas-

ter can send a link imposing a benign our harmless web page link or it could post

the link on user’s social networking account so that when it is clicked it will lead the

victim to a malicious website. The malicious website uses a flaw in the browser to

install a malware code within the victim’s system. It can also send malicious email

attachments, an old, but reliable method of malware distribution.

5) Peer-to-Peer: Tricking users into downloading and executing fake programs from

P2P networks (both commercial and open source) [27]. Applications such as Cydoor,

New.net, TopText, SaveNow, Webhancer, IncrediFind, and OnFlow are a few of the

applications that are installed through peer-to-peer (P2P) networks such as Kazaa,

Bearshare, Grockster, LimeWire, and Morpheus and may display ad banners and ad

messages, or track Internet surfing habits [30]. Unfortunately, makers of a host pro-

grams might not intend to advertize their programs’s hidden payload [30].

6) Other common methods: Asking for a codec installation needed to watch a video,

install a fake antispyware program that is malicious, and install network acceleration

programs [27]. This scenario occurs when the user visits a website that displays a
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window whose message states that in order to properly view the website they must

install the program [30]. The FTP / HTTP Get request will initiate the software

download onto the client’s machine [30]. ActiveX (Microsoft technology) is then uti-

lized in order to install the malware (generally as a browser plug-in), on the client’s

system [30]. ActiveX is a mechanism that allows applications to run within other ap-

plications. This installation will allow the malware to operate everytime the browser

is opened [30].

2.4 Communication Protocol

The defining characteristic of a botnet is the fact that each individual bot is

controlled via commands sent by the botmaster. The channel used to communicate

can be implemented using a variety of protocols such as HTTP, P2P, or others.

Currently, a majority of botnets use an Internet Relay Chat (IRC) [18] protocol.

We have already mentioned IRC protocol based bots: AgoBot [22], SpyBot [2] and

GTBot [16]. The most well known HTTP based botnets are machbot [36] and Zeus

[11]. We have already addressed P2P protocol based bots such as Nugache [29] and

Storm [29]. As discussed previously, IRC [18] is preferred for a centralized command

and control based architecture and, hence, this section describes in detail the IRC

[18] protocol. The IRC [18] protocol was specifically designed for text based instant

messaging (IM) among people who are connected to the Internet. In its simple form,

it is a client-server model; in a real world scenario it is used in its distributed form.

In a distributed form all IRC [18] servers are interconnected to one another and

send messages to each other. It uses multiple servers allowing for several forms of

communication where communication could be point-to-point, point to multi-point,

or a combination of both. The communication among systems could be moving files,
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sharing clients, sharing channel information, and others. In an IRC [18] network,

communication traffic is usually not encrypted [25]. All communication is simply

broadcast. This is the reason why these networks are used for communication with

bots that have heavy traffic bandwidth. This could be a reason to raise suspicion.

Recently, botnets have begun to use social networking protocols, such as Twitter, for

command and control [41]. The study [41] discusses about such a Twitter based bot

that was accidently found whose approach was to perform the command and control

method. It used status messages and sent these to all its contacts new links. These

new links can have new commands and executables that can be downloaded and run

on a victim’s system. It attemps to steal information from the victim’s systems and

works by an RSS feed that is provided by Twitter to the user in order to update the

status. Bots decoded messages, which are Base64-encoded URLs, and downloaded

their malicious code [11]. An executable file, such as gbpm.exe and gbpm.dll, are

seen as password and information stealers that accomplished the actual malicious

work [19].

We have used Twitter for building our command and control botnet structure;

however, as we will see, it is very different from the method discussed above for botnet

experimentation. For our project, a botmaster code used Twitter to send commands

to the bots; then as instructed in tweets, bots installed on the victim’s system would

fetch those tweets and perform according to the code already installed on the victim’s

system.

We have outlined various differences between our botnet based on Twitter and

the one mentioned in [41]. Table [29] in the Analysis and Results section demonstrates

why our approach is preferable to the approach mentioned in [41].
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2.5 Trigger Event

A trigger event is when malware becomes active and starts performing its mali-

cious behavior. The triggering event can be identified as a particular date or it can

be a date to launch an evil attack; such as distributed denial of service; or the start

of tracking the behavior of a user surfing on the net, so that this information can be

sent to its botmaster. The triggering event can also be a certain time, as it may be

advantageous for a botnet to be active primarily at night in order to avoid detection.

In which case, the bot would wait until nighttime to begin taking action that involves

heavy network activity, for example, using this method would not alert the user who

would then not notice something suspicious occuring on their system.

Another trigger mechanism could also be using a function the user normally

does online, for example opening a banking site or financial software could trigger the

activation of key logging software [18].

2.6 Covert Channel

A covert channel is a communication path not intended to be used as such by a

system’s designer [35]. Covert channels arise in many situations, particularly within

network communication [35]. Covert channels are virtually impossible to eliminate,

and the emphasis is focused on limiting the capacity of these channels [35].

Covert channel examples can be local channels, or remote network channels [8].

One such example is Multi Level System (MLS) [32]. MLS [32] systems are designed

to restrict legitimate channels of communication [35]. However, a covert channel

provides additional means for information to flow [35]. In an MLS [32] system, a

geneirc user Alice could have a TOP SECRET clearance while user Bob, only has

a confidential access [35]. In this scenario, Alice and Bob could agree that if Alice
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wants to send an 1 to Bob, she will create a file (named xyz) and if she wants to send

a 0 then she will not create such a file. Now that Bob cannot look inside the file xyz

as he does not have required clearance; however, he can query the file system to check

if such a file xyz exists. In this manner information can be passed from Alice to Bob

in a restricted manner.

Using these mechanisms hackers use social media as covert channel to their ad-

vantage and are launching their command and control based attacks. The advantage

they have at their disposal is that social media websites look innocent and are open

to public; therefore, it is extremely difficult to filter out tweets that are harmful such

as command and control compared to genuine and bogus spam that is not responsible

for evil works.

We have used Twitter’s authentication mechanism as our covert channel. The

idea behind using this type of covert channel is that there are innumerable daily public

tweets floating over Twitter. When our botmaster posts its own tweets of commands

they will not look different in any perspective from other tweets and, hence, will not

be treated as suspicious. We rely on its authenticated mechanism to develop this

channel and, though it looks innocent, it actually serves our purpose well without

being noticed for doing something malicious.
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CHAPTER 3

Our Botnet

Twitter supports libraries in Java, Python, C++, and several other languages for

users to integrate their applications within their Twitter profile [39]. Twitter4j [46] is

an unofficial Java library for Twitter APIs. Twitter4j [46] provides several features.

Twitter4j [46] supports any Java version that is 1.4.2 or later. It also supports mobile

operating system platforms such as Android. The main features are that it does not

need an additional jar file in order to integrate an application and it provides the

necessary built-in platform for authentication mechanism such as OAuth [24].

After Twitter migrated from Basic to the OAuth [24] authentication mechanism

for its application, applications can no longer be authenticated by using a Twitter ID

and password through a user’s code. Instead, applications are provided a consumer

string and secret key to accomplish this task.

In our project, we begin by creating a Twitter application. After we create a

Twitter application, Twitter provides an access token string and Access token secret

string that are used to authenticate an application from the Java code with help from

twitter4j API.

In the following section, we describe our application’s details and its setting

information. Next, we discuss the features we have developed and enhanced.

3.1 Application Details

We have created our own application and have named it as tweet4fun [38]. Our

application tweet4fun [38] has access levels such as ”Read, Write, and Direct mes-
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sage”. This means that by using this application we can fetch tweets, update the

status, and direct the tweet to other applications and accounts. There is one con-

sumer key and consumer secret that remains constant throughout the life of an appli-

cation. We now have obtained request token and access token URL. By using these,

application requests for the token key and token secret strings to be used later with

our desktop application. Our application’s setting details in Figure 3 demonstrates

an important field, ”Authorize URL”, that is used to prompt a user to manually

authorize an application. Later, we will see that this requirement can be automated

as well. Other items to notice are that we obtain access token and access token secret

string. These are both the actual key and secret strings that are used to connect our

web application within our desktop application.

Figure 3: tweet4fun Setting Details.
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3.1.1 Logging into Twitter Account

We have automated the process for the botmaster to log-on to its twitter account.

However, in actuality it is not needed as the OAuth [17] mechanism provided by

Twitter performs that work for the botmaster. The added benefit of keeping the

login prompt is that if the botmaster code is somehow hacked or compromised then

accessing to botmaster’s Twitter account can be prevented.

In Figure 4 we mention the algorithm used to develop a panel in order to accept

Twitter ID and Password. After the botmaster enters TwitterID and Password,

the verifyCredentials() api is called up from the Twitter4j and which verifies

the botmaster’s credentials and, depending on the verification, the botmaster is

authorized or unauthorized.

Figure 4: Login Prompt Algorithm.
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Figure 5 and 6 show the login and authentication prompt.

Figure 5: Login Prompt.

Figure 6: Login Authentication Message.

3.1.2 Email Functionality

We have created an emailing feature so that the exchange of data between bots

and botmaster can occur seemlessly and efficiently. To accomplish this task, we

have used an SMTP Authenticator class from a javax.mail.Authenticator library. We

created an object of this class and called it auth and similarly; we also created an

object of Properties class from the same library and called it as prop. We called

getInstance() api from the class Session imported from a javax.mail.Session library

and we passed both the above objects into this api. After this was acomplished

successfully we had a session established between bot and the botmaster.

Next we created our mesg object from MimeMessage class imported from a

javax.mail.Message library, and then wrapped it with the session object (created

above). Now with this mesg object we attached text message, subject, ”From” ad-

dress, ”To” address and then we called the static method of the class Transport from
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javax.mail.Transport library, depending upon the session in the mesg object and the

”From” and ”To” addresses it sends email to the recipient along with the other details.

Figure 7: Email Functionality

3.1.3 Generic Attack

For our project we have developed one general attack. The idea behind naming

it a general attack is that with this attack we can easily integrate new attacks into

our system. The attack is named as ”run”. This command accepts the 140 character

tweet from Twitter profile and then it parses the second token string after the ”run”

command token. This second token string is treated as subcommand to perform

a specified attack. This is flexibile as we can easily keep adding additional new

commands to this ”run” command and, hence, we do not need to develop a complete

new command with a different name. Currently, ”run” has three sub comamnds as

defined: ”checkSystem”, ”NICs”, and ”Screenshot”.

The subcommand ”checkSystem” checks for the user’s home directory path and

mails back this information to the botmaster using an Email.java utility. The ”NICs”

subcommand locates the network interface card details belonging to the victim’s

system and mails this information to botmaster. The ”screenshot” subcommand

captures userwork’s screenshot while the user is busy completing important work and

mails this information back to the botmaster. The format for the attack is:

#keyword run checkSystem
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3.2 Features Enhanced

3.2.1 Authentication Mechanism from Basic to OAuth

As we discussed in the previous chapters, we used a token keyword and token

secret string to authenticate our web application within the desktop application. For

authenticating we first created a Twitter class object. The Twitter class object is

normally used to keep a TwitterFacotry() instance. With this object we can call the

setOuathConsumer() api. In the api setOAuthConsumer(), we pass the consumer

key and consumer secret for authenticating the application. In next step we request

the accessToken string with getOAuthRequestToken(). This accessToken string is

primarily an integer PIN number. This PIN can be passed within loadAccessToken()

api to load the user’s actual token key and token secret. If this PIN is not stored

for further use, then the accessToken string is null and, in this case, each time this

code is run for authentication it will generate a new PIN and will prompt the user to

authorize the application manually. In our case, we are storing this PIN for further

use and therefore we utomated the task of manual authorization for our application.
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Figure 8: Twitter Authentication Algorithm.

As previously discussed when we authroize the application for the first time, we

obtain an integer PIN. Figure 9 presents an output prompt showing an URL to be

visited and asks the user to enter that information within the browser.

Figure 9: One Off Authentication.
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Figure 10 presents the authorization prompt asking the user to authorize the

application manually, after opening the following URL in their browser.

Figure 10: Open URL and Authorize the Application.
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After the user manually authorizes the application, they get a pin number that

can be entered on the command prompt that runs the java botmaster code. Now

to automate this process, we can store the PIN obtained from our application and

pass it to a loadAccessToken() api. Figure 11 shows a 7-digit pin number that was

generated by our application authorization process.

Figure 11: 7-Digit Pin to Complete the Authorization Process.

Using our tweet4fun [38] application, we can post various tweets to botmaster’s

Twitter account. The tweets can be random twitter spam (such as text tweets about

sharing some information). They can be in the command and control form for our

bots.

3.2.2 Command & Control Keyword Generator

We developed our own key generator that will generate a daily new keyword.

The character choices include all 26 Latin characters and additional alpha-numeric

characters.

We calculated the current system-time using a getTime() function imported from

a Java.util.Date library. The time is essentially, in the milliseconds returned by

getTime() function.

Next, we calculated the total number of milliseconds within a day and determined
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this number to be 24 ·60 ·60 ·1000. We stored this value as a variable and named it as

”atime”. We calculated the modulus of this value, ”atime”, along with the number

of keywords defined in our text file keyword.txt.

Figure 12 presents our pseudo-code showing the index caluclated in order to

select a keyword:

Figure 12: Key Generation Algorithm.

As previously discussed, we have a keyword.txt file that stored a number of

keywords approximately 300. After calculating the modulus, we obtained an index

number of the keyword chosen from the keyword.txt. Sample keywords from the file

keyword.txt are as shown in Table 4.

Table 4: Sample Keywords

Index Keyword
1 facebook
2 hotels
3 youtube
4 craigslist
5 google
6 yahoo
7 facebook
8 myspace
9 x
10 ???
11 walmart
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These are the actual keywords used for the command. We appended the #

symbol with a keyword before the command and that made up a complete tweet that

was posted by a botmaster on its Twitter account. An example of the format for the

tweet that was posted:

#metacafe browse http://www.sjsu.edu

As we see metacafe is the keyword pre-appended with # and next is the actual

”browse” command; and next token of the string is basically the URL of the web-link

that is opened by the bots after parsing. Using a keyword within the tweet gives

us the added security and also search convenience. Since the keyword being used

continously changes so if a botmaster decides to post excessive tweets, then over time

the tweets will change automatically and it will less raise less suspicion; as the tweets

will not be repetitive in nature.

The other important advantage is that a keyword can be used as a query object

in order to search for tweets on Twitter’s search engine for the bots.
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CHAPTER 4

Attacks Performed

In our project, several attacks based on command and control have been devel-

oped. Attacks such as ”Fetch Botmaster Status”, ”Update and Fetch Recent Status”,

and ”Fetch User Information” are for demonstration purpose and are related to fetch

the user’s information such as the most recent updated status, updating their status,

and fetching their last twenty statuses, finding a follower’s Twitter ID, fetching profile

pictures of these followers, and also finding MAC address of a victim’s system.

The rest of the attacks are more malicious and they are basically related to do

something more malicious on a victim’s systems. They basically open a particular

web browser for an advertisement promotion, can make the system shutdown, can

take a screenshot of a user’s work, can email a confidential file to a botmaster, can

email the system’s information succh as NIC card details, can email the user’s home

directory path, and also can execute DOS commands on the victim’s system. We

have explained each of these attacks in details in following section.
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4.1 Fetching Botmaster’s Tweet

The last tweet completed by a botmaster can be fetched by a malware code

installed on the victim’s system. In Figure 14, snapshot of the tweet done is for

demonstration purposes; this is not the actual command-tweet posted by the bot-

master. To verify credentials we call the verifyCredential() API form Twitter4j [46]

library and then we use the getUserTImeline() API from the Twitter4j [46] to fetch

the tweet. Figure 13, below, is an example of code snippet.

Figure 13: Fetching Last Tweet Algorithm

Figure 14 and 15 show the graphical user interfaces developed in Swing.

Figure 14: Fetching Last Tweet Figure 1
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Figure 15: Fetching Last Tweet Figure 2

4.2 Update Status and Fetch Last Twenty Status

Not only is the last command/tweet posted by a botmaster is accessible, the

getUserTImeline() api from the twitter4j API for the last 20 statuses, can be fetched.

It helps to keep track of the previous botmaster commands that were posted by the

botmaster. Using this method we can redo past attacks on the victim’s system if

instructed by the botmaster in the near future. To fetch the status tweets we call

the getUserTimeline() API from the Twitter4j [46] library. This provides a facility in

order to fetch the most recent 20 statuses. Also, to update the status in text form we

can call txtUpdateStatus class’s getText() from the Twitter4j library. We have our

exception handling if a Twitter error occurs.
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Figure 16: Update and Fetch Status Alogirthm

Figure 17: Update and Fetch Status Figure 1
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Figure 18: Update and Fetch Status Figure 2

Figure 19: Update and Fetch Status Figure 3
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Figure 20: Update and Fetch Status Figure 4
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4.3 Fetching Follower Information

Using the getFollowersIDs() API from the Twitter4j [46] library, we can deter-

mine the numeric id that Twitter uses to keep track of botmaster’s all followers. With

these IDs, we can obtain Twitter screen names and profile pictures of botmaster’s all

followers using getScreenName() and getProfilePic() APIs from Twitter4j. All this

information keeps track of the followers that are following the bot masters so that

later they can be exploited by a command and control attack by the malware code.

Figure 21 shows the pseudo code to achieve this.

Figure 21: Fetch Follower Information Algorithm
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Figure 22 shows the output and Figure 23 shows the profile picture of a follower.

Figure 22: Fetch Follower Information

Figure 23: Fetch Follower Image
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Since our botnet is intended for a Windows operating system, it may not work

correctly on other types of operating system such as Mac or Linux. Specifically, it

would not be able to add itself at startup, though it could be relatively easy to add a

line to user’s .bashrc file to start it. We have implemented a multitude of commands

which it can handle. For instance, our botnet supports running a Distributed Denial

of Service (DDoS) on a server/website, taking screenshots (this can later be sent to the

botmaster), downloading, uploading, or executing a file, shutting down or restarting

the user’s computer.

4.4 Finding the MAC address of the system

In this attack, after the botmaster tweets the ”find” command on Twitter profile,

the victim computer’s MAC address is obtained by the malware running on the system

and is mailed to the botmaster. Figure 24 shows the example code snippet.

Figure 24: Finding MAC Address Algorithm
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When we run the Figure 24 algorithm, we obtain the MAC address for our

system.

C0-CB-38-80-56-CD

4.5 Browsing a Webpage

This attack was developed during a class project [21][37]. For our purposes, we

borrowed the same idea and used it for our application. While the Botmaster.java

and the malware program StockInfo.java are running, the botmaster can give the

command: ”#keyword browse www.sjsu.edu” on the command line to the Botmas-

ter.java program. After successful authentication, the command is posted in the form

of a tweet to the Twitter account.

The StockInfo (ConnectToTwitter.java) java program will fetch the tweet from

the account. The tweet will be parsed by the CommandParser.java program for

the string tokens. After the string token matches with the ”Browse” command the

OpenURI() API with the token will be called and the intended webpage will be

opened within the default browser.

Figure 25: Browsing a Webpage Algorithm

Figure 26, 27 and 28 show the tweet posting on Twitter account of Botmaster.

Figure 29 shows the tweet fetching from Twitter in the form of a ”bit.ly” format.

Figure 30 shows the URL opened within the default browser.
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Figure 26: Browsing a Webpage Figure 1

Figure 27: Browsing a Webpage Figure 2

Figure 28: Browsing a Webpage Figure 3

Figure 29: Browsing a Webpage Figure 4
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Figure 30: Browsing a Webpage Figure 5
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4.6 Finding the NIC details

We can obtain the target system’s network interfaces and can then mail to the

botmaster using the emailer.java code. For this purpose we call getInetAddress()

API from a javax.inetaddress library, pass the return value to list() API from the

Collection library in Java and fetch the network interface card details:

Figure 31: NIC Details Algorithm

4.7 Stop Services by Shutdown

This attack was developed in [21][37]. We borrowed the same idea for our ap-

plication. In this attack, the botmaster tweets the following: ”#keyword shutdown”

on its account by using the botmaster.java code. The tweet is fetched by the Stock-

Info.java, the malware installed on the victim’s computer, and, after parsing the tweet

in terms of tokens, a shutdown system call is invoked on the victim’s system as shown

in Figure 32. Figure 33 shows the output when tweet is fetched from Twitter and

Figure 34 shows the shutdown prompt after the shutdown system call is executed.
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Figure 32: Shutdown Algorithm

Figure 33: Shutdown System Figure 1

Figure 34: Shutdown System Figure 2
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4.8 Restart System

This attack was also part of [21][37]. We have used the same idea in our appli-

cation and it is more or less similar to the shutdown attack. The only difference is

that it restarts the victim’s system. Figure 35 shows the pseudo code and Figure 36

shows a common restart prompt.

Figure 35: Restart the System

Figure 36: Restart the System Figure

4.9 Taking the screenshot of the user work

This attack was part of the [21][37] and we borrowed the same idea in our ap-

plication. This attack involves taking a snapshot of user’s work with the use of the

malware running on the victim’s computer. Over time it can take a screenshot and

save it to a specified path determined by the botmaster. Figure 37 demonstrates an
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example of the code responsible for this action. The Image, Graphics and Robot class

[4] are provided by java APIs, and the methods writeImage() and createTimeStamp-

Str() are user coded methods. Figure 38 shows the command in action;

Figure 37: Capturing the Screenshot Algorithm

Figure 38: Capturing the Screenshot
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After fetching the tweet from the botmaster’s account, StockInfo.java code saves

the screenshot within the specified path:

C:/My Documents/NetBeansProjects/TwitterApplications/ with the name for

example: screenCapture 20120325 053134.PNG.

4.10 Uploading user information to botmaster

After the screenshot of the user’s work is saved it can be mailed to the botmaster

with a pseudo code as shown in Figure 39.

Figure 39: Uploading the Information Algorithm

As discussed earlier, we have developed an Emailer.java code in order to send

specified emails back to the botmaster. Figure 40 below shows the output for the

screenCapture.PNG that has been sent to the botmaster.

Figure 40: Uploading the Information

45



4.11 Executing the commands in file

This attack could be very harmful and evil for the affected victim’s system de-

pending on the level of permission that malware has obtained. In this attack the

botmaster will send a file written with commands. After fetching the tweet with the

”execute” command, the malware searches for file mycommand to run.txt in user’s

system path C:/Documents and Settings/singha. Next, it processes each command

line by line and performes as instructed within the commands. For a sample we have

given DOS commands with our Windows XP system.

Ex: dir /s (will list all the directories and subdirectories in the given path loca-

tion)

Figure 41: Executing the Passed Commands Figure 1

The mycommand to run.txt has only one DOS command and that is dir /s. It

lists all of the sub directories and files within the directory.

The idea is that we can continue to add DOS commands, depending on the

permission and access level, causing a considerable damage to the victim’s system.
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Figure 42: Executing the Passed Commands Figure 2

4.12 Change ”From” and ”To” address

In this attack a botmaster can post a tweet with a command as change. Basically

this attack was developed so that a botmaster uses a different mail address with

different bots in order to keep track of the data being exchanged.

With this malware code, we pass a text file that we call address.txt. This file

contains the email address of the botmaster and email address of the bots within the

network.

After a bot fetches and parses the tweet from the botmaster Twitter profile, it

obtains that string 1 and string 2. Which are the intended email ids to be replaced

within the address.txt.

After this step, the keyword.txt file is overwritten with the new email addresses

and new email ids are used for further communication.

Figure 43: Change the ”From” and ”To” Addresses Algorithm

47



Figure 44: Change the ”From” and ”To” Addresses Figure 1

Figure 45: Change the ”From” and ”To” Addresses Figure 2

Figure 46: Change the ”From” and ”To” Addresses Figure 3
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Figure 47: Change the ”From” and ”To” Addresses Figure 4
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CHAPTER 5

Analysis and Results

5.1 Stealth of Malware

The malware code is related to two main java programs continued to run while

the malware is in action. We have Botmaster.java code inorder to post commands

on botmaster’s Twitter profile, and StockInfo.java installed on the victim’s system

inorder to fetch commands and perform as instructed by the botmaster.

Botmaster.java is used to authenticate the application and also to post the tweet

after successful authentication. To tweet the post on the botmaster’s account it uses

twitter’s updateStatus() function. This program runs in an infinite loop and keeps

accepting the commands in terms of tweets from the botmaster. Each successive

command is posted on botmaster’s Twitter account.

A StockInfo.java program is used as the actual malware within the end/bot

systems and it internally runs the java program ConnectToTwitter.java. Since it is

in the form of a normal program, an antivirus program considers this program to be

an innocent java code and does not consider themas threatening:

In Figure 48 the task manager shows two Java programs running. Both tasks

begin with name of java.exe. They are, Botmaster.java and StockInfo.java.

In Figure 49 we see that an antivirus (Symantec End Point Protection) cannot

detect our malware StockInfo.java and reports that ”Your computer is protected”.
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Figure 48: Stealth of the Malware from the Task Manager

Figure 49: Stealth of Malware from the Anti-virus
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5.2 Spam

Typically one of the main uses for a botnet is to send spamming emails [1]. There

are Java libraries that allow for sending of outgoing email, as well as other methods to

accomplish this from a home computer. However, many email services will not accept

email sent in this way [15]. Email services employ a reverse lookup on the hostname

machine used to send an email, and, if this fails, it will generally refuse to pass the

emailalong [15]. The way spam is sent on a large scale is to use email servers that are

configured or misconfigured, to relay email from hosts that are unauthenticated-these

are called open relays [18]. Open relays are available on the Internet. Using this

method presents an opportunity to get into trouble. There is a chance of having our

botnet code seen as sending spam, and it is possible that a relay could be acting as

a honeypot; in which case our botnet code could attract the attention of malware

researchers, both outcomes we wanted to avoid [18].

5.3 Defense of the botnet through daily key updates

The key generation makes sure that a new key is picked daily from the text file by

hashing the indexes. The benefit of searching for a daily key, instead of a specific user

account, is to prevent the shutdown of the botmaster. With keys that change daily,

the botmaster commands can be posted on many different user accounts. Therefore,

if Twitter shuts down one account, we can always create a new Twitter account and

so our botmaster will not terminate easily.

5.4 Current Command and Control Botnet Trends

Over two-year period a study [20] of over 1.1 million botnet submissions found

that the use of an IRC for communications was in decline. Bot operators moved
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away from public command-and-control channels because security researchers have

had too much success analyzing the botnets that use these communication modes

such as Internet relay chat (IRC) [20].

In a recent paper [3], a drop in use of an IRC for command and control was seen

between the start of 2007 and the end of 2008 [20].

The author in [3] argues that it will be easy to hide within the noise of Twitter.

Since shortened URLs are common, and services such as bit.ly have trouble scan-

ning the destination of every link they handle, defending against botnets that abuse

Twitter as a communications medium is difficult [20].

Figure 50: Current C&C Botnet Trends

53



CHAPTER 6

Experiments

In this last chapter we discuss the setup of our experimental design. We compare

our botnet with a Twitter-based NazBot. We list the number testcases executed.

6.1 Setup of Our Botnet

In our experimental setup, we built a network of 7 bots due to practical restric-

tions. The setup can be extended for larger networks if we gain more actual physical

systems, as is the usual case with botmasters in practice. Out of 7 we had 2 actual

systems and 5 virtual machines. The 2 actual systems had Windows XP and Ubuntu

12.04 (64 bit) Debian Kernel 3.2.0+ installed. The virtual machines had 3 XP, 1 Win-

dows 7 and 1 Ubuntu 11.10 (64 bit) installed. All 3 of the 5 XP virtual machines had

RAM of 512 MB and 32 MB of graphics memory. The one Virtual Ubuntu machine

had 1 GB of RAM and 32 MB of graphics memory. The actual Ubuntu machine had

4 GB of RAM and 128 MB of graphics memory. The one Windows 7 virtual machine

had 1 GB of RAM and 64 MB of graphics memory. One actual Windows XP worked

as the C&C botmaster and it had both the botmaster code and bot codes. It had

4 GB of RAM and 128 MB of graphics. The rest 6 machines had just the botcodes

installed. The machine containing the botmaster code would tweet commands on its

Twitter account. At the same time, machines running botcodes would keep query-

ing from the Twitter search engine with pre-formatted keywords and look for those

commands. For virtualization, both VMWare Player and Oracle Virtual Box were

used.

54



Depending on the Internet connectivity, as soon as they would fetch the code

they would process described commands and, based on the system’s speed, they

would perform as instructed. They all were tested simultaneously and the tests were

successful and performed as expected.

Table 5: Experimental Setup.

Setup Operating System Memory (RAM) CPU (2.79 GHz)
Botmaster (Bot) Windows XP 4 GB i7

Bot 1 Ubuntu 12.04 4 GB i3
Bot 2 Windows 7 1 GB i7
Bot 3 Windows XP 512 MB i3
Bot 4 Windows XP 512 MB i3
Bot 5 Windows XP 512 MB i3
Bot 6 Ubuntu 12.04 1 GB i3

Figure 51 shows the botmaster posting commands in the form of tweets on their

Twitter account. The command is for browsing a webpage on the bot’s browsers.

Figure 52 shows the victim’s system running the bot code. In this example, inorder

to increase the number of bots, we have created virtual machines and, hence, we

can see that there are more than just one bot (Figure 52) running the bot code and

opening the webpage instructed by the botmaster.
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Figure 51: Botmaster in Action

Figure 52: Bots in Action
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6.2 Comparison with Twitter-based NazBot

Kartaltepe [19] mentions one Twitter based command and control botnet

identified recently. He has nicknamed it NazBot [19]. NazBot makes an HTTP

GET request to upd4t3s twitter RSS feed [19]. It returns the RSS feed containing

Base64-encoded text. A bot decodes the text as bit.ly URLs and makes a request to

each [19]. NazBot redirects the malicious zip file to the bot [19]. Bot downloads it,

unzips it, and executes its contents [19]. It gathers and transmits the information to

the botmaster [19]. The executables, such as gbpm.exe and gbpm.dll, have been used

for stealing password and other important information [19]. The NazBot abused

popular websites such as Twitter and Facebook [19]. It exploited a popular port 80

used for an HTTP request and response for command and control communication

[19]. Using an RSS feed to auto-update bots is similar to normal communication

traffic. This made it look unsuspicious to Twitter or general public.

Figure 53: Twitter Based NazBot
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Table 6 shows the differences between the functionality of NazBot and our

Twitter based Command and Control Botnet.

Table 6: Comparison with NazBot

NazBot Our Twitter-based Botnet

Bots read the RSS feed Bots read status message
Had a website to upload in-
formation

Use email functionality to email
information

Fixed port 80 is used No port used
Executables were down-
loaded from the website

Executables were already sent
with infection

Everytime code was down-
loaded it needed to be un-
zipped and installed on vic-
tim system

After reading the tweets bots per-
formed with preins alled mali-
cious code

Heavy network bandwidth
with uploading/download-
ing the information and ex-
ecutables

Flexible email approach

Our botnet performs better than NazBot in many ways. Since, it uses the normal

status post it looks very innocent to common public. There are millions of tweets per-

day floating over Twitter and, similarly, there are thousands of query for the tweets,

suspicion is not raised. However, with RSS feeds, fetching and uploading information

to a particular web server could be risky as there can be heavy communication traffic

directed towards a web server. Using a websever on a fixed port 80 made NazBot

weaker; however, in our approach we do not have this port requirement. For handling

the communication in an easy and efficient manner we relied on an email method;

and for this purpose we developed our email functionality as discussed in the chapter

5. Also, since we installed the botcode only once, we do not have user end processing
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for a malicious code, unlike Nazbot where executables were downloaded, unzipped,

and executed to perform its action.

6.3 Test Cases

In our project a new Twitter account was created solely for our project and, as

our project progressed, the number of tweets being posted gradually increased, the

number of followers slowly increased. The account worked as a benchmark for our

entire project. Table 7 lists some of the test cases and statistics for our project and

experiment.

Table 7: Test Cases

Total commands Developed 13
No of Tweets Posted 350+
No of followers following
botmaster

20+

No of Followers botmaster
followed

110+

6.4 Twitter’s Limitations on API Usage

Twitter provides all support and services to developers for developing their appli-

cations. However, Twitter limits and restricts the support in such a way that it should

not used for malicious purpose. The text that is to be updated is compared with the

authenticated user’s tweets that are recently posted. Any attempt that results in du-

plication will be blocked resulting in a 403 error [39]. Therefore, a same status cannot

be posted twice by the user. There is a limited number of tweets that a user can cre-

ate at a given time. If an allowed limit is crossed, then a user gets an HTTP 403

error. While passing the command in the form of a tweet to the updateStatus() api
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there are few things to be taken into considerations [39]: The text of status update,

typically up to 140 characters, and URL encode as necessary, with t.co link wrapping

may affect character counts. The Twitter API only allows clients to make a limited

number of calls within a given hour. This policy affects the APIs in different ways.

Twitter imposes the restriction on the usage of the APIs either by limiting the API

rate or by blacklisting the application. The default request rate limit is allowed upto

350 every hour. It is calculated with oauth token used [45]. Rate limits are applied

to methods that request information with an HTTP GET command [45]. Generally

API methods that use HTTP POST to submit data to Twitter are not rate limited,

however some methods are now being rate limited. Every method within the API

documentation explains if it is rate limited or not [45]. Actions such as publishing

status updates, sending direct messages, following, and un-following are not directly

rate limited by the API but are subject to fair use limits [40]. These Twitter Limits

are described on their help site [40].

The rate limit of 350 per-hour must be honored [44]. If a user’s application

abuses the rate limits then it will be blacklisted [44]. If a user is blacklisted they will

be unable to get a response from the Twitter API [44]. If a user or application has

been blacklisted, and the user thinks there has been an error, the user can contact

Twitter’s email address on the support [44].
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CHAPTER 7

Conclusion and Future Work

We have developed a systematically Twitter based Social Networking Command

and Control Botnet. We automated the process for logging-on to a Twitter account

for a botmaster within the application. This avoids the compromise of our botmaster

account and adds to security avoiding the misuse of a botmaster code. To help provide

better and efficient communication between botmaster and bots we have developed

email functionality.

Our key generation algorithm creates the different tweets for the same attacks at

a given point of time and hence avoids our tweets from being repetitive. The idea of

having a keyword helps in fetching the tweets as a query from Twitter search engine.

From the attack’s point of view, we have simulated our botnet with different

types of attacks. The attacks include: browsing the web page, fetching the user

information from Twitter profile in the form of a Twitter ID, and profile picture etc,

stopping and restarting the services running at victim’s system, mailing confidential

files to the botmaster, capturing information regarding user’s work and sending it to

the botmaster, processing DOS commands by a bot within the victim’s system, and

others.

For future work, although we have performed several tests this is the usual case

in practice, and scope to accomplish more still exists. From the key generation’s

point of view, in order to avoid detection by Twitter; our bot could use a daily key

for encrypting the commands themselves. This way, a researcher would not be able

to find any suspicious commands being issued through Twitter. In addition, simply
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having a daily key is not enough; theoretically a researcher could obtain a copy of

the botnet, and reverse engineer the daily key algorithm. Therefore, we could add

an extra command for adding a specific salt to the key generator. The advantage

of doing this is that researchers would not be able to trace back the salt, to reverse

engineer, and find out the key generation algorithm.

We are storing keywords within a text file and that is always fixed throughout

the complete lifetime of the whole botnet. Next, we can create a mechanism that will

keep changing the keyword.txt file with an updated list of keywords. We would have

to make sure that both the replica of the file at the botmaster and bot ends are the

same and not inconsistent. To avoid detection, we can create an encryption and a

decryption mechanism for the keyword.txt file.

Further in the attack, we send the text file with DOS commands with a malware

code. These DOS commands are fixed throughout the life of the bot. So for future

work, we can design a mechanism to change the commands within the text file, based

on the botmaster’s next attack requirement. The generic command ”run” provides

three functionalities developed within our project, they are: ”checkSystem”, ”NICs”

and ”screenshot”.

The idea behind developing a general command is that it can perform various

attacks as we continue to add several more subcommands.

Finally, from defense point of view, Twitter must develop a preventive and

counter measure that will look for suspicious tweets.

The defense mechanism can be based on various factors. Twitter could check

for various applications that are posting excessive tweets by using keywords, text

commands, and tiny URLs. Addtionally, keeping track of specific query traffic created
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by various systems on Twitter’s search engine would also help. If Twitter finds

malicious activity it can warn the application developer. However, if the misuse of

Twitter’s authentication continues, then Twitter can track down and suspend the

account. For that matter, it can track down the IP addresses and other details, then

blacklist users and their profiles from continuing their malicious activity in the future.
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