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 ABSTRACT  
Drug discovery depends on scientists finding similarity in molecular fingerprints to 
the drug target. A new way to improve the accuracy of molecular fingerprint 
folding is presented. The goal is to alleviate a growing challenge due to 
excessively long fingerprints. This improved method generates a new shorter 
fingerprint that is more accurate than the basic folded fingerprint. Information 
gathered during preprocessing is used to determine an optimal attribute order. 
The most commonly used blocks of bits can then be organized and used to 
generate a new improved fingerprint for more optimal folding. We thenapply the 
widely usedTanimoto similarity search algorithm to benchmark our results. We 
show an improvement in the final results using this method to generate an 
improved fingerprint when compared against other traditional folding methods. 
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1. Introduction 

In 2009, prescription pharmaceutical sales in the world’s major markets totaled 
$555 billion, with the highest sales from the United States and the European 
Union [1]. The U.S. pharmaceutical market generated half of the total sales in 
2009, and continues to grow at an expected rate of 3-5.0% [2]. The single best-
selling drug’s annual sales were $12.9 billion [3]. While pharmaceuticals can 
enjoy the high profits from a new drug, companies also face imminent patent 
expirations, in which the drug formulations are subjected to generic forms. In this 
industry, it is critical for a pharmaceutical company to constantly innovate to 
develop new drugs. On average, only 25 truly novel compounds are annually 
approved by the US Food and Drug Administration (FDA) [4]. The process for 
scientists to research and develop such compounds is lengthy, costly, and does 
not necessarily guarantee approval from the FDA or any return on investment. 

Scientists usually begin their research through previous experiments or exposure 
to familiar compounds. They must examine and perform tests on thousands of 
molecules in hope of discovering a therapeutic efficacy. An enormous number of 
molecules are routinely assayed through a series of tests in the laboratory with 
the goal of creating a marketable drug. Scientists must start with a drug target, 
an existing cellular or molecular structure that is directly involved with the drug-in-
development, and perform high-throughput screening (HTS). The HTS process 
compares the drug target with vast libraries of chemicals that are tested for their 
ability to modify the target.  Because this screening process is so expensive and 
time consuming, it is in the interest of pharmaceutical companies to limit the 
number of molecules for assaying. One part of the process involves scientifically 
eliminating molecules that do not fit attributes of the target. This task is also a 
time consuming process. Once assays are run against a set of selected 
molecules, they can be analyzed and the entire process may repeat based on 
newfound data. 

The first step to this drug discovery is for scientists to focus on understanding 
how a disease interacts in the body. Once this interaction is understood, 
biologists and chemists try to de-active parts of the interaction with a specially 
design and chosen molecule. Ideally, scientists hope to use selective features to 
find molecules that interact most with a chosen target. This process is iterative to 
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narrow down an extremely large database of molecules to a smaller more 
manageable list of molecules that shares the most common chemical features. 
Scientists see if the matching similarities against the chosen targets will also 
negatively interact with other closely related targets. This is to determine if these 
other related targets will create a toxic mixture. The screening process aids 
scientists to find compounds that share similar chemical properties, which 
ultimately brings them a step closer towards a lead compound.  

It is the lead compounds that are then moved into drug development. These 
molecules need to be tested to insure that at a specific dosage, the drug is still 
safe and effective, both in the lab and with test animals such as rats or monkeys. 
Once this data has been approved by the FDA, the process makes its way into 
human test trials. Human test trials are even more expensive to run than in the 
lab and in animal and can directly impact a company’s reputation. It is estimated 
that the cost to research and develop a new molecular entity is around $1.8 
billion [5].  

Another method that scientists have used to determine molecule similarity 
include various visualization tools including the radial clustergram [6], where 
molecules are grouped together and viewed via a dendrogram or other 3rd party 
software including major companies like Spotfire to aid in the decision-making 
process. 

Our research primarily focuses on the process of narrowing the extremely large 
database of molecules that scientists must use to screen their targets. Given a 
particular drug target, each molecule has different measureable attributes that 
are used to compose a molecular fingerprint. With the help of molecular 
fingerprints and existing methods to find similar compounds, we have developed 
a more efficient and accurate screening method that better narrows the list of 
lead compounds. 

A high level overview of our work is to shorten the fingerprint while maintaining 
accuracy. The first step is tocreate, or preprocess, a list of molecular fingerprints 
of interest. Based on analysis of the position of its fingerprint properties from 
preprocessing, we determine an optimum sort order to best regenerate all 
fingerprints. 
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In the sections to follow, we will provide the basic background to molecular 
fingerprints and how they are generated. Next, we review various similarity 
matching algorithms. With molecular fingerprints, we explain how similarity 
matching algorithms are used to determine molecular similarities and identify the 
bottleneck in the process. We discuss prior work in this area from other authors 
who have introduced improvement methods. Finally, we discuss our new 
approach, its implementation, and results. 

2. Molecular Fingerprint Background 

A molecular fingerprint is a method in chemical informatics where a molecule’s 
attributes are represented as a string of binary bits of variable length [7]. Binary 
encoding of these fingerprints detect a 1 for attribute presence or 0 for attribute 
absence [8].  A fingerprint is the simplest way for a computer to compare for 
similarity because comparing strings of bits is far simpler than comparing 3D 
molecules.  

 

Figure 1.Image of a molecule represented as a 3D image. Trying to compare different molecules is 
extremely challenging. 

There is no maximum length of a fingerprint and no rules on which attributes are 
required to be included in the fingerprint. There can therefore be a limitless 
number of ways to represent the same molecule, depending on which the 
attribute bits are defined. There are several large companies who create and 
maintain commercially available databases of fingerprints for the pharmaceutical 
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industry. The downside of commercially available databases is that they are 
expensive and available through restricted interfaces. Two popular databases 
include Molecular Design Limited’s (MDL) Available Chemical Directory (ACD) 
and the American Chemical Societies (ACS) CAS Registry, which contains all 
molecules reported in chemical literature. Other available databases include 
ChemSpider, which contains compound information from Web sources, and 
PubChem, which stores compound information from governmental and academic 
sources related to data from bioactivity [9, 10]. An approximate of twelve 
thousand molecules is added each day to public databases, but private ones 
could contain more [11]. 

In addition to commercially available companies, other educational sources such 
as the University of California, Irvine (UCI) maintains a publically available source 
of molecules for research purposes only called ChemDB [12]. 

Fingerprints can be created to support various types of attributes, which include 
structural, chemical, and various combinations. 

2.1 Structural Based Fingerprints 

The goal of structural fingerprints is to find molecules that have the most 
matching physical properties as a target molecule. Based on the Similarity 
Property Principle, which says that structurally similar compounds are likely to 
exhibit similar biological activity, scientists can use known structural attributes to 
guide pathway manipulations [13]. Therefore, the intent of a structural fingerprint 
is to identify molecules with a similar molecular shape. Each bit of fingerprint 
represents whether the structural fragment of the molecule exists.The set of 
fragments are small substructures of the molecule to describe a phenyl, nitro, 
and carboxylic acid group [14].  

An example of a structural fingerprint takes a molecule and decomposes it into its 
smallest atoms. Through a series of iterations, every possible fragment of the 
original molecule is added as an attribute to the fingerprint. The fingerprint does 
not take into account the number of each fragment, but whether or not the 
fragment exists. This resulted in a linear speedup during similarity searching [15]. 
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Figure 2.This is an example of one way a molecule (Ethylbenzene) can be decomposed to create 
structural bits. The very top molecule is the target molecule. Each of the six decomposed molecules 
are parts of the original. Since they are available, they have a bit of 1 in the fingerprint. 

Other methods of structural fingerprinting enforce a maximum path length on the 
fragment size of the molecule. This limits the length of the fingerprint for larger 
molecules, but results in poorly represented chemical structures [16]. 

The major challenge with structural fingerprints is that there are too many ways 
to represent a single molecule. Based on the example in the figure above, we 
can see there are at least six common chemical attributes, but it can potentially 
have many more, especially if the molecule is larger and more complicated [17].  

2.2 Chemical Based Fingerprints 

The chemical fingerprint consists of the chemical properties of a particular 
molecule. Some properties can be obtained through lab experiments. Other 
properties can be obtained through other software that attempts to predict 
chemical properties. The intent of a chemical fingerprint is to match a molecule 
with the same chemical properties, but perhaps a completely different structural 
shape. 

A downside of chemical properties is that certain assays can only measure up to 
a certain range, depending on the sensitivity of a certain assay. With different 
situations, different assays can be created to measure. Therefore, it is possible 
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that a chemical result can have a result containing a greater than or equal to 
value, indicating it was higher than the assay is able to measure. This can create 
a noise which is also a problem [18, 19].  

3. Similarity Matching 

With a list of molecular fingerprints from a single source, a target’s fingerprint can 
be compared against all other fingerprints in the database. The results determine 
how similar the attributes of the fingerprints are compared to a target molecule. 
This informatics portion of drug discovery helps scientists to quickly narrow down 
their search results.  

Aside from the molecular fingerprint comparison, similarity matching can also be 
done through weighting schemes that show the frequency that a certain fragment 
occurs. This provides greater detail than the 1 (present) and 0 (absent) encoding 
with molecular fingerprints. By prioritizing how some fragments are weighted 
more heavily than others, scientists can get better results on similarity between 
compounds. 

Other areas of similarity matching included pre-processing the fingerprints to 
determine which molecules need to be scanned based on the number of 1 bits 
relative to the number of 1 bits in the target molecule. Pre-processing in this 
manner was concluded to linearly improve the similarity checking process [20]. 

Within similarity matching, algorithms are used to check by similarity coefficients. 
There are various algorithms for checking fingerprint similarity. The algorithms 
result in coefficients that fall into a range of possible values, such as the range 
from 0 to 1. These coefficients are categorized as association coefficients, 
correlation coefficients, and distance coefficients. Association coefficients are 
described as values that range from zero, shows no common features, to unity, 
shows identical features. For our project work, we will focus on association 
coefficients. The most commonly used indexes, range, and formula are 
described below. In the algorithms below,“a”equals the number of bits that are in 
common to the target molecule and the molecule being compared.“b”equals the 
number of bits that are ones in the target molecule. “c”equals the number ofone 
bits in the molecule being compared.“d” equals the number of bits found in 
neither molecule. “N” is the fingerprint length. [21] 
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3.1 Ochiai/Cosine 

The Cosine index is the ratio of the bits in common to the geometric mean of the 
number of on bits in the two items. The range of the cosine method is 0 to 1. 

 

3.2 Jaccard/Tanimoto 

The Tanimoto and Jaccard indexes are the same, and have a range from 0 to 1. 
The Tanimoto index selects smaller compounds, and has an association 
coefficient type. The Tanimoto method is the most widely used algorithm 
because of its proven superiority over other algorithms. 

 

 

3.3 Russell/Rao 

The Russell/Rao index has a range from 0 to 1. It has the worst performing 
coefficient when tested on a 20k data with 2000 cluster levels. Through various 
test trials, it is found that Russell/Rao is biased toward larger compounds. 
Performance improves when the active compounds retrieved are relatively large 
in size. The Russell/Rao has an association coefficient type. 

 

 

3.4 Baroni-Urbani/Buser 

The Baroni-Urbani/Buser was tested in a clustering technique and performed as 
well as the Pearson, Stiles, and Yule index. It is categorized within the 10% best 
performers with rankings at levels of 2000 clusters, 1000 clusters, and 500 
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clusters. In mapping the standard deviation in size of compounds selected, 
Baroni-Urbani/Buser is most suitable for compound selection. 

 

3.5 Simple Matching 

The Simple Matching algorithm has a poor-performing coefficient when tested 
against a 2000 cluster level. It has a tendency to select larger (in terms of bit 
density) compounds and retrieve smaller ones. Simple Matching has an 
association coefficient type. 

 

3.6 Kulczynski 

The Kulczynski index is the mean of the individual substructure similarities and 
provides average rankings by itself or in combination. It has a range from 0 to 1. 

 

3.7 Fossum 

 

3.8 Forbes 

The Forbes index has no upper limit. It has a poor performing coefficient when 
tested against the 2000 cluster level. It has an improved performance with 
retrieving smaller compounds. 

 

3.9 Simpson 

The Simpson index is the best of the individual substructure similarities, however, 
when tested among the other indexes, it performed as poorly as the Simple 
Match, Forbes, and Russell/Rao. 
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3.10 Pearson 

The Simpson index is the best of the individual substructure similarities, however, 
when tested among the other indexes, it performed as poorly as the Simple 
Match, Forbes, and Russell/Rao. 

The Pearson index is a superior clustering technique when tested with various 
levels of clustering. 

 

 

3.11 Yule 

The Yule index is a superior clustering technique when tested with various levels 
of clustering. 

 

3.12 Stiles 

 

3.13 Dennis 

 

 

 
In providing an overall analysis of the various indexes, the Simple Match, 
Russell/Rao and Forbes algorithms weighted differently in terms of size 
distributions, which lowers the chances of finding a similarity match based only 
on structural chemical properties. The Baroni-Urbani/Buser coefficient selects 
compounds that show a similar size distribution as the compounds from the 
database. The Tanimoto coefficient performs the best, but it can be improved by 
combining selections of complementary coefficients through various combining 
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data ranking techniques. Pearson, Yule, Stiles, and Dennis have correlation 
coefficient types [22]. 

While each algorithm may prove more effective depending on the data and 
sample size, it is impractical to use a different algorithm each time a molecular 
fingerprint needs comparison. This leads to further examination and analysis of 
compound search methods. However, since the Tanimotoapproach is the most 
widely used similarity algorithm, we will use this as our benchmarking algorithm 
throughout the rest of this paper. 

Also, the final similarity score that is retrieved for a molecule is often times 
confused as a general score for the entire molecule. The fact that the similarity 
score is highly dependent on the attributes presented in the fingerprint is often 
overlooked. If attributes are completely irrelevant to the target profile, the 
resulting similarity score will have less meaning. 

4. Molecular Fingerprints and Similarity Matching 

With a molecular fingerprint, scientists who understand the pathways of a 
particular disease start with a general concept of how to manipulate the disease. 
This pathway information can be continued research in novel areas of an existing 
drug, where data is published and replicated. Another situation is research data 
from an academic institution who have published research papers. A third way is 
a scientist may have some understanding on a specific target and begin running 
experimenting with molecules whose shape and characteristics fit the target’s 
profile. 

Once a scientist has laboratory data that positively support their hypothesis, 
similarity searching becomes a reality. They can take other well-known attributes 
from the molecules of interest and assigned them to clearly identify the attributes 
they want to find from other molecules that may have been previously 
overlooked. 

The goal of similarity matching is to assign a similarity score for molecules so 
scientists can focus more attention on molecules that are more similar to 
molecules of interest. This way, a scientist is not required to dedicate time to 
individually examine molecules that do not match. Additionally, money otherwise 
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spent on poor molecules can be spent on molecules with a higher chance of 
success. 

5. Growing Problem with Molecular Fingerprints 

A problem with using molecular fingerprints is that scientific technology is 
becoming more advanced. Two advances are making molecular fingerprint 
comparisons more challenging. With the introduction of high throughput 
screening, the list of known molecules and fingerprints are growing larger and at 
a faster rate. This presents a challenge to fingerprint similarity because it 
increases the number of possible comparisons. In addition to more comparisons, 
an improved science allows each molecule to have more known attributes 
available for comparison. This results in longer fingerprints. Therefore, the 
problem is two sided. Fingerprints are longer and more numerous.  

To alleviate extremely long fingerprints, a technique known as “Folding” is 
available. This method manages to keep the important attribute information while 
minimizing the size of the fingerprint. In short, it increases information density, 
with the assumption that most bits of a fingerprint are expected to be zeros by 
assuming more information in a single bit [23]. Therefore, each bit in the original 
fingerprint is related to a single attribute. In a single folded fingerprint, each bit 
contains data for two attributes.  

There is no limit to the number of times a fingerprint can be folded. In the folding 
example below, the binary string below is folded a single time. 

 

Figure 3.Example of Folding 1x. In this example, the original fingerprint is split into two pieces. The 
bits from the first half of the fingerprint and second half of the fingerprint are folded once to produce 
a fingerprint half of the original size. 
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The result is a binary string half of its original size, but retains the known 
information about a molecule. If a molecule is extremely long, a fingerprint can 
always be folded multiple times to make the molecular fingerprint shorter. Since 
fingerprints have more 0 bits than 1 bits, this does not drastically affect the result. 
However, with each additional fold, the rate of false positives increases since 
more bits that were previously zero are converted to one bits. 

6. Prior Work 

The challenges surrounding increasingly long and numerous fingerprints has 
been acknowledged and reviewed by many other papers. Each paper presents a 
unique method to improve the situation. 

6.1 Create an Integer Based Fingerprint 

With this method, the original author attempts to shorten a fingerprint by 
completely changing its signature type [24]. Instead of using a simple one or zero 
bit for the fingerprint, the author creates an integer based fingerprint. This 
fingerprint print is created by splitting the original fingerprint a variable number of 
groups. Based on modulo hashing, the members of each hashed group are 
summed and the resulting value is the integer value for the signature of the new 
fingerprint. With this approach, the author is able to shorten the fingerprint [25]. 

6.2 Pruning the Database 

Research has been conducted to prune the database. This process involves a 
preprocessing step and the basic fingerprint that contains only ones and zeroes. 
The research sums the number of one’s bits in the target molecule’s fingerprint. 
Instead of checking every single molecule in the database, researchers only 
check those fingerprints that have a similar number of ones in their fingerprints 
[26]. Therefore, the research needs to preprocess all molecules and determine 
the number of ones. Using this method, the research is able to gain a speed up 
during similarity comparison. This is due to the fact that there are less molecules 
requiring similarity searching. 

6.3 Fingerprints with Entropy Codes 

In another related method,research was conducted to improve ways to store 
fingerprints. The researching methods are to improve storage and retrieval times 
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of fingerprints [27]. Instead of simply storing the fingerprints as a string of binary 
bits, the researchers also calculate a new fingerprint representation based on 
Golomb and Golomb-Rice Codes. This method uses statistics to reduce the 
length of a fingerprint by reassigning the most popular sections of bits to a 
shorter value. The goal of this paper was specifically for the storage of 
fingerprints in a lossless fashion. 

6.4 Similarity Search Analysis 

The similarity search analysis study looked into how the different similarity 
searches performed with different fingerprint types. Researchers analyzed four 
fingerprints with different attributes by listing the pros and cons of each type. 
Additionally, they obtained fingerprints for each and looked at the result of how 
different types of fingerprints affected the similarity results. What the researchers 
found were the descriptor fingerprints are more defining that the behavioral 
based fingerprints [28]. 

7. Project Goal 

Since a common method of molecular folding is popular, we want to compare this 
method of fingerprint shortening and investigate if there is an alternative method 
that both shortens the fingerprint and maintains the molecular attribute 
information. The goal is to create a method that is faster than and as accurate as 
a linear search. 

We begin accuracy in the folding methods. We will gather data to compare how 
folding one time and folding two times is faster and retain some accuracy than 
doing a linear search on the original database [29], which we will call the 
“original.”. Because theTanimoto Similarity score is the most widely used method 
for comparison, we decided to use it as our benchmark similarity method to 
measure how accurate the search results are to the original.  After we have 
gathered this data, we will compare how our new, modified algorithm performs 
against the folding benchmarks.  

At the end, we want our fingerprint results to be more accurate than the folding, 
but also achieve similar or better timing performance than the similarity search. It 
is critical that at the very minimum, the molecules that are present in the original 
fingerprint similarity results also appear in our statistic based fingerprint result. 
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8. New Approach 

The new approach is designed to enhance the folding process that results in 
more accuracy than the standard fold. Currently, the folding once method takes a 
molecular fingerprint, and folds exactly in half. This folding method rounds up the 
number of similarities between compounds, and thus provides a larger list of 
common compounds than the original. Similarly, folding twice creates an even 
larger list of common compounds because more zero bits are converted to one 
bits.  

 
Figure 4.An example on the detrimental effects that folding a fingerprint multiple times has on a 
fingerprints actual result. Although some information may be maintained, there is also a higher 
chance that zeroes may become ones, thus misinterpreting the original fingerprint. 

Since we expect a fingerprint to contain more zeros than ones, we want to give a 
fold the best chance of resulting in a one bit only when both bits in the fold are 
one, and result in a zero bit when both bits in the fold are zeros. In the figure 
below, the first and fourth case yield the best results. The partial goal is to 
minimize the amount of information that is lost during the fold. As seen in the 
figure, case 2 and 3 contain the most lost information. 
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Figure 5. Information is retained with 1. Information is lost with 0.  The best outcome is when the 
values being compared are either 1 or 0. 

We accomplish this by performing a pre-processing step which loops through 
every fingerprint and analyzing the index of a shorter block bits that have a value 
of one to determine a new bit order. Note that reordering the bits of the fingerprint 
is not harmful as long as the reordering occurs uniformly throughout all 
fingerprints. Reordering with an entirely new string of bits that have no relation to 
the original string of bits is also unacceptable, as the attributes would be 
incorrectly grouped together. This is the case because the benchmarking 
similarity algorithm, Tanimoto, takes each individual bit into consideration when 
calculating the similarity coefficient. 

We accomplish this by performing a pre-processing step which loops through 
every fingerprint and analyzes the index of a shorter block bits that have a value 
of one to determine a new bit order. 

8.1 Splitting Into Smaller Blocks 

In a pre-processes phase, we split all the fingerprints in the database up into 
equally sized smaller blocks of bits. We then create a list of these smaller blocks 
of bits and count the number of unique occurrences. This list is sorted 
descending by number of occurrences. The purpose of pre-processing is to 
determine the blocks of bits with the most number of occurrences. Though all 
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blocks of bits are important, we do not want the blocks of bits that occurred less 
frequently to negatively weight our results. Given that we are analyzing a 
molecular fingerprint, we expect there to be an extensive list of repeated blocks 
of bits, since the occurrences of zeros are much higher than ones. 

8.2 Determining a Better Bit Order 

Using the pre-processed list with only the highest occurrence of blocks of bits, we 
want to create a rule to determine a new ordering of the bits within those blocks 
of bits that would best improve the folding process.For this to occur, we want the 
two indexes with the first and second highest number of one bit occurrences to 
be folded together. With this reasoning, we want to put the index with the highest 
number of one occurrence in the zero indexes, and the index with the second 
highest number of ones occurrence in exactly the middle of the block of bits. In 
this manner, when the block of bits are folded, those two bits will fold together, 
and no information about the attributes will be lost. 

 

Figure 6.How to determine the number of occurrences at each index. The example above shows the 
result of four fingerprints of length 8. For each bit, we take a count on the number of occurrences. 
The results above show that the first two and last two bits have the highest occurrence. 

In the figure above, we assume that there are four fingerprints. The goal is to 
determine if any of the property indexes are populated more frequently than the 
other property indexes. In this example, we discover that indexes 0, 1, 6, and 7 
are the most frequently used columns. Therefore, those are the columns we can 
determine should be matched together.  
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8.3 Ordering and Folding the Bits 

After defining a better bit order rule, we are now ready to create our new 
fingerprint. We take the bit re-ordering rule previously generated and apply it to 
the shorter blocks of bits. Next, with the new order, we fold the block of bits one 
time. After all small blocks of bits from one fingerprint have been reordered and 
folded, they are concatenated back into a new fingerprint whose length is half of 
the original fingerprint’s length. This process is repeated to cover all blocks of bits 
for every fingerprint. 

 

Figure 7With the ordered bits in the best case scenario, there is no information loss. 

The figure above is an example of the best case situation for reordering. Again, 
we assume that indexes 0, 1, 6, and 7 have the most frequent occurrences. 
Therefore, we want the most commonly indexed to be matched together. In the 
original case (without reordering), the resulting folded fingerprint will lose half of 
its information because the bits are not be in the right position. In the re-ordered 
bit, we swap the fingerprint attributes in the second half the fingerprint so that the 
folding process will not lose information. 

9. Implementation 

Creating a system to experiment with ways to better improve the elimination 
process of molecules was implemented from scratch. The first step was to obtain 
an open source list of fingerprints. ChemDB is a readily available database of 
files in a structure-data file (SDF) format, which included a molecular fingerprint. 
ChemDB’s molecular fingerprint includes values calculated from other third party 
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applications like CORINA, OEChem, and vendor annotations [29]. The SDF file is 
downloaded once outside of the actual system. 

The main system itself was programmed as a console application in Microsoft 
Visual Studio 2010 in C#. The application was run locally on a Core 2 Duo laptop 
with 4GB of RAM. 

We decided it was best to use the Tanimoto Similarity due to its widely accepted 
popularity and to benchmark the new fingerprint method against Folding 1x, 
Folding 2x, and the original fingerprint. 

Additionally, the final version of the code does not try to optimize for speed. 
There are several sections in the code which perform correctness checking to 
help insure the system is bug free to avoid a bias in the results that may 
otherwise go unnoticed. 

9.1 Parsing the SDF File 

Parsing the SDF file was added to improve runtime. Since the SDF files are 
batched in groups of 100,000 molecules, we obtained around twenty files for 2 
million compounds. There was approximately 11 GB worth of data. That was far 
too much to parse each time we ran the application. Therefore, we parsed the 11 
GB of data to keep only the fingerprint in a simple CSV file format. This portion of 
the application had read only access to the location of SDF files. We extracted 
only the fingerprint and wrote the data out to an intermediate file to speed up 
future processing of the files. When writing out to the intermediate file, we also 
wanted to insure that all fingerprints were 1024 bits for this experiment. Any 
duplicates were removed to keep analysis of the fingerprint simple. An abridged 
example of a block of SDF file below shows the types of information contained 
for each section. 

The very top of the SDF file contains a mol block, which is a textual 
representation of the molecule that can be converted to a 2d representation via 
various software applications. Next, any additional properties and property values 
can be added as necessary. There are no guidelines stating what properties are 
required. The portion that we are most interested in is the fingerprint_1 section. 
This value is what the rest of the application will consider as the “original” 
fingerprint. 
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Figure 8. An example of an SDF file. Although there is not a standard on expected data within a file, 
the portions of interest in these SDF files are found in the ><fingerprint_1> sections. 

9.2 Folding One Time 

To create a shorter fingerprint, the most popular method is to fold the fingerprint 
one time. Doing so involved splitting the fingerprint up exactly in half. A logical 
OR is then performed bit by bit with each half to generate a now more densely 
populated variable. The resulting variable was stored along with the original 
fingerprint. 

9.3 Folding Two Times 

As a second analysis to see how a more compressed fingerprint would affect 
results, we folded the molecule a second time. This involved splitting the 
molecule up into quarters and then performing the logical OR on all portions 
together. This folded two times fingerprint was also stored in memory. Based on 
the results gained from Folding 2x, we conclude that it is unnecessary to Fold a 
third time. 
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9.4 Calculating Tanimoto Similarity 

A generic Tanimoto Similarity function was created which accepts a bit array of 
any length and returns the final similarity score between 0 and 1. Additional 
overhead was added to insure the incoming parameters and return values were 
correct. This means checked that both fingerprints are of the same length, and 
make sure the resulting value was is truly between 0 inclusive and 1 inclusive. 

9.5 Calculating Statistics 

We want to pre-process the original fingerprint to generate statistics on the 
fingerprint. For each of the approximately one million molecular fingerprints, we 
split the fingerprint up into 32 bit blocks. Since the fingerprints are each 1024 
bits, each fingerprint will contain exactly 32 equally sized blocks. With a list of 32 
bit block, we count the occurrence of each unique block. We expect there to be 
an overlap of 32 bit blocks over the course of one million molecules. The final 
output of this step takes all fingerprints available and returns a dictionary of 32 bit 
block and the number of occurrences of each of the 32 bit blocks. The dictionary 
is kept sorted by the highest number of occurrences. These statistics can now be 
utilized in a later step to generate a statistics based molecular fingerprint. 

9.6 Using Statistics to Create an Improved Fingerprint 

Here, we take the resulting bits and create the reordering rules to create a new 
fingerprint definition that is of the same length. The first step of this process is to 
take any 32 bit block that has at least 10000 occurrences and count the number 
of occurrences at each bit index. Given the result, we can create a rule for 
reordering the 32 bit blocks. Once the rules have been determined, we loop 
through all of the unique 32 bit blocks of bits and create a new 32 bit block and 
fold it. Therefore, the new dictionary of 32 bit blocks contains the original 32 bit 
blocks along with the new 16 bit block. Finally, the third step is to go through all 
the original fingerprints again and replace 32 bit blocks with 16 blocks. 

9.7 Clustering the Resulting Data 

With similarity measures from each of the various types of fingerprints, we 
categorized the results into various “bins” to determine how well the folding one 
time, folding two times, and the improved fingerprint based fingerprint compared 
against the original fingerprint. Given that the similarity score is expected to be 
between 0 and 1, we place the scores into their respective bins, which are twenty 
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equally sized bins with a range of 0.05.For example, a similarity score of 0.78 
falls into the bin labeled 0.75 to 0.80. The resulting numbers from the binning 
operation is then a benchmark to determine how well each new fingerprint 
method improved against the original fingerprint. 

In addition to binning, the fingerprints that were returned from each operation 
were written out to a file for manual inspection. This is to manually verify the 
results from the code that runs the binning process. 

We experimented with various numbers of equally sized bins to determine what 
sized bins results in the most similar information each fingerprint resembles the 
original fingerprint. We decided that twenty equally sized bins would be sufficient 
to show improvement for folded one time, folded two times, and the improved 
fingerprints. 

9.8 Application Correctness 

To insure basic correctness of the application, we also implemented various 
checks throughout the application. These checks were designed to verify at 
critical portions of the application to immediately detect unexpected input that 
may bias the results. Ultimately, the application would stop the binning process 
when an error was detected. 

10. Results 

The results we have obtained from over 1 million unique fingerprints are depicted 
in the chart below. At various points of the application, state information is 
gathered and aggregated. While reviewing the tables of results, it is critical to 
remember when the scientists review similarity matches, they will only be 
interested in molecules with the highest scores. The greater majority of the 
molecules will be disregarded. 

10.1 Number of Unique 32 Bit Blocks 

Before creating new fingerprints, we analyzed the number of unique 32 bit blocks 
that existed to determine how much overlap in bits existed. What we have 
observed is that as more original fingerprints were analyzed, the fewer unique 32 
bit blocks were generated with each additional fingerprint and more occurrences 
of the 32 bit blocks fell into preexisting blocks. This shows us that as the number 
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of fingerprints to be preprocessed increases, we expect to see fewer unique 32 
bit blocks, but increased overlapping 32 bit blocks. 

 

Figure 9: Number of Unique 32 Bit Blocks. As the number of fingerprints increases, there are more 
fingerprints available. 

 

10.2 Original Fingerprint vs. Folded 1x 

Our results from comparing the original fingerprint to that of a folded one time 
fingerprint is acceptable in the most important 0.95 to 1.00 bin range. However, 
as shown in the very next bin from 0.90 to 0.95 and 0.85 to 0.90, the number of 
false positive increases. Additionally, the resulting fingerprints from Original 
fingerprint clusters matched those found in the Folded 1x fingerprint clusters. 
This further backs up our conclusion that the folding algorithm was working as we 
expected. 

 

 

 

22 
 



 

 

 

 

Table 1: Comparing results from the Original Fingerprint against the Folded 1x Fingerprint 

10.3 Original Fingerprint vs. Folded 2x 

When compared to the Folded 2x with the original fingerprint, it is shown from the 
very start that the statistics are too poor to be of any use. In the very first bin, the 
three true similarity matches are grouped into a bin of 450 molecules. These 
results are very inconclusive and insufficient as there are too many compounds 
for a scientist to compare with its drug target. This leads to the time and cost 
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constraints that we aim to improve. Additionally, with the results gained from the 
Folded 2x, we found it would be unnecessary to Fold a third time as it would be 
impossible for the results to improve. In addition, in the case similar to that found 
in the Original Fingerprint vs Folded 1x fingerprint, the data here also shows the 
fingerprints are properly clustered.  

 

Table 2: Comparing results from the Original Fingerprint against the Folded 2x Fingerprint 

10.4 Improved Fingerprint vs. Original Fingerprint 

Comparing the improved fingerprint against the original fingerprint, we find that 
the first two clustered bins match very closely with the original. In fact, it also 
incrementally improves on the matches in the 0.85 to 0.90 bin. 
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Table 3: Comparing results from the Original Fingerprint against the Improved Fingerprint 

 

10.5 Improved Fingerprint vs. Folded 1x Fingerprint 

The comparison between the improved fingerprint and the Folding 1xfingerprint is 
the most interesting. What can be shown is that the data between the improved 
fingerprint and Folded 1x Fingerprint are similar. But when the improved 
fingerprint is specifically compared with the Folded 1x fingerprint in the 0.85 to 
0.90 bin, the improved fingerprint is 20% more accurate than the Folded 1x 

25 
 



fingerprint. While we see less accuracy in a few of the lower bins, this is 
acceptable because these values are not weighted very heavily since the 
similarity score is too low. Scientists will not consider the compounds within bins 
lower than the 0.85 – 0.90 range as there are too many results to further analyze 
with the drug target. Therefore, bins of interest as stated above, we have found a 
20.5% improvement in the number of returned molecules. 

 

Table 4. Comparing results from the Improved Fingerprint against the Folded 1x Fingerprint 

 

10.6 Timing 

The amount of time it took to calculate the similarity step very closely matched 
that of the single folded fingerprints. These results are accurate since the length 
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of these fingerprints is the same. There was time spent pre-processing, however 
once the rules were set, the time spent creating the fingerprints was not 
noticeablylonger. The Tanimoto Similarity measurement (and all other similarity 
measurements) run on a bit by bit manner, and therefore are expected to run in 
linear time. Therefore, any differences in the similarity calculation times are 
directly linked to the number of bits in the fingerprint. 

Also, the implementation of the individual algorithms, system efficiency, and 
memory management was not a key aspect of this project. 

 

Table X: Table of the similarity run times plus the resulting fingerprint length 

11. Future Work 

There were some variables in the current project that were briefly tested with 
various lengths that may make for an interesting enhancement. By fine tuning the 
combinations of variables, it would be interesting to see if additional gains in 
result improvements can be achieved. 

11.1 Further Enhanced Pre-processing Step 

Another step that may further improve the algorithm is to improve the pre-
processing section by adding into the algorithm of reordering a function to 
remove the very rarely used attributes of the fingerprint. By removing the least 
commonly used fingerprints, the number of similarity searches performed after 
the pre-processing step can be reduced and the fingerprint of each can be 
shorter. Additionally, by removing rarely used fingerprints, we would expect to 
see an improvement in the folding rate. A specific rule on determining when an 
attribute can be removed based on the overall pre-processed results would be 
critical. But more importantly, it would be interesting to find a rule that would 
minimize the differences in final results, but speed up the process. 
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11.2 Similarity Algorithm 

Given that there are many other types of similarity algorithms, it is possible to try 
analyzing various combinationsof algorithms to see if other algorithms yield 
different results. If some algorithm is found to perform better given certain 
situations, given the pre-processing phase, there may be an opportunity to allow 
the pre-processing algorithm to determine at run time the most appropriate 
algorithm to apply. 

12. Conclusion 

We find that partitioning into a smaller equally sized block of bits, and then 
reordering bits for an optimal setting does aid in creating a better result. Although 
the results are still not optimal, it is an incremental on the folded 1x fingerprint. By 
dividing the fingerprint into 32 bits, we were able to isolate the blocks of bits that 
were most common and use those to build up our new fingerprint. The improved 
preprocessing methodthat reorganizes properties to best take advantage of a 
fold meets our goal of improving the similarity. Given that time spent on 
preprocessing, the amount of time spent calculating the similarity was the same. 
Additionally, the pre-processed fingerprintnot only kept the relevant fingerprints 
from the original fingerprint results, but also our result set contained fewer false 
positives than both the folded 1x and folded 2x fingerprints, which is critical to 
any folding process. In all, there was a 20% increase in the most relevant bins. 
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