
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Spring 2012 

Cloud Information Summarization With Mobile Interface Cloud Information Summarization With Mobile Interface 

Hrishikesh Paranjape 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Paranjape, Hrishikesh, "Cloud Information Summarization With Mobile Interface" (2012). Master's 
Projects. 251. 
DOI: https://doi.org/10.31979/etd.tmu2-kkx5 
https://scholarworks.sjsu.edu/etd_projects/251 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/251?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


1 

 

Cloud Information Summarization With Mobile Interface 
 
 
 
 
 
 
 

 

A Writing Project 

Presented to 

The Faculty of the Department of Computer Science 

San José State University 

 
 
 
 
 
 

In Partial Fulfillment of the Requirements 

for the Degree 

Master of Computer Science 

 

 
 
 
 
 
 
 
 
 

 
 

By 

Paranjape, Hrishikesh 

May 2012 



2 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
© 2012 

Hrishikesh Paranjape 

ALL RIGHTS RESERVED  



3 

 

 
 

 

SAN JOSÉ STATE UNIVERSITY 

 

 

The Undersigned Writing Project Committee Approves the Writing Project Titled 

Cloud Information Summarization with Mobile Interface 

by 

Paranjape, Hrishikesh 

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE 

 

 

 

 

 

 

____________________________________________________________ 

Dr. Chris Tseng, Department of Computer Science  05/21/2012 

____________________________________________________________ 

Mr. Yashodhan Deshpande, Infineta Systems  05/21/2012 

____________________________________________________________ 

Dr. Soon Tee Teoh, Department of Computer Science  05/21/2012 

 
 
 
 



4 

 

Acknowledgement 

I would like to thank Dr. Chris Tseng for his excellent guidance throughout this project work 

and my committee members, Mr. Yashodhan Deshpande and Dr. Soon Tee Teoh for their 

time and effort. Also, a special thanks to my family and friends for their support. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5 

 

Abstract 
 

There is a large driver for making existing data accessible everywhere, not just for 

people who happen to be at connected computers. This project aims to design, develop, 

and test Information Summarization System with its mobile application, which will allow 

end user the quick mobile access to underlying data on the web. The mobile application 

allows users to search for information about topic of their interest. This application will 

make use of existing established search engines to summarize the information on 

requested topic. The computation will be done on the cloud and communication between 

client and server will be done via RESTful web services. The server crawls for the data 

and uses classifier to classify it into several classes. Several other open source 

technologies are used in this project. As a basic use case, client will send a keyword to 

server, and server will return classified data to the client. This classified data will be 

useful in forming summary of underlying data that server crawled. This project is an 

attempt to bring information closer to the user. The user can now access the summary 

data on the fly by making use of mobile application provided. 
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1. Introduction 

In this era of cloud computing, there is a large demand for accessible information. People 

want meaningful information out of large amount of available information. This demand is not 

just limited to those who happen to be connected to computers but also to those who use 

mobile devices. 

The numbers of users using the social networking websites are growing exponentially. More 

and more people have started using social networking as a medium to express their 

opinions. In recent news, the number of users using Facebook (a leading social networking 

website) is found to be over 900,000,000 which, is close to 1 billion. So, that means every 

one in eight heads in the world is using at least one social networking website. In a recent 

study [1], information from twitterers (users of twitter) was found to be useful in co-ordination 

of medical work in disaster response. There are several other studies which have proved 

that the information from these social networking websites can be very useful in variety of 

real world domains such as marketing, disaster management, review generation, exit polls 

etc. My project focuses on tweets from Twitter; it will be very useful for users to browse 

quickly through the classified information and draw their conclusions based on classes. This 

classified information will further lead us to summary of the information. Moreover, users will 

be able to access this information from their mobile devices. 

Information classification is usually done by extracting the most important words from the 

available data. This is done by breaking available text into words and sorting those words 

based on their frequency. Next, we have to tag that data to a predefined class. These 

classes can be anything, such as positive, negative, old, new, objective, subjective. In our 

case, a tag will be associated with a tweet. But, before we can assign a class to a tweet, we 

must have some data which can tell a computer program how to classify the incoming data. 

So, as an example, we need a word that is already known to be “positive”, and a sentence 
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which is “positive” because that chosen word. This is called as training data. Every classifier 

requires some training data in order to classify real data. This process will ultimately render 

us the several tweets assigned with a class for each tweet. 

In short, the functionality of the system would be a user will input a keyword, for example, 

say iPhone, and in return it will get result of how many people are talking positive, and how 

many people are talking negative about iPhone. To accomplish this task, I have to make use 

of several server side and client side web technologies. 

Of course, the user will be using a web browser or a mobile device; hence my client side has 

to a web application and/or a mobile application. There are several ways to develop my 

mobile and web client. My mobile client can be a native application for some platform like 

iPhone, Android, Windows Phone, Blackberry etc. It can also be a mobile web interface 

developed using some JavaScript library, there are several options, and we will see them in 

next section of this report. I also have developed a web application which will act as a client 

for user. On the back-end, we need a web service to interact with the client. We can write 

very lightweight web service in PHP. Off course, there are several server side options to 

write a web service, which we will discuss in the next section of this report, but we choose 

PHP. This PHP server side module is responsible for extracting the tweets from Twitter. 

There is another important module in the back-end, data classification engine, it is heart of 

the system. It will classify tweets extracted by server side PHP module, and return it the 

result. The result will contain the tagged tweets which will be displayed to the users. 

So, what is so special about this system, there are several similar social networking data 

mining tools available on the internet [2]. So, later in the report, we will discuss what more 

my project provides in addition to some of the already known twitter classification engines. 

For example, currently available tools such as Splunk do not categorize slang tweets [3]. On 

twitter, we find a lot users using slang in their tweet text. Also, later, we will analyze the 

system on speed, correctness, and scalability. 
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In the “Technologies” section, I will discuss several technologies used to accomplish the task 

and their comparison. In “Design and Implementation” section, I will discuss more about how 

I used those technologies for this project. The next one is “Analysis”, in which, I will analyze 

my system. And lastly, I will conclude the report. 
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2. Foundations 

This project expects prior knowledge of some theoretical concepts. Those concepts will be 

discussed in this section. 

 

2.1 Naïve Bayes Classifier 

At the heart of this project is Naïve Bayes Classifier. Classifiers are used in classification of 

unstructured data. Among the classifiers available the simplest one is Naïve Bayes classifier. 

This simplicity of Naïve Bayes makes it usable in large number of domains. The Naïve 

Bayes classifier works on a simple but intuitive concept [4].  Also, it may outperform some 

complex classification algorithms in some use cases [5]. 

It is based on Bayes rule of conditional probability. It uses all attributes in the data and 

analyzes them individually, independently, and equally. As an example, training data consists 

of animals (say cats, fish, and birds), and our classifier has to classify any new instance of 

an animal. We know that action birds have wings, they can fly, etc. Also, cats have four legs, 

they like milk. Then, fish swim, and have fins. The Bayesian classifier will consider each of 

these attributes separately when classifying new instance of an animal. So, Bayesian 

classifier will not check if it has fins and if it swims, classifier will separately consider if the 

new instance swims, or a new instance have fins. After considering every attribute it will 

determine the probability of the new instance being a fish, a cat, and a bird. 

In Naïve Bayes classifier, the probability of a new object of being in a class is determined as 

follows: 

1. First we define prior probability. Prior probability of a class is ratio of number of 

instances of class in the training data to the total number of instances in the training 

data. In above example, 

Prior probability of cats = number of cats / total number of animals. 
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2. Next we define Likelihood of an instance for a class. It is the ratio of number of class 

instances in vicinity of instance under examination to the total number of instances of 

class. For example, 

Let “I” be any instance of unknown class 

Likelihood of “I” for cats = number of cats in cluster if “I” / total number of cats. 

3. Then we define Posterior probability of “I” (any instance of unknown class) for any 

given class. It is product of prior probability of “I” and likelihood of “I” for a given class. 

For example, 

Posterior probability “I” for cats = Prior probability of cats * Likelihood of “I” given 

cats. 

4. Likewise, we compute posterior probability of new instance for every class. In the 

conclusion, we determine the instance to be of class for which its posterior probability 

is greatest [5]. 

Above four steps will give us the class for a test statement (tweet). Now, To put it into 

mathematics [6]: 

We want to calculate:  

prob (tag fits|this tweet, and training data) 

Using Bayes theorem: 

prob(tag|tweet, training) = prob(tag|training) * (prob(tweet|tag,training) / prob(tweet|training)) 

Here, 

prob(tag|tweet, training) = probability that given tweet should belong to a tag 

prob(tag|training) = prior probability 

prob(tweet|tag,training) = probability that words in input tweet appear in tag’s data set 

prob(tweet|training) = how much each word in input appear in all training data 

prob(tweet|tag,training) / prob(tweet|training) = posterior probability 
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2.2 REST Architecture Style 

REST stands for Representational State Transfer [6]. It is a style of Software Architecture for 

distributed systems. REST is new age predominant web service design model.  

The key goals of REST include: 

 Scalability of component interactions 

 Generality of services 

 Independent deployment of components 

 Intermediary components 

In this project we use RESTful web services. RESTful web service is a web service 

implemented using HTTP. It has four aspects: 

1. The base URI 

2. Media type such as JSON, XML 

3. Set of operations such as GET, PUT 

4. API must be hypertext driven 
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3. Technologies 

To start with I would like to enlist three main modules in my system, and explain the choice 

of existing framework for each. 

1. Front End Web and/or mobile 

2. Back End Web Services 

3. Back End Classifier Module 

4. Data Visualizations 

 

3.1 Front End Web Technologies 

On the front end, we need to consider presentation and data visualization aspects of the 

system. As the project focuses on Mobile Interface we will start with choices for platforms for 

mobile interface. 

1. Native Application Development for iPhone, Android, Windows Phone etc.: 

If we choose this approach, we need to develop different versions of the same 

application, which is a tedious job to do. The market share of these platforms is 

changing too frequently to choose any one or some of them, so, by not choosing any 

one or some of them we are making our system not accessible to everybody, which 

defeats the purpose of making data accessible to anyone anywhere. 

2. Titanium Appcelerator: 

Titanium Appcelerator is a platform which allows developers to deploy one 

application on multiple platforms, like iPhone and Android. Using this approach we 

can deploy the same application on iPhone, Android and Windows Phone 7. But, 

large learning curve, relatively small user community are some drawbacks of this 

technology. 
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3. Mobile Web Application: 

Considering that the web counterpart of mobile application is very desirable to 

develop, this approach can be useful in development of web interface as well. There 

are several JavaScript libraries which help us write mobile friendly web applications. 

Moreover, the power of new HTML5 and CSS3 allow us to style our web application 

in such a way that the application looks like a mobile application. The most used 

JavaScript libraries in this domain are sencha touch (mobile equivalent of ext js), 

jquery mobile (mobile equivalent of jQuery), moo mobile, etc. But, the look and feel of 

sencha touch applications is more like native mobile applications; also the user 

community of sencha touch is larger than that of jquery mobile. Hence, we go for 

sencha touch. 

For client side web application, we will be mostly dealing with HTML markup, CSS styling. 

For dynamic content, there was an opportunity to learn other libraries like Ext JS and YUI, 

but both the libraries have proven to be heavyweight as compared to jquery. Also, jquery 

suffices specific requirements of the application. Hence, we choose jquery for dynamic 

content on the client side. 

 

3.2 Back End Web Services 

Our server side tweet extraction module communicates with the front end client application. 

This communication is carried out with the help of RESTful web services. There are several 

lightweight web service development platforms. Few of them are as follows: 

 Zend PHP 

 NodeJs 

 Action Web Service (For Ruby on Rails) 

 Apache Axis 2 – Java 

For our use, I chose to write web services in PHP. 
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This back end PHP program is responsible for taking a search keyword from user, extracting 

tweets from twitter API containing the search keyword, passing the tweets over to python 

classifier, and giving the result from classifier back to client. 

 

3.3 Back End Classifier Module 

For our classification purposes we use Naïve Bayesian Classifier. In Python, there is a 

package available for Natural Language Processing, it is called as Natural Language Toolkit 

(nltk). Python nltk is collection of open source python modules, linguistic data, and 

documentation for research and development in natural language processing and text 

analysis. 

There are several other implementations of Bayesian Classifier, but we use Bayesian 

classifier from nltk [7]. 

 

3.4 Data Visualizations 

After classified data is sent to the client, we need to visualize it in form of interactive charts 

and graphs. For charting on the web browser, there are several JavaScript libraries, which 

can be used to draw charts on the client. We can also make use of few other API’s for 

charting such as Google Charting API. We have following options: 

1. Google Charting API: 

Google has a charting API that provides you the images of charts for a given input. 

Currently Google Charting API does only support static charting. So, it has a 

drawback of not having dynamic charts. 

2. SVG based solutions: 

There are several SVG based JavaScript charting libraries available. Few of them 

are highcharts, raphael, and d3 [8]. An advantage of having an SVG based library is 

we can change the graph components on the fly without having to re-render it. 
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Another advantage is SVG based libraries are supported by all the main stream web 

browsers wiz. Internet Explorer (MSHTML), Mozilla Firefox (Gecko), Chrome and 

Safari (Webkit), hence we are less likely to face cross browser issues. 

3. HTML5 canvas based solutions: 

Few other JavaScript libraries such as flot, sencha charts, and EJS are based on 

HTML5 canvas element. But, because of war of standards between mainstream web 

browsers, HTML5 canvas element is not yet supported by all the browsers. Hence 

we have to use excanvas.js in order to make canvas based libraries work with non-

compatible browsers. What excanvas does is convert HTML5 canvas element to its 

VML equivalent. 

Because of drawbacks of HTML5 approach and Google Charting API, we choose SVG 

based highcharts as our JavaScript charting library. 
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4. Design and Implementation 

As described in earlier section, my project consists of 4 main modules: 

1. Front End Web and/or mobile 

2. Back End Web Services 

3. Back End Classifier Module 

4. Data Visualizations 

In this section, above four main modules of the project will be explained in the order they 

were implemented. 

 

4.1 Overview 

 

 

Figure 1: Application Overview 
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Above diagram shows the overall architecture of the system. As you can see the use case 

starts with user entering a keyword, PHP server module gets the keyword and sends the 

keyword to Twitter API, the Twitter API sends a list of tweets back as a reply of GET request. 

These tweets are then parsed and submitted to Python classifier module. Some 

synchronization logic is used while sending the tweets. This logic is explained later. The 

training data is a directory in which several files with are present, each file contains the 

training data for a specific class. After classifier module completes processing classification, 

it sends the results back to PHP module. PHP module does the job of parsing and 

converting before sending it to the client.  

 

4.2 Classifier Module 

At heart of the system is our classifier module. We use simple Naïve Bayesian classifier from 

Python’s nltk library. Bayesian classifier needs training data. The training data is nothing but 

a set of statements with known tags. Based on those tags, classifier computes class for 

every incoming statement for which we have to find out the class. The process of 

classification was carried out in following steps: 

1. Frequency analysis of training data: 

In this step, we parse the training data into words and find out frequency of each 

word. This frequency analysis is useful in determining probability of correctness of 

classification. 

2. Extract word features from the data: 

After frequency analysis, we find out how much a word contributes in deciding the 

class of the subject. To create classifier, we need to determine which features are 

relevant. Feature extraction returns a dictionary that indicates what words are 

contained in the input passed. 
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3. Naïve Bayes Classifier: 

Python nltk has a classifier object that takes the training set and word features and 

gives back the class for the input statement. Correctness of the result depends on 

quality and quantity of training data chosen. Hence, it is highly important to choose 

precise training data. Following is the Python nltk NaiveBayesClassifier API. 

 

Figure 2: Python nltk NaiveBayesClassifier Block Diagram 

[Image taken from laurentluce.com] 

4. Training data directory: 

All the training data is kept inside a directory placed in the same directory where our 

python classifier program resides. The name of each file in the directory of training 

data is name of the class for statements contained in the file. For example, filename 

“positive” will contain all positive statements. My classifier program reads all files in 

the training data directory. So, every time when you want to add an extra class in 
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training data, you do not need to make any changes with the program, all you need 

to do is to add a file into the training data directory. Following is the screenshot of 

nautilus explorer showing training data directory. 

 

Figure 3: Screenshot of Training Data Directory Containing Training Files 
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Name of the file should be classname, and the text inside file should be a list of 

statements of that class separated by endline(\n) character. 

 

Figure 4: An Example of Training Data File  

(File name: positive, Data format: end line separated) 

 

I used few simple heuristics to increase accuracy and speed of classifier [9]. In the classifier 

module, when extracting word features, I can neglect the words with length 2 or less, 

because these words are less likely to contribute to the class of input (tweet/statement). 

Also, there are very few adjectives with word length 2 or less, hence it is safe to ignore the 

words having length 2 or less. I am also including slang language statements in the training 

data. 

There were several performance issues with the classifier module; initially I was testing the 

classifier on my single core machine having 2 GB of memory. The training process of Naïve 

bayes classifier is very slow and took about half an hour (the exact analysis will be given 

later in this document) for 10000 statements of training data (I measure speed of a classifier 

in terms of number of lines it can analyze per unit time). 

Fortunately, we have a solution; we can dump our trained classifier. Pickle library of Python 

is widely used to dump and retrieve the python objects. This way, we need to train our 

classifier only when there is a change in training data. 
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Figure 5: Python pickle Library Sample Usage 

Along with our training data, we also need to dump word features we extracted while 

analyzing the training data. We will be making use of those word features in order to find out 

class of a tweet. 

The classifier program is listening to a file “inputdata”, “inputdata” is a text file written by PHP 

module. PHP module writes the tweets to this file. Once the classifier sees that the file in not 

empty, it parses the tweets from the file. Each tweet is fed to classifier to get a class 

attached to it. In the end we get a list of tuples with first field as tweet text and second field 

as class of the tweet. This tuple is then written to “results” file in csv format. Then it is 

responsibility of PHP module to send classified data to the client. 

 

4.3 PHP Server Module 

Like classifier module, PHP can also be divided into multiple parts as follows: 

1. Web Service: 

Web service is used for communication between client side web application and the 

server; this web service takes a keyword from the client, and returns the classified 

tweets. In the meantime, the server has responsibility of extracting tweets from the 

Twitter API, pass them to classifier for classification, and get the results from the 

classifier. We use JSON data for convenience and speed. As JSON responses can 
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need no client side parsing and are smaller in size, JSON is better choice than XML 

for our application [10]. 

 

Figure 6: jquery Web Service Caller (for web application) 

 

 

Figure 7: sencha Web Service Caller (for mobile application) 

 

2. Twitter API caller: 

PHP server is responsible for fetching the tweets from Twitter API. Twitter API takes 

a keyword and returns a list of tweets containing that keyword. Additionally, it can 

also take other parameters such as date range, number of tweets etc. which are 

quite useful in filtering the tweet data. Following is a sample twitter search API 

request string. 

 

Figure 8: Sample Twitter Search API Request String 

You can choose the format of result, in our case we use JSON. As a new feature of 

twitter search API, it provides an option to retrieve popular tweets in addition to real 

time search results [11]. Following is snapshot of twitter search API reference. 
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Figure 9: Sample Twitter Search API Reference 

 

 

3. Communication with Python classifier: 

PHP server program also has responsibility of communicating with Python classifier. 

It first writes the tweets from Twitter API to a file named “inputdata” in the format 

classifier needs, then in waits for results from classifier module. Once it gets results 

from the classifier, it converts the results to JSON format and sends them to the 

client. 

 

4.4 Client side web application 

Client side web application was developed using jquery with highcharts as choice of charting 

library. The web application calls the PHP web service to get the classified tweets related to 

the passed keyword. As described earlier, the client gets the data in JSON format. This data 

is put into a table so that it is easier for user to see the results. To enchance the user 

interface, charts are also drawn in the application. 

 

4.5 Client side mobile application 

The mobile application was developed using sencha touch library. As discussed in the 

technologies section, the sencha touch application is a web application that just looks like a 

mobile application [12]. That is it is styled in such a way that it will look like a mobile 

application. The deployment process of such mobile web application depends on another 

open source tool called PhoneGap. PhoneGap is a tool which generates native applications 

for multiple platforms. These applications are empty applications with a “WebView” on it. 

“WebView” is a component that is available on every mobile platform. Later, we can just put 

our application on that “WebView” and deploy the application. Following are some 

screenshots of the mobile application. 
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Figure 10: Mobile Interface Screen Showing Classified Tweets 

 

Above screenshot shows how tweets are classified into classes. For storing results in UI we 

make use of sencha touch store API. Store acts as model in MVC design pattern in sencha 

touch. When Store is updated the view which is associated with the store, in our case the 

listview component is also updated. We also use HTML5 localstorage proxy for persistence 

of results. The results are stored in browser local history for future use. 

Following screenshot shows how actual tweet data is displayed along with its class in the 

mobile application. 
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Figure 11: Mobile Interface Screen Showing Tweet Data With Class 

 

4.6 Synchronization protocol 

The Python classifier module is running in infinite loop and listening for changes in file 

“inputdata”. The disadvantage of that is the program has no way to know that the PHP 

module has finished writing tweets to “inputdata” file or not. Hence we have to design a 

protocol that will be obeyed by both the sides. This way our python module will know when 

exactly PHP module has finished writing the “inputdata” file. Following code snippets show 

how protocol is implemented. 
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Figure 12: PHP Module Side Implementation of Synchronization Protocol 

The implementation of protocol consists of two steps. On the PHP server side, while writing 

the “inputdata” file, at the end of file we write “THISISLASTTWEET”. Simultaneously, the 

python classifier module will check if this line is read or not. Once python classifier module 

reads this line, it can assume that PHP module has finished writing tweets to the “inputdata” 

file. 

 

Figure 13: Python Classifier Module Side Implementation of Synchronization Protocol 

 

On Python classifier module side, control exits the infinite loop only if it encounters last line 

of “inputdata” file to be “THISISLASTTWEET”. 

In order to debug issues in synchronization of PHP web service module and python classifier 

module, we use debug messages on both sides. For the PHP module we store debug 

messages in a file, and for python classifier module we print messages in running console. 

Each log message has been given an identification number, which helps in tracking down 

the bug. Following are some screenshots showing debug logs for PHP module and python 

classifier module. 
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Figure 14: Debug Log File for PHP Module 

Based on which logs are printed in the debug file, we can know the exact location of 

bug/malfunction in the program. The PHP module executes only when server receives a get 

request. After it receives request, it extracts tweets and writes them in “inputdata” file. Then, 

it goes into infinite loop until it receives any reply from the classifier module. Lastly, it 

converts csv reply from classifier module into JSON data, and sends it to the client. 
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Figure 15: Debug Logs for Python Classifier Module 

 

Python classifier module runs in infinite loop, listening for changes in “inputdata” file. We 

keep this python program always running. When “inputdata” file is written, python program 

starts processing tweets from that file. When it writes results into “results” file, it cleans up 

“inputdata” file and waits for PHP program to write next block of tweets into it. 

 

4.7 Results and analysis 

4.7.1 Performance Analysis 

After building the system, I performed some experiments on it. My first experiment was to 

calculate time taken by trained classifier in analyzing tweets. For that purpose, I used time 

library in python. By changing rpp value in the twitter API, I changed the number of tweets 

my classifier module gets. Then I computed time required in seconds for the classifier to 

analyze those many number of tweets. I got the following results. 

 



33 

 

Number of Tweets Time Required in Seconds 

1 0.91 

2 1.76 

3 2.33 

4 4.28 

10 10.44 

20 20.05 

100 94.76 

 

Table 1: Time Taken By Classifier to Analyze Tweets 

 

The above table gives us the linear graph of number of tweets vs time taken. The 

experiment was performed on a single core 2 Ghz 32 bit Pentium processor. On a faster 

machine the results will be faster. The experiment shows that it takes about 1 second for the 

classifier to analyze 1 tweet. This is a long amount of time, and off course we do not want 

our user to wait for that much time. To nullify the effect of false positives and false negatives 

of the results of classifier, we need to analyze large amount of data. So, we must query for 

as much data as we can get from Twitter API. In order to do that we can use some tricks to 

query Twitter data. Also, on the classifier side, we can use some methods to make the 

classifier faster. The following graph shows the amount of time taken by classifier to analyze 

a number of tweets. 
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Figure 16: Graph of Time Taken Vs Number of Tweets 

 

4.7.2 Fixes and Workarounds 

Following are some ways to speed up the system: 

1. The main reason behind this poor performance of the classifier is quality and quantity 

of training data. Hence, if we could manage to remove redundancies in training data, 

the performance of classifier will improve because data characteristics affect naïve 

bayes performance [13]. 

2. We can process tweets in small chunks. This way we do not keep our end user 

blocking. So, when user sends a keyword, after initial analyzed tweets, we can send 

new results automatically until user requests a new keyword. This will not speed up 

the classifier, but it will surely improve the user experience. 
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3. As specified earlier, the experiments were performed on a single core machine. 

Moving the classifier to faster and/or parallel processing will definitely improve the 

performance. 

 

4.8 Application Flow Revisited 

The application flow starts with the client application and ends with results shown in mobile 

interface on the client application. Complete flow of the application is summarized in 

following steps: 

1. Client requests for the keyword 

2. PHP server receives the keyword and extracts the tweets from twitter API 

3. Extracted tweets are parsed and written in a file 

4. These tweets are read by Python classifier module 

5. Classifier classifies the tweets and tags a class to a tweet 

6. Classifier module writes the result back to a file 

7. PHP server reads the results and parses into JSON format 

8. The JSON result is given back to client 

9. Client application performs the job of displaying and charting the results 

 

4.9 Client Detection 

In modern UI techniques, client detection is practiced everywhere. If user opens the 

application on a mobile device, we show mobile version of the application, and if user opens 

the application using desktop browser, we show browser version of the application. Also, 

tablet version of the application can also be supported. 

To achieve this, we use some available functions in Sencha Touch. In Sencha Touch, 

Ext.is.Phone is a global Boolean object which sets to true if the client is a mobile browser, 

otherwise it is false. By making use of this object, we can navigate user to desktop version of 

the application if Ext.is.Phone is false, otherwise we show mobile version. 
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5. Conclusion 

In this paper, we have explored some simple data classification concepts, attempted to 

classify and summarize the cloud data from the Twitter API. We used some latest 

technologies such as RESTful architecture style, mobile web application using HTML5 and 

css3 etc. We also provided functionality of analysis of slang language. We also used several 

design patterns during the implementation of different components in the system. Lastly, we 

analyzed the system’s various components. 

The results show that my application gave all types of tweets related to keyword including 

real-time tweets along with their classification which leaded to summary of the cloud 

information. The application is made scalable by use of training data directory; hence if more 

classes are to be added to the system, there will be no change in the design. This 

application can prove to be grounds for further research in data classification and 

summarization. 
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