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Abstract 

 

Due to the need to organize a vast amount of documents available in the Internet, 

the automated semantic extraction representing webpages has become a popular research 

topic in both industry and academia.  The purpose of this project is to introduce a new 

method to process documents to extract the original contextual representations and yet to 

extend additional and connect similar representations based on the semantics underneath 

the extracted representations in an automatic fashion.  Among the purposed steps, the 

core of this project is to tackle the difficulty to construct a mechanism in which machines 

can computationally understand the lexical meaning of the extracted semantic 

representations.  For instance, the word “good” has the same lexical meaning as the word 

“well”, so both should be equally treated.  Furthermore, the 2-gram “wall street” should 

be kept as-is instead of tokenizing it into two single words, but “coffee or tea” should be 

tokenized into two single words “coffee” and “tea”.  This is important in text mining to 

keep but not to destruct the original semantics so one can further process documents 

safely, efficiently, and accurately. 

In the project, I first discuss the adequate machine learning method introduced by 

Professor Lin to process documents to extract the original contextual representations, 

namely primitive concepts.  Then, I introduce new methods to apply the extracted 

concepts to extract additional and connect similar representation based on the semantics 

underneath using the WordNet database.  In the last section of the report, I examined the 

proposed data processing method with sample data and justified the empirical results with 

data provided by Google Search. 

The project well articulates the problems of computation cost reduction and 

prediction enhancement in contextual extraction for documents.  In general, most of the 

machine-learning article is well written and informative for general readers with 

Mathematics background, but not necessarily for readers of engineering interest.  In the 

report, an engineering mechanism is constructed with mathematical reasoning to 



5 

 

persuade readers with theoretical background.  Both readers from the engineering and 

mathematical communities are not to be left without an engineering and theoretical 

understanding of the methods introduced in the project. 
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Introduction 

 

1.1 Research Background 

 

The automated semantic extraction for web pages has become a popular research 

topic in both industry and academia.  Yet, the extracted web data has not achieved the 

level of sufficiency and remains noisy. The purpose of this project is to explain a new 

data processing mechanism and its method on how to efficiently extract valuable 

concepts namely primitive concepts from documents from both engineering and 

theoretical points of view.   

Professor Lin introduced a document frequency based algorithm to extract 

primitive concepts to represent documents.  His project development has evolved to the 

sentence and paragraph levels.  However, the extracted concepts need a mechanism to 

analyze their semantics to further extract additional representations and combine them 

together to form clusters with unique and/or similar semantics.  In addition, connecting 

concepts with similar semantics remains an interesting topic.  I recently applied the 

outsourced knowledgebase Wordnet to implement a concept parser, which extracts n-

grams from primitive concepts and several matchers to construct edges between extracted 

n-grams in the same synsets.  The tools are used to extend additional and connect similar 

representations by analyzing syntax types such as verb and noun and extracting 

antonymys, hypernyms, hyponyms, and synonyms of the n-grams identified. 

In experiment, I extended 24k additional topics from 2000 concepts. 64 percent of 

the extended topics have over ten million research results found from Google.  Besides, I 

matched 2600 pairs from 2000 concepts with similarity greater than 80% in synonyms 
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only.  To further increase the number of pairs, in chapter 3, I will introduce a quantitative 

measure for hyponyms and hypernyms to further combine concepts with similar 

semantics. 

 

1.2 Project architecture  

 

 

Figure 1. Project architecture 
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The outline of the project is shown in figure 1.  The data processor takes 

document as input and generates primitive concepts as output.  The primitive concepts 

are then sent to the semantic analyzer that composes of concept tokenizer, concept 

extender and concept connector.  Using Open NLP Part of Speech Tagger and WordNet, 

the semantic analyzer parses the extracted concepts, tokenizes n-grams, and provides 

additional concepts with similar meanings using concept extender.  The newly found 

topics are then verified their significance by concept verifier with Google Search API.  

Lastly, the concept connector forms concept graphs and clusters based on the tokenized 

concepts generated by the concept tokenizer. 
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Primitive Concept Extraction 

 

2.1 Introduction to Primitive Concepts 

 

To extract concepts from documents in automatic fashion, Professor Lin 

introduced a document frequency based algorithm to extract primitive concepts to 

represent documents.  The proposal suggests concepts that should be extracted within 

finite rolling windows across a given document after filtering stop words.  Given a finite 

rolling window, concepts are defined as any combinations of single words inside the 

window.  In mathematics, 

 

primitive concepts := nCr where n <= r, n>0, and r is the length of rolling window 

 

For example if we have a document d = w1 w2 w3 w4 where none of the word w is stop 

word and assume r = 3, we will have primitive concepts in tuples as follows. 

 

(w1), (w2), (w3), (w1, w2), (w1, w3), (w2, w3), (w3, w4), (w1, w2, w3), and (w2, w3, 

w4) 
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In fact, word ordering is important in Linguistics to maintain the precision in lexical 

meaning in documents.  Therefore, we take combinations instead of permutations to keep 

the importance of word ordering and ignore any cases of reverting orders.  

 

2.2 Stop Word Filtering 

 

Filtering stop word is the preliminary process before extracting primitive 

concepts.  Stop words in general do not contain important lexical meaning, so they should 

be filtered.  In the project, I used TFIDF methodology to filter unimportant words. TFIDF 

is a score measurement for each word w in document d and defined as the follows. 

TFIDF(w, d) := tf(w, d) * idf(w, D) 

 

where 

 

tf(w, d) := frequency of word w in document d / total number of words in document d, 

idf(w, D) := log ( total number of documents in corpus D / number of documents in 

corpus D that contain word w), 

 

and 

D is the corpus in interest that contains document d 
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In the project, the data processor processed and loaded documents to Oracle 

database into three tables. The tables’ schemas are as follows. 

 

CREATE TABLE DocWord( docnum NUMBER(7), word VARCHAR2(100), 

wordpos VARCHAR2(3000)) 

CREATE TABLE DocTable( docnum NUMBER(7), wordtotal NUMBER(7)) 

CREATE TABLE WordTable( word VARCHAR2(100), wordcount 

NUMBER(7)) 

 

In words, table DocWord contains the positions of word w in each document d.  Table 

DocTable contains the total number of words in each document d, whereas table 

WordTable contains the number of first appearance of word w in each document in 

corpus D.  The above tables provided all the numbers needed to compute TFIDF of each 

word in each document.  The data processer then loaded the resulted TFIDF measure to 

the following table. 

 

CREATE TABLE WordTFIDF( docnum NUMBER(7), word 

VARCHAR2(100), TFIDF FLOAT(20)) 

 

Table WordTFIDF stores the TFIDF score for each word in each document.  The scores 

are used to determine the importance of each word to its document.  Words with low 

score will be discarded and words with high scores will be further sent to extract 

primitive concepts. 
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2.3 Algorithm to extract Primitive Concepts 

 

 In section 2.1 we mentioned primitive concepts are extracted in sliding windows 

using combinations.  To find all combinations, one can use the algorithm introduced by 

Rosen. 

 

public int[] getNextCombination () { 

 
   if (numLeft.compareTo(BigInteger.ZERO) == 1) 

      return null; 
     
   if (numLeft.equals (total)) { 

      numLeft = numLeft.subtract (BigInteger.ONE); 
      return a; 

    } 
 

    int i = r - 1; 
    while (a[i] == n - r + i) { 
      i--; 

    } 
    a[i] = a[i] + 1; 
    for (int j = i + 1; j < r; j++) { 

      a[j] = a[i] + j - i; 
    } 

 
    numLeft = numLeft.subtract (BigInteger.ONE); 
    return a; 

 
  } 

 

,where total is the total number of combinations given n and r.  When initiation, 

numLeft is set as total and a is set as a sequence of ascending integers starting with 0.  

For instance if n = 5 and r =3, a = [0,1,2] initially.  The function above takes the current 

value of a, returns the next combination, and reiterates until numLeft = 0.  The 
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algorithm increases the values in a from right to left (or large to small in array index) 

until a = [n-r, n-r+1,…, n-1].  The algorithm determines where in array a is the starting 

point i to be incremented thereafter.  When the algorithm knows the right value of i then 

all the subsequent values j=i+1,…, r are incremented by j-i.  For instance if our input is 

n=5 and r=3, the algorithm returns [0,1,2] in the first iteration, [0,1,3] in the second 

iteration, [0,1,4], in the third iteration, [0,2,3] in the fourth iteration,…, [2,3,4] in the 

tenth iteration, and null thereafter. 

 Primitive concepts are extracted within sliding windows.  Computation will be 

expensive if we restart to find combinations again when the given window slides to the 

next one.  In fact, one does not need to restart to find combinations if the old word which 

appears in the given window does not appear in the next window is replaced by the word 

which does not appear in the given window but appear in the next window.  For example 

if our input is n=5, r=3, and the current window is ranged from 0 to 4, one can replace 

[0,1,2], [0,1,3], [0,1,4], [0,2,3], [0,2,4], and [0,3,4] by [1,2,5], [1,3,5], [1,4,5], [2,3,5], 

[2,4,5], and [3,4,5].  The existed combinations from 1 to 4 [1,2,3], [1,2,4], [1,3,4], and 

[2,3,4] are also included in the new combinations of the next sliding window. Therefore 

from range 1 to 5, we have [1,2,5], [1,3,5], [1,4,5], [2,3,5], and [2,4,5] (replacement), and 

[1,2,3], [1,2,4], [1,3,4], and [2,3,4] (copy from the existed combinations). After putting in 

ascending order, the new combinations are [1,2,3], [1,2,4], [1,2,5], [1,3,4], [1,3,5],  

[1,4,5], [2,3,5], [2,3,4], [2,4,5], and [3,4,5]. 

 

2.4 Inside the Data Processor 

 

 The implementation of data processor is composed of four Java classes, 

Document Word Count Db Loader, TFIDF Db Loader, Primitive Concept Generator and 

Primitive Concept Combiner.  The Document Word Count Db Loader and TFIDF Db 

Loader are responsible to compute the TFIDF measurement for each word in each 
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document.  The result is loaded to Oracle Database.  On the other hand, the Primitive 

Concept Generator uses the words with high TFIDF score to generate primitive concepts. 

It then sends the result to Primitive Concept Combiner to further process and combine 

data into complete concepts.  The processed primitive concepts by Primitive Concept 

Combiner are the final output. 

Figure 2. Inside the data processor 

 

2.5 Summary 

 

Context Extraction from documents may sound easy, but is actually hard to 

implement to yield results with concrete meanings.  The method mentioned in chapter 
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two might not be the optimal answer to some specific corpus but it is a very good 

solution to any corpus in general in terms of the balance of complexity, accuracy, and 

resources control. 

 

 

Analyzing and Extending Additional 

Representations 

 

3.1 Introduction to WordNet 

 

WordNet is a knowledge database for English dictionary.  It groups words with 

same meaning into synonym sets called synsets.  It also provides general definitions and 

various semantic relations between synonym sets.  In text mining, WordNet plays an 

important role to support automatic text analysis and artificial intelligence applications. 

In Java, one can provide an n-gram and the type of the n-gram to get the corresponding 

synsets. For instance, 

 

WordNetDatabase database = WordNetDatabase.getFileInstance(); 

Synset[] synsets = database.getSynsets("neural network", 

SynsetType.NOUN);  

 

In the example above, the instance of WordNetDatabase gets the corresponding 

synsets for the n-gram of “neural network” and the type of noun. 
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As shown in the above example, because n-grams follow different grammatical 

rules, WordNet distinguishes between nouns, verbs, adjectives and adverbs for input of n-

grams.  In Java implementation, SynsetType is an enum of NOUN, VERB, 

ADVERB and ADJECTIVE.  

WordNet not only groups words with same meaning but also defines various 

semantic relations such as antonym, hypernym, and hyponym between synsets.  The 

major semantic relations used in the projects are as follows. 

 

Antonyms: Y is an antonym of X if X is opposite to Y (unhappy is an antonym of happy) 

Hypernyms: Y is a hypernym of X if X is a (kind of) Y (engineering is a hypernym of 

computer science) 

Hyponyms: Y is a hyponym of X if Y is a (kind of) X (computer science is a hyponym of 

engineering) 

 

3.2 Concept Tokenizer and its Algorithms 

 

 The concept tokenizer acts a crucial role in the project to automatically identify 

the optimal combination of given n-grams.  For instance, when one parses a concept of “ 

Computer Science Neural Networks branch” to the semantic analyzer, the semantic 

analyzer should analyze n-grams of “Computer Science”, “Neural Networks”, and 

“branch” rather n-grams of 5 single words.  In the project, the concept tokenizer 

continuously fetches information from WordNet, matches n-grams with the fetched 

information, and computes the optimal combination of parsed n-grams.  

  The concept tokenizer considers all possible combinations of n-grams parsed from 

input of primitive concept.  It considers the largest n-gram of length of input as well as 
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input of all individual single words.  For example, if the length of input is 3, then the 

tokenizer computes [3] (largest n-gram), [2,1], [1,2], and [1,1,1] (all individual single 

words).  The algorithm to computes all possibility is as follows. 

 

public static HashSet<Combination> getCombinationSet(int size) { 

 

HashSet<Combination>  hs_not_finished = new HashSet<Combination> 

(); 

HashSet<Combination>  hs_finished = new HashSet<Combination> (); 

HashSet<Combination>  hs_temp_not_finished = new 

HashSet<Combination> (); 

   

hs_not_finished.add(new Combination(size)); 

LoopingIterator it =  new LoopingIterator(hs_not_finished); 

while(it.hasNext()){ 

 

 Combination j = (Combination) it.next(); 

 if (j.getSizeleft() > 0){ 

  for (int i =1; i<= j.getSizeleft() ;i++){ 

 

ArrayList<Integer> a = (ArrayList<Integer>) 

j.getArray().clone(); 

   a.add(i); 

   int s = j.getSizeleft()-i; 

   Combination newC = new Combination(s, a); 

   if (s > 0) 

    hs_temp_not_finished.add(newC); 

   else  

    hs_finished.add(newC); 
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  } 

 } 

 hs_not_finished.remove(j); 

 

 if (!it.hasNext()){ 

  for (Combination k:hs_temp_not_finished){ 

   hs_not_finished.add(k); 

   hs_temp_not_finished.remove(k); 

   break; 

  } 

 } 

} 

return hs_finished; 

} 

 

, where the combination class is defined as 

 

class Combination{ 

 ArrayList<Integer> a = new ArrayList<Integer> (); 

 int sizeleft; 

 

 Combination(int sl, ArrayList<Integer> al){ 

  a=al; 

  sizeleft =  sl; 

 }; 

 Combination(int sl){ 

  a= new ArrayList<Integer> (); 

  sizeleft =  sl; 

 }; 

 ArrayList<Integer> getArray(){ 
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  return a; 

 } 

 void setSizeleft(int sl){ 

  sizeleft = sl; 

 } 

 int getSizeleft(){ 

  return sizeleft; 

 } 

 public String toString(){ 

  return "sizeleft=" + sizeleft + " a=" + a.toString(); 

 } 

} 

 

The algorithm takes the original size of input as initiation.  It progressively discounts 

combinations by range from 1 to sizeleft until sizeleft = 0.  During the progression, it 

adds discount numbers to array list a. 

The tokenizer takes all combinations generated by the algorithm above, fetch n-

gram to n-gram and combination to another combination from WordNet to confirm their 

existence in lexical meaning.  Matching ratio is defined as number of existence / number 

of fetching trials.  The program chooses the optimal combination with largest matching 

ratio and smallest number of fetching trials among tie cases.  For instance if [“machine”, 

“learning”] and [“machine learning”] all have matching ratio =1, the latter will be the 

optimal because its number of fetching trials is the smallest. 

Lastly, the tokenizer uses Open NLP Part of Speech tagger to tag the type of 

optimal n-grams extracted.  It also translates antonym by looking for word of contrary 

such as “not” to combine wording.  For instance “not happy” is combined as “unhappy” 

by the tokenizer. 
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3.3 Concept Extender using WordNet 

 

 The concept extender in the semantic analyzer takes the optimal primitive concept 

computed by the concept tokenizer to find additional concepts with same synsets.  Since 

the output from concept tokenizer is simply an array of tuples (n-gram, type of synset), 

the extender uses the tuples, fetch the corresponding synsets from WordNet.  The 

extender then uses the additional synsets from WordNet to form additional primitive 

concepts.  The additional primitive concepts are  

 

[ n1 in N1, n2 in N2, …, nm in Nm] – the optimal primitve concept computed by concept 

tokenizer, 

 

where N1 is the synset fetched using the first tuple t1, N2 is the synset fetched using the 

second tuple t2,…, and Nm is the synset fetched using the last tuple tm (the array of t1, 

t2, …, tm is the optimal concept computed by concept tokenizer).  Therefore the total 

number of the additional primitive concepts is N1 x N2 x … x Nm - 1. 

 

3.4 Verification on Extended Topics Using Google 

Search API 

 

 The concept verifier that uses Google Search API further verifies the additional 

primitive concepts generated by the concept extender.  The purpose of this verification is 

to filter uncommon concepts and keep common concepts.  For each concept, I use its 
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number of search result as its term frequency provided by the web to determine the 

commonness of the given concept. 

 I parse each concept as a search query to Google API to fetch the search result in 

Json format (see the following code).  From the fetched Json object, I get the 

"resultCount" to determine the commonness of the given concept.  If the 

"resultCount" is smaller than a threshold then the concept is uncommon, else the 

concept is common. 

 

URL url = new 

URL("http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=" + 

query); 

InputStream response = url.openStream(); 

BufferedReader reader = new BufferedReader(new 

InputStreamReader(response)); 

String line = reader.readLine(); 

JSONTokener tk = new JSONTokener(line); 

JSONObject json = new JSONObject(tk); 

String resultCount = 

json.getJSONObject("responseData").getJSONObject("cursor").getString("r

esultCount").replaceAll(",", ""); 

 

Google Search API is a great tool for verifying the usage of primitive concepts in 

other representations.  One may wonder for the primitive concept “social web”, what is 

the usage of its other representation “social network”?  The answer is 368,000,000 search 

results.  One may also wonder for the primitive concept “collaboration networks”, what is 

the usage of its other representation “coaction networks”?  On the contrary, “coaction 

networks” only have 8910 search results.  Obviously, we should keep the common 

representation “social network” and discard the uncommon representation “coaction 
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networks”.  Using search results to filter primitive concept representations increase the 

accuracy of the final outputs of the project. 

 

3.5 Summary 

 

The concept tokenizer and extender and the concept verifier play important roles 

to extract concepts in other representations.  They not only examine the semantics of 

primitive concept using WordNet and Open NLP Part of Speech Tagger but also uses 

Google search API to justify the commonness of the extracted representations.  In this 

way, the tools process primitive concepts and generate final results that are as accurate as 

possible in an automatic fashion.  
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Analyzing and Connecting Primitive 

Concepts 

 

4.1 Connecting Primitive Concepts 

 

In the previous section, we used the data processor and the concept tokenizer to 

extract primitive concepts and their underlying meanings.  One may be interested in 

knowing the connectivity between the extracted primitive concepts with similar 

meanings.  A simple example is to fetch the synsets underneath the extracted ngrams and 

use the resulted synsets to match the extracted ngrams in order.  Below is the 

implementation to determine whether two primitive concepts have a common semantic 

link. 

 

public static boolean ifMatch (ArrayList<ngramSynsetType> 

ngramSynsetTypeList1,ArrayList<ngramSynsetType> 

ngramSynsetTypeList2,WordNet wn, boolean ifConsiderHyperHypo ){ 
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ArrayList<NgrmaHashcode> ngramHashcode1 = 

toNgrmaHashcode(ngramSynsetTypeList1,wn,ifConsiderHyperHypo); 

ArrayList<NgrmaHashcode> ngramHashcode2 = 

toNgrmaHashcode(ngramSynsetTypeList2,wn,ifConsiderHyperHypo); 

   

if (ngramHashcode1.size() != ngramHashcode2.size()){ 

 return false; 

} 

 

for (int i = 0; i < ngramHashcode1.size();i ++){ 

 HashSet<Integer> hashCode1 = 

ngramHashcode1.get(i).getHashCode(); 

 HashSet<Integer> hashCode2 = 

ngramHashcode2.get(i).getHashCode(); 

 boolean ifMatchHashCode = false; 

 for (int hashCode : hashCode1){ 

  if (hashCode !=-1){ 

   if (hashCode2.contains(hashCode)  ){ 

    ifMatchHashCode = true; 

    break; 

   } 

  }else{ 

   if (hashCode2.contains(-1)){ 

    if (ngramHashcode1.get(i).getNgram(). 

equals((ngramHashcode2.get(i).getNgram()))){ 

     ifMatchHashCode = true; 

     break; 

     } 

    } 

   } 
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  } 

  if (ifMatchHashCode == false) 

   return false; 

 

return true; 

} 

 

The output generated by the concept tokenizer is simply tuples of (n-gram, synset 

type).  The static method ifMatch takes the tuples in the format of ArrayList as input 

then gets the corresponding synsets (in format of semantic indices), n-gram by n-gram, 

for each concept.  The synsets extracted are also stored in ArrayList to keep the n-grams 

in order.  Then the method iterates both ArrayLists simultaneously to determine whether 

the corresponding synsets from the ArrayLists have a common synonym for each n-gram 

pair.  If every n-gram pairs find at least one common synonym then the method returns 

true otherwise false.  In addition, the method takes the boolean input 

ifConsiderHyperHypo to indicate whether hypernyms and hyponyms should be 

fetched from WordNet.  For instance, the code below prints true and then false. 

 

String concept1 = "computer science students"; 

String concept2 = "engineering people"; 

 

//consider hypernyms nor hyponyms 

System.out.println(ifMatch(tokenizer.getTokens(phrase1),tokenizer.getTok

ens(phrase2),wn, true)); 

 

//does not consider hypernyms nor hyponyms 

System.out.println(ifMatch(tokenizer.getTokens(phrase1),tokenizer.getTok

ens(phrase2),wn, false)); 
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Similarly, given two primitive concepts, each extracted tuple (n-gram, synset 

type) that has converted to the format of semantic indices can be matched by another 

tuple that provides the most number of common semantic indices.  This forms matched 

tuple pairs.  One can then compute cosine similarity using the matched tuple pairs and 

unmatched tuple pairs together with the number of each tuple for each given concept.  

In the project, there are two similarity matchers each takes two tokenized 

primitive concepts and WordNet database as input and compute their cosine similarity.  

They are static methods in the SemanticSimilarityMatcher and 

SemanticSimilarityMatcher2 classes. 

 

SemanticSimilarityMatcher.findSimularity(tokenizer.getTokens(concept1),

tokenizer.getTokens(concept2),wn) 

 

and 

 

SemanticSimilarityMatcher2.findSimularity(tokenizer.getTokens(concept1

),tokenizer.getTokens(concept2),wn) 

 

The SemanticSimilarityMatcher computes similarity described in the second 

paragraph in section 4.1.  Its algorithm in Java as follows. 

 

public static double findSimularity(ArrayList<ngramSynsetType> 

ngramSynsetTypeList1,ArrayList<ngramSynsetType> 

ngramSynsetTypeList2, WordNet wn){ 
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//input conversion 

HashMap<String, Integer> ngramCount1 = 

toNgrmaCount(ngramSynsetTypeList1); 

HashMap<String, Integer> ngramCount2 = 

toNgrmaCount(ngramSynsetTypeList2); 

HashMap<String, ArrayList<Integer>> ngramHashcode1 = 

toNgrmaHashcode(ngramSynsetTypeList1,wn); 

HashMap<String, ArrayList<Integer>> ngramHashcode2 = 

toNgrmaHashcode(ngramSynsetTypeList2,wn); 

HashMap<Integer, ArrayList<String>> hashcodeNgram1 = 

revertNgrmaHashcode(ngramHashcode1); 

HashMap<Integer, ArrayList<String>> hashcodeNgram2 = 

revertNgrmaHashcode(ngramHashcode2); 

 

//matched map 

HashMap<String, Integer> _ngramCount1 = new HashMap<String, 

Integer>(); 

HashMap<String, Integer> _ngramCount2 = new HashMap<String, 

Integer>(); 

   

for (String  ngram:ngramHashcode1.keySet() ){ 

  int count = ngramCount1.get(ngram); 

  for (int i =0; i < count; i++ ){ 

    ArrayList<String> matchedNgram = new ArrayList<String>(); 

    for (Integer hashCode : ngramHashcode1.get(ngram)){ 

      if (hashcodeNgram2.containsKey(hashCode)){ 

        if (hashCode != -1){ 

          matchedNgram.addAll(hashcodeNgram2.get(hashCode)); 

        }else { 

          for (String negNgram :hashcodeNgram2.get(hashCode)){ 
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            if (negNgram.equals(ngram)){ 

              matchedNgram.add(negNgram); 

            } 

          } 

        } 

      } 

    } 

 

    String optimalNgram = getMaxFreqNgram(matchedNgram); 

     

    if (optimalNgram != null){ 

      ngramCount1.put(ngram, ngramCount1.get(ngram)-1); 

      ngramCount2.put(optimalNgram, ngramCount2.get(optimalNgram)-

1); 

      if( _ngramCount1.containsKey(ngram)){ 

        _ngramCount1.put(ngram, _ngramCount1.get(ngram) + 1); 

      } else 

        _ngramCount1.put(ngram, 1); 

      if( _ngramCount2.containsKey(ngram)){ 

        _ngramCount2.put(ngram, _ngramCount2.get(ngram) + 1); 

      } else{ 

        _ngramCount2.put(ngram, 1);  

      } 

      if (ngramCount2.get(optimalNgram) ==0 ){ 

        removeNgram(optimalNgram, hashcodeNgram2); 

        ngramHashcode2.remove(optimalNgram); 

      } 

    } 

  } 

} 
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merge(_ngramCount2, ngramCount2); 

merge(_ngramCount1, ngramCount1); 

   

return ComparorUtils.findSim(_ngramCount1, _ngramCount2); 

}   

 

The algorithm first converts input into few HashMaps.  Then, it progressively finds 

optimal n-gram for each token and updates the existing HashMaps and put matched 

words into _ngramCount1 and _ngramCount2.  Finally, both _ngramCount1 

and _ngramCount2 merges with the unmatched n-grams and are used as input to 

compute cosine similarity.  

The SemanticSimilarityMatcher2 uses the same logic in 

SemanticSimilarityMatcher but extends hypernyms and hyponyms from the 

unmatched n-grams.  When one n-gram finds a suitable concept to match using its 

hypernym or hyponym, its count is incremented by the reciprocal of the distance between 

its original position, i.e. 0 and its hypernym or hyponym position plus 1.  For instance, if 

“engineering” is a hypernym of “computer science” in one step, then the number of 

“engineering” is incremented by 1/ (1 + 1) = 0.5. 

 

4.2 Concept Graph and its Clusters 

 

 In the project, the concept connector used the SemanticSimilarityMatcher2 

to find graph and clusters of primitive concepts with similar semantics.  The connector 

computes similarity for every pairs and connects the pairs with similarity >= 0.75.  With 

a sample of 250 primitive concepts, the connector constructed a graph of 70 matched 

concepts with high similarities and found 29 clusters with sizes equal to or greater than 
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two.  The graph is disconnected and undirected.  The largest cluster has 20 nodes whereas 

the smallest ones have 2 nodes.  The data visualization of 70 matched concepts is as 

follows.  

 

Figure 3. Disconnected and Undirected Graph of primitive concepts 

 

4.3 Summary 

 

 The concept connector groups primitive concepts with similar meaning.  To group 

concepts with same (or very close to same meaning), one can increase the threshold to a 
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value of 1 in the lexical clusterer.  In this way, concepts are grouped without the 

interference of concepts not stemmed or expressed in different representations.  Our 

concept connector allows user to configure his threshold based on his use cases. 

 

Implementation 

 

5.1 Programming Languages used for implementation 

 

Java is the major programming language to implement the project.  In the project, 

I used Java APIs, including Oracle Java Database Connectivity, MySQL Database 

Connector, Open NLP Tools, WordNet Searching, JGraphT, and JavaScript Object 

Notation(JSON).  Java was chosen to implement the project because it had lots of 

external packages needed for data processing and text mining. 

The Oracle and MySQL database tools are used in the data processor and the 

lexical extender for TFIDF processing and primitive concept storage.  In the concept 

tokenizer, the Open NLP Tools is used to tag the part of speech of n-grams extracted 

from primitive concepts.  The Java API WordNet Searching is used in the concept 

tokenizer, the concept extender, and the concept connector.  They fetch information from 

WordNet needed to determine the underlying meaning of given primitive concepts for 

further tokenization, additional concepts extension, and construct concept graph.  Lastly, 

the JGraphT is used for visualization of concept graph, whereas the concept verifier uses 

the JSON API to get the count result for each additional primitive concept from the web.  

In additional to Java, I also used Ant and XML to build application, and Linux 

commands and SQL to process and analyze data for section 6.   
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Empirical results 

 

6.1 Output from Data Processor 

 

 The project examined a set of 21 journal papers in social computing, privacy and 

security.  Each paper has around seven pages.  The data processor in the project extracted 

around 2000 primitive concepts.  In addition to the primitive concepts, it also computes 

TFIDF for around 1000 single words for each document.  Top 10 single words are as 

follows. 

 

DOCNUM WORD TFIDF 

5 mentoring 0.03888713 

11 Oss 0.0334261 

12 Blog 0.01895713 

6 mobile 0.01867141 

14 mission 0.0175417 

5 mentor 0.01623443 

6 Logs 0.01560093 

19 Tags 0.01511765 

2 Lbd 0.01485421 

4 otasizzle 0.01440626 
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 Table 1. Top 10 words with highest TFIDF and their associated document number  

 

Below are some samples of primitive concept extracted from the documents. 

 

SAMPLE PRIMITIVE CONCEPTS 

analyzed network 

networks studied 

connected network 

networks related 

edge network 

networks edge 

network nodes edge 

important network  

graph nodes 

linked networks 

Table 2. Primitive concept samples 

 

The TFIDF method works great to filter stop words for each document, so primitive 

concepts are extracted without the interference by the stop words.  The primitive concepts 

extracted carry conceptual meaning.  This is done by the method of extraction using 

combination within sliding windows introduced in section 2.  

 

6.2 Output from Semantic Analyzer 
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In experiment, I extended 24k additional topics from 2000 concepts.  64% of the 

extended topics have over ten million research results found from Google.  Top and last 

10 extended topics are as follows. 

REPRESENTATION COUNT      

link web           2530000000 

work web           2340000000 

link up web        2220000000 

make web           1970000000 

web number         1920000000 

web social         1870000000 

place societal web 1840000000 

set societal web   1840000000 

web back up        1790000000 

web place          1720000000 

 

REPRESENTATION COUNT 

mensuration number 45100 

web tabular array 42600 

network tabular array 34000 

futurity worked 26300 

ensue execute 20500 

mensuration figure 17400 

coaction web 9010 

coaction network 8930 

network colligate 5480 

web colligate 3630 

Table 3. Top and last 10 extended topics based on number of search results  
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Using SemanticSimilarityMatcher2, I constructed a graph of 7000 matched 

pairs from 2000 concepts, mixture of various lengths, provided by my classmate Bieu Do.  

Setting similarity greater than 80%, the resulted pairs formed 142 clusters.  In other 

words, each cluster contained around 7000/142=49 pairs on average. 

In addition, I constructed another six graphs of matched pairs from primitive 

concepts with similarity greater than 80%.  Instead of analyzing on mixture of concepts 

with various lengths, each graph contains concepts with same length. The resulted 

statistics are as follows. 

 

Concept length (in number of 

keywords) 

Number of 

concepts 

Number of 

matched pairs 

Number of 

clusters 

1 3935 815 363 

2 31048 9746 5340 

3 1643 925 118 

4 992 383 69 

5 794 380 85 

6 1194 8566 20 

Table 4. Semantic analysis on concepts in length from 1 to 6 

 

The concept verifier using Google API is a great tool to further filter newly 

generated concepts with low frequency in usage.  Learning from the experiment, I 

suggest setting the threshold to be 10 million to keep the top 64% of the newly generated 

concepts.  On the other hand, using the concept connector, each concept matched around 

7000/2000 -1 = 2.5 other concepts on average which did not lead to scenarios of over nor 

lacking matching concepts.  Therefore, I believe setting the threshold of 80% is 

reasonable to connect concepts into graph and clusters. 
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Conclusion 

 

 Throughout the flow of the project, documents are processed in such a way that 

original concepts are extracted and kept their original semantics without human 

interference.  Computing TFIDF, fetching search result from Google, and connecting 

concepts with cosine similarity and WordNet are efficient to reduce noisiness and 

increase accuracy.  This data pipeline uses a set of third party APIs to organize 

documents available in the Internet and can be further appended using additional third 

party sources such as Wikipedia and Dmoz.  All in all, a perfect or close-to-perfect data 

analyzer should fully understand and parse data lexically and functions semi-supervised 

(learn from sources, apply, and reiterate) rather than blindly relying on fancy 

mathematical clustering algorithms. 
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