
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

Masquerade Detection Based On UNIX Commands Masquerade Detection Based On UNIX Commands

Amruta Mahajan
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mahajan, Amruta, "Masquerade Detection Based On UNIX Commands" (2012). Master's Projects. 273.
DOI: https://doi.org/10.31979/etd.x966-jrj6
https://scholarworks.sjsu.edu/etd_projects/273

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/273?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Masquerade Detection Based On UNIX Commands

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Amruta Mahajan

December 2012

c© 2012

Amruta Mahajan

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Masquerade Detection Based On UNIX Commands

by

Amruta Mahajan

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2012

Dr. Mark Stamp Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Dr. Sami Khuri Department of Computer Science

ABSTRACT

Masquerade Detection Based On UNIX Commands

by Amruta Mahajan

In this paper, we consider the problem of masquerade detection based on a

UNIX system. A masquerader is an intruder who tries to remain undetected by

impersonating a legitimate user. Masquerade detection is a special case of the general

intrusion detection problem.

We have collected data from a large number of users. This data includes infor-

mation on user commands and a variety of other aspects of user behavior that can be

used to construct a profile of a given user. Hidden Markov models have been used to

train user profiles, and the various attack strategies have been analyzed. The results

are compared to a standard dataset that offers a more limited view of user behavior.

ACKNOWLEDGMENTS

I am grateful and take this opportunity to sincerely thank my thesis advisor, Dr.

Mark Stamp, for his constant support, invaluable guidance, and encouragement. His

work ethic and constant endeavor to achieve perfection have been a great source of

inspiration.

I wish to extend my sincere thanks to Dr. Sami Khuri and Dr. Chris Pollett for

consenting to be on my defence committee and for providing invaluable suggestions

to my project without which this project would not have been successful.

I also would like to thank my husband, Neeraj Mahajan, for his support and

encouragement throughout my graduation.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Preliminaries . 3

2.1 Introduction . 3

2.2 Masquerade detection . 4

2.3 Machine Learning Techniques . 4

2.3.1 Supervised Learning . 5

2.3.2 Unsupervised Learning . 6

2.4 Hidden Markov Model (HMM) . 6

2.4.1 Notation . 7

2.4.2 HMM with UNIX Commands 9

2.5 Schonlau dataset . 9

2.6 Schonlau Dataset limitations . 10

3 Architecture of Masquerade Detection 12

3.1 Basic architecture . 12

3.2 Project road map . 13

3.3 UNIX Command logging tool . 13

3.3.1 Implementation . 14

3.3.2 History Files . 14

3.3.3 Process accounting by pacct 15

3.4 Data cleaning . 17

vi

vii

4 Project Implementation . 18

4.1 Training HMM . 18

4.1.1 K-fold Cross Validation . 18

4.1.2 Evaluation . 19

5 Experimental Setup . 21

5.1 Data Processing . 21

6 Accuracy Measure . 24

6.1 Possible Outcomes . 24

6.2 Receiver Operating Characteristic 24

7 Experimental Results . 27

7.1 Multiple HMM states . 30

7.2 Using more data for testing . 32

7.3 Effect of varying testing data sequence size 34

7.4 Comparison with Schonlau Dataset 37

8 Conclusion . 40

APPENDIX

A Scripts Used To Collect Data . 44

A.1 Setup . 44

A.2 Copy History Files . 46

LIST OF TABLES

1 HMM Notations [17] . 7

2 Model file name meaning . 22

3 Experiment Cases For Generating Multiple Test Sequences 36

viii

LIST OF FIGURES

1 Hidden Markov Model [17] . 8

2 Schonlau data set [18] . 10

3 History file and pacct data for same time period 11

4 Architecture of masquerade detection [18] 12

5 HMM training . 20

6 Possible Outcomes [11] . 25

7 ROC Example [20] . 26

8 Log likelihood per command of User 10 Vs masqueraders for N = 2 . 28

9 Receiver Operating Characteristic (ROC) Curve, User 10, N = 2 . . . 29

10 Log likelihood per command (LLPC) of good user 2, masqueraders for
N = 2 . 29

11 Log likelihood per command (LLPC) of good user 4, masqueraders for
N = 2 . 30

12 Log likelihood per command (LLPC) of good user 0, masqueraders for
N = 2 . 30

13 Receiver Operating Characteristic (ROC) Curve, User 2, N = 2 . . . 31

14 Receiver Operating Characteristic (ROC) Curve, User 4, N = 2 . . . 31

15 Receiver Operating Characteristic (ROC) Curve, User 0, N = 2 . . . 32

16 User 0, 3 fold cross validation (more validation data) 33

17 User 5, 5 fold cross validation (less validation data) 34

18 User 5, 3 fold cross validation (more validation data) 34

19 User 9, 5 fold cross validation (less validation data) 35

ix

x

20 User 9, 3 fold cross validation (more validation data) 35

21 Comparison of different test length sequences, User 3 36

22 Comparison of different test length sequences, User 11 37

23 Comparison of different test lengths sequences, User 13 38

24 Experimental Results for Schonlau Dataset, User 1 38

25 Experimental Results for Schonlau Dataset, User 7 39

26 ROC for Schonlau Dataset, User 7 . 39

CHAPTER 1

Introduction

A masquerade attack occurs when an attacker gains access to a legitimate user’s

account. Such attacks undermine basic security checks due to the rights given to users

once they have been authenticated successfully. Masquerade detection [18] includes

collecting information about users and creating profiles for them. These profiles can

be based on a variety of information including login time, login location, session

start time, session end time, CPU time, commands issued, etc. If user behavior

does not match the appropriate profile, the session can be classified as a likely attack.

Considerable research has been focused on masquerade detection. However, achieving

high levels of accuracy remains a difficult challenge [7] [4].

To detect masquerade attacks, an Intrusion Detection System (IDS) can monitor

each user and look for any malicious or unusual behavior. There are two general

approaches used by IDSs: signature based detection and anomaly based detection.

Signature based detection is useful in detecting the attacks for which signature is

known. In addition to these attacks anomaly-based detection can be used for unknown

attacks. Anomaly based detection models normal behavior for each user depending

on different characteristics and is an inherently challenging task.

The Hidden Markov Model(HMM) [17] is a powerful statistical tool for modeling

generative sequences that can be characterized by an underlying process generating

an observable sequence. In this project we first build a logging tool to collect user-

issued UNIX commands. This data set is then cleaned and preprocessed and then

processed using HMM. With HMM, the profile for each user will be derived from these

1

corresponding UNIX command sequences and then would be used for masquerader

detection.

Our goal was to create a dataset which will include only the commands executed

by a UNIX user. Along with the commands, we have also collected timestamp at

which the command was executed, command arguments, CPU time taken for com-

mand execution. Then we ran HMM on this data to make sure it is comparable

with Schonlau et al. dataset. Schonlau dataset [16] only contains UNIX commands.

So, our dataset can be used for analysis based on additional information such as

timestamp, command arguments.

This paper is organized as follows: Chapter 2 presents preliminaries and limita-

tions of previous dataset. Chapter 3 shows basic architecture of masquerade detec-

tion, data collection and its processing. Chapters 4 and 5 give the implementation

details. Chapter 7 explains the results and comparison with previous dataset. Finally,

Chapter 8 presents our conclusions and possible areas for future work.

2

CHAPTER 2

Preliminaries

This chapter discusses the previous work related to masquerade detection.

2.1 Introduction

In modern computer security field, there are many authentication techniques to

restrict invasion of an intruder into a computer system. Computer Systems which

solely rely on authentication based on username and passwords are prone to Mas-

querade attacks where an attacker uses login credentials of a legitimate user to do

some malicious activity.

Masquerader is an attacker who impersonates other user. He makes use of le-

gitimate login credentials of other user to bypass the security check and to do some

malicious activity. Masquerade attacks often take place inside an organization so they

are hard to detect.

One way to detect such an attack is to use IDS (Intrusion Detection System)

based on user profiles. These types of detection systems are called Anomaly based

detection systems. Masquerade detection is a process of collecting information about

all the users and developing profile for each user [7]. This information may include

login time, session start time, session end time, CPU time, UNIX commands and

its arguments. User profiles are specific to individual users and are created using

such user information. This paper focuses on creating user profiles based on UNIX

commands issued by an individual user. Profiles for each user are pre-computed based

on all the UNIX commands fired by the user and are stored somewhere in the system.

3

Each time when the user logs into the system, these profiles are created on the fly

and compared with the existing ones stored in system. Any significant diversion

from normal profile (behavior) can trigger the alarm for malicious activity. There are

many intrusion detection techniques present to detect masquerade attacks. However,

these attacks need further attention as the rate of false positives is high during this

process [13].

2.2 Masquerade detection

Some well known intrusion detection systems to detect a masquerade attack are

[18], [9]. These can be grouped into two categories namely Signature-based detection

and Anomaly-based detection [18]. In signature-based detection, user behavior is

matched with some patterns which are known to be attack patterns. If the match

occurs, it can be concluded that an attack has occurred. This type of techniques can

only be used to detect known attacks not the new unseen attacks [18].

In Anomaly-based detection, a normal user behavior is captured and a user profile

is created. Next time when the user logs in, his behavior is analyzed and compared

with the normal one. If there is deviation beyond certain threshold percentage, red

flag can be raised. In this project, we have focused on Anomaly-based detection in

UNIX environment. We can assume that each user will have their own unique style

to issue UNIX commands.

2.3 Machine Learning Techniques

Machine learning algorithms are widely used in the field of computer science,

bio-informatics, mathematics and many more. Machine learning can be used to build

a system that can learn from previous experience and use this experience to give

4

some feedback for unknown cases. In addition to simply writing a computer program

to solve a particular problem, we need to have great amount of example data or

experience to learn from.

One example where machine learning could be used is in recognition of characters

of a given language written by humans. Humans seemingly are able to distinguish

between different characters written say in English language but it is difficult for us to

explain how we achieve it. The characters could have been written by many different

people in their own handwriting and style but somehow we are able to recognize

them. Using machine learning, an algorithm can be trained by giving it samples of

written text and it could extract important features from that text. We further talk

about two types of machine learning algorithms, that is, supervised and unsupervised

learning.

2.3.1 Supervised Learning

Suppose we want to classify our input data into two categories viz. good user and

bad user (masquerader) and we have some previously known example data for both

the categories. The supervised learning algorithms can be used to extract important

information from this known example data of both good and bad users. So in this

case, one has sufficient amount of data so as to train the model for each category. Once

we have the model, all the unknown users can be categorized into known categories.

Maximum likelihood is one of the most commonly used classifiers. For each

user, the probability that the user is a member of that class is calculated. Higher

the probability, greater is the chance of a user getting assigned to that particular

category. The advantage of maximum likelihood classifier is that it achieves good

separation of classes. The only disadvantage of this classifier is that it requires strong

5

training set to accurately describe structure of classes.

Hidden Markov Model, that is, HMM belongs to this particular learning type

which is described in details in following section. We will be using this technique for

categorizing good users and masqueraders.

2.3.2 Unsupervised Learning

In unsupervised learning we do not define classes beforehand and instead the

data is divided into clusters with the best possible separation. Later, class names are

assigned to those clusters. The advantage of unsupervised learning is that it does

not need any previous example data for all the classes, that is, we do not need a

large training set. The disadvantage is that the clusters formed by an unsupervised

learning algorithm may not match our perception of the important classes. In this

research we are not focussing on any unsupervised learning algorithm and would be

purely focussing on supervised learning technique.

2.4 Hidden Markov Model (HMM)

We will refer to [17] paper in order to explain all the HMM concepts. HMM is

a supervised machine learning technique. It is a probabilistic state machine where

the transitions between states have fixed probabilities and are only dependant on the

current state. The sequential data can be modeled based solely on the current state

[17]. Like any other supervised machine learning algorithms HMM has two phases

namely training and testing. HMM is trained with the known training data [17].

As oppose to a typical Markov chain where the states are completely observed, in

HMM the states are never observed as they are “hidden” [17]. The model will choose

the sequence of states that jointly maximizes the probability of the entire observation

6

sequence [17].

Once the model is constructed, we can test its response using the unknown data

[17]. Higher probability represents greater similarity between observation sequence

and training sequence. Lower probability results in a non-match.

2.4.1 Notation

The following information is taken from [17]. Table 1 shows the notations

used to represent the HMM λ. HMM is defined as λ = (A,B, π) where A is the

transition probability matrix, B is the observation probability matrix which gives

likelihood of observation given the state and π is the initial state distribution [17].

Table 1: HMM Notations [17]

Symbol Description
T The length of the observation sequence
N The number of states in the model
M The number of distinct observation symbols
O The observation sequence O = (O0,O1, . . . ,OT−1)
Q The set of states of the Markov process
V The set of observation symbols
A The state transition probability matrix
B The observation probability matrix
π The initial state distribution
λ The hidden Markov model, defined by its parameters A,

B, and π, is denoted as λ = (A, B, π)

Figure 1 shows a generic hidden markov model where the Xi represent the hidden

state sequence. The A matrix and the current state determine the Markov process

which is hidden behind the dotted line. The hidden states of the Markov process,

Oi can be observed only via the matrix B [17], which describes the probability of

7

observing a particular symbol in a given state. As we do not know what the transitions

should be they are placed above the dotted line [17].

Figure 1: Hidden Markov Model [17]

The three fundamental problems [17] those can be solved by Hidden Markov

Models are briefly described here.

Problem 1. Given the model λ = (A,B, π) and a sequence of observations O, find

P(O |λ). Here the given sequence is scored to see how well it fits into the given

model λ.

Problem 2. Given the model λ = (A,B, π) and a sequence of observations O, find

optimal state sequence. Here we uncover the hidden part of the Hidden Markov

Model.

Problem 3. Given observation sequence O and dimensions N & M , find the model

λ = (A,B, π) that maximizes the probability of O. Here we train the model to best

fit the observed data [17].

The notations used are:

N = number of states in model λ

M = number of observation symbols

A = state transition probabilities

B = observation probability matrix

8

π = initial state distribution

O = (O0,O1, . . . ,OT−1) = observation sequence

The goal of this project is to categorize a user as either a good user or a masquer-

ader. We are assuming that every user has an unique sequence of UNIX commands

which represents that particular user. All other users which do not posses similar

sequence of commands are considered as masqueraders. We propose to use HMM

to differentiate between good users and masqueraders. Here the observation will be

the list of UNIX commands associated with each user. The trained model is then

supposed to assign high probability for commands belonging to good user and low

probability to the ones in masquerade category.

2.4.2 HMM with UNIX Commands

HMM construction requires large training data. There are few publicly available

data sets which provide such training data along with testing data. One such data

set namely Schonlau dataset [16] is discussed in the next section. Using this data

set’s training data HMM can be trained (Problem 3). Then the HMM can be tested

based on provided testing data (Problem 1). A high probability score indicates that

both the training data and testing data have similar characteristics [18]. Whereas,

low probability indicates that there is a significant difference between the two. The

later is useful to recognize intrusion data.

2.5 Schonlau dataset

Schonlau et al. [16] has created a data set for comparing different masquerade

detection techniques. This data set is a collection of UNIX commands captured over

a period of time. It is also called as SEA data set (Schonlau Et Al.) and can be used

9

for training and testing purposes. The data set is publicly available for download at

http://www.schonlau.net/intrusion.html [16]. We chose this dataset as it is publicly

available and has good amount of data. There is another publicly available dataset

but it has data for only four users.

Figure 2 below shows the general structure of SEA data set. The data consists of

50 files for 50 different users. Each file contains 15,000 commands. These commands

are collected using acct package [19]. The first 5000 commands from each file are the

commands specific to that particular user and it does not contain any masquerader’s

data. These are used for training purpose. Next 10,000 commands of each user

are divided into 100 blocks of 100 commands. These are seeded with masquerader

commands i.e. the commands other than these 50 users. These 10,000 commands

can be used for testing purpose.

Figure 2: Schonlau data set [18]

2.6 Schonlau Dataset limitations

Of all the available fields of audit data provided by process accounting tool

(acct) only the commands were considered in Schonlau dataset. Due to the way

this audit tool collects audit data from the system, it is impossible to differentiate

10

commands executed by users from those run automatically by a shell script or by

the operating system [4]. This may not give an accurate representation of the user

behavior as there will be commands executed by the operating system or other utilities

frequently which might or might not be common for other users depending on the

operating environment.

The data is only good for training purpose. A real time masquerader data is

not available so it needs to be created manually by injecting non-self data. But

this approach may not be accurate and will make the detection harder. Figure 3

explains the difference between two command collection types i.e. shell history and

pacct accounting history. As we can see, there are number of extra commands run

by operating system in addition to commands run by user.

Figure 3: History file and pacct data for same time period

11

CHAPTER 3

Architecture of Masquerade Detection

3.1 Basic architecture

Figure 4 shows a basic architecture for a masquerade detection technique. A

good user’s normal behavior is captured in terms of their previous UNIX commands

as shown in Figure 2. We are assuming that each user has specific unique set of

command sequence. We can say each user has his own style of using commands in his

day to day life. A good model should retain all the properties of a good user. Once

the profile is ready, user’s ongoing commands are tested against this historic data

model. If the two profiles are similar, we can conclude that the new set of commands

are from the same user. If the two profiles differ, we raise an alarm saying there is

something wrong and we might have encountered a masquerader.

Figure 4: Architecture of masquerade detection [18]

12

3.2 Project road map

As we have mentioned above there are experiments done on masquerade detection

techniques using previously available Schonlau dataset [18]. Though the dataset has

large amount of data collected over a period of fair amount of time, these commands

are collected with the help of UNIX acct auditing mechanism. Due to this the data

set contains commands which are combination of commands executed by the user

itself and the commands executed by the operating system but are not explicitly run

by the user. For example, a shell file is a file that contains multiple commands, and

running a shell file will cause all of its commands to be executed. So all of these

commands would also be recorded by acct.

This project is focussed on collecting just the UNIX commands issued by an user

and not recorded by the acct and to see if we could get better results with this new

dataset. Also in earlier experiments additional information like command timestamp

and command arguments is not considered. We tried to collect all this information

from users. Data collection part is explained in the following sections.

3.3 UNIX Command logging tool

As described in the previous chapter, there are few limitations to SEA dataset

which prevent us from getting accurate results. Our first goal in this project is to

overcome this limitation and develop a logging tool which when installed on user’s

machine will collect the UNIX commands along with its arguments and other infor-

mation. Other information includes session start time, session end time, CPU time,

username. The later goal is to use this dataset for masquerade detection techniques.

13

3.3.1 Implementation

For collecting UNIX commands and additional information mentioned in section

3.1, we have used two resources [3]. First one is bash history files which are automat-

ically generated on a Linux based system. Second one is process accounting which

is achieved by using an audit tool called pacct. Both of these tools are discussed in

details in the following sections.

3.3.2 History Files

In order to collect all the UNIX commands issued by a user, we have collected

bash history files [10] which are located on user’s system and are maintained by the

shell. UNIX stores history for each user on the system. For bash shell this file is

called .bash history and is present in user’s home directory. These history files are

collected using a shell script [21]. Few settings are done through the shell script to

set the output of these files in required format.

Settings done:

To store the timestamp along with the commands following setting needs to be done

for bash shell [15]:

export HISTTIMEFORMAT = ‘‘%F %T’’

Default maximum number of commands hold by history file is 500. There are two

parameters namely HISTFILESIZE and HISTSIZE present in file /etc/profile which

determines the maximum number of commands that .bash history file can hold.

User can change this size by modifying the shell /etc/profile. This value is set to

20,000 for our purpose of collecting UNIX commands over a large period of time as

14

follows:

export HISTFILESIZE = 20000

export HISTSIZE = 20000

3.3.3 Process accounting by pacct

In addition to timestamps, UNIX can log all the commands run by the computer.

This special type of logging is referred to as process accounting [8]. Process accounting

is generally used where users are billed for the amount of CPU time that they consume.

This command can also be used by administrators to check if any particular software

is used by any employee that he wishes to remove from all the systems.

For this project the main purpose of using this utility is to collect CPU time and

other additional information as these are not available with the shell history files. The

assumption is that the log file is not deleted. The package is installed via shell script

and the pacct log files are collected on daily basis using a crontab [22]. The log files

are typically stored under /var/log/account. The location may vary depending on

the Operating System.

History files output looks like:

#1336848246

tar cvfz namya-201204081536-history.tgz

#1336848732

lastcomm

#1336852385

ls

15

#1336852411

cat home/nm/amruta/cs297/history files/.bash history.3

#1336852549

pwd

#1336852615

echo $HISTTIMEFORMAT

Where, number after # is the execution epoch time for the command following it.

pacct log file output looks like:

acct |v3| 0.00| 0.00| 15.00| 0| 0| 172.00| 0.00| 387 386| T1

find |v3| 0.00| 0.00| 00.00| 0| 0| 168.00| 0.00| 391 390| T2

rm |v3| 0.00| 0.00| 00.00| 0| 0| 132.00| 0.00| 398 397| T3

pwd |v3| 0.00| 0.00| 30.00| 0| 0| 160.00| 0.00| 397 395| T4

Where, Tn represents time as following:

T1 = Tue Apr 3 07:35:01 2012

T2 = Tue Apr 3 07:35:02 2012

T3 = Tue Apr 3 07:35:02 2012

T4 = Tue Apr 3 07:35:02 2012

Fields in above output represents: command name, version, user time, system time,

effective time, uid, gid, memory, io, time. User time, system time and effective times

are ticks per second. The time field shows the start time of the process. We had

requested many users to install this tool on their machines and after few months

send the collected data.

16

3.4 Data cleaning

The data shared by the users had to be cleaned as it sometimes had garbage

characters or for some commands the timestamp was missing or there were too many

command line arguments. The user history files were converted to a format which was

compatible with the HMM program. The processing of these history files involved

several steps as below:

• Each of these files was read in line by line to check the validity of each line.

• Blank lines, extra spaces were skipped.

• If a line was solely composed of any symbolic character (meaning that it starts

with a semicolon, dot, hash), it was promptly removed.

• Any line that was thought not to contain a valid command was removed. For

example, sometimes user had typed ‘l’ instead of possibly a ‘ls’ command. Or

there is series of same character typed by mistake as ‘tttttttt’.

• All the commands that started with sudo were converted to sudo . Meaning

‘sudo mkdir’ would be converted to ‘sudo mkdir’.

17

CHAPTER 4

Project Implementation

This section all the implementation details for our project.

4.1 Training HMM

We use UNIX commands collected from different users as DataSet for train-

ing HMM. We have limited amount of data for this research and we want to use

it efficiently. To get meaningful results from this relatively smaller dataset, cross-

validation techniques are usually used. Following section gives a brief overview of

k-fold cross-validation.

4.1.1 K-fold Cross Validation

The basic idea is to efficiently divide the entire dataset into training and testing

datasets such that they do not intersect. Then we run the experiment number of times

on different subsets so as to increase the efficiency of performance evaluation. Usually

greater part of the dataset is used for the training purpose and a small fraction is

kept aside for the testing purpose.

In each round of k fold cross validation, one set will be used as a testing set and

all remaining sets will be treated as a training data. In order to get accurate results,

multiple rounds of cross validation are performed using a different set at each round.

We used five fold cross validation for our project. Each round of this process

is referred to as a “fold”. Here four sets are used as training data and one set

is used for testing. We trained our model using UNIX command sequence for a

18

particular good user. We extracted these sequences of UNIX commands from each

user’s history file. We combined all the command sequences into one long observation

sequence [23]. The process was repeated five times. For every iteration we changed

the test data subset and finally got five HMM models per user. We can observe that

the scores for the test data files belonging to a good user for which we trained the

model are higher while those for the other user files are low as all the other users

are considered as masqueraders. We take average of the highest score amongst other

user’s (masquerader’s) scores from test data and highest score from good user’s scores

as a threshold. Figure 5 shows the training and testing phase for User 0.

4.1.2 Evaluation

We use comparison set for testing phase. Comparison set comprises of two parts

as shown in Figure 5. First part is the set of the good user for which we trained the

model and which is not been used in the training phase. This part will be used for

validation purpose, that is to see how good our model performs. Second part includes

all the sets from remaining users which we consider as masqueraders.

In the testing phase, we score the set of good user which we kept aside in the

training phase. In Figure 5 User0Set0 is such a set which was kept aside for validation

purpose during five fold cross validation. If we see the score for this particular set

its -4.457 which is much higher than other test files (which belong to other users

considered as masqueraders). We can say that higher score indicates a match, that

is the set belongs to a good user. Lower scores correspond to masqueraders.

19

Figure 5: HMM training

20

CHAPTER 5

Experimental Setup

5.1 Data Processing

The data set contains all the files used for training and testing purpose. Original

user history files which we have collected from different users is first processed to have

them in proper format. Then this file is split into five equal parts so that we could

use it for 5-fold cross-validation. We have written a perl script to do this task. Each

file in this folder has name USER[0-N]SET[0-4]. Where N = total number of users.

This folder will have 5 sets for each user. So,

Total number of files in data set = Total number of users * 5

For each data set file a corresponding .in file is created. First line of .in file

represents ‘T’ that is total number of observations for that file. Remaining lines

represent the unique index number given to each command in that file. So at the end

of this process, we will be having a long sequence of indices corresponding to their

respective commands.

There are also .alphabet files. First line of this file represents number of unique

observation symbols in that file which we denote as ‘M’. Remaining lines will have

unique command names on each line.

Once the training phase is over, models are created for all sets of each user. So

we will have 5 models per user. Table 2 explains about file 4 USER0 N2 E0.model.

After testing phase, score files for all sets of each user are generated in Result

folder. The name of file will look like 4 USER0 N2 E0.score where all the symbol

meanings remain same as above. Each score file has scores for two sections: ‘Files of

21

Table 2: Model file name meaning

Value Meaning
4 number of sets used in training phase
USER0 user number
N2 number of HMM states = 2
E0 set number which was excluded in training phase

and used for validation = 0

the same user’ and ‘Files of other users’. A typical score file looks like below:

Result/4 USER0 N2 E0.score

Files of the same user:

USER0SET0 -4.457

Files of other users:

USER1SET0 -341.796

USER1SET1 -315.886

USER1SET2 -319.450

USER1SET3 -406.268

USER1SET4 -230.424

USER2SET0 -207.496

USER2SET1 -59.990

USER2SET2 -79.644

USER2SET3 -105.259

USER2SET4 -154.880

22

‘Files from same user’ section in this score file has the validation scores. This

is the reason the scores for this section is high as the validation data belongs to a

good user. ‘Files from other users’ section contains scores for all the remaining users

(masqueraders). As we can see there is a particular range of scores for each user, that

is, USER 1 scores range from -230 to -406 whereas USER 2 scores are in different

range.

23

CHAPTER 6

Accuracy Measure

6.1 Possible Outcomes

We have four possible outcomes as true positive (TP), true negative (TN), false

positive (FP) or false negative (FN). Whenever a masquerader is correctly classified

as a masquerader, we say its a true positive. We get a true negative when a good

user is correctly classified as a good user itself. Ideally our masquerade detection

technique should give only TPs and TNs. But in reality we might get a lot of false

positives and false negatives. A false positive occurs when a good user is misclassified

as a masquerader. A false negative occurs when a masquerader is misclassified as a

good user instead of a masquerader and passes the check. Ideally we would like to

keep both of these down to zero but usually only one of them can be kept low. In

masquerade detection though we want to have low false negative rate as we don’t

want any masquerader to get system access as a good user. An ideal masquerade

detection technique should be capable of detecting all the true positives and should

have zero false positives. Figure 6 shows all possible outcomes as discussed.

6.2 Receiver Operating Characteristic

Originally, the receiver operating characteristic (ROC) was developed for signal

detection applications [6]. ROC is widely used for evaluating the performance of vari-

ous machine learning algorithms [5], [2]. On X-axis, we have false positive rate(FPR)

i.e. when a good user is identified as a masquerader and Y-axis has true positive

rate (TPR) i.e. when a masquerader is correctly identified [20]. TPR and FPR are

calculated as below:

24

Figure 6: Possible Outcomes [11]

TPR = TP
TP+FN

FPR = FP
FP+TN

Figure 7 shows example of a ROC curve.

The top left portion of a ROC curve represents higher true positive rate. So if

the curve lies in that part, we get the better classification. Diagonal is our reference

line. An algorithm with 50% accuracy will have its ROC curve along the diagonal line

[20]. An ideal case is shown by the brown line with the diamonds from Figure 7. It

has 100% true positive rate and 0% false positive rate. The blue line having squares

on it represents an algorithm with approximately 78% true positive rate and 10%

false positive rate [20]. The line with triangles on it shows that this algorithm is not

performing that well. The area under the curve (AUC) shows how well a technique

can distinguish between two groups, in our case a masquerader versus a good user.

In ROC analysis, if the area is closer to 1.0 then the result of the test is considered to

25

be better compared to when the area is closer to 0.5. We will be using ROC curves

for our HMM detector.

Figure 7: ROC Example [20]

26

CHAPTER 7

Experimental Results

We have considered different number of states for the Hidden Markov Model i.e.

N = 2to6. We ran our experiments on all these states. As we have used five fold cross

validation, after testing phase we got five models for each user. We plotted graphs for

all the users. For subsequent amount (half) of users, there was a complete separation

between good users’ scores and all the masqueraders’ scores. This means that log

likelihood per command (LLPC) for all the good users were higher than those of all

the masqueraders. For the remaining models, we observed some overlapping between

the two scores. This happened because some masqueraders had higher scores than a

good user’s score.

Let’s look at the result of running HMM for one of the good users i.e. ‘User 10’.

Figure 8 shows the result for this particular user. We used N = 2 i.e. the HMM with

two number of states. It can be observed from the graph that all the masqueraders

have lower scores than that of the good user (User 10 in this case). The result is not

perfect though as two masqueraders have been misclassified as good users. Also one

good user’s set is been misclassified as a masquerader.

For each model, we found a number of false positives as well as false negatives.

When a good user is misclassified as a masquerader a false positive occurs . So for

this particular model, we have two false negatives and one false positive.

Hidden Markov Model classifies a user into either category by comparing its score

with the threshold value. Therefore setting our threshold value to some higher number

or a lower number affects our results. Depending on the threshold value, number of

27

Figure 8: Log likelihood per command of User 10 Vs masqueraders for N = 2

false positives and false negatives may vary. Higher the threshold, fewer the false

positives. However setting the threshold higher usually results in more number of

false negatives as more users may have scores lower than the threshold.

We have plotted a Receiver Operating Characteristic (ROC) Curve for the above

model considering different threshold values. Figure 9 shows the ROC curve for above

case. Area under the curve for this ROC is 0.963 which is much higher than 0.5 but

this case is not as good as other cases.

Next, we see some of the typical cases where there is a good separation between

a good user and all the masqueraders. Figure 10, Figure 11 and Figure 12 shows such

users.

As we can see for all the above users there is a complete separation of two

categories. The ROC plots for these users are shown in Figure 13, Figure 14 and

Figure 15 respectively. AUC for User 2 and 4 are 1.0 which are ideal cases as there

are no false positive or false negatives. But for User 0, AUC is 0.958 as 1 of the

28

Figure 9: Receiver Operating Characteristic (ROC) Curve, User 10, N = 2

Figure 10: Log likelihood per command (LLPC) of good user 2, masqueraders for
N = 2

masquerader is very close to a good user range.

29

Figure 11: Log likelihood per command (LLPC) of good user 4, masqueraders for
N = 2

Figure 12: Log likelihood per command (LLPC) of good user 0, masqueraders for
N = 2

7.1 Multiple HMM states

We also ran all the test cases for N = 3, 4, 5, 6 but there is not much significant

change in results for all these states. So we can say that HMM states does not affect

30

Figure 13: Receiver Operating Characteristic (ROC) Curve, User 2, N = 2

Figure 14: Receiver Operating Characteristic (ROC) Curve, User 4, N = 2

our results much.

31

Figure 15: Receiver Operating Characteristic (ROC) Curve, User 0, N = 2

7.2 Using more data for testing

We experimented with the proportion of data used for training and testing. As

we have discussed in earlier chapters, five fold validation uses four sets for training

and just one set for testing. We thought of using more data for validation purpose

and see if the results vary because of this change. We have used three fold cross

validation for this, that is, we kept two sets aside for validation and we performed

three fold validation on remaining three sets. So in total we had three sets for testing.

We observed that for most of the users, the graphs for five fold validation (with

less testing data) and three fold validation (with more testing data) are almost iden-

tical. For some users, there is slight change in the result when more data is used for

validation.

For some of the users five fold cross validation shows better results. Figure 12

shows five fold cross validation results for User 0 where we can see separation whereas,

32

Figure 16 shows results for three fold cross validation for same user where one point

had been misclassified as a masquerader.

Figure 16: User 0, 3 fold cross validation (more validation data)

Let us look at some cases where three fold cross validation gives better results

over five fold cross validation. Lets consider User 5 first. Figure 17 shows graph for

five fold cross validation (with less validation data). As we can see due to the point

which is closer to -100, we can not draw a line which separates User 5 (good user)

and all other masqueraders.

Figure 18 shows the graph for same user, that is, User 5 but with more validation

data (three fold cross validation). Here we can see that now there is a complete

separation between the two classes, which is a good thing. This seems somewhat

counterintuitive but we think that this could be because of changing user command

history over time and since in three fold cross validation we used lesser history for

training, the model better captured the user profile.

Similarly, Figure 19 and Figure 20 shows differences for User 9. Here for less data

there is no complete separation whereas with more validation data, we are getting

33

Figure 17: User 5, 5 fold cross validation (less validation data)

Figure 18: User 5, 3 fold cross validation (more validation data)

better results over the earlier case.

7.3 Effect of varying testing data sequence size

This section discusses the correlation between length of test sequence and its

effectiveness. We have generated five different cases for variable length testing data

34

Figure 19: User 9, 5 fold cross validation (less validation data)

Figure 20: User 9, 3 fold cross validation (more validation data)

sequences. Table 3 refers to these five cases. In case 1, the testing data set is divided

in two parts so third column is 50% .

Keeping the training data constant in size, we are reducing length of the scoring

dataset to see if this changes our earlier results. Figure 21 shows the experimental

35

Table 3: Experiment Cases For Generating Multiple Test Sequences

Case Number Number of Sequences % Test Data per sequence
1 2 50 %
2 4 25 %
3 10 10 %
4 15 6.6 %
5 20 5 %

results for User 3. We reduced testing data length for User 3 from 1864 to 93 i.e.

Case 5. As we can see here, more the testing data better the results given by HMM.

Similarly, for less amount of testing data, the results are not that great.

Figure 21: Comparison of different test length sequences, User 3

Figure 22 shows similar results for User 11.

We observed that, for 40% of users out of total, there is no significant effect of

varying the testing data sequence. Figure 23 shows such an example. For User 13,

there is no significant change in results when the testing sequence size is varied. This

36

Figure 22: Comparison of different test length sequences, User 11

might be because this user has large number of commands as compared to other users.

We were not able to include more cases for this experiment because of the limited

number of UNIX commands for some users.

7.4 Comparison with Schonlau Dataset

We ran our experiments on Schonlau dataset to see if the results vary from the

ones we got with our dataset. Figure 24 and Figure 25 shows the experimental results

for Schonlau dataset’s User 1 and User 7.

The results using Schonlau’s dataset and using our new dataset are similar.

For Schonlau dataset we observed good separation for fewer users but in our case,

results for 50% of users have complete or good separation between good users and

masqueraders. One of the reasons for lesser number of users getting good separation

in case of Schonlau dataset could be that the dataset has more number of users along

37

Figure 23: Comparison of different test lengths sequences, User 13

Figure 24: Experimental Results for Schonlau Dataset, User 1

with large number of commands per user. So there is higher probability of users using

similar commands and thus having higher scores.

We also plotted ROC for one of the users’ in Schonlau dataset. Figure 26 shows

38

Figure 25: Experimental Results for Schonlau Dataset, User 7

the ROC. AUC for this particular user is 0.89.

Figure 26: ROC for Schonlau Dataset, User 7

39

CHAPTER 8

Conclusion

In this project, we have created a new UNIX commands dataset which will only

include UNIX commands issued by a user and not the commands executed by the

system. This new dataset also has command execution timestamp and arguments in

addition to the commands themselves. We used HMM for masquerader detection on

this data and ran a number of tests on this new dataset to see if it is comparable to

Schonlau dataset. We have analyzed the results and concluded that the results with

this dataset are good and similar to that of the Schonlau dataset. For few users, the

results are not that good. We think the reason for this might be lesser number of

commands for those users. Another reason might be, these users executed commands

that are similar to some other users. Due to which a conservative threshold calculation

results in more false negatives.

We also ran experiments for different number of states of HMM and found that

number of states does not have significant impact on the results. The HMM with two

hidden states performs slightly better than other states for some users.

We experimented with size of both training and testing data set sequences. We

conjectured that the results are better when more training data is used for most

cases. Similarly, we observed that the results are better when longer test command

sequences are used over shorter ones.

Initially we were thinking to use a dataset that had a similar structure to the

Schonlau dataset. This would imply that, the testing data is mixed with other users

(not in training dataset). When we analyzed our dataset we found that lot of users

40

have similar commands, so as a start we decided to consider other user’s data as mas-

querader data instead of creating intrusion data by inserting other users commands

with good users commands. One future is to use the timestamp and arguments in

conjunction with the commands issued by users and test if the results improve. Sec-

ondly, create masquerader dataset by mixing good and other user’s data and use that

for testing purpose.

41

LIST OF REFERENCES

[1] Alpaydin, E., (2010). “Introduction to Machine Learning”. Retrieved from
http://www.realtechsupport.org/UB/MRIII/papers/MachineLearning/

Alppaydin_MachineLearning_2010.pdf

[2] Ataman, K., Zhang, Y., (2006). “Learning to rank by maximizing AUC with
linear programming”, in International Joint Conference on Neural Networks. pp.
123-129.

[3] Axelsson, S., Jonsson, E., et al., “An Approach to UNIX Security Logging”.
Rtrieved from http://www.securiteinfo.com/ebooks/pdf/unix-sec-log.pdf

[4] Bertacchini, M., Fierens, P., (2009). “A Survey on
Masquerader Detection Approaches”. Retrieved from
http://www.criptored.upm.es/cibsi/cibsi2009/docs/Papers/

CIBSI-Dia2-Sesion5(2).pdf

[5] Cortes, C., Mohri, M., (2004). “AUC optimization vs. error rate minimization”
in NIPS, S. Thrun, L. K. Saul, and B. Scholkopf, Eds., vol. 16. The MIT Press.
pp. 313-320.

[6] Egan, J., (1975) “Signal Detection Theory and ROC Analysis”. Academic Press,
Inc.

[7] Erbacher, R., Shashi, P., Chet, C., (2009). “Intrusion Detection: De-
tecting Masquerade Attacks Using UNIX Command Lines”. Retrieved from
http://digital.cs.usu.edu/~erbacher/publications/

MasqueradeDetectionConference.pdf

[8] Garfinkel, S., Spafford, G., (1996). “Practical
Unix & Internet Security (2010)”. Retrieved from
http://docstore.mik.ua/orelly/networking/puis/ch10_02.htm?&lang=en_us&

output=json&session-id=37917ac8f4dc8fb1f45be60484586c65

[9] Geng, D., Odaka, T., (Springer 2010). “An N-Gram and STF-IDF model for
masquerade detection in a UNIX environment”.

[10] Kemp, S., (2009). “BASH history forever. Debian Administration”. Retrieved
from http://www.debian-administration.org/articles/175

42

[11] Kothari A., (2012) “Defeating Masquerade Detection”, Mas-
ters thesis, San Jose State University. Retrieved from
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1239&context=

etd_projects

[12] Krogh, A., Brown, M., et al., “Hidden markov models in computational biology:
applications to protein modeling”, J. Mol. Biol., vol. 235, no. 5, pp. 1501-1531,
1994.

[13] Lee, W. and Stolfo, S. “Data mining approaches for intrusion detection”. In Proc.
7th USENIX Security Symposium, 1998.

[14] Lin, H., Stamp, M., (November 2011). “Masquerade detection using profile hid-
den Markov models, Computers and Security”, Vol. 30, Issue 8, pp. 732-747

[15] Natarajan , R., (2008, August). “15 Examples To Mas-
ter Linux Command Line History”. Retrieved from
http://www.thegeekstuff.com/2008/08/15-examples-to-master-linux

-command-line-history/

[16] Schonlau, M., (2001) “Masquerading User Data”, Retrieved from
http://www.schonlau.net/intrusion.html

[17] Stamp, M., (2012, February). “A Revealing Introduction to Hidden Markov Mod-
els”. Retrieved from http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[18] Stamp, M., Lin, H., (2010, December). “A Study on Masquerade Detection”. The
Faculty of the Department of Computer Science San Jose State University. Re-
trieved from http://www.cs.sjsu.edu/faculty/stamp/students/huang_lin.pdf

[19] The GNU Accounting Utilities, (2010). “Free Software Foundation, Inc.”, Re-
trieved from http://www.gnu.org/software/acct/

[20] Toderici, A., (2012). “Chi-squered distance and metamorphic virus de-
tection”, Masters thesis, San Jose State University. Retrieved from
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=7710&context=

etd_theses

[21] Ubuntu Server Guide (2006). “Canonical Ltd”. Retrieved from
https://help.ubuntu.com/8.04/serverguide/backup-shellscripts.html

[22] Ubuntu Documentation. Last visited (2012, June 5). Retrieved from
https://help.ubuntu.com/community/CronHowto

[23] Wong, W., (2006). “Analysis and Detection of Metamorphic Computer
Viruses”, Masters thesis, San Jose State University. Retrieved from
http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

43

APPENDIX A

Scripts Used To Collect Data

A.1 Setup

The following script will install pacct package on user’s machine and will also

do necessary settings for .bash history file.

numbersep

1 #!/ bin /bash

#part1 − pacct package setup

3 USERHOME=$ (eva l echo ˜${SUDO USER})

BASHRC LOCATION=$USER HOME/ . bashrc

5 DEFAULT ACCT FILE=/etc / d e f au l t / acct

BASEDIR=$USER HOME/ amruta masquerade detec t i on pro j ec t

7

i f [−f / e t c / deb i an ve r s i on] ;

9 then

DISTRO=Debian

11 echo ‘ ‘ I n s t a l l i n g acct f o r $DISTRO’ ’

sudo apt−get i n s t a l l acc t

13 e l s e

echo ‘ ‘ This opera t ing system i s not supported ’ ’

15 e x i t −1

f i

17

#change ACCT LOGGING= ‘ ‘30 ’ ’ to 60

19 sudo sed − i ‘ s /ACCT LOGGING=\ ‘ ‘ .∗\ ’ ’ /ACCT LOGGING=\ ‘ ‘60\ ’ ’/ ’

44

$DEFAULT ACCT FILE

21 #∗∗∗

#CHANGE THE BASH HISTORY SO THAT IT DISPLAYS TIMESTAMP

23 #∗∗∗

echo ‘ ‘ export HISTTIMEFORMAT = ‘ %F %T ’ ’ ’ >>$BASHRC LOCATION

25 #∗∗∗

#CHANGE THE BASH HISTORY SO THAT BASH HISTORY FILE SIZE IS

SUFFICIENTLY LARGE

27 #∗∗∗

echo ‘ ‘ export HISTFILESIZE=20000 ’ ’ >>$BASHRC LOCATION

29 echo ‘ ‘ export HISTSIZE=20000 ’ ’ >>$BASHRC LOCATION

#part2 − cronjob setup (execute cronjob −e on user ’ s machine)

31 (crontab − l ; echo ‘ ‘00 12 ∗ ∗ ∗ $BASEDIR/ s c r i p t s /

c o p y h i s t o r y f i l e s . sh >> $BASEDIR/ s c r i p t s / c o p y h i s t o r y f i l e s .

l og 2>&1’ ’) | crontab −

setup.sh

45

A.2 Copy History Files

The following script will collect .bash history.

numbersep

#!/ bin /bash

2 #Copy /home/$USER/ . ba sh h i s t o ry to de s i r ed l o c a t i o n

#Auto Archive countdown move loop

4 #This s c r i p t w i l l c r e a t e $count number o f backups o f a g iven f i l e

count=120

6 move=$ [$count − 1]

USERHOME=$ (eva l echo ˜${SUDO USER})

8 BASEDIR=$USER HOME/ amruta masquerade detec t i on pro j ec t

s f o l d e r = ‘ ‘$USER HOME’ ’

10 d f o l d e r = ‘ ‘$BASEDIR/ h i s t o r y f i l e s ’ ’

f i l e = ‘ ‘ . bash h i s to ry ’ ’

12 date

14 #check i f the backup f o l d e r i s pre sent

i f [! −d $d f o l d e r]

16 then

mkdir $d f o l d e r

18 f i

20 # Automate un t i l $count = 0

whi le [$count −gt 0]

22 do

i f [−e $d f o l d e r / $ f i l e . $move]

46

24 then

echo ‘ ‘Moving $d f o l d e r / $ f i l e . $move to $d f o l d e r / $ f i l e . $count ’ ’

26 mv $d f o l d e r / $ f i l e . $move $d f o l d e r / $ f i l e . $count

f i

28 count=$ [$count − 1]

move=$ [$move − 1]

30 done

echo ‘ ‘ Copying $ s f o l d e r / $ f i l e to $d f o l d e r / $ f i l e . 0 ’ ’

32 cp $ s f o l d e r / $ f i l e $d f o l d e r / $ f i l e . 0

#EOF

copy history files.sh

47

	Masquerade Detection Based On UNIX Commands
	Recommended Citation

	tmp.1356193608.pdf.CJsz3

