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ABSTRACT 

YIOOP! INTRODUCING AUTOSUGGEST AND SPELL CHECK 

 

This project adds autosuggest and spell-check for queries in Yioop [1], a PHP-

based search engine. These features help a user by reducing typing, by catching any 

spelling errors, and by making it easier to repeat searches. Commercial search engines 

like Google, run on machine clusters and use lists of popular queries from their logs to 

provide relevant suggestions to users. Efficient storage of data on multiple servers is 

responsible for minimizing response times. Yioop typically runs on a smaller number of 

machines compared to commercial search engines. This project aims to implement these 

computationally intensive functionalities in this constrained environment. This is 

achieved by performing any needed processing on the client-side without sending queries 

to the Yioop server. 
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1. INTRODUCTION 

Autosuggest, also called auto-complete, is a popular and useful feature provided 

these days in many web browsers, search engines and other web applications. It is usually 

provided as a dropdown menu of choices below the textbox in which the user is typing. 

The goal is to anticipate the text the user intends to type so that instead of typing in the 

rest of the query, one of the dropdown choices can be selected. Some advantages of 

autosuggest are queries need not be typed in their entirety, queries need not be 

remembered verbatim and incorrectly typed queries can be overridden without 

recomposing them. 

This project aims to develop a similar autosuggest feature for Yioop, a PHP-based 

search engine. Commercial search engines like Google, run on machine clusters and use 

lists of popular queries from their logs to provide relevant suggestions to users. Efficient 

storage of data on multiple servers is responsible for minimizing response times. Yioop 

typically runs on a fewer machines compared to commercial search engines. This project 

aims to implement these computationally intensive functionalities in this constrained 

environment. This is achieved by performing any needed processing on the client-side 

without sending queries to the Yioop server. 

The Yioop search engine is introduced in Section 2. Section 3 talks about the 

preliminary work that has been done to add autosuggest and spell-check features to 

Yioop. It describes the research conducted on various suggestion techniques, the data 

structures suitable for efficient storage of  dictionary words and the network response 

times for sending dictionaries in different formats. Section 4 talks about how a basic 

autosuggest functionality was added to Yioop that handles just single word queries. 
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Multi-word suggestions are discussed in Section 5. Section 6 deals with supporting 

foreign language queries. We will see that Yioop transparently supports any language 

whose Unicode letters can be provided as input. Section 7 discusses how the query 

history of a user can be used to come up with better suggestions. This section concludes 

the discussion on autosuggest in Yioop. Section 8 goes beyond autosuggestion to discuss 

spelling correction for queries. We will discuss the efficacy of the Edit-Distance 

algorithm [3]. Section 9 tackles the problem of rendering suggestions for  non-English 

queries transliterated into English. The South-Indian language Telugu [4] will be used as 

an example. Finally, we will discuss the performance of the system and future work. A 

list of references has been included at the end. 
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2. YIOOP SEARCH ENGINE 

  Yioop is a PHP-based search engine designed to allow users to produce indexes of a 

website or a collection of websites [5]. Currently, Yioop does not support any form of 

autosuggestion or spelling correction when a user types in a query. Our goal will be to add 

these features to Yioop. 

	   	   Javascript will be used to develop the functionality in the front-end so that the Yioop 

servers will not be affected. It was a challenge to develop these computationally intensive 

tasks using Javascript and some trade-offs had to be made that will be discussed when we 

talk about performance.	  
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3. PRELIMINARY WORK 

Some of the different kinds of applications in which autosuggest has been 

implemented, are listed below [2]. This list serves to provide a context for how this 

feature will be modified for Yioop. 

Web Browsers – Here autosuggest is generally used in the address bar to suggest relevant 

URLs (Uniform Resource Locators) while the user is typing. 

Search Engines – Here autosuggest is used to suggest relevant queries, even corrections, 

to the user while typing. Commercial search engines provide useful suggestions based on 

earlier user behavior aggregated across logs. Apart from just the text being typed, 

additional signals such as a user’s search history, the geographic location and the 

currently trending search queries can also be considered. Understanding more signals and 

context results in a better search experience. Google Instant is a very popular 

implementation of such autosuggest techniques [2]. 

Word-processors - In many word processing programs, auto-completion decreases the 

amount of time spent typing repetitive words and phrases. The corpus used for auto-

completion is usually not just a static dictionary, but also a dynamic one that can be 

extended with the text in the document itself and also any user-specified list of words [2]. 

Code Editors – Popular IDEs (Interactive Development Environments) like Eclipse use 

autosuggestion techniques to help the user type in long programs. It saves time and 

avoids spelling errors, which in coding environments can mean a broken program. For 

example, using auto-complete for long variable names like ‘numberOfLinesOfCode’ can 

reduce errors and burden. The user need not worry anymore of longer and more 

descriptive names, which in turn improves the quality of code [2]. 
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3.1 DICTIONARY WORDS 

A basic necessity for developing autosuggest in any language is a set of relevant and 

frequently used words in that language. The quality of the feature depends upon how 

comprehensive the corpus is and how sophisticated the front-end design is. It is possible to 

work with a compact list of dictionary root words but we will require very detailed stemming 

logic in the front-end. Similarly, a straightforward front-end can work if the supporting 

corpus contains most of the variations of the root word. For our project, the corpus has been 

chosen from Wiki sources [6]. 

 
3.2 STORING DICTIONARY WORDS 

Data structures like tries, suffix trees and ternary search trees were considered to 

store dictionary words for the implementation. After researching their operational time 

and space complexities, it was judged that a trie would be most appropriate. [7] Figure 

3.1 depicts the structure of a trie: 

 

Figure 3.1 Example of Trie [7] 
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The figure represents a trie constructed with English words. Every arrow 

represents a letter in the alphabet and every node represents the word formed by a 

sequence of arrows from the root that terminates at that node. 

Programmatically this was achieved by using multi-level arrays in PHP. The 

initial version of code for constructing a trie did the following -   

• Created a trie in which words are stored using multi-level PHP arrays. 

• The trie was then JSON encoded and a gzip version was created.   

• Any words with less than 3 letters or stop words [8] or any words which has non-

ASCII characters  

• The final gzip file was around 250KB, which was a reasonable size to send over 

the network and load while Yioop website is loaded. 

Figure 3.2 gives the structure of the actual constructed trie. 

                        

Figure 3.2 Structure of generated trie 
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Every complete word uses the delimiter ‘$’, followed by its frequency in our input 

corpus. The frequency is used to pick the most relevant choice out of many possible 

outcomes when doing spelling correction. 

The constructed trie is stored on the Yioop server and delivered whenever a user 

accesses the Yioop website. The downloaded trie is further processed using Javascript on 

the client-side 
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3.3 TIMING TESTS 

Timing tests were conducted to see how the addition of trie effects the page load 

time of Yioop website. Time was monitored using Firefox Web Console option [9]. This 

helps in finding load time profiles for a given website.  

With the aim of achieving the lowest possible load time, the following options 

were considered. 

1. Loading a plain JSON-encoded trie of size 2.5MB took around 2.5 seconds. 

2. When the gzip option of HTTP is enabled, the trie can be compressed and 

decompressed on the fly. Even with the additional computation this entails, the 

network latency was lower due to the smaller size of the file being sent and the 

response time was around 400 ms, much faster than loading a trie directly. 

3. The next option was to send the compressed trie in a text file, rather than having 

HTTP doing it for every request. This reduces load on the server because it no longer 

has to compress the 2.5 MB trie on the fly but the client still has to decompress the 

file. Downloading the zipped file , with a size of about 250 KB, followed by client-

side decompression took around 35ms as shown in Figure 3.3. This figure shows the 

load times as displayed in the Firefox Web Console. 

 

                       
Figure 3.3: Load time of compressed trie with sent in a text file 

 

4. The final experiment was to compress the trie with a .gz extension while enabling the 

HTTP option ‘gzip,deflate’. When this option is provided, the browser expects a 

compressed file and decompresses it on the fly. With this approach, it takes just 3 ms 
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for the browser to download the compressed trie, decompress it and make the JSON-

encoded trie available for autosuggest (See Figure 3.4) 

 

 
 

Figure 3.4: Load time of .gz trie with browser enabled to accept gzip files 
 

 The experiments are summarized in the Table 3.1 

Trie type Size in KB Response Time in ms 

Plain JSON 2500 2500 

Plain JSON with gzip 
enabled on HTTP 

2500 400 

File with compressed 
JSON data 

250 35 

Zipped JSON file with 
deflate option 

110 3 

 

Table 3.1 Comparison of load times of different formats of tries   

After conducting these experiments, a compressed trie with a .gz extension was made 

available on Yioop server that will be downloaded when the page is loaded with a browser 

enabled to accept gzip files. 
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3.4 GOOGLE AUTOSUGGEST 
 

An experiment was conducted on how Google’s autosuggest functionality works. 

The aim was to reverse engineer the process in order to help develop a better suggestion 

feature for Yioop. The Activity Window in the Safari web browser was used as the tool. 

A series of experiments were conducted on Google search page with various kinds of 

inputs. The actions going on in the back end were then examined using the Safari 

Activity window. The activity window display on opening a Google search page looks 

some thing like Figure 3.5. 

 

Figure 3.5: Google search page being inspected in Safari activity window 
 

The data loaded after every click can be inspected using the activity window. The 

downloaded file contains JSON data with the URL in hex format and the URL contains 

all the suggested values for the query. The file downloaded for the search query "Soc" 

can be seen in Figure 3.6. 
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Figure 3.6: Google search page being inspected in Safari activity window for query “Soc” 
 

In the process of analyzing the exchange of data between the browser and the Google server, 

it was found that URLs have the following characteristics:   

• ‘nf’ is always 1  

• ‘cp’ numbers the urls 1,2,3...  

• ‘gs_id‘ is the Google search Id  

• ‘tch’ is always 1  

• ‘ech’ is an index like ‘cp’, but it will be the same if a same query is entered twice 

during one search  

Figure 3.7 below shows the highlighted part where we can see the words that are 

retrieved for the autosuggest list 

 

Figure 3.7: Downloaded file with data on autosuggest results for “Soc” 
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As we continue to type the query, the results will be displayed using the topmost 

suggested word. A similar file to the above can be downloaded that has the styling and 

content of the result page. It can be seen that every request is being sent to the server and 

some kind of relevant data is being fetched. Reverse engineering the complete 

autosuggest process was not possible, but this experiment gave a good understanding of 

the sequence of events that occur during a search. 

As mentioned earlier, it was decided that autosuggest in Yioop will to be 

implemented on the front end. Hence, following such a method is not possible. Yioop 

needs to make use of only the local content.   
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4.  AUTOSUGGESTION IN YIOOP 
 

Incorporating the basic autosuggest functionality in Yioop was the next step. The 

initial corpus was a list of English dictionary words [2]. Javascript code was used to infer 

the relevant words for autosuggestion on the client-side. The steps are as follows:      

• The trie is downloaded when the Yioop page is loaded. 

• A Javascript handler for the ‘onKeyUp’ event delivers the typed letters to the 

program. As the letters accumulate, relevant suggestion words are retrieved and 

displayed. 

• Only the top six words are made visible but the user can scroll down to see 

more results. 

• The user can hover the cursor on the suggestions and click one of them as the 

query. 

• Otherwise, the user can also use the arrow keys to traverse through the list and 

press the Enter key to submit the query 

A screenshot of Yioop autosuggest in use is displayed in the Figure 4.1. This image 

shows the dropdown for single character entry 'c'. 

 

 
Figure 4.1: Yioop suggest for character ‘c’ 

 
This is the initial version for the layout for the suggestion list. It has evolved with 

the project and is evident in the further figures. For a search term of more than one 
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character, it looks something like Figure 4.2. 

 

 
 Figure 4.2: Yioop suggest for word ‘coll’ 

 
 

After the intended word is found in the dropdown, the user can click it to select it. See Figure 
4.3. 

 

 
 

Figure 4.3: User selecting a word from autosuggest list 
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5.  MULTI-WORD SUGGEST 
 

After developing the basic autosuggest feature, more features were added to make 

the suggestions more useful. Multi-word suggestions were introduced. Figure 5.1 shows 

an example of multi-word suggestion. Whenever a space is typed in a query, the suggest 

list prepends the previous words of the query to the later suggestions. This way, possible 

phrases are suggested. 

 

Figure 5.1: Multi-word suggestion for query “Social netw” 
 

Figure 5.2 shows that using the arrow keys, a word from the suggestion list can be 

selected and placed in the search box and the intended query can be submitted using the 

Enter key. A new layout for the suggestion list can be seen in the figure. 

 

Figure 5.3: Usage of up/down arrow keys on the list 



	   23	  

6. FOREIGN INPUT SUPPORT 
 

With the growing popularity of search engines in every part of the world, it is very 

important to be able to support different sets of input for the suggestions. Yioop has the 

flexibility to add support for additional languages, and autosuggest feature was likewise 

updated to work for any foreign input.  

Internationalizing the trie construction and suggestion technique was accomplished 

by handling the Unicode representations of any give character. Currently this has been 

tested for French and Russian, but it will support any language whose characters are 

present in the Unicode character set. 

Below are snapshots for French word suggestions. 

                                     
Figure 6.1 French word suggestions 
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Figure 6.2 French word suggestions 

Below are the snapshots for Russian word suggestions. 

                                    
Figure 6.3 Russian word suggestions 

 

                                
 
  



	   25	  

7. USING LOCAL STOARGE TO SUGGESTIONS 

Now that the simple suggestion of words from the dictionary is supported, this section 

tries to enhance the autosuggestion by storing the previous queries in the web browser’s 

local storage. With HTML5, the user’s browser is capable of storing data locally. This 

type of storage proved to faster and secure as the data is not included only when it is 

asked for but not every server request. Large amounts of data can be stored in key/value 

pairs without affecting the page's performance and a web page can only access data that it 

stored [10]. 

7.1 ALGORITHM FOR SUGGESTIONS USING LOCAL STORAGE 

Whenever a user presses Enter to submit a query, the query in the search box will be 

placed in local storage for future use. The following steps are taken: 

1. When the user presses Enter the query is stored. The storage is specific to each 

‘locale’ used by Yioop. For example, the locale for US English is ‘en-US’. 

Storing in such a way accommodates all existing languages supported by Yioop 

and leaves room for new languages. Also, a trie of all the local storage query 

words is constructed and stored for future use. For example, when a user is in 

English language mode, and submits a query ‘fabric’, it is stored as follows 

en-US_0 -> {"f":{"a":{"b":{"r":{"i":{"c":{"$":"$"}}}}}}}@@{"fabric":1} 

• en-US is the locale specific to US English. 

• 0 is the version number for the Javascript file that has the implementation 

for the suggestions. This is manually changed when the file undergoes 

changes. This is checked every time a user has suggestions in local 

storage, and if the version number does not match then the local storage 

will be deleted. This helps to eliminate any stale data. 

• The query ‘fabric’ is stored as a trie in JSON format 

• It is followed by the actual query along with the number of times that 

query is fired and ‘@@’ is a unique delimiter 
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2. When a user types a query the next time, first the local storage is checked for any 

existing suggestions.  

3. If available, they appear first in the suggest list and are listed in descending order 

by the total number of times they have been fired. 

4. The actual dictionary is searched for further suggestions. 

As Yioop does not have any user base query data to rely on for suggestions, the best 

alternative is to store the user’s previous queries to reduce the typing work. Figure 7.1 

shows that the term ‘fabrication’ is first in the suggest list as it has been quereid before               

 

Figure 7.1 Local storage suggestions 

Figure 7.2 shows the suggestions from local storage ordered by their frequencies. 

       

7.2 Local storage suggestions ordered by frequency 
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8. SPELLING CORRECTION 

It is quite possible that a user might spell words incorrectly while entering queries 

in Yioop. This section deals with the spell correction technique used to suggest 

corrections for misspelled words in a query. Many commercial search-engines like 

Google use this feature and ask users ‘Did you mean:’ with the most relevant spelling 

correction. Using popular search data to will also help in giving the most relevant spell 

corrections. 

In the constrained environment of Yioop where there is no external data, a well-

picked dictionary with a set of frequent words is used for spelling correction. This is the 

same dictionary used for autocomplete suggestions. Spelling correction may involve 

usage of different kinds of data similar to suggestions. 

8.1 ALGORTHM FOR SPELL CORRECTION 

The most intuitive algorithm for correcting typing errors is the Edit Distance 

algorithm [3]. The number of edits it would take to turn into correct word is the edit 

distance between the two words. There can be different kinds of edits between two given 

words. It can be a deletion where a letter is removed, a transposition where there is a 

swap of adjacent letters, a replacement where another replaces a letter or an insertion 

where an  unwanted letter is inserted [11].  

As discussed in [11], for a word of length n, there will be n deletions, n-1 

transpositions, 26n alterations, and 26(n+1) insertions, for a total of 54n+25 (of which a 

few are typically duplicates). For example, for the word ‘improve’ the candidates with 

edit distance – 1 will be is 390. The dictionary words are selected from this candidate list 

and sorted by their frequency of usage. The algorithm is as follows: 
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SpellCorrection (word): 
 Candidates = known (word) or known (Edits1 (word)) or word 

 Return candidate with maximum frequency in the trie 

Edits1 (word): 

 Deletes: Set of words with one letter deleted 

 Transposes: Set of words with a swap between the adjacent characters 

Replaces: Set of words with every letter replaced by 25 other letters in 

English alphabet 

Inserts: Addition of an unwanted letter at all given positions in a word 

Known (words): 

 Returns the set of words that are in the dictionary  
 

 

Figure 8.1 Correction of incorrect query ‘tha’ 

It can be seen in Figure 8.1 that when an incorrect query ‘tha’ is submitted, the 

text ‘Search:’ along with the corrected word ‘the’ appears on the results page. By clicking 

the corrected word, search results appear as it can be seen in the right image.  

8.2 EVALUATION 
 

About 90% of spelling errors are of edit distance 1 as claimed by the literature on 

spelling correction [11], but it is also quite possible that the spelling errors are an edit 

distance of 2. Edit distance 2 is nothing there is a possibility of 2 insertion, deletions, 

replacements or transpositions. Using the above algorithm, this can be achieved by just 
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applying the edit distance 1 algorithm to the set of words that were the output from 

applying the initial edit distance algorithm. This involves huge computation. The number 

of candidates when edit distance 2 is applied to the word ‘improve’ is 1,62,150.  

As this feature is being coded on the front-end using Javascript, such a huge 

computation is undesirable. Small experiment was conducted on how edit distances 1 and 

2 perform for a given set of words. 

Query 
Corrections 

Edit Distance 1 Edit Distance 2 

tha the the 

lagh laugh last 

sceince science since 

nees news been 

latre later are 

 

Table 8.1 Experiment on spelling corrections using  Edit distance 1 and 2 

A set of words ranging from most frequently used words to words that are more 

prone to spelling errors have been used  for the experiment. Table 8.1 depicts the sample 

set. Considering the case where the rate of spelling errors with edit distance 1 is more, it 

is evident from the experiment that, edit distance 1 gives better results than edit distance 

2. Hence, a tradeoff should be made in order to lower the burden of computation for 

Yioop. It has been concluded that using just the edit distance 1 would serve the purpose 

in most of the cases and also will avoid the computational overhead of edit distance 2 

algorithm. 
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9. SUGGESTIONS FOR TRANSLITERATED QUERIES 

Transliteration is the process of mapping text written in one language in to another 

by means of a pre-defined mapping [13]. With the rapid growth of Internet usage via 

emails, social networking sites, blogs etc. it has been common to use English 

transliteration for foreign languages. Users who do not know that script of a particular 

language, tend to use this method. In the case of  unavailability of a direct method to 

input data in a given language, transliteration becomes handy. Hence, transliteration can 

be understood as the process of entering data in one language using the script of another 

language [13].  

To experiment with this feature, Telugu, the third most spoken language in India, 

has been chosen.  Telugu has 56 alphabets (18 vowels and 38 consonants), two of which 

are not in use now. There are 16 additional Unicode characters to represent the phonetic 

variants of each consonant [13].    

Every phoneme in Telugu script when transliterated using English ends with a 

vowel. Based on this, the approach of constructing a mapping table has been chosen. A 

key-value data structure has been constructed to accommodate most transliterations for 

the single characters. Below is the sample data to show how the data structure is 

constructed.   

telugu_array['k']='క'; 

telugu_array['kh']='ఖ'; 

telugu_array['+aa']='ా';  

telugu_array['+oo']='ో
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The algorithm used to transliterate divides the input query into chunks, such as a 

set of 2 or 3 characters, ending in a vowel and compare them against the table of entries. 

After analyzing various valid combinations, input query was modified to Telugu script. 

Using that modified query, suggestions are listed using the Telugu dictionary trie [14]. 

Figure 9.1 and 9.2 show two examples. 

 
Figure 9.1 Suggestions for Telugu term ‘కా’ transliterated as ‘kaa’ in English 

 

 
 

Figure 9.2 Suggestions for Telugu term ‘లో’ transliterated as ‘loo’ in English 
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10. PERFORMANCE 

The performance of these features can be tested in different ways. Following were the 

experiments conducted. 

Experiment 1: Queries were typed in the Yioop search box in following two modes. 

• ‘Word Suggest’ option disabled 

• ‘Word Suggest’ option enabled 

Following are the times recorded for five different people with different typing speeds. 

 

Word 
Without Autosuggest – Time in sec With Autosuggest – Time in sec 

Per 1 Per 2 Per 3 Per 4 Per 5 Per 1 Per 2 Per 3 Per 4 Per 5 

Science 4 5 4 4.5 3 2 3 2 3.5 2 

Computer 5 4 4.5 4.5 3 3 2.5 3 3 2 

Adapt 3.4 3.5 3 3 2 3 3 2 2 1.5 

Accomplish 5 4 4.5 4.5 3 3 2.5 3 3 2 

 
Table 10.1 Comparison of a user’s typing time with and without autosuggest  

 
It is evident that using autosuggestion considerably reduces the typing work of a user.  

Experiment 2: To compare autosuggest against browser’s autocomplete feature : 

Even this experiment involves two modes as mentioned above. To conduct this 

experiment, the following has been done. 

Word suggest is turned off and the queries ‘screen’, ‘scare’ and ‘science’ have 

been searched 5 , 3 and 3 times respectively. Later, the same searches have been done in 

Yioop with the ‘Word Suggest’ option on. The following are the outcomes. 
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Multi-word suggest:  

Figure 10.1 depicts the outcome when in two modes, for the query ‘screen s’ 

 
 

Figure 10.1 Comparison of  multi-word suggest 
 

 It can be seen that, with browser autocompletion, once the second word is typed 

there are no valid suggestions even from the stored list of previous queries. But, 

autosuggest appends the previous query terms and renders phrases so that user can 

choose from the list. 

 
Usage of previous queries : 

  
 

Figure 10.1 Comparison of  usage of previous queries 
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      In this scenario, both work in similar fashion by ordering the suggestions in the frequency of 

their usage. An addition to Yioop is that it also appends the results from the dictionary, which is 

quite helpful. 

Foreign language support: 

Foreign language queries are supported both by the browser and Yioop but the 

browser only suggests the previously typed queries. On the other hand autosuggest in 

Yioop uses both local storage and dictionary and provides a suggestion list. 

Spell correction: 

There is no spell correction in the browser. As discussed in detail, in the above 

sections, the query is corrected and suggested on the search results page. This saves the 

user time if the corrected word is actually what he intended, as he is just a click away to 

fire a search, rather than having to retype the query. 
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11. CONCLUSION & FUTURE WORK 
 

 
In this project, the features, autosuggest and spell correction, have been 

implemented for Yioop, keeping in mind its constrained environment. Implemented in 

Javascript, autosuggest includes features like multi-word suggest, foreign language 

support and usage of locally stored previous queries, to enhance the performance. Spell 

correction was implemented for English language, assuming that the frequency of one-

letter errors is more than multiple-letter errors. This was also a trade off made to avoid 

huge computations in Javascript, which would slower the performance of Yioop.  These 

features proved to reduce the typing work and avoid spelling errors in Yioop.  

In the future, autosuggest and spell correction features in Yioop can be extended 

and enhanced in following directions: 

1. Introducing spelling correction for foreign languages like, French and Russian, 

which includes handling complex multi-byte characters.  

2. Introducing suggestions for transliterated queries pertaining to languages other 

than Telugu. 

3. If a user chooses to reuse the index multiple times, autosuggest can be enhanced 

by using the data from search results, where a trie can be constructed on the fly from the 

key words of search results.   
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