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ABSTRACT 

 

Computational Modeling of Protein Dynamics with GROMACS and Java 
By Miaoer Yu 

 
 

GROMACS is a widely used package in molecular dynamics simulations of 
biological molecules such as proteins, and nucleic acids, etc. However, it requires many 
steps to run such simulations from the terminal window. This could be a challenge for 
those with minimum amount of computer skills. Although GROMACS provides some 
tools to perform the standard analysis such as density calculation, atomic fluctuation 
calculation, it does not have tools to give us information on the specific areas such as 
rigidity that could predict the property of the molecules. In this project, I have developed 
a user friendly program to carry out molecular dynamics simulations for proteins using 
GROMACS with an easy user input method. My program also allows one to analyze the 
rigidity of the proteins to get its property. 
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1. Introduction to Molecular Dynamics Simulation  

 
 Molecular dynamic simulation is a computational method that simulates the motion 

of a system of particles. McCammon introduced the first protein simulations in 1977, and 

since then this method has been widely used in the theoretical study of biological 

molecules including proteins and nucleic acids because it can provide molecular change 

information by calculating the time dependent behavior of a molecular system [1, 2].  For 

example, GROMACS is a package that carries out molecular dynamic simulations, and 

generates a trajectory of the molecule. GROMACS’s high performance draws a lot of 

interest from researchers looking to develop their own tools to analyze the GROMACS 

trajectories. JGromacs, one of many applications written in the different languages from 

that used by GROMACS, analyzes the trajectories generated by GROMACS. JGromacs 

does not work with large molecules due to its huge memory consumption. In our project, 

we attempt to simplify the GROMACS steps, and develop our own analysis tool that 

works well with large molecules. 

The goal of a molecular dynamics simulation is to predict macroscopic properties 

such as pressure, energy, heat capacities, etc. from the microscopic properties including 

atomic positions and velocities generated by molecular dynamic simulations. The bridge 

between macroscopic properties and microscopic properties is statistical mechanics using 

the time independent statistical average [1]. A molecular dynamics simulation generates a 

sequence of points in a multidimensional space as a function of time, where the points 

belong to the same collection of all possible systems which have different mechanical 

states such as positions or coordinates, and have the same thermodynamic state such as 

temperature, volume, pressure [1].  

In statistical mechanics, an ensemble averages corresponding to experimental 

observables, and this means the molecular dynamics simulations must calculate all 

possible states of the system to get the ensemble averages [1]. “The Ergodic hypothesis, 

which states that the time average equals the ensemble average,” allows the molecular 

dynamics simulation with enough representative conformations to calculate information 

on macroscopic properties using a feasible amount of computer resources [1]. 
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In terms of classical mechanics, the molecular dynamics simulation is based on 

Newton’s equation of motion: 

 
 Fi = miai          (1.1) 

 
where Fi is the force acts on the particle, mi is the particle mass and ai is its acceleration. 

The force is also equal to the gradient of the potential energy:  

 
Fi = -dV / dri         (1.2) 

 
where V is the potential energy of the system. The acceleration can be expressed as: 

 
 ai = d2r i / dt2         (1.3) 

 
From equation 1.1, 1.2 and 1.3, we can relate the derivative of the potential energy to the 

changes in position as a time function: 

 
-dV / dr i  = miai = mi (d

2r i / dt2)       (1.4) 

 
When the acceleration, a, is constant:  

 
a = dv / dt          (1.5) 

 
v = at + v0          (1.6) 

 
v = dx /dt           (1.7) 

 

From the combination of 1.5, 1.6 and 1.7, we obtain the relation of x and the acceleration, 

a, the initial position, x0, and initial velocity, v0 at time t: 

 
x = at2 + v0t + x0         (1.8) 

 
From equation 1.4, the acceleration is the derivative of the potential energy with respect 

to the position, r : 
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a = (-dE/dr) / m         (1.9) 

 
We can obtain the initial positions of the atoms from experimental structures, such as 

the x-ray crystal structure of the molecule, the acceleration from the gradient of the 

potential energy function, and the initial distribution of velocities from:  

 
       N 

P = ∑mivi = 0         (1.10) 
       i=1 

 
where P is momentum, vi is the velocities that are often chosen randomly from a 

Maxwell-Boltzmann or Gaussian distribution at a given temperature [1]. 

 
The potential energy is a function of the atomic positions of all the atoms in the 

system. Because this function is complicated, it must be solved numerically with 

numerical algorithms such as Verlet algorithm, Leap-frog algorithm, Velocity Verlet, 

Beeman’s algorithm, etc [1].  

In [1], those algorithms are introduced. “All of those algorithms assume the positions, 

velocities and accelerations can be approximated by a Taylor series expansion: 

 
 r(t + δδδδt) = r(t) + v(t)δδδδt + (1/2)a(t) δ δ δ δt2 + …     (1.11) 

 
 v(t + δδδδt) =  v(t) + a(t)δδδδt + (1/2)b(t) δ δ δ δt2 + …     (1.12) 

 
 a(t + δδδδt) = a(t) + b(t)δδδδt + …       (1.13) 

 

where r  is the position, v is the velocity, a is the acceleration, etc.” 

For example, to derive the Verlet algorithm, we can write: 

  
 r(t  + δδδδt) = r(t) + v(t)δδδδt + (1/2)a(t)δδδδt2     (1.14) 

 
 r(t  - δδδδt) = r(t) - v(t)δδδδt + (1/2)a(t)δδδδt2      (1.15) 

 
Combining 1.14 and 1.15, we obtain:  



 10 

 
 r(t  + δδδδt) = 2r(t) – r(t – δδδδt) + a(t)δδδδt2      (1.16) 

 
This algorithm uses positions and acceleration at time t and the positions from time t 

– δt to calculate the new positions at time t + δt.  

The available potential energy functions such as the AMBER, CHARMM, 

GROMOS, OPLS / AMBER, etc. provide reasonably good accuracy with reasonably 

good computational efficiency [1]. Therefore, we have the needed information to 

calculate the trajectory that describes the positions, velocities and acceleration of the 

particles at different time, and we can determine the detailed information about the 

molecules [1]. 

In general, there are three stages in molecular dynamics simulation: preparation of the 

input, production molecular dynamics, and analysis of the result (Figure 1) [3].  

 
Stage I:  Preparation 

This stage has multiple steps including generating the topology file; defining a box 

and filling it with solvent, and adding any counter-ions to neutralize the system; 

performing energy minimization to provide stable simulation; performing equilibration 

for sufficient time to get stable pressure, temperature and energy [3].  

 

Stage II: Production 

     This stage is the longest stage resulting in a trajectory containing coordinates and 

velocities of the system.  

 

Stage III: Analysis 

     The last stage includes analysis of the resulting trajectory and data files to obtain 

information on the property of the molecule. Some important quantities calculated in this 

stage include RMS difference between two structures, RMS fluctuations, and rigidity or 

constant force, etc. The equations used to calculate those quantities are listed as the 

following [1, 4]: 
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RMS difference between two structures 

  

 RMSD = <(ri
αααα – ri

ββββ)2>1/2 = ((1/Ni) ∑ (r i
αααα – ri

ββββ)2)1/2    (1.17) 
                                    i 
 
RMS fluctuations 
  

 RMSF = ((1/Nf) ∑ (r i
f – ri

avg)2)1/2                (1.18)  
       F 
 
Rigidity or force constant, ki, where i represents amino acid in a protein: 

 
k i = 3KBT / <(di - <di>)2>       (1.19) 

 

where KB is Boltzmann coefficient, T is temperature in the simulation, di is the average 

distance of Cαi from other Cαi in the protein excluding Cαs of the immediate neighbors, 

and <di> is the same as di but averaged over the entire simulation [4]. 
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 Among many molecular dynamics simulation packages, GROMACS, CHARMM, 

AMBER, and NAMD are most commonly used [5]. We will use GROMACS in our study 

because it is open-source, and popular in the study of protein. Before we develop a tool to 

analyze the GROMACS data, we need to understand GROMACS. In the next section, we 

will introduce GROMACS and its features.

Analysis 

Production MD 

Equilibration 

Generate Topology 

Define Box and Solvate 
 

Add Ions 

Energy Minimization 

Stage I 

Stage II 

Stage III 

Figure 1. Three stages in molecular dynamic simulation: preparation of the input, production 
molecular dynamic and analysis of the result. 
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2.  GROMOCS Overview 

 
 GROMACS is an acronym for GROningen Machine for Chemical Simulation. It was 

developed at the University of Groningen, The Netherlands, in the early 1990s [6]. This 

open-source project is written in ANSI C, and contains about 100 utility and analysis 

programs which allow users to perform molecular simulations and energy minimization 

(EM) for biological molecules [6]. It is one of the most commonly used molecular 

dynamics simulation packages. The following is a list of the main features the 

GROMACS has [7, 8]. 

  
1. Features for generating topologies and coordinates [7, 8] 

pdb2gmx – converts pdb files to topology and coordinate files. 

editconf – edits the box and writes subgroups 

genbox – solvates a system 

genion – generates mono atomic ions on energetically favorable positions 

 

2. Features for running a simulation [7, 8] 

grompp – makes a run input file 

mdrun – performs a simulation, does a normal mode analysis or an EM. 

 

3. Features for processing properties [7, 8] 

g_energy – writes energies to xvg files and displays averages 

g_gyrate – calculates the radius of gyration 

g_potential – calculates the electrostatic potential across the box 

g_density – calculates the density of the system 

 

4. Features for processing files [7, 8] 

trjconv – converts and manipulates trajectory files 

 

5. Analysis tools [7, 8] 

g_rms – calculates rmsd’s with a reference structure and rmsd matrices 
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g_rmsf – calculates atomic fluctuations 

 

 The typical GROMACS MD run of the protein such as lysozyme is demonstrated in 

the flow chart (Figure 2) [7, 8].  In the flow chart, the steps are listed in the left column, 

while the highlighted GROMACS tools are listed in the right column corresponded to the 

left column. 

 To learn how to use GROMACS in MD of the protein, we followed the tutorial for 

lysozyme [9]. In this example, PDB file 1AKI.pdb can be downloaded from RCSB 

website for hen egg white lysozyme (PDB code 1AKI). The pdb2gmx generates a 

topology for the molecule, the position restraint file, and a post-processed structure file.  

   The lysozyme is simulated in a simple aqueous system. The editconf tool defines the 

box dimensions, and the genbox tool fills the box with water. The purpose of the genbox 

is to keep track of the number of added water molecules, and update the topology with 

the changes [7, 8]. Now the system is solvated and contains a charged protein.  
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  The tool grompp (GROMACS pre-processor) processes the ions.mdp (molecular 

dynamics parameter file), the coordinate file and topology to generate an atomic-level 

input (ions.tpr) containing all the parameters for all of the atoms in the system. The 

genion tool reads through the topology and replaces water molecules with the ions 

specified by the user to neutralize the net charges on the protein [9]. 

  The energy minimization relaxes the structure to ensure that the system has no steric 

clashes or inappropriate geometry [9]. The tool grompp assembles the minim.mdp, the 

structure, topology to generate an input file (em.tpr), and then the tool mdrun runs the 

energy minimization to generate an energy-minimized structure file em.gro, energy file 

em.edr and trajectory em.trr. The analysis of em.edr file with the tool g_energy results in 

the following graph showing the steady convergence of Epotential (Figure 3) [9]. 

 
Figure 3. Energy Minimization for Lysozyme (1AKI).  
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  Once we get the reasonable starting structure, we need to equilibrate the solvent and 

ions around the protein under an NVT ensemble (the constant Number of particles, 

Volume, and Temperature) and an NPT ensemble (the constant Number of particles, 

Pressure, and Temperature) [9]. The same tools used in EM step perform the two-phase 

equilibration. The tool g_energy processes the result to generate plots for NVT (Figure 4) 

and NPT (Figure 5) [9].  

 

 
                Figure 4. Temperature for Lysozyme (1AKI). 

 

 Figure 4 shows that the system reaches the target temperature, and stays there over 

the remainder of the equilibration. Figure 5 has the fluctuated pressure value. However, 

the running average of these data is stable [9]. 



 18 

 After finishing the preparation stage, the previous tools grompp and mdrun are used 

to perform the production MD to generate the final trajectory file md.trr and md.xtc etc.  

 

 
          

 Figure 5. Pressure for Lysozyme (1AKI). 

 

After finishing the simulation, we can analyze the system with GROMACS tools 

trjconv, g_rms, g_rmsf, etc. The RMSD plot obtained with the tool g_rms (Figure 6) 

shows that the structure is very stable with stable RMSD. The RMSF plot obtained with 

the tool g_rmsf (Figure 7) shows how each residue fluctuates during the period of the 

production run [9].  
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                 Figure 6. RMSD for Lysozyme (1AKI) 

 

 
Figure 7. RMS Fluctuation for Lysozyme (1AKI). 
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 As shown in Figure 2, there are many steps involved in the whole process of 

molecular dynamics simulation. Some users may find it difficult to use the GROMACS 

from a terminal window. On the other hand, GROMACS provides some tools to perform 

the basic analysis of the trajectories, but we could not find tools to give us the 

information on the specific areas such as rigidity we are interested in due to its relation to 

the protein property [4]. In the next section, we will show the development of a Java 

program that simplifies the GROMACS steps through GUIs and processes the trajectories 

to give rigidity information of the protein.  
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3.  Java Program Design and Implementation 

 The two goals in this project are to simplify the MD running steps in GROMACS 

with GUIs, and to create an analysis tool that processes the GROMACS trajectories and 

gives us the rigidity profile of the proteins.  

   GROMACS is written in the C language, but we will develop our program in Java. 

Therefore, we investigated two methods that allow Java to use the codes and code 

libraries written in other languages such as C. One involves the Java Native Interface 

(JNI), and another involves Java Runtime class. The former requires six steps to call C 

from Java code [10]:  

1. Create the Java code. The code needs to have declaration of the native method, 

load the shared library containing the native code, and then call the native 

method. 

2. Compile the Java code 

3. Create the C header file by running javah –jnj command on the java code 

4. Create the C code 

5. Compile the C code and create shared library 

6. Execute Java program. 

    

 The latter involves creating an object of Runtime, and this Runtime object calls the 

Runtime method exec(command) where the command can be used to call C functions. 

Some codes related to the script call in Runtime are as follows: 

          Runtime rt = Runtime.getRuntime();    //create an object rt of Runtime 

 String[] cmds = {scriptName, parm1, parm2};    //command to execute the script 

Process process = rt.exec(cmds);     //create a process object  

process.waitFor();    //wait for the script completion 
 

Since the former is more complicated to implement, we use the latter in our program.  

 We built the GUIs with the Model-View-Controller (MVC) pattern first described by 

Krasner and Pope for building user interfaces in Smalltalk-80 [11]. In MVC, the model 

contains data and some tasks, the view presents the data to the user, and the controller 

updates the model as necessary when the user interacts with the view [12]. The separation 
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of the three components makes it easy to reuse and maintain the codes. In our program, 

we combine the view and the controller in the same class, but separate the data from the 

presentation. Due to its large library, containing lots of reusable codes, we wrote the 

program in Java, and have our Model to extend the java class Observable that provides 

the register/notify infrastructure needed to support the views implementing the java 

interface Observer [12]. When the view sees a user interaction, the listeners registered by 

the controller are called, and then the controller calls the mutator methods of the model to 

update its state, and the model calls setChanged() and notifyObservers() after it has 

changed the state. NotifyObservers() will notify the registered observer that the change 

has been made, and the observer containing the required update method will make the 

change to itself [12].  

 The class diagram of the project is illustrated in Figure 8. Our program consists of 

three subpackages including task, data and gui. The task package contains the classes for 

distance calculation, rigidity calculation and the regular file processing; the data package 

contains the classes that represent the binary structural data such as the trajectory file, 

structure file, etc. and the gui package contains the different view/controller classes that 

allow users to enter their settings for the simulations, and the model class that stores the 

user inputs.  

 The program communicates with the users for their inputs starting with 

MainPanelView class. The MainPanel view is illustrated in Figure 9. 
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 Figure 8. UML class diagram of the project. 
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Figure 9.  Initial panel view. 

 

  Six function buttons including “Home”, “Preparation”, “Production Run”, “Auto 

Run”, “Plot”, and “Exit” are listed on the left column of the page, and the help function 

button is in the upper left corner. The user can select the specific function by clicking on 

the button labeled with the name of the function. After the user selects the function, the 

corresponding page will be displayed for the user inputs. 

  When the user clicks on Home, Figure 9 is displayed. The user enters the MD folder, 

and the program later will store the files created during the MD preparation and 

production. 

 When the user clicks on Preparation, the Preparation page will be displayed for the 

required and optional files and parameters (Figure 10). The user can either provide the 

pdb file or the PDB code of the protein. If the user gives both, the pdb file will be used. 

Four mdp files including ions mdp, EM mdp, NVT mdp and NPT mdp are required in 

this stage. If the user does not specify the file paths, we will use the default files 

contained in the package. 
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Figure 10. PreparationView panel. 

 

 When the user clicks on Production run, the MD Production page will be displayed 

for the required and optional files and parameters (Figure 11). If the user does not provide 

the file paths, we will use the default MD mdp contained in the package, and the NPT gro 

file, topology resulting from the preparation stage in the MD folder, and default options 

and output tpr file name. 

 
  Figure 11. ProductionView panel. 
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 When the user clicks on Analysis, the analysis page will display three basic analysis 

tools (Figure 12). If the user clicks on RMSD, RMSF, or Rigidity, the corresponding tool 

page will be displayed under the analysis page (Figure 13, Figure 14, and Figure 15). 

 

 
Figure 12. AnalysisView panel. 

 

 
Figure 13. RMSDView panel. 

 

   The RMSD view also displays the default options, and the output xvg file name. 
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Figure 14. RMSFView panel with default output xvg file name. 

 

 

 
Figure 15. RigidityView Panel. 

 

 The rigidity view allows the users to choose the region of the protein they want to 

study, or/and the frames they want to consider since the frames at the beginning of the 

simulation are not stable and could be ignored. If the users don’t provide any input, we 
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will use the default mdp file, the NPT gro file, and the trajectory file resulting from the 

previous MD run. 

 

 
Figure 16. PlotView panel. 

 

 When the user clicks on the Plot button, the user is asked to input the data file, and 

the program displays the requested rigidity profile plot labeling the amino acids with high 

rigidity (Figure 16). If the user wants to take the default settings, he/she can click on the 

Auto Run button, and then enter the pdb file or pdb code on the corresponding page. The 

program will run the steps included in preparation and production stages with the default 

settings. The user can exit the program by clicking the exit button. 

 To simplify the MD process, we prepared scripts that execute the MD steps (see 

Attached CD). After the user enters the input or takes the default values, and then clicks 

on the submit button, the program will run the scripts in Java Runtime. It is crucial to 

realize that although GROMACS is written in the C language, Java Runtime class allows 

users to conduct their GROMACS research in a Java environment. In this way, the user 

does not need to exit the program to have a MD run in another environment. 

 The second goal of this project is to process the trajectories to get the rigidity profile 

of the protein. As mentioned before, we use Boltzmann coefficient and the distance of the 
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backbone carbon (Cα) of the protein from other backbone carbons (Cαs) in the protein in 

the calculation of the rigidity.  

 We need to obtain the coordinate information from the binary structural data file 

containing the trajectories, and then use the information to calculate the rigidity of the 

protein. The resulting rigidity profile can be used to describe the mechanical properties of 

the protein. 

 There are many packages, such as Biojava, StatAlign, Jmol and JGromacs, written in 

Java for bioinformatics analysis [5]. Among those packages, JGromacs has a much 

smaller API because it is designed to focus on the specific functionalities such as 

analyzing GROMACS trajectories [5]. We thought we would find the right tool for 

reading the GROMACS trajectory file to get the coordinate information of the alpha 

carbons. However, it has very low performance when it processes the large trajectory file 

of the large protein. We successfully used JGromacs to process the trajectory file of 

lysozyme that has 129 amino acids. However, when we ran the simulation with longer 

proteins that are more than 600 residues long, the computer took much longer, and the 

resulting trajectory file is much larger.   

 JGromacs parses the trajectory file via the use of GROMACS tool gmxdump with 

Java Runtime class. What the gmxdump does is to read a trajectory file and print that to 

standard output in a readable format [7]. JGromacs calls the gmxdump function and reads 

the information from the standard output, and then stores the information in memory.   In 

general, MD simulations of proteins generate a huge trajectory file. When we incorporate 

JGromacs in our package, the machine is very slow with a small protein or hangs with a 

large protein. We cannot use JGROMACS in our program due to its low performance in 

input/output (IO) caused by huge memory consumption.  

 To get the coordinates of the alpha carbons of the protein, we must find an efficient 

way to read the trajectory file. The file with trr file extension contains the trajectory of a 

simulation. All the coordinates, velocities, forces and energies are printed as specified in 

the mdp file. The trr file in GROMACS contains many frames of data, and each frame 

has the same data structure as follows [7]: 

 int magic; // magic number 
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 int sLen; // the String version length 

 int linefeed; // line feed 

 String version = ""; // version 

 int ir_size; // Backward compatibility 

 int e_size; // Backward compatibility 

 int box_size; // Non zero if a box is present 

 int vir_size; // Backward compatibility 

 int pres_size; // Backward compatibility 

 int top_size; // Backward compatibility 

 int sym_size; // Backward compatibility 

 int x_size; // Non zero if coordinates are present 

 int v_size; // Non zero if velocities are present 

 int f_size; // Non zero if forces are present 

 int natoms; // The total number of atoms 

 int step; // Current step number 

 int nre; // Backward compatibility 

 float t; // Current time 

 float lambda; // Current value of lambda  

 float [][] box;  

 float [][] vir; 

 float [][] pres; 

 float [][] coordinates; 

 float [][] velocities; 

 float [][] forces; 

 

From the MD mdp file, we can calculate the total number of frames stored in the 

trajectory file with formula:  

 
 Total number of frames = nsteps / nstxout + 1 

 
where nsteps and nstxout are the parameters found in the MD mdp file. With Java API, 

we can easily get the size of the trr file in bytes, and hence a frame in bytes. Therefore, 

we can know the offset of each frame in the file. The offset, the data structure of the 

frame, and the alpha carbon index obtained from the NPT gro file allow us to get the 

coordinate information of the alpha carbons.  

 To solve the memory consumption problem found in JGromacs, we load one frame of 

information to the buffer at a time, extract the coordinate data of the alpha carbons, and 
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then store the coordinates in an array. In this way, the size of the data we process is very 

small. Hence, the performance is increased. 

 To compare the performance between the JGROMACS and our method in getting the 

coordinate information, we wrote a small program to get the information from a 

trajectory file with JGROMACS’s strategy since we can not directly use JGROMACS 

due to its exception with large protein. The following table demonstrates the performance 

of two methods on getting the coordinates of the alpha carbons from a trr file of size 13G 

resulting from the 10 ns molecule dynamics simulation of PCSK9 protein (Table 1). 

 

Table 1: Comparison of two methods 

 JGROMACS Method MYGromacs Method 

Time (second) 5008 102 

 

The result indicates our method increases the performance about 50 times. 

 In summary, we improve the performance by two strategies: to divide the large 

amount of structural data into frames of data  and process one frame of data at a time; and 

to limit the number of objects created for each entry in the trajectory file by storing the 

information in an array. The codes are documented in the attached CD. 

 In the next section, we will demonstrate the rigidity profile of the lysozyme and 

compare its property with the RMS fluctuation property obtained from the GROMACS 

tool. After we confirm the reliability of our program with the well studied lysozyme, we 

will perform the similar study on the PCSK9 compounds that play important roles in 

cholesterol metabolism. 
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4. Applications 

 I. PCSK9 Introduction 

    Cholesterol is an important component of cellular membranes and is a precursor of 

steroid hormones and bile acids. It has been extensively studied due to its strong 

correlation with blood and heart diseases. Both dietary cholesterol and that are 

synthesized de novo are transported by the circulation in lipoproteins [13].  Familial 

hypercholesterolemia (FH) is a genetic hyperlipidermia that is characterized by high 

levels of plasma cholesterol carried by low-density lipoprotein (LDL) [14]. LDL is the 

main cholesterol transport protein in plasma, and the endocytosis of cholesterol-rich LDL 

can be mediated by LDL receptor (LDLr) [14].  FH is most commonly caused by 

mutations in the gene encoding the LDLr. It is also caused by mutations in three more 

genes encoding Apoprotein B-100, ARH adapter protein, and PCSK9 protease [14]. 

Figure 17. The four proteins associated with familial hypercholesterolemia. LDLr forms a complex with 

Apoprotein B-100 surrounding a cholesterol ester core. In the presence of ARH adapter protein, the 

complex enters the cell by the endocytosis of the coated pit. Adapted from Nussbaum et al [14]. 

 

 As shown in Figure 17, in the process of cholesterol uptake by the LDLr, a 

cholesterol ester core is surrounded by apoprotein B-100 to form a protein moiety of 

LDL. The mature LDLr binds the moiety, travels to the coated pits, and then enters the 
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cell by endocytosis of the coated pits in the presence of ARH adaptor protein. Once it 

enters the cell, LDL is hydrolyzed to release free cholesterol. Therefore, mutations in the 

genes encoding LDLr, Apoprotein B-100, PCSK9 and ARH adaptor protein can affect 

the cholesterol uptake by the LDLr [11]. The removal of LDL cholesterol from 

circulation can be reduced by mutation of LDLr, impairing LDL-LDLr binding caused by 

mutations in apoprotein B-100, or impairing the internalization of the LDL-LDLr 

complex caused by mutations in the ARH protein, or degradation of the LDLr caused by 

the mutations in PCSK9 [14]. 

 According to Nussbaum et al, “the LDLr is a transmembrane glycoprotein mainly 

expressed in the liver and adrenal cortex, and plays a key role in cholesterol homeostasis. 

Hepatic LDLr clears about 50% of intermediate-density lipoproteins (IDL) and 66% to 

80% of LDL from the circulation by endocytosis [14]”. It is worth the effort of studying 

the LDLr since elevated plasma LDL levels cause atherosclerosis.  

 2% ~ 10% LDLr mutations are large insertions, deletion, or rearrangement mediated 

by recombination between Alu repeats within LDLr [14].  These mutations decrease the 

efficiency of IDL and LDL endocytosis, resulting increasing production of LDL from 

IDL, and decreasing hepatic clearance of LDL. Therefore, the clearance of LDL through 

LDLr-independent pathways is increased, resulting in atherosclerosis [14]. The effect of 

LDL receptor mutations on LDL plasma levels depends on environment, gender, and 

genetic background. Diet is the major environment modifier of LDL plasma levels 

because dietary cholesterol suppresses the synthesis of LDL receptors and thereby raises 

plasma LDL levels [14]. 

 It has been reported that a mutation in PCSK9 is involved in autosomal dominant 

hypercholesterolemia (ADH), a rare form of FH without mutations of LDLr and the 

ligand binding domain of apoprotein B-100 [15].  

 PCSK9 has cytogenetic location: 1p32.3 and molecular location on chromosome 1: 

base pairs 55,505,148 to 55,530,525 [16]. An enzyme encoded by the PCSK9 gene in 

humans has orthologs found across many species. Increased PCSK9 protease activity 

causes the degradation of LDL receptor, thereby lowers the level of the receptor in 

hepatocytes, and regulates the LDL cholesterol metabolism [15]. Gain-of-function 
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missense mutations in the gene encoding PCSK9 enhance the activity of the PCSK9 

protein, and cause FH. Loss-of-function mutations in the PCSK9 gene lead to an increase 

in the number of LDLr on the surface of liver cells. Hence, the amount of cholesterol 

circulating in the bloodstream is lowered [15]. As shown in Figure 18, in the cell PCSK9 

interacts with LDLr for degradation through two pathways. In the first pathway, PCSK9 

is secreted from cells, and then the extracellular PCSK9 internalized with the LDLr [15]. 

Bottomeley and coworkers studied the interaction of PCSK9 with LDLr, and found that 

PCSK9 binds LDLr at the first epidermal growth factor-like repeat homology domain 

(EGF-A) of LDLr [17]. Mutations in EGF-A inhibit the degradation of LDLr. It is also 

been found that PCSK9 dimers were more effective than PCSK9 monomer in degrading 

LDLr, and acidic endosomal pH increases the binding of PCSK9 with LDLr [15]. 

Figure 18. Two Pathway of PCSK9. Adapted from G. Lambert et al [15]. 

 

In the second pathway, PCSK9 acts on the LDLr after its biosynthesis before it reaches 

the basolateral surface of the cell [15]. 

 PCSK9 is one of many secreted proteins that are essential for the regulation of 

biological activity are initially synthesized as inactive precursor proteins and are 
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subsequently proteolytically converted in the secretory pathway to the mature active 

forms [18]. These proteinases are called subtilisin-like proprotein convertases (SPCs) or 

protein convertases (PCs) because they have subtilisin-like catalytic domain [18]. Protein 

convertases are divided into S8A and S8B subfamilies. S8B contains seven closely 

related core members including subtilisin/kexin PCSK1, PCSK2, furin, PCSK4, PCSK5, 

PCSK6, PCSK7, while S8A contains more distantly related endoproteinases SKI-1/S1P, 

PCSK9 [19].  The pro-PCs contain multi domains including a signal peptide, a catalytic 

domain, a pro-domain, P-domain, a cysteine-rich domain, transmembrane domain and 

cytosolic domain. Each domain has its unique function. The signal peptide directs 

translocation into endoplasmic reticulum (ER);  the pro-domain has intramolecular 

chaperone functions that direct compartment-specific activation, assist in folding of 

molecules, disassociate after the second internal cleavage event, and may autoinhibit PCs 

in select circumstances; the catalytic domain that contains the conserved catalytic triad 

that consists of asparate, histidine and serine; the P-domain may stabilize acidic 

prodomain and catalytic domain, and is required for catalytic activity; a cysteine-rich 

domain confers protein-protein interaction properties, and directs cell-surface tethering; 

the transmembrane domain and cytosolic domain direct PC sorting and transit control 

within cell compartments. Transmembrance and cytosolic domains are present only in 

furin, PCSK5, PCSK6, PCSK7 [19]. 

 Proprotein convertases activate a broad range of distinct proteins. PCSK1 and PCSK2 

activate polypeptide prohormones; Furin activates multiple mammalian and microbial 

precursor proteins; PCSK4 activates proteins involved in sperm motility, reproduction; 

PCSK5 and PCSK6 activate ECM proteins; PCSK7 activates multiple precursors; SKI-

1/S1P processes membrane-bound transcription factors involved in lipid metabolism; and 

PCSK9 regulates plasma LDL levels through increased degradation of LDLr proteins 

[19]. Physiologically important proteins may require activation by means of post-

translational cleavage of an inactive precursor molecule. The deficiency of PCSK1 or 

PCSK2 results in abnormal glucose homeostasis, and impaired prohormones processing.  

PCSK1, PCSK2, furin, PCSK5, PCSK6, PCSK7 have been associated with cancers 

through the complex interactions among their activated substrate [19]. PCs also relate to 
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infectious diseases and lipid disorders, atherosclerosis and Alzheimer’s disease, and 

biodefense. Therefore, PCs are potential therapeutic targets [19]. 

 According to Lambert et al., “PCSK9 is synthesized as a 72-kDa protein of 692 

amino acids in which the signal peptide (residues 1-30) and the prodomain (residue 31 – 

152) of PCSK9 precedes a catalytic domain (residues 153 – 451), that contains the 

canonical D186, H226 and S386 catalytic triad as well as the oxyanion hole N317 

residue, followed by a C-terminal domain (residues 452 – 692) [15]”.  

 
Figure 19. Ribbon structure of PCSK9. Adapted from G. Lambert et al [15]. 

 

As shown in Figure 19, the prodomain consists of two α helices and a four-stranded 

antiparallel β sheet. The prodomain associates with catalytic domain through 

hydrophobic and electrostatic interactions [15]. PCSK9 autocatalytically cleaves the 

peptide bond after non-basic amino acids between Gln152 and Ser153 to generate a 14-

kDa prodomain and a 63-kDa moiety [15]. The prodomain are permanently associated 

with the 63 kDa PCSK9 moiety, and the four C-terminal amino acids of the prodomain 

(residues 149 – 152) bind in the catalytic site and further inhibit the catalytic activity by  

N-terminus extension of the prodomain [19]. The catalytic domain consists of seven-

stranded parallel β sheet and α helices. The catalytic triad of PCSK9 consists of residues 

Asp186, His226, and Ser386. PCSK9 does not act as a catalyst but as a chaperone that 

binds the LDLr at its epidermal growth factor-like repeat A (EGF-A) for lysosomal 
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degradation [15]. The V domain of PCSK9 consists of three barrel-like subdomains that 

are made up of antiparallel β strands, and stabilized by three internal disulfide bonds [15]. 

The V domain is rich in histidine residues that can control the pH-dependent protein-

protein interactions [15]. 

 Researchers have been studying how the mutations in PCSK9 relate to FH. They 

reported the disease-associated variants in a database at www.ucl.ac.uk/ [20]. As shown 

in Figure 20, the mutations of PCSK9 can be found in any domains of PCSK9.   

  
Figure 20. Number of variants in each domain of the PCSK9 gene according to putative function (n = 73). 

Intronic variants have not been included. Adapted from Leigh et al [20].   

 

The selected naturally occurring variants are summarized in Table 2. The loss-of-

function mutations include L82X, Y142X, C679X, DR97, G106R, L253F, N157K and 

H391N, while the gain-of-function mutations include D374Y, D374H, S127R, D129G, 

F216L, and R218S [15]. 

 The function of PCSK9 is physiologically significant, and it is clinically relevant to 

measure circulating levels of PCSK9 and to study pharmacological factors affecting its 

secretion. It has been reported that plasma PCSK9 levels correlate positively with LDL 

cholesterol but not with HDL cholesterol or TG in healthy donors [15].  PCSK9 has 

become a validated target for the treatment of hypercholesterolemia and associated 

cardiovascular diseases. Study suggests that pharmacologic interventions that inhibit 
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PCSK9 may be safe. The first approach to inhibit PCSK9 include targeting PCSK9 

mRNA that involves the delivery of single-stranded antisense DNA-like chimeric 

oligonucleotides via an RNaseH-mediated pathway, and injection of liposomal double 

stranded RNA-like siRNAs that interact with the RNA-interference silencing complex 

[19, 20, 21]. 
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Table 2. PCSK9 naturally occurring variants (X represents stop codon) [20, 22]. 

  

 The second approach to inhibit PCSK9 directly by molecules includes antibodies or 

small interfering RNAs that interfere with PCSK9/LDLr interaction at the plasma 

membrane, inhibitors of PCSK9 catalytic activity within the ER, other proprotein 

convertases that enhance PCSK9 cleavage, and molecules that destabilize the PCSK9 

structure to mimic loss of function mutants [19, 23]. A list of inhibitors of PCSK9 

Protein  Domain Effect
Wild Mutant

AA type hydrophobicity AA type hydrophobicity

basic -14 aliphatic 97
 p.Leu82X

aliphatic 97 X

basic -14

unique 0 basic -14
polar neutral -5 basic -14
acidic -55 unique 0

aromatic 63 X

polar neutral -28 basic -23

aromatic 100 aliphatic 97

basic -14 polar neutral -5

aliphatic 97 aromatic 100

acidic -55 aromatic 63

acidic -55 basic 8

polar neutral 49 X

 p.Arg46Leu  Pro-domain  Loss of function, 
descreased 
phosphorylation of Ser47

 Pro-domain  Loss of function, 
 truncated peptide, 
disrupt proper folding

 p.Arg97del  Pro-domain  Loss of 
function,disrupts the fold 
of the entire prodomain.

 p.Gly106Arg  Pro-domain  Loss of function, 
improper orientation of 
the beta-strands.

 p.Ser127Arg  Pro-domain  Gain of function,
 p.Asp129Gly  Pro-domain  Gain of function 
 p.Tyr142X  Pro-domain  Loss of function, 

 truncated peptide, 
disrupt proper folding

 p.Asn157Lys  Catalytic  Loss of function, could 
break hydrogen bond 
and then destabilize the 
packing of this helix 

 p.Phe216Leu  Catalytic  Gain of function can't 
undergo the second 
cleavage that can't not 
induce LDLr degradation.

 p.Arg218Ser  Catalytic  Gain of function can't 
undergo the second 
cleavage that can't not 
induce LDLr degradation.

 p.Leu253Phe  Catalytic  Loss of function, results 
in a PCSK9 protein that is 
defective in 
autoprocessing.

 p.Asp374Tyr  Catalytic  Gain of function, 
increases in affinity for 
LDLr by Hydrogen 
bonding or pi stacking 
with H306 of EGF-A. 

 p.Asp374His  Catalytic  Gain of function, 
increases in affinity for 
LDLr by Hydrogen 
bonding or pi stacking 
with H306 of EGF-A. 

 p.Cys679X  C-terminal 
domain 

 Loss of function, 
 truncated peptide, 
disrupt proper folding
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currently undergoing development to reduce the LDL-C levels are summarized in Table 3 

[24]. It has been reported that an antibody for PCSK9 (mAb1) administered to wild-type 

mice doubled the hepatic content of LDLR and reduced serum total cholesterol by 36% 

[24]. Cynomolgus monkeys treated with a single dose of PCSK9 siRNA had a mean 

reduction in LDL-C levels of 56% [24]. 

 

Table 3: PCSK inhibitors under development [24]. 

 

 

 Many other PCs have been studied, especially furin. Comparative study of PCSK9 

with well characterized furin and other PCs will be an efficient way to get information 

about PCSK9. 

 

 II. Comparative study of PCSK9 with other PCs 
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Sun and coworkers reported that the multiple sequence alignment of PCSK9 with 

furin and three PCs (PCSK4, PCSK5 and PCSK6) using Clustal2 shows that PCSK9 is 

closely resemble to furin [25]. When they compared the key residues in the binding 

pocket of furin and those in PCSK9, they found that the obtained multiple sequence 

alignment indicated the mutations of PCSK9 including N192 → S, R193 → -, E230 → 

Q, V231 → G, E257 → -, A267 → L, S319 → G, S343S → L, P372 → A.  

 The 3D structure of the furin catalytic domain with an inhibitor complex (Protein 

Data Bank ID: IP8J) was created with Chimera 1.6 (Figure 21) [26]. 

 
Figure 21. Furin Binding Pocket. Adapted from Sun, et al [25]. 

 

 

 The sensitivity and the compensatory effect of the positive charge at substrate 

positions P4-P6 requires negatively charged residues in the binding pocket of PCs [25].  

Negatively charged residues at position 230 and 257 play a key role in regulation of the 

substrate specificity of mammalian proprotein convertases since they interact with a 

positively charged residue at substrate position P5 or P6, and facilitate flexible 

interactions in this region [25]. It has been reported that cleavage of proprotein 

convertases can be inhibited by a small molecule characterized by positively charged 
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residues at substrate position P1, P2, and P4 [25]. This small molecule dec-RVKR-cmk 

efficiently binds to all seven 8B proprotein convertases [25]. This methodology can be 

used to study the substrate specificity of PCSK9 and find its small molecule inhibitor. 

 MEGA is used to build a phylogenetic tree for PCSK9 from different species [27].  

 

 

Figure 22 shows the resulting phylogenetic tree. 
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The information on PCSK9 is valuable, and can be obtained from the PDB website 

http://www.rcsb.org/pdb/home/home.do. Table 4 summarizes a list of solved structures of 

PCSK9 [28]. 

 

Table 4: Solved PCSK9 Structure in PDB 

PDB ID Structure Title 

2NP9 Crystal structure of a dioxygenase in the Crotonase superfamily 

2P4E Crystal Structure of PCSK9 

2PMW The Crystal Structure of Proprotein convertase subtilisin kexin type 9 (PCSK9) 

2QTW 
The Crystal Structure of PCSK9 at 1.9 Angstroms Resolution Reveals structural homology 

to Resistin within the C-terminal domain 

2W2M WT PCSK9-DELTAC BOUND TO WT EGF-A OF LDLR 

2W2N WT PCSK9-DELTAC BOUND TO EGF-A H306Y MUTANT OF LDLR 

2W2O PCSK9-DELTAC D374Y MUTANT BOUND TO WT EGF-A OF LDLR 

2W2P PCSK9-DELTAC D374A MUTANT BOUND TO WT EGF-A OF LDLR 

2W2Q PCSK9-DELTAC D374H MUTANT BOUND TO WT EGF-A OF LDLR 

2XTJ THE CRYSTAL STRUCTURE OF PCSK9 IN COMPLEX WITH 1D05 FAB 

3BPS PCSK9:EGF-A complex 

3GCW PCSK9:EGFA(H306Y) 

3GCX PCSK9:EGFA (pH 7.4) 

3H42 Crystal structure of PCSK9 in complex with Fab from LDLR competitive antibody 

3M0C The X-ray Crystal Structure of PCSK9 in Complex with the LDL receptor 

3P5B 
The structure of the LDLR/PCSK9 complex reveals the receptor in an extended 

conformation 

3P5C 
The structure of the LDLR/PCSK9 complex reveals the receptor in an extended 

conformation 
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Although the number of solved structures is limited, it may take researchers weeks or 

months to build the model from the x-ray experimental data. When the molecule becomes 

larger and larger, the disadvantage of the experimental method becomes obvious. The 

molecular dynamics simulation could be a reasonable method for the study of PCSK9. 

 
 III. Molecular Dynamic Simulation Results 

 We have performed MD on lysozyme (1AKI), and analyzed the trajectory with 

GROMACS tool g_rmsf to get its fluctuation information, and with our program to get 

the rigidity profile (Figure 23). 

 
Figure 23. Fluctuation and rigidity profile of the Lysozyme (1AKI). The simulation is 5 ns MD run with 

GROMACS. 
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Figure 23 represents the fluctuation and rigidity profile of lysozyme. As seen on the 

figure, the residues with high fluctuation often have low rigidity. For example, the strong 

rigidity peak is located in the #50 – #55 region where fluctuation is small. This result 

confirms our program can correctly predict the rigidity of the residues. We plotted the 

rigidity data with our program (Figure 24).We also labeled the predicted high rigidity 

residues including Trp28, Ala32, Phe38, Thr40, Ile55, Ser91, and Ala95 in Chimera 

image of lysozyme (Figure 25) [29]. 

 

 
Figure 24. Rigidity profile plotted with our program. 
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Figure 25. Residues with high rigidity predicted by our program are Trp28, Ala32, Phe38, Thr40, 

Ile55, Ser91, and Ala95. These residues are labeled with 1 letter code and shown in sphere shapes in the 

Chimera image of lysozyme (1AKI). 

 

Our program allows the users to easily locate the amino acid residues with high 

rigidity by labeling those amino acids above the threshold value set by the user (the 

default value is 50% of the maximum value). Both fluctuation and rigidity information 

would help us to understand the property of the biological molecule. It has been found 

that three amino acid positions beneath the active site are occupied by Thr 40, Ile 55, and 

Ser 91 in hen, pheasant, and other avian lysozymes [30] with experimental methods. 

These three amino acids can be found among the amino acids with high rigidity predicted 

by our program.  

     The above result on lysozyme indicates our program could be used in the study of 

other proteins such PCSK9. We performed the similar study on PCSK9 (PDB code: 

2P4E) (Figure 26). Since PCSK9 is a bigger protein with some missing residues in the 

initial configuration, we will focus on analyzing the region (#219 – #449) with the 

longest unbroken sequence (Figure 27). Within this region, L286, T313, V336, A363, 
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T385, A389 and V392 are predicted to have high rigidity, and there is no reporting 

mutation among them [20]. The result indicates the rigidity profile could predict the 

conserved region of the protein. 

 
Figure 26. PCSK9 (1AKI) rigidity profile with missing residues located in the disconnected region in the 

graph. The simulation is 10 ns MD run with GROMACS.  
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Figure 27. The fluctuation and rigidity profile of PCSK9 partial sequence (#219 - #449). 

 

 It has been reported that D374 is the binding location where the PCSK9 forms the 

complex with LDLr, and its mutations change its binding efficiency with LDLr [17]. 
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Figure 27 indicates D374 has high fluctuation and low rigidity result. We also labeled the 

predicted high rigidity residues including L286, T313, V336, A363, T385, A389, and 

V392 in Chimera image of PCSK9 (Figure 28) [29].  

 

 
Figure 28. Residues with high rigidity predicted by our program are L286, T313, V336, A363, T385, 

A389, and V392. These residues are labeled with 1 letter code and shown in sphere shapes and located in 

the center of the A chain in the Chimera image of PCSK9 (2P4E).  The triad residues located on the left of 

the center, and D374 are also labeled. 

 

 We need more analysis on the pattern of the fluctuation and rigidity on other residues 

to find the important information about the binding of the PCSK9 and the LDLr. 
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5. Conclusions 

 In this project, we learned how to use GROMACS in molecule dynamics simulations. 

Through the molecule dynamics simulation of lysozyme using GROMACS, we 

understood that the process of running GROMACS in protein dynamics simulations 

involves many steps, and GROMACS does not provide a tool to analyze the rigidity of 

the protein. 

 We have developed a Java application to simplify the steps involved in GROMACS. 

We investigated two methods that allow us to call C code from Java, and we decided to 

use Java Runtime class method since JNI method is too complicated to implement. 

Through the graphical user interface (GUI), users can easily carry out molecular 

dynamics simulations using GROMACS with their own settings or simply accepting the 

default settings given by the program. Our program also allows users to analyze the 

GROMACS trajectories to generate the rigidity of the protein, and then plot the rigidity 

profile graph with our built-in plotting feature. Compared to JGromacs, our program has 

better performance, and works well with the large trajectory files. 

 We tested our program with lysozyme, and obtained promising results that show the 

amino acids involved in the active site of the lysozyme are among the amino acids with 

high rigidity. We also used our program in the molecular dynamics simulation of PCSK9, 

and found that the amino acids with high rigidity are not among the amino acids that have 

reported mutations. These results indicate our program could be used to find the active 

site and the conserved amino acids in the protein.
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6.  Future Work 

 A possible extension of this work would be to continue validating the program with 

well studied lysozyme and its variants. This would enable us to find a method to 

determine the relationship between the simulation results and the protein property, which 

would allow us to expand our study to PCSK9 and its complexes with LDLr to determine 

its role in cholesterol metabolism.  

     Another extension would be to develop a web application of this program that would 

allow remote users to access the program.
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