
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

STATIC TYPE CHECKER TOOLS FOR DART STATIC TYPE CHECKER TOOLS FOR DART

Snigdha Mokkapati
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mokkapati, Snigdha, "STATIC TYPE CHECKER TOOLS FOR DART" (2012). Master's Projects. 286.
DOI: https://doi.org/10.31979/etd.xpj3-y2sa
https://scholarworks.sjsu.edu/etd_projects/286

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/286?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

STATIC TYPE CHECKER TOOLS FOR DART

A Project Report

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Snigdha Mokkapati

December 2012

i

© 2012

Snigdha Mokkapati

ALL RIGHTS RESERVED

ii

The Designated Project Committee Approves the Project Titled

 STATIC TYPE CHECKER TOOLS FOR DART

by

Snigdha Mokkapati

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2012

Dr. Cay Horstmann Department of Computer Science

Prof. Ronald Mak Department of Computer Science

Dr. Chris Pollett Department of Computer Science

iii

ABSTRACT

STATIC TYPE CHECKER TOOLS FOR DART

by Snigdha Mokkapati

This project presents the static type checkers that I developed for the optional type system of the
Dart programming language. Dart is an optionally typed language and as a result has an unsound
type system. In this project I have created the static type checker tools for dart. The first static
type checker tool ensures mandatory typing of Dart code. This checker can be invoked by giving
a new compiler option that I have added to the compiler configuration. This checker will help in
catching any type errors early at compile time rather than at run time. The second static type
checker improves the Dart’s support for covariant generics. This static checker issues warnings at
compile time if the covariant use of generics is followed by a modification of the collection
passed covariantly. I have also introduced three annotations that will add more type safety to the
Dart programming language. The @notnull annotation is to ensure that null values are not passed
as arguments to method parameters. This nullness checker ensures that a running program will
never throw a null pointer exception. The @modifies annotation supports the covariance check.
The @linear annotation is used to prevent unexpected modification of objects by aliasing. The
@linear annotation can be used in conjunction with Dart isolates for concurrent programming.

iv

ACKNOWLEDGEMENTS

This project is the result of the support of many individuals. First, great appreciation is due to Dr.
Cay Horstmann who encouraged, guided and supported me through all the levels of the project.
Second, thanks to Prof. Ronald Mak and Dr. Chris Pollett who gave me constant feedback,
guidance and support. Lastly, thanks to my friends and project mates Jesus Rocha and Purna
Chatterjee Patra for helping me in the setup of Dart tools and SDK.

v

Contents

Abstract iv

Acknowledgements v

List of Figures vii

List of Tables vii

1. Introduction 8

2. Optional Type Systems 8

3. Dart Type Concepts 12

3.1 Dart Optional Types 12

3.2 Dart Covariant Generics 14

3.3 Errors and Warnings 15

4. Dart Compilers 16

5. Mandatory Types Checker 18

6. Type Checker for Dart Generic Type Inferences 23

6.1 Reified Generics (In Support of Optional Types) 23

6.2 Covariance and Contravariance in Dart 23

6.3 Variance Checker without Annotation 25

6.4 Variance Checker with @modifies Annotation 29

7. Nullness Checker with @notnull Annotation 34

8. Linear Checker with @linear Annotation 40

9. Applicability 44

10. Conclusions and Future Scope 47

vi

Appendix A Code to add a new Compiler Flag 49

Appendix B Code to add @linear Annotation 50

Appendix C Source Code of Solar Application without Modifications 56

Appendix D Source Code of Solar Application with Modifications 63

References 69

List of Figures

Figure 4.1 Dart Editor 17

List of Tables

Table 4.1 Compiler Flags of dartc Compiler 18

vii

1. Introduction

Unlike most programming languages like Java, Scala, C++, C#, Haskell, etc., which are
statically typed, Dart is a dynamically typed language. The most popular feature of Dart is the
use of optional types. Programs can be written and run without using any type annotations, or
optionally type annotations can be added to the programs. However, adding type annotations to
the program will not prevent it from compiling or running, even if the annotations are incomplete
or wrong. Currently type annotations mainly serve the purpose of documentation and early error
detection in Dart.

For early error detection, Dart provides a static checker which warns about the potential
problems at compile time. Most of the checks provided by this static checker are related to types.
However, these warnings don’t prevent from running the program. There is also a checked mode
in Dart where certain type checks are performed during the development stage or in developer
mode (run time). However, neither of the static checker or the checked mode provide the same
level of static checking performed in a statically typed language.

The focus of this project is to create static type checker tools which will interpret the type
annotations in Dart as in a statically typed language. First static type checker is a mandatory
types checker to ensure typing in Dart code. The project also involves improving the static type
checks performed by the compiler as strictly as in a statically typed language. The main purpose
of this type checker is to provide the possibility of having more type checking for beginning
users such as students. The second type checker is a relatively complex type checker
concentrating on the variance of generics in Dart. Dart generics are covariant and pass both static
and dynamic checks. The contravariant generics in Dart pass static checks but fail dynamic
checks. The goal is to create a static type checker for these generic type inferences in Dart. The
project also involves implementation of annotations in Dart in support of static type checkers.
The nullness checker is to ensure that null values are not passed to method parameters. The
implementation of @notnull annotation parsing is added to the dartc compiler to support
@notnull annotation for method parameters and identifiers. The linear checker is to prevent
unexpected modifications of objects through aliasing. The implementation of @linear annotation
parsing is added to the dartc compiler to support @linear annotation for method parameters and
method local identifiers. These type checker plugins enhance the optional types feature of Dart
by providing a static type environment for those who are interested in it.

2. Optional Type Systems

Type checking is the process of mapping and verifying the type constraints in a program. The
type constraints can be explicitly stated or implicitly referenced. The process of type checking
can be performed at compile-time or at run-time. The programming languages which support

8

compile-time type checking are called statically typed languages and the languages which
support run-time type checking are called dynamically typed languages. Statically typed
languages include Ada, C, Haskell, Java, Objective-C and Scala. Dynamically typed languages
include Erlang, JavaScript, Lisp, PHP, Python, Ruby and Smalltalk.

Statically typed languages are traditionally considered as languages with well-established
advantages. A language that supports static checking provides advantages such as early error
detection, opportunity to do code optimization based on type information and a form of machine-
checkable documentation [3]. Dynamically typed languages on the other hand can be more
expressive and are better suited for the changing requirements [7]. While a good and strong
mandatory type system adds completeness to a programming language, it is difficult to formulate
a perfect real world mandatory type system. Formulation might involve assumptions which in
turn results in bugs in the implementation.

To bridge the gap between statically typed languages and dynamically typed languages, Gilad
Bracha proposed pluggable type systems [3]. A pluggable type system is a language environment
where several optional type systems can exist together. He defines an optional type system to be
one that:

1. has no effect on the runtime semantics of the programming language, and
2. does not mandate type annotations in the syntax.

If a language implements the concept of optional type systems, then it is not mandatory that a
programmer provide type annotations in the source code. Also, providing type annotations or
skipping them does not affect the run time behavior of the program. If the run time behavior of
the program is independent of the type system, then type systems can be used as plug-ins [3].
While developing a framework for pluggable type system for dynamically typed languages,
challenges might arise with respect to both optional typing and dynamic typing. Since a
programmer is not expected to provide the type annotations in an optionally typed language, the
pluggable type system should be able to handle both partially typed and untyped programs. Also,
since there is no basis for static type checking in a dynamically typed language, it might be a
challenge to do the static type analysis for constructs such as dynamic binding or reflection.

Dart is a dynamically typed language with support for optional type system. It is inspired by
Strongtalk, a type checker for Smalltalk. Smalltalk is inherently a dynamically typed language
and many attempts have been made to introduce a static type system into Smalltalk [4]. It was
difficult to introduce a complete static type system into Smalltalk with the requirement to type
check existing pieces of non-typed Smalltalk code. Instead, Bracha and Griswold developed
Strongtalk, a type checker for Smalltalk in a production environment [4]. Strongtalk is not
designed with the idea to type check existing Smalltalk code without modification [4]. It is
designed with the strong support for downward compatibility meaning that Strongtalk code can
be easily converted to Smalltalk code anytime by removing the type annotations. Following are
some of the key features of the Strongtalk type system. Strongtalk separates types from classes.
Instead, types are included in the Smalltalk protocols. In Smalltalk, everything is an object and

9

the objects communicate with each other by sending and receiving messages. The set of
messages which an object understands and responds to is known as message protocol or simply
protocol. For example, a string’s protocol contains indexOf, size, asUppercase and many other
string operations related messages. Smalltalk groups objects sharing the same protocol into
classes. So every object is an instance of some class and each class is associated with a protocol.

Strongtalk refined the notion of protocol in Smalltalk by introducing types into the message
signatures of a protocol. Along with the names of the messages, the types of the arguments and
the types of the objects they return are included by giving type annotations in the angle brackets.
Following is an example of Strongtalk protocol and a class taken from [4].

 protocol PlanarPoint

 x ^<Integer>.
 x: <Integer> ^<Integer>.
 y ^<Integer>.
 y: <Integer> ^<Integer>.

+ <Self> ^<Self>.

 class BasicPlanarPoint
 instance var x <Integer>.
 instance var y <Integer>.
 class methods
 new ^<Instance>
 ^super new init.
 instance methods
 init
 x := 0 y:= 0.
 x ^<Integer>
 ^x.
 x: xval <Integer>
 x := xval.
 y ^<Integer>
 ^y.
 y: yval <Integer>
 y := yval.

+ p <Self> ^<Self>
 ^(self class new x: self x + p x)
 y: self y + p y.

In the above example, PlanarPoint is a protocol for points in a plane. Class BasicPlanarPoint
implements the PlanarPoint protocol. The protocol provides four messages to access the
instance variables and one to take the sum of two PlanarPoint objects.The caret is used to
represent the return type of the message. The Self keyword in a protocol refers to the protocol of
the receiver. The code above is in a form of pseudo-code, not the concrete syntax of Strongtalk.
Strongtalk also introduced typing of variable declarations which include blocks and method
arguments, instance, class, pool and global variables. Strongtalk also supports generic type
definitions. Below is an example of a generic List protocol in Strongtalk [4].

 generic protocol List[T]
 add:<T>.

10

 head ^<T | Nil>.
 tail ^<Self | Nil>.
 map:<Block[T, ^S]> ^<List[S]>
 where S :: (actual arg:1) returnType

The generics in Strongtalk work in a similar way to generics in Java. A generic can be invoked
by passing the type of actual parameter, e.g., List[Integer]. The type of the actual parameter
replaces the formal parameter T in the generic for that invocation. The other interesting feature
supported by Strongtalk is parametric polymorphism. In some cases, the return type of a method
may depend on the actual parameter types passed into the method. Parametric polymorphism is
used to express the signature of such methods. In the above code example of List protocol, the
map message is an example of parametric polymorphism. The map message takes a block as
argument and returns a list. The type of the list being returned is dependent on the return type of
the block S.

In 2007, Niklaus Haldimann created TypePlug, a framework for pluggable type systems for
Smalltalk [7]. In TypePlug, Haldimann introduced typing of elements in Smalltalk syntax. He
introduced types for basic constructs of Smalltalk such as literals, global variables, blocks, arrays
and primitives by introducing the typeFor* family of methods. For example, according to his
syntax,

 typeForLiteral: aValue method provides a type for literals such as integers, strings,
symbols, constants etc. aValue represents the literal value being typed.
 typeForArray: anArray method provides a type for an array literal.

Haldimann also added the support for subtyping and unification in TypePlug. He supported
subtyping by implementing a is:subtypeOf: method which takes two types as arguments and
returns a boolean value. Following is the syntax of the method,

 is: aType subtypeOf: anotherType

This method returns true if aType is the subtype of anotherType.
The unification operation creates a type that represents the union of two types [7]. Following is
the syntax of the method used for unification.

 unifyType: aType with: anotherType

The implementation of all these above methods is similar to the way I have added annotations in
the Dart. These additional methods for typing are introduced into Smalltalk protocols and classes
and when parsed in the frontend, are used to add additional type information to the syntax tree
nodes being constructed. At the backend when the type checker walks through the syntax tree,
type safety is ensured by certain type checking rules for assignments, return statements, message
sends, and so on.

11

In 2012, version 1.4.4 of the Checker Framework: Custom pluggable types for Java was
developed at MIT Computer Science and Artificial Intelligence Lab, Cambridge, MA, USA [11].
The Checker Framework supports adding pluggable type systems to the Java language in a
backward-compatible way [1]. In this project, pluggable type checkers for Java have been
developed which can be invoked as plug-ins to the javac compiler. Checkers include nullness
checker to check for null pointer errors, regex checker to prevent use of syntactically invalid
regular expressions and a lock checker for concurrency and lock errors. Following is an example
of running a checker,

javac -processor checkers.nullness.NullnessChecker Source.java

-processor is the command line option to give the name of the checker to run. In the above
example, the nullness checker is being invoked on the source file Source.java.

In this project, I have added a static type checker to the Dart programming language which can
be invoked by giving a new compiler option while running the dartc compiler. The purpose of
this static checker is to ensure that static types are provided in the Dart source code. I have also
implemented the checkers for Dart covariant generics, nullness checks and linear checks. For
covariance, nullness and linear checks, I have given an ad-hoc implementation of the checkers
rather than creating a framework. I have supported these checks by adding annotation support in
the Dart source code and in the dartc compiler.

3. Dart Type Concepts

3.1 Dart Optional Types

One of the Dart programming language's features is the use of optional types [2]. Essentially
Dart is a dynamically typed language. Unlike most other dynamically typed languages, Dart also
supports optional typing. However, adding types to Dart code does not make it equivalent to the
code written in a strictly statically typed language. The reason behind this is that static checks
performed by Dart are unsound. The static checker of the Dart warns about the possible type
errors at the compile time but only about the ones that are likely to be real problems. It does not
warn about every possible type error because, of course, Dart is not a statically typed language.
The static checker just issues warnings. The code can still be compiled and can be run. One
example of unsoundness of Dart static typing is down assignments. For example, according to
Dart, a type T may be assigned to a type S if T is a subtype of S or if S is a subtype of T [2].
Clearly this rule might fail for some down assignments if not assigned properly.

 class Person {}

 class Employee extends Person {

12

 //some method or field specific to Employee
 }

 class Student extends Person {
 //some method or field specific to Student
 }

 main() {
 Person aPerson = new Person();
 Employee aEmployee = new Employee();
 Employee anotherEmployee = new Employee();
 Student aStudent = new Student();

 aPerson = aEmployee; //Perfect, always valid
 anotherEmployee = aPerson; //valid in this case
 }

In the code above, the last statement anotherEmployee = aPerson; is valid here because aPerson
is also pointing to an Employee. However, aPerson could have been pointing to a Student also and
then it will be invalid at runtime. However, the Dart static type checker does not differentiate
those two cases. It just passes both the checks supporting its optimistic nature.

The Dart’s static checker does not complain if no types are given because Dart supports a special
type called “Dynamic”. When no type is given, the default type is “Dynamic” and so the static
checker does not complain about its type.

The other place where type checking is performed is during run time in checked mode. Dart
programs can be run in a special mode called checked mode which automatically executes
certain type checks while running the program. Some of these checks include type checking
while passing arguments to methods, returning results and executing assignments. If these checks
fail in checked mode, then the execution of the program stops. Following is an example to
explain the significance of the checked mode. An assignment statement like

 int number = new Object();

fails in the checked mode, because Object is not a subtype of int.

 Object getValue() {
 return 25;
 }

 int number = getValue();

However, the above code passes the checked mode even though the method signature says that
the return type is Object. Dart checks the runtime type of the object against the declared type of
the variable. The checked mode is only useful if the code is typed. If the typing is completely
eliminated from the code, checked mode does not get in your way.

13

3.2 Dart Covariant Generics

The generic type G is covariant if A <: B => G<A> <: G and contravariant if A <: B => G
<: G<A>. For mutable collections, if A is subtype of B then ReadOnlyReference<A> is
substitutable for ReadOnlyReference according to the covariance rule and
WriteOnlyReference is substitutable for WriteOnlyReference<A> according to the
contravariance rule. Mutable covariant collections are unsound because A can be stored in G.
Please refer to [10] for detailed understanding of the concept of variance in Java and Scala.

The Dart generics are covariant similar to Java arrays. It is based on the idea that contravariant
use of generics is not as common as covariant use of generics. This is another example of Dart’s
“optimistic” approach. So, instead of making its generics invariant, Dart chose to support
covariant generics following this approach.

Since Dart supports covariant generics, in case of contravariant usage, static checking passes, but
during run time, in checked mode, dynamic checking fails. If no checked mode is used, code
runs correctly. However, there is a workaround for this problem by removing the generic type of
the collection but that completely silences the type checking and allows even incorrect use.

The following is an example of the contravariant use of collections with generics:

 main() {
 List<Person> plist = new List<Person>(4);
 contFunctionWithGenerics(elist);
 // Contravariant use:
 // * static type checking OK
 // * dynamic type checking fails!
 // * runs correctly if dynamic checking is off

 }

 contFunctionWithGenerics(List<Employee> elist) {
 elist.add(new Employee());
 }

The following is an example of the contravariant use of collections without generics:

 main() {
 List<int> ilist = new List<int>(4);
 contFunctionWithoutGenerics(ilist);
 // Incorrect use, but workaround has silenced type checking:
 // * static type checking OK
 // * dynamic type checking OK
 // * fails at runtime

 }
 contFunctionWithoutGenerics(List list) {
 list.add(new Employee());
 }

14

3.3 Errors and Warnings

Dart supports the following errors and warnings: [6]

1. Compile time errors - These are errors issued at the compile time and stop you from
executing the program. The error is displayed along with the message “Compilation
failed.”

2. Static warnings - These are warnings issued at the compile time. Most of them are related
to the types. The Dart’s static checker is invoked during the compilation and issues these
warnings. However, the code is still compiled and can be executed.

3. Dynamic errors - These are the type errors that are produced while running the program
in the checked mode. Program execution stops if any dynamic errors exist.

4. Run time errors - These are actual run time errors or exceptions. If not handled, program
execution stops.

The following code snippets are examples of the occurrence of four types of errors or warnings
described above. In the code below, declaring two variables with the same name in a scope gives
a compile time error.

 class Person {

 var firstname = 'Bob';
 var firstname = 'Duncan';

 Person() {}
 }

 main() {
 Person aPerson = new Person();
 }

 $dartc Person.dart
 Person.dart/Person.dart:4: name clashes with a previously defined member at
 Person.dart line 3 column 7
 3: var firstname = 'Bob';
 4: var firstname = 'Duncan';
 Compilation failed with 1 problem.

In the code below, assigning a string to an integer gives a compile type static warning. However,
the code will still be compiled and running the program prints a string '455' as output.

 class Person {

 var firstname = 'Bob';
 String age = '45';

 getUpdatedAge(diff) {
 int finalAge = age + diff;

15

 print(finalAge);
 }
 }

 main() {
 Person aPerson = new Person();
 aPerson.getUpdatedAge('5');
 }

 Compilation Warning:
 $dartc Person.dart
 Person.dart/Person.dart:10: String is not assignable to int
 9: getUpdatedAge(diff) {
 10: int finalAge = age + diff;

 Output:
 $dart_bin Person.dart
 455

The same code above when run with --enable_type_checks option gives the following dynamic
error.
 $dart_bin --enable_type_checks Person.dart
 Unhandled exception:
 Failed type check: type OneByteString is not assignable to type int of
 finalAge

A null pointer exception is an example of the run time error.

4. Dart Compilers

Dart code can be executed in two different ways: Either on a native virtual machine or on top of
a JavaScript engine by using a compiler that translates Dart code to JavaScript. Dart provides a
Chromium based browser called Dartium which includes the Dart Virtual Machine. Chromium is
an open source web browser project. Google Chrome’s source code is drawn from Chromium’s
source code. Other browsers based on Chromium include Comodo Dragon, CodeWeavers
CrossOver, RockMelt, SRWare Iron. The Dart Virtual Machine is a language based VM as
opposed to regular bytecode based VMs [9]. Hence, Dartium can execute Dart web apps directly
without needing them to be compiled to JavaScript. However, to run the Dart code on other
browsers, the code still needs to be compiled into JavaScript using one of its compilers.

Dart Editor can also be used to run the Dart code. It is an open source IDE (Eclipse based), that
can be used to edit and run Dart web apps and also to invoke Dart to JavaScript compiler. Similar
to Eclipse IDE, Dart Editor provides basic editing functionality along with the special features
such as API browsing, code completion and refactoring. When a web app is run in Dart Editor, it
brings up a browser window in which the app code is run. The default browser is Dartium but a
different browser can also be specified using launch configuration. By default, Dart Editor

16

compiles the Dart code to JavaScript before executing it in the browser. There is also an option to
just compile the code to JavaScript and not execute the app. Dart Editor download includes the
Dart Editor, Dart SDK and Dartium. Dart SDK includes the Dart libraries and the command line
tools for Dart-to-JavaScript compiler, Dart VM, Dart static analyzer and Dart package manager.

Figure 4.1 Dart Editor

From the time Dart was introduced, the following three compilers have been created:

1. dartc - First Dart compiler that emitted JavaScript code from Dart code. dartc was
written in java and was initially the compiler behind the Dart Editor. dartc was released
with the initial version of Dart source code in October 2011. Around mid 2012 (exact
date not known) dartc was discontinued to generate JavaScript. From that time, it is only
used for static analysis of Dart code and is currently renamed to dart_analyzer.

2. Frog - Frog is a dart to Javascript compiler written in Dart. However, Frog didn’t
implement the full semantics of the language and so did not have all the capabilities of
dartc. Frog was released around November 2011.

3. dart2js – This is a new compiler introduced after Frog. dart2js is written in Dart as well.
It is intended to implement full semantics of the language and is now the only compiler in
Editor and SDK. dart2js was released for testing in May 2012.

Compared to Frog and dart2js, dartc produces long javascript code.

17

Currently Dart SDK includes dart2js as the Dart-to-JavaScript compiler, dart_analyzer as the
Dart static analyzer and dart as Dart VM. All these are included as command line tools in the
SDK.

In this project, I worked on the dartc compiler. It was the only compiler with complete language
support in practice at the time I started working on this project in December 2011, so I improved
on one of the initial versions of dartc. Frog was more focused towards increasing the compilation
speed and reducing the size of the resulting javascript. However, the focus of my project was on
the language syntax and type checking which was supported by dartc. I added an additional
compiler flag, added the support for annotations by modifying the dartc parser and added the
type checkers by modifying the syntax tree nodes and the type checker classes of the compiler.
For the testing, I implemented the new compiler flag, mandatory types checker and variance
checker without annotations in the current version of dart_analyzer.

Compiler Flags:
Below is a table of flags supported by dartc compiler and the dart_analyzer static analyzer along
with the new flag I implemented.

Table 4.1 Compiler Flags of dartc Compiler

Flag Purpose

--fatal-type-errors If this option is given with the compiler, any type errors are
considered fatal and the compilation is failed. Without the
option, type errors are just warnings during compilation.

--enable_type_checks This option is given at the run time with dart_bin to enter the
checked mode.

--check-only With this option, the code is just parsed for the type errors and
will not generate any byte code.

--must-have-types I added this option to enforce static typing in the Dart code.

5. Mandatory Types Checker

I implemented a static checker to add static typing functionality to Dart as an inherently statically
typed language would have. With this mandatory types checker, typing is made mandatory in the
Dart code. If types are given, Dart’s static checker gives most of the warnings at the compile
time. The dartc compiler has an option called --fatal-type-errors. If the compiler is invoked

18

using this option, all static warnings are considered fatal and the compilation fails. However, in
the absence of that option, the code will still be compiled and can be run.

As first part of the project, I added a compiler flag --must-have-types to the compiler
configuration. If this flag is given while invoking the dartc compiler, dynamic typing is not
allowed. Please refer to Appendix A for the code modifications I did to add the compiler flag.

To support must static typing, following are the changes I made to the code.

I added a new error code in TypeErrorCode.java to throw a no dynamic typing error.

 DYNAMIC_TYPING_NOT_ALLOWED("dynamic typing is not allowed \"%s\""),

The setting of the --must-have-types option can be obtained from the CompilerConfiguration
object. It was not available in the TypeAnalyzer class and its private class Analyzer. So I
modified following methods and constructors to pass the CompilerConfiguration object around.

In DartCompilationPhase.java file, I changed the exec method signature by adding
CompilerConfiguration in the method parameters.

 public interface DartCompilationPhase {

 /**
 * Execute this phase on a unit.
 *
 * @param unit the program to process
 * @param context context where to report error messages

* @param config config contains the compiler configuration
 * including options
 */
 DartUnit exec(DartUnit unit, DartCompilerContext context,
 CoreTypeProvider typeProvider, CompilerConfiguration config);
 }

Since the TypeAnalyzer class implements DartCompilationPhase, I changed the exec method
signature in TypeAnalyzer.java. Inside the exec method, the CompilerConfiguration object is
passed to the Analyzer object.

 public DartUnit exec(DartUnit unit, DartCompilerContext context,
 CoreTypeProvider typeProvider,
 CompilerConfiguration config) {

 unit.accept(new Analyzer(context, typeProvider,
 unimplementedElements, diagnosedAbstractClasses, config));
 return unit;
 }

19

I added a CompilerConfiguration parameter to analyze method in TypeAnalyzer.java. Because
this method creates an object of the Analyzer class, a private class in TypeAnalyzer.java,
CompilerConfiguration object is passed to Analyzer.

 public static Type analyze(DartNode node,
 CoreTypeProvider typeProvider,
 DartCompilerContext context,
 InterfaceType currentClass,
 CompilerConfiguration config) {

 ConcurrentHashMap<ClassElement, List<Element>> unimplementedElements =
 new ConcurrentHashMap<ClassElement, List<Element>>();

 Set<ClassElement> diagnosed = Collections.newSetFromMap(new
 ConcurrentHashMap<ClassElement, Boolean>());

 Analyzer analyzer = new Analyzer(context, typeProvider,
 unimplementedElements, diagnosed, config);

 analyzer.setCurrentClass(currentClass);
 return node.accept(analyzer);
 }

In TypeAnalyzer.visitVariableStatement method, I added a check to see if the --must-have-
types option is given and then a check for type DYNAMIC. For variables TypeKind.of(type) is
DYNAMIC (type is <dynamic>) and for Lists with no generic type, type is <<dynamic>>.

 @Override
 public Type visitVariableStatement(DartVariableStatement node) {

 Type type = typeOf(node.getTypeNode());
 if (compilerConfiguration.mustHaveTypes()) {

 if(TypeKind.of(type).toString().equals("DYNAMIC")
 || type.toString().contains("dynamic")) {

 typeError(node,TypeErrorCode.DYNAMIC_TYPING_NOT_ALLOWED, node);
 }
 }
 visit(node.getVariables());
 return type;
 }

In DartCompilerMainContext.onError method, I added an if condition to check if TypeErrorCode
of the error is DYNAMIC_TYPING_NOT_ALLOWED and if yes, it checks if the --must-have-types
compiler flag is on or not. If yes, then type error count is incremented.

	
 @Override
 public void onError(DartCompilationError event) {
 if(event.getErrorCode().equals(TypeErrorCode.DYNAMIC_TYPING_NOT_ALLOWED))
 {
 if (compilerConfiguration.mustHaveTypes()) {

20

 incrementTypeErrorCount();
 }
 } else if (event.getErrorCode().getSubSystem() == SubSystem.STATIC_TYPE) {
 incrementTypeErrorCount();

 } else if (shouldWarnOnNoSuchType() && event.getErrorCode() ==
 ResolverErrorCode.NO_SUCH_TYPE) {
 incrementTypeErrorCount();

 } else if (event.getErrorCode().getErrorSeverity() == ErrorSeverity.ERROR) {
 incrementErrorCount();

 } else if (event.getErrorCode().getErrorSeverity() == ErrorSeverity.WARNING) {
 incrementWarningCount();
 }
 listener.onError(event);
 }

The Resolver.java file also contains a class Phase which implements DartCompilationPhase. I
changed the exec method signature in that class also.

Following is the code to illustrate how --must-have-types works:

 // This is where the app starts executing.
 main() {
 // String
 var name = 'Bob';

 // using final
 final f_name = "Alice";

 // numbers
 // int
 var count;

 // double
 var d_count = 0.0;

 // boolean
 var value = true;

 // In dart, arrays are list objects
 var list = [1, 2, 3];

 // Maps
 var gifts = {
 "first" : "partridge",
 "second" : "turtledoves",
 "fifth" : "golden rings"};

 var map = new Map();

 // Collections without generic type
 List names = new List();
 }

21

On compiling the above code with --must-have-types and --fatal-type-errors I got the
following errors:

no_types.dart/no_types.dart:5: dynamic typing is not allowed "var name = "Bob";"
 4: // String
 5: var name = 'Bob';
           ~~~~~~~~~~~~~~~~~ 

no_types.dart/no_types.dart:8: dynamic typing is not allowed "var f_name = "Alice";"
      7:   // using final
      8:   final f_name = "Alice";
            ~~~~~~~~~~~~~~~~~~~~~~~

no_types.dart/no_types.dart:16: dynamic typing is not allowed "var count;"
 15: // int
 16: var count;
                ~~~~~~~~~~

no_types.dart/no_types.dart:19: dynamic typing is not allowed "var d_count = 0.0;"
      18:   // double
      19:   var d_count = 0.0;
                ~~~~~~~~~~~~~~~~~~

no_types.dart/no_types.dart:22: dynamic typing is not allowed "var value = true;"
 21: // boolean
 22: var value = true;
                ~~~~~~~~~~~~~~~~~

no_types.dart/no_types.dart:25: dynamic typing is not allowed "var list = [1, 2, 3];"
      24:   // In dart, arrays are list objects
      25:   var list = [1, 2, 3];
                ~~~~~~~~~~~~~~~~~~~~~

no_types.dart/no_types.dart:28: dynamic typing is not allowed "var gifts = {"first" :
"partridge", "second" : "turtledoves", "fifth" : "golden rings"};"
 27: // Maps
 28: var gifts = {
                 ~~~~~~~~~~~~~

no_types.dart/no_types.dart:33: dynamic typing is not allowed "var map = new Map();"
      32:    
      33:   var map = new Map();
                 ~~~~~~~~~~~~~~~~~~~~

no_types.dart/no_types.dart:36: dynamic typing is not allowed "List names = new
List();"
 35: // Collections without generic type
 36: List names = new List();
                 ~~~~~~~~~~~~~~~~~~~~~~~~

Compilation failed with 9 problems.

22



6. Type Checker for Dart Generic Type Inferences

6.1 Reified Generics (In Support of Optional Types)

Generics are types with type parameters.  Dart supports reified generics. That means the type 
parameter can be accessed at run time. The generic type given to a collection through its 
constructor is assigned to the collection at run time. This concept supports Dart’s theory of 
optional types. That means you could just say new List() if you don’t ever want to use any types 
in your code. 

Suppose I have the following collection where p1, p2 and p3 are Person objects:
List<Person> persons = <Person>[p1, p2, p3];

Then the type parameter can be checked at runtime:
persons is List<Person> // Returns true.

Also interestingly for the following collection: 
List personCodes = [p1, p2, p3];

personCodes is List<Person> that is new List() is List<Person> returns true.  This is 
supported because there might be instances where you have to integrate your untyped code with 
typed libraries and in that case an object of generic type without the type parameter is considered 
subtype of any other version of that generic [8]. However, this is unsound because personCodes 
is List<String> also returns true. This is another example of unsoundness of Dart’s type 
system.

6.2 Covariance and Contravariance in Dart

In simple terms, if A is subtype of B, then G<A> <: G<B> is called covariance. If G is a collection, 
covariance is sound for reading but unsound for writing. For example, List<Employee> can be 
passed where List<Person> is required for reading. If you are expecting to read from a List of 
Person, you can read from a List of Employee because an Employee is a Person. Immutable 
collections are an example of covariant generics. On the other hand, if A is subtype of B, then, 
G<B> <: G<A> is called contravariance. For example, List<Person> can be passed where 
List<Employee> is required for writing. If you want to add an element to List<Employee>, 
List<Person> can hold it because an Employee is a Person. The type of a function is 
contravariant on its argument type. 

The Dart type system is not able to distinguish between covariance and contravariance rules. 
Since Dart type annotations are supposed to be simple, lightweight and optional, Dart has 
decided to support covariance and not support contravariance. The reason for that is, Dart thinks 

23



most of the uses of generics are read-only and they act covariantly [5]. For the same reason, Dart 
has made its generics covariant instead of invariant, supporting its optimistic nature. So Dart 
generics are covariant. What that means is, if A is subtype of B, and if you pass a List<A> to a 
function expecting List<B> and if that function just reads from the list then the list is used 
covariantly. Dart’s support of covariant generics is similar to Java arrays except that when trying 
to store into a covariant collection Java throws an ArrayStoreException but Dart does not give 
any exception. Instead, an exception is thrown when the falsely stored object is used.

The following is an example of covariance:

 Person getFirst(List<Person> list) {
  return list[0];
 }
 
 main() {
         List<Employee> elist = new List<Employee>(10);
         getFirst(elist);
 }

The above code passes Dart’s static check because of assignment rule (it is acceptable if Person 
is subtype of Employee or Employee is subtype of Person), passes Dart’s dynamic check (in 
checked mode) because Dart supports covariant generics and runs correctly. 

In case of the below code, list is used contravariantly, so static checking passes (again because 
assignment is symmetric), dynamic checking fails but runs without error if the dynamic checking 
is off.

 void addAnEmployee(List<Employee> list> {
         list.add(new Employee());
 }

 main() {
          List<Person> plist = new List<Person>(10);
          addAnEmployee(plist);
 }

A workaround to allow contravariance is, for the method addAnEmployee, instead of 
List<Employee> as the argument, List with no generic type can be made as argument. That 
allows any list and passes the dynamic check and code runs without aborting. But that will 
introduce a scope of error because if it is a List what if someone passes a List<int>? The 
program then fails at runtime. 

Dart supports covariant generics assuming most of the cases are read only.  So what happens if 
the function writes to the collection? Taking the previous example of covariance, consider there 
is an add statement like in the code below:

 Person getAPerson(List<Person> list) {

24



  list.add(new Student());
  return list[0];
 }
 
 main() {
         List<Employee> elist = new List<Employee>(10);
         getAPerson(elist);
 }

In the above code add executes fine because Student is a Person, but now the Employee list 
contains a Student. There will be no problem until it encounters another method call which is 
probably calling a particular method of Employee class on each element of Employee list which 
Student is not aware of and then program fails.To avoid that problem, I created a variance static 
checker which issues a warning at the compile time if the collection is being modified inside the 
method. The next section contains the code changes that I have done for variance static checker.

6.3 Variance Checker without Annotation

TypeAnalyzer.visitUnqualifiedInvocation method is called in the backend when a method is 
invoked in Dart source code. MethodElementImplementation.java is the file which contains the 
called method details. It stores type of the function. It also has modifiers, holder, kind and 
parameters as final fields. To get the method definition from this class I made the following code 
modifications to MethodElementImplementation.java: I changed the visibility of 
MethodElementImplementation.java to public and added the following code to 
MethodElementImplementation class.

 private DartMethodDefinition node;

 public DartMethodDefinition getNode() {
  return node;
 }

 public void setNode(DartMethodDefinition node) {
  this.node = node;
 }

 protected MethodElementImplementation(DartMethodDefinition node, 
      String name, EnclosingElement holder) {
      super(node, name);

      this.node = node;
      if (node != null) {
        modifiers = node.getModifiers();
      } else {
        modifiers = Modifiers.NONE;
      }
      this.holder = holder;
      this.kind = ElementKind.METHOD;
   }

25



I added two private instance variables to Analyzer class in TypeAnalyzer.java.

 private boolean method_definition_modifies_collection;
     private final CompilerConfiguration compilerConfiguration;

To get the method definition, in TypeAnalyzer.visitUnqualifiedInvocation method, in case 
METHOD, I added the below code:

 public Type visitUnqualifiedInvocation(DartUnqualifiedInvocation node) {
      DartIdentifier target = node.getTarget();
        String name = target.getTargetName();
        Element element = target.getTargetSymbol();
        node.setReferencedElement(element);
        Type type;
      
        switch (ElementKind.of(element)) {
          case FIELD:
             type = typeAsMemberOf(element, currentClass);
             break;
          
   case METHOD:
             MethodElementImplementation member_method = 
    (MethodElementImplementation)element;
             
    visitMethodNode(member_method.getNode());
             type = typeAsMemberOf(element, currentClass);
    break;
          
   case NONE:
             return typeError(target, TypeErrorCode.NOT_A_METHOD_IN, 
       name, currentClass);
          default:
             type = element.getType();
             break;
        }
        return checkInvocation(node, target, name, type);
     }

In the above code I am sending the method definition to the TypeAnalyzer.visitMethodNode 
method which I added. Below is the code of visitMethodNode method which basically parses 
through each statement of the method and if the statement is a method invocation, it pulls out the 
function name and currently if it is "add", "addAll" or  "addLast" (hardcoded) it sets a boolean 
variable to true.
 
public void visitMethodNode(DartNode node) {
     if (node != null) {
     DartMethodDefinition methodNode = (DartMethodDefinition)node;
       
 // Added this to get the param nodes for @notnull checks 
 functionParams = methodNode.getFunction().getParameters();
      
     DartFunction function = methodNode.getFunction();
       

26



 if (function != null) {
      DartBlock block = function.getBody();
       
  if (block != null) {
      List<DartStatement> methodStatements = block.getStatements();
      
  for (int i = 0; i < methodStatements.size(); i++) {
           DartNode stmt = methodStatements.get(i);
           
   if (stmt.getClass().toString().equals("class 
    com.google.dart.compiler.ast.DartExprStmt")) 
   {
           DartExprStmt exprStmt = (DartExprStmt)stmt;
           DartExpression expression = exprStmt.getExpression();
           
   if (expression.getClass().toString().equals("class 
   com.google.dart.compiler.ast.DartMethodInvocation")) {
           
   DartMethodInvocation methodExpression = 
      (DartMethodInvocation)expression;
           String methodCalledOn = methodExpression.getTarget().toString();
                  
           String functionName = methodExpression.getFunctionNameString();
           
   for(DartParameter param : functionParams) {
           
   DartTypeNode type = param.getTypeNode();
           if (type != null) {
           if (param.getParameterName().equals(methodCalledOn)
          && param.getTypeNode().getIdentifier().toString().equals("List")
          && (functionName.equals("add") || functionName.equals("addAll") 
      || functionName.equals("addLast"))) {
                method_definition_modifies_collection = true;
            }
            }
            }
            }
            } 
          }
      }
     }
     }
    }

In TypeAnalyzer.checkArguments method, I modified the call of the checkAssignable method to 
the checkMethodInvocationValid that I added to TypeAnalyzer.java.

The following is the code of the checkArguments method:

private Type checkArguments(DartNode diagnosticNode,
                List<? extends DartExpression> argumentNodes,
               Iterator<Type> argumentTypes, FunctionType ftype) {
      
  int argumentCount = 0;
  List<? extends Type> parameterTypes = ftype.getParameterTypes();
      

27



  for (Type parameterType : parameterTypes) {
    if (argumentTypes.hasNext()) {
     
     checkMethodInvocationValid(argumentNodes.get(argumentCount), 
       parameterType, argumentTypes.next());
     argumentCount++;
    } else {
     typeError(diagnosticNode,TypeErrorCode.MISSING_ARGUMENT,parameterType);
    }
  }
  Map<String, Type> namedParameterTypes = ftype.getNamedParameterTypes();
  Iterator<Type> named = namedParameterTypes.values().iterator();
 
  while (named.hasNext() && argumentTypes.hasNext()) {
    checkMethodInvocationValid(argumentNodes.get(argumentCount), 
       named.next(), argumentTypes.next());
    argumentCount++;
  }

  while (ftype.hasRest() && argumentTypes.hasNext()) {
    checkMethodInvocationValid(argumentNodes.get(argumentCount), 
       ftype.getRest(), argumentTypes.next());
    argumentCount++;
  }
 
  while (argumentTypes.hasNext()) {
    argumentTypes.next();
    typeError(argumentNodes.get(argumentCount),TypeErrorCode.EXTRA_ARGUMENT);
    argumentCount++;
  }
 
  return ftype.getReturnType();
}

The following is the code of the checkMethodInvocationValid method:

 private void checkMethodInvocationValid(DartNode node, Type t, Type s) {
      t.getClass();
      s.getClass();
     
      if(!types.isMethodInvocationValid(t, s) && 
      method_definition_modifies_collection) {
          typeError(node, TypeErrorCode.METHOD_INVOCATION_NOT_VALID, s, t);
     method_definition_modifies_collection = false;
      }
 }

The checkMethodInvocationValid method checks if argument s is a subtype of parameter t and if 
the method_definition_modifies_collection is true. If yes then a type error has occurred and a 
warning will be issued if the --fatal-type-errors flag is off or an error will be issued if the --
fatal-type-errors flag is on .

28



Below is the code of the Types.isMethodInvocationValid method which is called by the 
checkMethodInvocationValid method above.

  public boolean isMethodInvocationValid(Type t, Type s) {
    return isSubtype(t, s);
 }

I added a new error in TypeErrorCode.java to throw when the method definition modifies the 
collection.

METHOD_INVOCATION_NOT_VALID("Method definition modifies the collection."),

Below is the code to illustrate the covariance check I added above:

 class Person {}
 class Student extends Person {}
 class Employee extends Person {}

 main() {
  List<Employee> elist = new List<Employee>();
 
  readingFunction(elist);
  
  writingFunction(elist);
 }

 readingFunction(List<Person> p) {
      Person p = p[0];
 }

 writingFunction(List<Person> p) {
  Student s = new Student();
  p.add(s);
 }

On compiling this code, we get the below warning:

 variance.dart/variance.dart:10: Method definition modifies the collection.
      9:   
     10:  writingFunction(elist); 

6.4 Variance Checker with @modifies Annotation

The first version of the variance checker I created parses through all the statements of the method 
definition to check if the method definition contains any statements that call the collection’s 
mutation methods. I introduced an annotation called @modifies, which when given with the 
method can be used as a metadata to the method node to specify that method does modify the 

29



collection passed covariantly. With the addition of this annotation, there is no need to parse 
through the method definition to check if the method modifies the collection provided the 
programmer annotates the method with the @modifies annotation.

The following are the code modifications done to support @modifies annotation with procedures 
or functions.

I added an enumeration constant as a reserved keyword, MODIFIES("modifies", 0), to Token 
enum class in Token.java.

In the DartParser.parseFieldOrMethod method, I added the check for @modifies annotation.

 private DartNode parseFieldOrMethod(boolean allowStatic) {
  .....
  // parsing @modifies annotation for method.
  boolean modifies = false;
  if (peek(0) == Token.AT_TOKEN) {
   if (expect(Token.AT_TOKEN) && expect(Token.MODIFIES)) {
    modifies = true;
   }
  }
  .....
  case IDENTIFIER: {
   if (peek(1) == Token.LPAREN || 
    peek(1) == Token.PERIOD || 
    peekPseudoKeyword(0, OPERATOR_KEYWORD) || 
    peekPseudoKeyword(0, GETTER_KEYWORD) || 
    peekPseudoKeyword(0,SETTER_KEYWORD)) {
    member = parseMethodOrAccessor(modifiers, null, modifies);
    break;
   }
   ....
   if (peek(1) == Token.SEMICOLON || peek(1) == Token.COMMA 
        || peek(1) == Token.ASSIGN) {
   .....
   } else {
    member = parseMethodOrAccessor(modifiers, type, modifies);
   } 
  }
 }

I added the boolean parameter to parseMethodOrAccessor method in DartParser.java.

 private DartNode parseMethodOrAccessor(Modifiers modifiers, 
      DartTypeNode returnType, boolean modifies) {
  DartMethodDefinition method = done(parseMethod(modifiers, returnType, 
           modifies));
  ... 
 }

I added the boolean parameter to parseMethod in DartParser.java.

30



 private DartMethodDefinition parseMethod(Modifiers modifiers, 
      DartTypeNode returnType, boolean modifies){
  ...
  return DartMethodDefinition.create(name, function, modifiers, 
        initializers, null, modifies);
 }

I made the following changes to DartMethodDefinition.java.  I added a new protected boolean 
field modifies and a new method doesModify to DartMethodDefintion.java.

 protected boolean modifies;

 public boolean doesModify() {
  return modifies;
 }

I overloaded the create method in DartMethodDefinition.java with a new boolean modifies 
parameter.

 public static DartMethodDefinition create(DartExpression name, 
       DartFunction function, 
       Modifiers modifiers,
                List<DartInitializer> initializers, 
        List<DartTypeParameter> typeParameters, 
       boolean modifies) {
  if (initializers == null) {
    return new DartMethodDefinition(name, function, modifiers, 
         typeParameters, modifies);
    } else {
    return new DartMethodWithInitializersDefinition(name, function, 
       modifiers, initializers, modifies);
    }
   }

I overloaded the constructor of DartMethodDefinition class and the constructor of 
DartMethodWithInitializersDefintion which is a static nested class of DartMethodDefinition 
class.

 private DartMethodDefinition(DartExpression name,
      DartFunction function, 
      Modifiers modifiers,
               List<DartTypeParameter> typeParameters, 
      boolean modifies) {
  super(name, modifiers);
    this.function = becomeParentOf(function);
   this.typeParameters = typeParameters;
    this.modifies = modifies;
   }

 DartMethodWithInitializersDefinition(DartExpression name,
                 DartFunction function, 
      Modifiers modifiers,

31



                 List<DartInitializer> initializers, 
      boolean modifies) {
      super(name, function, modifiers, null);
      this.initializers = becomeParentOf(initializers);
      this.modifies = modifies;
     }

In DartParser.parseMethod method I changed the return statement to call the create method of 
DartMethodDefinition with the boolean argument.

 private DartMethodDefinition parseMethod(Modifiers modifiers, 
       DartTypeNode returnType, 
       boolean modifies){
  ...
  return DartMethodDefinition.create(name, function, modifiers, 
        initializers, null, modifies);
 }
 
In TypeAnalyzer.visitUnqualifiedInvocation method case METHOD, visitMethodNode method 
was called in the variance checker without annotation to parse the method definition. For this 
variance checker using @modifies annotation, just a check for the annotation has been added. 
Also to ensure the covariance of collections, I added a check to ensure the parameter is a 
collection (List). 

 public Type visitUnqualifiedInvocation(DartUnqualifiedInvocation node) {
  ...
  case METHOD:
   // Have to get the list of parameters for notnull check
    MethodElementImplementation member_method = 
       (MethodElementImplementation)element;
    DartNode mNode = member_method.getNode();
  
    if (mNode != null) {
     DartMethodDefinition methodNode = (DartMethodDefinition)mNode;
         functionParams = methodNode.getFunction().getParams();
         boolean isParamList = false;
      
   // For now we will put the @modifies only for lists in collection.
         for (DartParameter p : functionParams) {
         if (p.getTypeNode().getIdentifier().toString().equals("List")) {
          isParamList = true;
         }
         }
       if (methodNode.doesModify() && isParamList) 
         method_definition_modifies_collection = true;
    }
    type = typeAsMemberOf(element, currentClass);
    break;
   ....
 }

In TypeAnalyzer.checkMethodInvocationValid method, I separated the check for parameter and 
argument assignment and @modifies annotation.

32



 private void checkMethodInvocationValid(DartNode node, Type t, Type s) {

     if(!types.isMethodInvocationValid(s, t)) {
      typeError(node, TypeErrorCode.TYPE_NOT_ASSIGNMENT_COMPATIBLE, s, t);
     }
     if (method_definition_modifies_collection) {
   typeError(node, TypeErrorCode.METHOD_INVOCATION_NOT_VALID, s, t);
   method_definition_modifies_collection = false;
      }
 }

I also ensured that collections can be passed only covariantly by modifying the 
isMethodInvocationValid method in Types.java.

 public boolean isMethodInvocationValid(Type t, Type s) {
    return isSubtype(t, s);
   }

Below is the source file on which the variance checker has been checked.

 class Person {}
 class Student extends Person {}
 class Employee extends Person {}

 main() {
  List<Employee> elist = new List<Employee>();
 
  readingFunction(elist);
  
  writingFunction(elist);
  stringFunction("a");
  contravariantFunction(new List<Person>());
 }

 readingFunction(List<Person> p) {
      Person p = p[0];
 }

 @modifies writingFunction(List<Person> p) {
  Student s = new Student();
  p.add(s);
 }

 @modifies stringFunction(String s){
 }

 @modifies contravariantFunction(List<Student> p){
 }

Below is the output for the variance checker on the above source code.

variance.dart/variance.dart:10: Method definition modifies the collection.
       9:   

33



     10:  writingFunction(elist);
                     ~~~~~
variance.dart/variance.dart:12: List<Person> is not assignable to List<Student>
 11: stringFunction("a");
 12: contravariantFunction(new List<Person>());
                            ~~~~~~~~~~~~~~~~~~
variance.dart/variance.dart:12: Method definition modifies the collection.
     11:  stringFunction("a");
     12:  contravariantFunction(new List<Person>());
                                     ~~~~~~~~~~~~~~~~~~

7. Nullness Checker with @notnull Annotation

The @notnull annotation can be used to ensure that no null values can be passed around in the
source program. Dart program that passed the Nullness Checker never throws a null pointer
exception. For this version of Dart language supported by the dartc compiler, I have added the
support for the @notnull annotation for method parameters and identifiers. If a method parameter
is annotated as @notnull, only a @notnull annotated identifier can be passed to the method
without any warning.

The following are the changes made to the code to support @notnull annotation for method
parameters and identifiers.

I added enumeration constants to Token enum class in Token.java.

 public enum Token {
 ...

 /* Punctuators. */
 AT_TOKEN("@", 0),
 ...

 /* Keywords. */
 NOTNULL("notnull", 0),
 ...
 }

In the Dart language, ‘@’ token is already used to annotate raw strings. But the second character
after the ‘@’ is either a single quote or a double quote for raw strings. I changed the scanToken
method in DartScanner.java to support the annotations which are basically ‘@’ followed by a
keyword.

 case '@':
 // Raw strings.
 advance();

 if (is('\'') || is('"')) {
 boolean isRaw = true;

34

 return scanString(isRaw);
 }

 // changing from ILLEGAL to AT_TOKEN
 return Token.AT_TOKEN;

The notnull keyword is scanned as identifier, then figured as keyword token. The same process
has been followed for @modifies annotation for variance checker.

In DartParser.parseFormalParameter method, I added a check for @notnull annotation. In the
method, I added a boolean local variable notNull. At the end of the method while returning a
DartParameter object, I changed the call to new overloaded constructor of DartParameter class
which takes the notNull boolean.

 private DartParameter parseFormalParameter(boolean isNamed) {
 boolean notNull = false;
 ...
 if (peek(0) == Token.AT_TOKEN) {
 if (peek(1) == Token.NOTNULL) {
 if (expect(Token.AT_TOKEN) && expect(Token.NOTNULL)) {
 notNull = true;
 }
 }
 }
 ...
 return done(new DartParameter(paramName, type, functionParams,
 defaultExpr, modifiers, notNull));

 }

I overloaded the DartParameter constructor to take a boolean parameter.

 public DartParameter(DartExpression name,
 DartTypeNode typeNode,
 List<DartParameter> functionParameters,
 DartExpression defaultExpr,
 Modifiers modifiers,
 boolean notNull) {
 super(name);
 ...
 this.notNull = notNull;
 }

In DartNode.java, I added a protected instance field notNull because DartNode.java is the
abstract class which is extended by other abstract syntax tree nodes.

 public abstract class DartNode extends AbstractNode implements DartVisitable {
 ...
 protected boolean notNull = false;
 ...

 public boolean isNotNull() {

35

 return notNull;
 }
 ...
 }

I added a private instance variable functionParams to Analyzer class in TypeAnalyzer.java.

 private List<DartParameter> functionParams;

In the constructor of Analyzer, I added the statement this.functionParams = null;.

In visitUnqualifiedInvocation method case METHOD in TypeAnalyzer.java, functionParams is
assigned from methodNode.

 public Type visitUnqualifiedInvocation(DartUnqualifiedInvocation node) {
 ...
 case METHOD:
 // Have to get the list of parameters for notnull check
 MethodElementImplementation member_method =
 (MethodElementImplementation)element;
 DartNode mNode = member_method.getNode();

 if (mNode != null) {
 DartMethodDefinition methodNode = (DartMethodDefinition)mNode;
 functionParams = methodNode.getFunction().getParams();
 boolean isParamList = false;

 // For now we will put the @modifies only for lists in collection.
 for (DartParameter p : functionParams) {
 if (p.getTypeNode().getIdentifier().toString().equals("List")) {
 isParamList = true;
 }
 }

 if (methodNode.doesModify() && isParamList)
 method_definition_modifies_collection = true;
 }
 type = typeAsMemberOf(element, currentClass);
 break;

 }

I added an extra DartParameter parameter to checkMethodInvocationValid method in
TypeAnalyzer.java and added a check for notNull for both parameter and argument.

private void checkMethodInvocationValid(DartParameter param, DartNode node,
 Type t, Type s) {
 t.getClass(); // Null Check
 s.getClass(); // Null Check

 if (param.isNotNull() && !node.isNotNull()) {
 typeError(node, TypeErrorCode.NULL_ASSIGNED_TO_NOTNULL_PARAMETER, s, t);
 }

36

 if(!types.isMethodInvocationValid(s, t)) {
 typeError(node, TypeErrorCode.TYPE_NOT_ASSIGNMENT_COMPATIBLE, s, t);
 }

 if (method_definition_modifies_collection) {
 typeError(node, TypeErrorCode.METHOD_INVOCATION_NOT_VALID, s, t);
 method_definition_modifies_collection = false;
 }
}

In the TypeAnalyzer.checkArguments method, I modified the call to checkMethodInvocation by
passing an extra DartParameter argument.

private Type checkArguments(DartNode diagnosticNode,
 List<? extends DartExpression> argumentNodes,
 Iterator<Type> argumentTypes,
 FunctionType ftype) {
 int argumentCount = 0;
 List<? extends Type> parameterTypes = ftype.getParameterTypes();

 for (Type parameterType : parameterTypes) {
 if (argumentTypes.hasNext()) {
 checkMethodInvocationValid(functionParams.get(argumentCount),
 argumentNodes.get(argumentCount),
 parameterType,
 argumentTypes.next());
 argumentCount++;
 } else {
 typeError(diagnosticNode, TypeErrorCode.MISSING_ARGUMENT, parameterType);
 }
 }
 Map<String, Type> namedParameterTypes = ftype.getNamedParameterTypes();
 Iterator<Type> named = namedParameterTypes.values().iterator();

 while (named.hasNext() && argumentTypes.hasNext()) {
 checkMethodInvocationValid(functionParams.get(argumentCount),
 argumentNodes.get(argumentCount),
 named.next(),
 argumentTypes.next());
 argumentCount++;
 }
 while (ftype.hasRest() && argumentTypes.hasNext()) {
 checkMethodInvocationValid(functionParams.get(argumentCount),
 argumentNodes.get(argumentCount),
 ftype.getRest(),
 argumentTypes.next());
 argumentCount++;
 }

 while (argumentTypes.hasNext()) {
 argumentTypes.next();
 typeError(argumentNodes.get(argumentCount),TypeErrorCode.EXTRA_ARGUMENT);
 argumentCount++;
 }
 return ftype.getReturnType();

37

}

I added a new error code to TypeErrorCode.java to support @notnull annotation.

NULL_ASSIGNED_TO_NOTNULL_PARAMETER("Null value might be assigned to not null
parameter"),

To support @notnull annotation to identifiers, following are the changes made to the code.
In the DartParser, below is the flow of code for DartVariable which includes parsing an
identifier.

 parseStatement -> parseNonLabelledStatement ->
 parseInitializedVariableList -> parseIdentifier

In the parseNonLabelledStatement method case IDENTIFIER, I added a check for @notnull
annotation, added a local boolean variable notNull and added an extra parameter to
parseInitializedVariableList to pass notNull value.

 private DartStatement parseNonLabelledStatement() {
 ...
 case IDENTIFIER:
 boolean notNull = false;
 if (peek(1) == Token.LT || peek(1) == Token.IDENTIFIER
 || (peek(1) == Token.PERIOD && peek(2) == Token.IDENTIFIER)
 || (peek(0) == Token.AT_TOKEN)) {

 if (peek(0) == Token.AT_TOKEN) {
 if (peek(1) == Token.NOTNULL) {
 if (expect(Token.AT_TOKEN) && expect(Token.NOTNULL)) {
 notNull = true;
 }
 }
 }

 if (peek(1) == Token.LT || peek(1) == Token.IDENTIFIER
 || (peek(1) == Token.PERIOD && peek(2) == Token.IDENTIFIER)) {

 beginTypeFunctionOrVariable();
 DartTypeNode type = tryTypeAnnotation();

 if (type != null && peek(0) == Token.IDENTIFIER) {
 List<DartVariable> vars = parseInitializedVariableList(notNull);
 expect(Token.SEMICOLON);
 return done(new DartVariableStatement(vars, type));
 } else {
 rollback();
 }
 }
 }
 }
 ...
 }

38

I added a boolean parameter to parseInitializedVariableList method in DartParser.java and
passed it to parseIdentifier method.

private List<DartVariable> parseInitializedVariableList(boolean notNull) {
 List<DartVariable> idents = new ArrayList<DartVariable>();
 do {
 beginVariableDeclaration();
 DartIdentifier name = parseIdentifier(notNull);
 DartExpression value = null;
 if (isParsingInterface) {
 expect(Token.ASSIGN);
 value = parseExpression();
 } else if (optional(Token.ASSIGN)) {
 value = parseExpression();
 }

 idents.add(done(new DartVariable(name, value)));
 } while (optional(Token.COMMA));
 return idents;
}

I added an overloaded parseIdentifier method with a boolean notNull parameter to
DartParser.java.

 private DartIdentifier parseIdentifier(boolean notNull) {
 beginIdentifier();
 expect(Token.IDENTIFIER);
 String token = ctx.getTokenString();

 if (notNull || notNullIdentifiers.contains(token)) {
 if (notNull) {
 notNullIdentifiers.add(token);
 }
 return done(new DartIdentifier(token != null ? token : "", notNull));
 }
 return done(new DartIdentifier(token != null ? token : ""));
 }

The notNullIdentifiers in the above method is a hash set that I added to DartParser.java
which can be used as a local symbol table to store the identifiers annotated with @notnull. After a
DartVariable is parsed in the variable declaration statement, when it is used in method call as an
argument, it is again parsed as a DartIdentifier so it does not remember the @notnull
annotation used before while declaring. To simplify the symbol table access, I added a hash set to
the DartParser to store the @notnull annotated identifiers and added a check in the
parseIdentifier to check if the current identifier is annotated @notnull or if it has been declared
@notnull before hand.

In DartParser.java, added a new HashSet.

private Set<String> notNullIdentifiers = new HashSet<String>();

39

The overloaded parseIdentifier method is called only when parsing an initialized variable list.
Other places where the identifier is being used, like as an argument to a method, the regular
parseIdentifier method is called which does not take any arguments. So in that method, it is
sufficient to check if the identifier is in notNullIdentifiers collection or not.

 private DartIdentifier parseIdentifier() {
 beginIdentifier();
 expect(Token.IDENTIFIER);
 String token = ctx.getTokenString();
 boolean notNull = notNullIdentifiers.contains(token);
 if (notNull) {
 return done(new DartIdentifier(token != null ? token : "", notNull));
 }
 return done(new DartIdentifier(token != null ? token : ""));
 }

I added an overloaded constructor to DartIdentifier class to take a boolean parameter to set the
notNull variable declared in its superclass DartNode.

 public DartIdentifier(String targetName, boolean notNull) {
 assert targetName != null;
 this.targetName = targetName;
 this.notNull = notNull;
 }

Below is the Dart source code on which the nullness check has been checked.

 main() {
 String hello = "Hello";
 @notnull String world = "World";
 printWord(hello);
 printWord(world);
 }

 printWord(@notnull String pWord) {
 }

For the above code, below is the output of the compiler with a warning.

notnull.dart/notnull.dart:4: Null value might be assigned to not null parameter
 3: @notnull String world = "World";
 4: printWord(hello);
                        ~~~~~

8. Linear Checker with @linear Annotation

The linear checker implements type-checking for a linear type system [11]. A linear type system 
prevents the unexpected modification of objects by restricting only one usable reference to an 

40



object at any point of time. After a reference to an object appears on the right hand side of an 
assignment, it is used up and cannot be used again. The same rule applies for pseudo-
assignments such as procedure-argument passing (including as the receiver) or return [11]. The 
linear checker property can also be used in support of Dart Isolates. 

Dart supports concurrent programming by means of isolates. Isolates communicate with each 
other by passing messages. Isolates send messages using SendPort and receive messages using 
ReceivePort. SendPort and ReceivePort are classes in the dart:isolate library. The content of the 
message could be a primitive value, an instance of SendPort, a list or map whose elements are 
either primitive values or instances of SendPort. In special circumstances, objects of any type can 
be passed as content of the message. The important concept of the Dart isolates is that it does not 
support shared-memory threads. That means no two isolates can ever run the same thread at the 
same time. All the memory used by an isolate is only available to the isolate. No isolate can see 
or manipulate the memory owned by another isolate. This is accomplished by copying the 
message before it is received ensuring that two isolates have different instances of the object in 
the message. The following are the examples of spawning an isolate, sending and receiving 
messages.

 import 'dart:isolate';

 codeToRunInIsolate() {
  print('This code is running in an isolate.');
 }

 // main function runs in the first isolate
 main() {
  
  // spawnFunction method creates and spawns an isolate.
  spawnFunction(codeToRunInIsolate);
  
 }

In the above code, main function itself is running in the first isolate. Using the spawnFunction, 
another isolate is being created and started. In the above code codeToRunInIsolate is known as 
the entry point of the second isolate. As per the Dart rules, the entry point should not expect 
arguments and should return void. 

 import 'dart:isolate';
 
 codeToRunInIsolate() {
  // Receive messages here.
  print('This code is running in an isolate.');
 }

 // main function runs in the first isolate
 main() {
  
  // spawnFunction method creates and spawns an isolate.
  var sendPort = spawnFunction(codeToRunInIsolate);

41



  
  // sending a message to the new isolate.
  sendPort.send('This is a message from the main.');
  
 }
 
In the above code, the main function grabs the sendPort object returned by spawnFunction and 
uses it to send a message to the newly created isolate using send method. The message will be 
received in the codeToRunInIsolate function.

 import 'dart:isolate';
 
 codeToRunInIsolate() {
  print('This code is running in an isolate.');
  
  port.receive((msg, reply) {
   print('Message received: $msg');
  });
 }

 // main function runs in the first isolate
 main() {
  
  // spawnFunction method creates and spawns an isolate.
  var sendPort = spawnFunction(codeToRunInIsolate);
  
  // sending a message to the new isolate.
  sendPort.send('This is a message from the main.');
  
 }

In the above code, the message sent by the main function is being received by the new isolate 
using the default ReceivePort object port. The message received is handled by the callback 
function passed to the receive method. It is also possible to receive a reply after sending a 
message as in below example.

 import 'dart:isolate';
 
 codeToRunInIsolate() {
  print('This code is running in an isolate.');
  
  port.receive((msg, reply) {
   reply.send('Message received: $msg');
  });
 }

 // main function runs in the first isolate
 main() {
  
    // spawnFunction method creates and spawns an isolate.
    var sendPort = spawnFunction(codeToRunInIsolate);
  
    // sending a message to the new isolate and handling   
         // the reply received

42



    sendPort.call('This is a message from the main.').then((reply {
  print('Reply received from new isolate: $reply');
    });  
 }

In the above code, the main function is sending a message to the new isolate and has given a 
handler for the reply message sent back by the new isolate. To send and receive reply, use call 
and then methods instead of just send method.

In all the above examples, the message content was a String primitive. When using 
spawnFunction() method inside the Dart VM, an object of any type can be passed as message 
content to an isolate. However, this is not yet supported when compiling to JavaScript. 

Dart isolates is based on the concept of no-shared memory and hence message is copied before 
receiving. When an object is passed via messages to multiple isolates, copying of the messages 
will create multiple instances of that object. Considering the scenario, when a message contains 
an object of large size and at any point of time if that object can have only one reference, it is 
wasteful to copy that message and create another instance of that object. A linear type system 
could be helpful to avoid this scenario by not copying the messages with linear objects as 
content.

In this project, I have supported the @linear annotation for only method parameters as the first 
step. Following are the @linear annotation checks I supported:

• A parameter annotated with @linear can be assigned to a variable annotated with @linear only 
and vice versa.

• A parameter annotated with @linear can be assigned to a @linear variable only once. After it 
has been appeared on the right hand side of the assignment it can’t be reassigned.

Code changes done to support @linear annotation are similar to the code changes done to 
support @notnull annotation. Please refer to Appendix B for specific code modification details 
of @linear annotation.

Below is the Dart source code on which the linear annotation checks have been tested.

 class Pair {
  Object a;
  Object b;
 }

 linearCheckMethod(Pair o, @linear Pair lp) {
  Object o1 = o;    // both non-linear no error
  Object lo1 = lp;  // linear param not assignable to non-linear variable.
  @linear Object o2 = o;  // non-linear param not assignable to linear 
         // variable (it might have other references)
  @linear Pair lp2 = lp;  // both linear - no error first time
  @linear Pair lp3 = lp;  // already used linear param  not reassignable

43



 }

 main() {
  Pair lp1 = new Pair();
  Pair o = new Pair();
  linearCheckMethod(o, lp1);
 }

Below are the warnings issued by the dartc compiler supporting @linear annotation on the above 
code.

linear.dart/linear.dart:8: linear parameter "lp" is not assignable to non-linear 
variable "lo1"
      7:  Object o1 = o;            
      8:  Object lo1 = lp;
                   ~~~~~~~~
linear.dart/linear.dart:9: non linear parameter "o" is not assignable to linear
variable "o2"
 8: Object lo1 = lp;
 9: @linear Object o2 = o;
                          ~~~~~~
linear.dart/linear.dart:11: linear parameter "lp" has already been assigned to a 
linear variable
     10:  @linear Pair lp2 = lp;            
 11:  @linear Pair lp3 = lp;        
            ~~~~~~~~

9. Applicability

In this project, I have added these four type checkers to the initial version of dartc compiler
which was released in October 2011. The current Dart SDK includes dart2js compiler written in
Dart and a separate executable called dart_analyzer which is the enhanced version of dartc. It is
no longer called a compiler because it does not generate any JavaScript code. dart_analyzer is a
tool used for static analysis of code and hence the type checkers need to be added to
dart_analyzer.

For the applicability testing of these type checkers, I have downloaded the current Dart source
code (on December 17, 2012) and incorporated the mandatory types checker and the variance
checker without annotation into the dart_analyzer. I ran the current modified version of
dart_analyzer on the code samples provided in Dart source code download. The following is a
sample run of mandatory types checker on the source code of solar application provided in Dart
samples. Please refer to Appendix C for complete source code of original solar application before
my modifications.

The following are the warnings given on running dart_analyzer on solar.dart with --must-have-
types command line option like below

44

 ./dart_analyzer --must-have-types solar.dart

Output:

solar_b/solar.dart:18:3: dynamic typing is not allowed "var solarSystem = new
SolarSystem(query("#container"));"
 17: void main() {
 18: var solarSystem = new SolarSystem(query("#container"));

solar_b/solar.dart:93:5: dynamic typing is not allowed "var earth = new
PlanetaryBody(this, "Earth", "#33f", 1.0, 1.0, 1.0);"
 92:
 93: var earth = new PlanetaryBody(this, "Earth", "#33f", 1.0, 1.0, 1.0);

solar_b/solar.dart:101:5: dynamic typing is not allowed "var f = 0.1;"
 100:
 101: final f = 0.1;

solar_b/solar.dart:102:5: dynamic typing is not allowed "var h = 1 /1500.0;"
 101: final f = 0.1;
 102: final h = 1 / 1500.0;

solar_b/solar.dart:103:5: dynamic typing is not allowed "var g = 1 / 72.0; "
 102: final h = 1 / 1500.0;
 103: final g = 1 / 72.0;

solar_b/solar.dart:105:5: dynamic typing is not allowed "var jupiter = new
PlanetaryBody(this, "Jupiter", "gray", 4.0, 5.203, 11.86);"
 104:
 105: var jupiter = new PlanetaryBody(

solar_b/solar.dart:134:5: dynamic typing is not allowed "var context =
canvas.context2d;"
 133:
 134: var context = canvas.context2d;

solar_b/solar.dart:161:7: dynamic typing is not allowed "var radius = 2.06 +
random.nextDouble() * (3.27 - 2.06);"
 160: for (int i = 0; i < count; i++) {
 161: var radius = 2.06 + random.nextDouble() * (3.27 - 2.06);

solar_b/solar.dart:255:10: dynamic typing is not allowed "var planet;"
 254: void drawChildren(CanvasRenderingContext2D context, num x, num y) {
 255: for (var planet in planets) {

The applicability of the mandatory types checker is completely dependent on whether the user
wants to write a statically typed program or a dynamically typed program. In the above example,
when I ran the dart_analyzer on an existing dynamically typed Dart program, it did give many
warnings but these warnings are helpful when you want to incorporate types into an existing
dynamically typed Dart program. After the program is statically typed, many type warnings and
errors can be caught using the dart_analyzer as well as running other type checkers on a statically
typed program will produce better error output. Also since I have added the mandatory types

45

checker using a command line option, it is easy to switch between static typing and dynamic
typing for beginning learners of Dart programming language.

I have incorporated the implementation of the variance checker without annotation into the
dart_analyzer. The variance checker issues a warning if a collection (List) is passed covariantly
to a method and if it gets modified inside the method using add, addAll or addLast List methods.
Currently, the existing Dart code samples does not do any modification of covariantly passed
generics inside method body. Therefore, I was not able to get any warnings when I ran the
variance checker on the code samples using collections. However, the existing dart_analyzer
completely accepts the modification of covariantly passed generics but a runtime exception
occurs when the program is run using Dart or launched using Dartium.
I made some modifications to the solar.dart code to demonstrate this situation.

In the PlanetaryBody class I added a method getPlanets() to obtain the list of planets under a
PlanetaryBody. In the SolarSystem class I use the getPlanets method to get the list of planets
under Sun and then I pass this list to the method modifyPlanets covariantly and do the
modification of the list by adding a String object into the list of PlanetaryBody objects. After
calling the modifyPlanets method, in a for loop I call the _calculateSpeed method of
PlanetaryBody on each object in the list. Since the list now contains a String object, a run time
exception is thrown as below. Please refer to Appendix D for the complete source code of
solar.dart with my modifications.

Exception: NoSuchMethodError : method not found: '_calculateSpeed@0x1522cb60'
Receiver: "DummyPlanetString"
Arguments: [0.0]
Stack Trace: #0 Object._noSuchMethod (dart:core-patch:1260:3)
#1 Object.noSuchMethod (dart:core-patch:1263:25)
#2 SolarSystem._start (http://127.0.0.1:3030/Users/SnigdhaChaitanya/dart/solar/
bin/solar.dart:104:36)
#3 SolarSystem.start.<anonymous closure> (http://127.0.0.1:3030/Users/
SnigdhaChaitanya/dart/solar/bin/solar.dart:79:13)
#4 _completeMeasurementFutures._completeMeasurementFutures (/Volumes/data/b/
build/slave/dartium-mac-full-trunk/build/src/dart/sdk/lib/html/src/Measurement.dart:
122:14)
#5 _MeasurementScheduler._onCallback (/Volumes/data/b/build/slave/dartium-mac-
full-trunk/build/src/dart/sdk/lib/html/src/Measurement.dart:35:19)
#6 _MutationObserverScheduler._handleMutation._handleMutation (/Volumes/data/b/
build/slave/dartium-mac-full-trunk/build/src/dart/sdk/lib/html/src/Measurement.dart:
64:21)

The modified version of dart_analyzer which includes the variance checker gives a warning if a
method modifies the covariantly passed collection. Such warnings are helpful to avoid the run
time exceptions as shown above. Even though the existing code samples do not modify a
covariantly passed generics, it is likely that the programs written by users in the future will
contain such code. The variance checker is extremely useful to the users to catch these errors at
the static analysis stage.

46

http://127.0.0.1:3030/Users/SnigdhaChaitanya/dart/solar/bin/solar.dart:104:36
http://127.0.0.1:3030/Users/SnigdhaChaitanya/dart/solar/bin/solar.dart:104:36
http://127.0.0.1:3030/Users/SnigdhaChaitanya/dart/solar/bin/solar.dart:104:36
http://127.0.0.1:3030/Users/SnigdhaChaitanya/dart/solar/bin/solar.dart:104:36
http://127.0.0.1:3030/Users/SnigdhaChaitanya/dart/solar/bin/solar.dart:79:13
http://127.0.0.1:3030/Users/SnigdhaChaitanya/dart/solar/bin/solar.dart:79:13
http://127.0.0.1:3030/Users/SnigdhaChaitanya/dart/solar/bin/solar.dart:79:13
http://127.0.0.1:3030/Users/SnigdhaChaitanya/dart/solar/bin/solar.dart:79:13

10. Conclusions and Future Scope

In this project I presented the static type checkers I have developed for the optional type system
of the Dart programming language. Dart is a dynamically typed language with support for
optional type system. A programming language that implements optional type system can be type
checked by using pluggable type systems. A dynamically typed programming language can
incorporate the advantages of both dynamically typed languages and statically typed languages
when combined with pluggable type systems. Since the language itself is inherently dynamically
typed, it gains the advantage of being expressive and can adapt to changing requirements. With
the support for pluggable type systems, the language can incorporate all the benefits that an
inherently statically typed language provides.

Many attempts have been made by individuals to create frameworks for pluggable type systems
for various languages and some of them have been successful in introducing type checking into
dynamically and optionally typed languages. The Strongtalk type checker for Smalltalk
programming language developed by Gilad Bracha and David Griswold is an example of a
successful type checker for a dynamically typed language [4]. The Checker Framework being
developed at MIT is a framework for custom pluggable types for Java [11]. While these are the
frameworks developed for pluggable type systems, my implementation of the four static
checkers for the Dart programming language is an ad-hoc implementation. I have added the type
checkers to the dartc compiler of the Dart language.

The first type checker is to enforce the static typing in Dart programs. For this static type
checker, I have added a new compiler option for dartc compiler that can be given while invoking
the compiler on the Dart programs. This checker checks that the Dart programs are completely
statically typed and issues static warnings in case the programs contain any dynamically typed
code.

The second type checker I have developed is to enhance type checking of Dart’s support for
covariant generics. Since Dart type annotations are supposed to be simple, lightweight and
optional, Dart has decided to support only covariance. Dart has made its generics covariant
instead of invariant, supporting its optimistic nature. However, the whole support for covariant
generics is based on the assumption that generics are used for read-only purposes. The variance
type checker I have developed checks that a generic collection passed covariantly as a method
argument is not subjected to any modification inside the method. I have presented two
implementations of the variance type checker. In the first implementation, during parsing in the
backend of the compiler, I check whether the method code modifies a covariantly passed
collection. For the second implementation, I have introduced annotations in Dart and supported
the variance checker by using a @modifies annotation to annotate a modifying method. I have
added the support for Lists as covariant generics for method arguments. For the future work, the
support of covariant generics can be extended to other collection classes in Dart.

47

The third type checker I have developed is a nullness checker. The nullness checker is useful to
ensure that null values are never passed around. Dart program that passed the Nullness Checker
never throws a null pointer exception. In this project, I have implemented the Nullness Checker
by adding an annotation called @notnull for method parameters and identifiers in Dart language.
For the future work, the @notnull annotation can be supported for method return values as well.

The fourth type checker I have developed for Dart is called linear checker. The linear checker is
useful to ensure that no unexpected modifications happen to objects because of multiple
references. Dart supports concurrent programming by message passing between isolates. Since
Dart does not allow shared memory threads, it does not implement any locking system for
concurrent programming. Instead, a message is copied before receiving so that no two isolates
share same instance of the object. This might be wasteful in cases where certain objects are
usually used by only one reference at a time. By using the Linear Checker, the problem can be
avoided by not copying the message objects which are annotated as linear objects. I have
implemented the Linear Checker by adding an annotation called @linear for method parameters
and method local identifiers. The future work could be to support @linear annotation for return
values and field of classes. The support of @linear annotation for fields of classes might require
significantly complex parsing through class definitions and methods.

In this project, I have given an ad-hoc implementation of the four type checkers rather than
creating a framework for them. Even for the ad-hoc implementation, it was challenging to
understand the dartc compiler structure and its support for Dart programming language. Since
Dart is an evolving language, there have been many changes in the language constructs and the
Dart compilers from the time I started working on this project. Therefore, the testing of the type
checkers I implemented on the existing Dart code was another challenging aspect of this project.
I initially implemented the type checkers in the dartc compiler which was the first compiler of
the Dart written in Java. Currently, Dart supports dart2js compiler written in Dart. The Dart SDK
also includes a static analyzer called dart_analyzer which draws its source code from dartc. To
test the applicability of the project, I implemented the mandatory types checker and the variance
checker without annotations in the dart_analyzer. I ran the modified dart_analyzer on the code
samples provided in Dart SDK. In the future, Nullness Checker and the Linear Checker can also
be incorporated into the dart_analyzer using annotations or Dart metadata. With the addition of
these type checkers, more type safety can be added to the Dart’s optional type system. For
programmers who intend to skip the types by using the optional type system, the type checkers
might be impractical to use but for programmers who like to program in Dart as a statically typed
language, these type checkers can provide additional type checking.

48

Appendix A Code to add a new Compiler Flag

Adding a new compiler flag:

===

The following are the additions made to code to add a --must-have-types flag to dartc compiler.

In CommandLineOptions.java, added an option for --must-have-types and the corresponding
mustHaveTypes() method.

 @Option(name = "--must-have-types", aliases = { "-must-have-types" }, usage =
"Types must be given")
 private boolean mustHaveTypes = false;

In CompilerConfiguration.java (interface), added a new method.

 boolean mustHaveTypes();

In DefaultCompilerConfiguration.java, override method mustHaveTypes().

 @Override
 public boolean mustHaveTypes() {
 return compilerOptions.mustHaveTypes();
 }

In DelegatingCompilerConfiguration.java, override the method mustHaveTypes().

 @Override
 public boolean mustHaveTypes() {
 return delegate.mustHaveTypes();
 }

In TestCompilerConfiguration.java, override the method mustHaveTypes().

 @Override
 public boolean mustHaveTypes() {
 return false;
 }

===

49

Appendix B Code to add @linear Annotation

Code modifications done to support @linear annotation:

===

I added a linear keyword to the Token enum class in Token.java.

 LINEAR("linear", 0),

I added a local boolean variable isLinear to parseFormalParameter method in DartParser.java
and added a check for @linear annotation.

 private DartParameter parseFormalParameter(boolean isNamed) {
 boolean notNull = false;
 boolean isLinear = false;
 ...
 if (peek(0) == Token.AT_TOKEN) {
 if (peek(1) == Token.NOTNULL) {
 if (expect(Token.AT_TOKEN) && expect(Token.NOTNULL)) {
 notNull = true;
 }
 } else if (peek(1) == Token.LINEAR) {
 if (expect(Token.AT_TOKEN) && expect(Token.LINEAR)) {
 isLinear = true;
 }
 }
 }
 ...
 return done(new DartParameter(paramName, type, functionParams,
 defaultExpr, modifiers,notNull, isLinear));
 }

I added a new protected instance field isLinear to DartNode class like notNull instance field.

 public abstract class DartNode extends AbstractNode implements DartVisitable {
 ...
 protected boolean notNull = false;
 protected boolean isLinear = false;
 ...

 public boolean isNotNull() {
 return notNull;
 }

 public boolean isLinear() {
 return isLinear;
 }
 ...
 }

50

I overloaded the DartParameter constructor to take a boolean parameter for isLinear along with
the boolean parameter for notNull.

 public DartParameter(DartExpression name,
 DartTypeNode typeNode,
 List<DartParameter> functionParameters,
 DartExpression defaultExpr,
 Modifiers modifiers,
 boolean notNull,
 boolean isLinear) {
 super(name);
 ...
 this.notNull = notNull;
 this.isLinear = isLinear;
 }

In parseNonLabelledStatement method in DartParser, added a check for @linear annotation for
initialized variables.

 private DartStatement parseNonLabelledStatement() {
 ...
 case IDENTIFIER:
 boolean notNull = false;
 boolean isLinear = false;
 if (peek(1) == Token.LT
 || peek(1) == Token.IDENTIFIER
 || (peek(1) == Token.PERIOD && peek(2) == Token.IDENTIFIER)
 || (peek(0) == Token.AT_TOKEN)) {

 if (peek(0) == Token.AT_TOKEN) {
 if (peek(1) == Token.NOTNULL) {
 if (expect(Token.AT_TOKEN) && expect(Token.NOTNULL)) {
 notNull = true;
 }
 } else if (peek(1) == Token.LINEAR) {
 if (expect(Token.AT_TOKEN) && expect(Token.LINEAR)) {
 isLinear = true;
 }
 }
 }

 if (peek(1) == Token.LT
 || peek(1) == Token.IDENTIFIER
 || (peek(1) == Token.PERIOD && peek(2) == Token.IDENTIFIER)){
 beginTypeFunctionOrVariable();
 DartTypeNode type = tryTypeAnnotation();

 if (type != null && peek(0) == Token.IDENTIFIER) {
 List<DartVariable> vars =
 parseInitializedVariableList(notNull, isLinear);
 expect(Token.SEMICOLON);
 return done(new DartVariableStatement(vars, type));
 } else {
 rollback();
 }

51

 }
 }
 }
 ...
}

I added a boolean isLinear parameter to parseInitializedVariableList method in DartParser
and passed it to overloaded parseIdentifier method.

 private List<DartVariable> parseInitializedVariableList(boolean notNull,
 boolean isLinear) {
 List<DartVariable> idents = new ArrayList<DartVariable>();
 do {
 beginVariableDeclaration();
 DartIdentifier name = parseIdentifier(notNull,isLinear);
 DartExpression value = null;
 if (isParsingInterface) {
 expect(Token.ASSIGN);
 value = parseExpression();
 } else if (optional(Token.ASSIGN)) {
 value = parseExpression();
 }

 idents.add(done(new DartVariable(name, value)));
 } while (optional(Token.COMMA));
 return idents;
 }

I added another boolean parameter for isLinear to already overloaded parseIdentifier method
which was to support @notnull annotation.

 private DartIdentifier parseIdentifier(boolean notNull, boolean isLinear){
 beginIdentifier();
 expect(Token.IDENTIFIER);
 String token = ctx.getTokenString();
 if (notNull || notNullIdentifiers.contains(token) || isLinear
 || linearIdentifiers.contains(token)) {
 if (notNull) {
 notNullIdentifiers.add(token);
 }
 if (isLinear) {
 linearIdentifiers.add(token);
 }
 return done(new DartIdentifier(token != null ?
 token : "", notNull, isLinear));
 }
 return done(new DartIdentifier(token != null ? token : ""));
 }

Similar to the notNullIdentifiers hash set created to support @notnull annotation, added a
linearIdentifiers hash set to support @linear annotation. As shown above, in parseIdentifier
method, added a check to see if the variable has been annotated while declaration. Similarly,
added a check in regular parseIdentifier method to check if the variable has been annotated
while declaration.

52

 private DartIdentifier parseIdentifier() {
 beginIdentifier();
 expect(Token.IDENTIFIER);
 String token = ctx.getTokenString();
 boolean notNull = notNullIdentifiers.contains(token);
 boolean isLinear = linearIdentifiers.contains(token);
 if (notNull || isLinear) {
 return done(new DartIdentifier(token != null ?
 token : "", notNull, isLinear));
 }
 return done(new DartIdentifier(token != null ? token : ""));
 }

I also added another boolean parameter to the overloaded constructor of DartIdentifier.

 public DartIdentifier(String targetName, boolean notNull, boolean isLinear) {
 assert targetName != null;
 this.targetName = targetName;
 this.notNull = notNull;
 this.isLinear = isLinear;
 }

In TypeAnalyzer.java, following is the method call flow. visitMethodDefinition method calls
visitFunction method. In the DartParser, since the isLinear value of DartParameter is set to
true if @linear annotation is given, that value can be obtained in TypeAnalyzer.java while
visiting parameter nodes. In TypeAnalyzer.java, added a map to store parameter names with
their isLinear values.

 private Map<String, Boolean> linearParams;

In the Analyzer constructor, the linearParams map is initialized.

 this.linearParams = new HashMap<String, Boolean>();

In visitFunction method in TypeAnalyzer.java, added a loop to parse through the function
parameters and add them to linearParams map.

 public Type visitFunction(DartFunction node) {
 Type previous = expected;

 for (DartParameter p : node.getParams()) {
 linearParams.put(p.getParameterName(), p.isLinear());
 }

 visit(node.getParams());
 expected = typeOf(node.getReturnTypeNode());
 typeOf(node.getBody());
 expected = previous;
 return voidType;
 }

53

After visiting function parameters, visitFunction calls visit on function body by calling
visitBlock method. visitBlock method calls visitVariableStatement on variable statements.
visitVariableStatement method calls visitVariable method which in turn calls
checkInitializedDeclaration method. In checkInitializedDeclaration method, after calling
checkAssignable, added a call to checkLinearAssignable method which I added.

 private Type checkInitializedDeclaration(DartDeclaration<?> node,
 DartExpression value) {
 if (value != null) {
 checkAssignable(node.getSymbol().getType(), value);
 checkLinearAssignable(node, value);
 }
 return voidType;
 }

I also added a set to store the used linear params in TypeAnalyzer.java and initialized it in the
Analyzer constructor.

 private Set<String> usedLinearParams;
 this.usedLinearParams = new HashSet<String>();

Below is the checkLinearAssignable method I added to TypeAnalyzer.java to support @linear
annotation checks.

private void checkLinearAssignable(DartDeclaration<?> node, DartExpression value) {

 DartIdentifier id = (DartIdentifier) node.getName();
 boolean isLinearIdentifier = id.isLinear();

 boolean isLinearParam = false;
 if (linearParams.get(value.toSource()) != null) {
 isLinearParam = linearParams.get(value.toSource());
 }

 if (isLinearIdentifier) {
 if (isLinearParam) {
 if (usedLinearParams.contains(value.toSource())) {
 typeError(node, TypeErrorCode.LINEAR_PARAM_NOT_REUSABLE, value);
 } else {
 usedLinearParams.add(value.toSource());
 }
 } else {
 typeError(node,
 TypeErrorCode.NON_LINEAR_PARAM_NOT_ASSIGNABLE_TO_LINEAR_VARIABLE, value, id);
 }
 } else {
 if (isLinearParam) {
 typeError(node,TypeErrorCode.LINEAR_PARAM_NOT_ASSIGNMENT_COMPATIBLE,
 value, id);
 }
 }
 }

54

The following are the three error codes I added to TypeErrorCode.java to support @linear
annotation checks.

 LINEAR_PARAM_NOT_ASSIGNMENT_COMPATIBLE("linear parameter \"%s\" is not
assignable to non-linear variable \"%s\""),

 LINEAR_PARAM_NOT_REUSABLE("linear parameter \"%s\" has already been assigned to
a linear variable"),

 NON_LINEAR_PARAM_NOT_ASSIGNABLE_TO_LINEAR_VARIABLE("non linear parameter \"%s\"
is not assignable to linear variable \"%s\""),

===

55

Appendix C Source Code of Solar Application without
Modifications

Source code of solar.dart without my modifications:

===

// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file for details.
// All rights reserved. Use of this source code is governed by a BSD-style license that
// can be found in the LICENSE file.

/**
 * A solar system visualization.
 */

library solar;

import 'dart:html';
import 'dart:math';

/**
 * The entry point to the application.
 */
void main() {
 var solarSystem = new SolarSystem(query("#container"));

 solarSystem.start();
}

double fpsAverage;

/**
 * Display the animation's FPS in a div.
 */
void showFps(num fps) {
 if (fpsAverage == null) {
 fpsAverage = fps;
 }

 fpsAverage = fps * 0.05 + fpsAverage * 0.95;

 query("#notes").text = "${fpsAverage.round().toInt()} fps";
}

// TODO: remove this once dart:html Point works cross-platform
class Point {
 num x, y;

 Point(this.x, this.y);
}

/**
 * A representation of the solar system.
 *
 * This class maintains a list of planetary bodies, knows how to draw its

56

 * background and the planets, and requests that it be redraw at appropriate
 * intervals using the [Window.requestAnimationFrame] method.
 */
class SolarSystem {
 CanvasElement canvas;

 num _width;
 num _height;

 PlanetaryBody sun;

 num renderTime;

 SolarSystem(this.canvas) {

 }

 num get width => _width;

 num get height => _height;

 start() {
 // Measure the canvas element.
 window.requestLayoutFrame(() {
 _width = (canvas.parent as Element).clientWidth;
 _height = (canvas.parent as Element).clientHeight;

 canvas.width = _width;

 // Initialize the planets and start the simulation.
 _start();
 });
 }

 _start() {
 // Create the Sun.
 sun = new PlanetaryBody(this, "Sun", "#ff2", 14.0);

 // Add planets.
 sun.addPlanet(
 new PlanetaryBody(this, "Mercury", "orange", 0.382, 0.387, 0.241));
 sun.addPlanet(
 new PlanetaryBody(this, "Venus", "green", 0.949, 0.723, 0.615));

 var earth = new PlanetaryBody(this, "Earth", "#33f", 1.0, 1.0, 1.0);
 sun.addPlanet(earth);
 earth.addPlanet(new PlanetaryBody(this, "Moon", "gray", 0.2, 0.14, 0.075));

 sun.addPlanet(new PlanetaryBody(this, "Mars", "red", 0.532, 1.524, 1.88));

 addAsteroidBelt(sun, 150);

 final f = 0.1;
 final h = 1 / 1500.0;
 final g = 1 / 72.0;

 var jupiter = new PlanetaryBody(
 this, "Jupiter", "gray", 4.0, 5.203, 11.86);

57

 sun.addPlanet(jupiter);
 jupiter.addPlanet(new PlanetaryBody(
 this, "Io", "gray", 3.6 * f, 421 * h, 1.769 * g));
 jupiter.addPlanet(new PlanetaryBody(
 this, "Europa", "gray", 3.1 * f, 671 * h, 3.551 * g));
 jupiter.addPlanet(new PlanetaryBody(
 this, "Ganymede", "gray", 5.3 * f, 1070 * h, 7.154 * g));
 jupiter.addPlanet(new PlanetaryBody(
 this, "Callisto", "gray", 4.8 * f, 1882 * h, 16.689 * g));

 // Start the animation loop.
 requestRedraw();
 }

 void modifyPlanets(List<Object> objects) {
 objects.add("DummyPlanetString");
 }

 void draw(num _) {
 num time = new Date.now().millisecondsSinceEpoch;

 if (renderTime != null) {
 showFps((1000 / (time - renderTime)).round());
 }

 renderTime = time;

 var context = canvas.context2d;

 drawBackground(context);
 drawPlanets(context);

 requestRedraw();
 }

 void drawBackground(CanvasRenderingContext2D context) {
 context.fillStyle = "white";
 context.rect(0, 0, width, height);
 context.fill();
 }

 void drawPlanets(CanvasRenderingContext2D context) {
 sun.draw(context, width / 2, height / 2);
 }

 void requestRedraw() {
 window.requestAnimationFrame(draw);
 }

 void addAsteroidBelt(PlanetaryBody body, int count) {
 Random random = new Random();

 // Asteroids are generally between 2.06 and 3.27 AUs.
 for (int i = 0; i < count; i++) {
 var radius = 2.06 + random.nextDouble() * (3.27 - 2.06);

 body.addPlanet(
 new PlanetaryBody(this, "asteroid", "#777",

58

 0.1 * random.nextDouble(),
 radius,
 radius * 2));
 }
 }

 num normalizeOrbitRadius(num r) {
 return r * (width / 10.0);
 }

 num normalizePlanetSize(num r) {
 return log(r + 1) * (width / 100.0);
 }
}

/**
 * A representation of a plantetary body.
 *
 * This class can calculate its position for a given time index, and draw itself
 * and any child planets.
 */
class PlanetaryBody {
 final String name;
 final String color;
 final num orbitPeriod;
 final SolarSystem solarSystem;

 num bodySize;
 num orbitRadius;
 num orbitSpeed;

 List<PlanetaryBody> planets;

 PlanetaryBody(this.solarSystem, this.name, this.color, this.bodySize,
 [this.orbitRadius = 0.0, this.orbitPeriod = 0.0]) {
 planets = [];

 bodySize = solarSystem.normalizePlanetSize(bodySize);
 orbitRadius = solarSystem.normalizeOrbitRadius(orbitRadius);
 orbitSpeed = _calculateSpeed(orbitPeriod);
 }

 void addPlanet(PlanetaryBody planet) {
 planets.add(planet);
 }

 void draw(CanvasRenderingContext2D context, num x, num y) {
 Point pos = _calculatePos(x, y);

 drawSelf(context, pos.x, pos.y);

 drawChildren(context, pos.x, pos.y);
 }

 void drawSelf(CanvasRenderingContext2D context, num x, num y) {
 context.save();

 try {

59

 context.lineWidth = 0.5;
 context.fillStyle = color;
 context.strokeStyle = color;

 if (bodySize >= 2.0) {
 context.shadowOffsetX = 2;
 context.shadowOffsetY = 2;
 context.shadowBlur = 2;
 context.shadowColor = "#ddd";
 }

 context.beginPath();
 context.arc(x, y, bodySize, 0, PI * 2, false);
 context.fill();
 context.closePath();
 context.stroke();

 context.shadowOffsetX = 0;
 context.shadowOffsetY = 0;
 context.shadowBlur = 0;

 context.beginPath();
 context.arc(x, y, bodySize, 0, PI * 2, false);
 context.fill();
 context.closePath();
 context.stroke();
 } finally {
 context.restore();
 }
 }

 void drawChildren(CanvasRenderingContext2D context, num x, num y) {
 for (var planet in planets) {
 planet.draw(context, x, y);
 }
 }

 num _calculateSpeed(num period) {
 if (period == 0.0) {
 return 0.0;
 } else {
 return 1 / (60.0 * 24.0 * 2 * period);
 }
 }

 Point _calculatePos(num x, num y) {
 if (orbitSpeed == 0.0) {
 return new Point(x, y);
 } else {
 num angle = solarSystem.renderTime * orbitSpeed;

 return new Point(
 orbitRadius * cos(angle) + x,
 orbitRadius * sin(angle) + y);
 }
 }

}

60

===

Source code of solar.css:

===

/* Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file */
/* for details. All rights reserved. Use of this source code is governed by a */
/* BSD-style license that can be found in the LICENSE file. */

body {
 background-color: #F8F8F8;
 font-family: 'Open Sans', sans-serif;
 font-size: 14px;
 font-weight: normal;
 line-height: 1.2em;
 margin: 15px;
}

p {
 color: #333;
}

#container {
 width: 100%;
 height: 400px;
 border: 1px solid #ccc;
 background-color: #fff;
}

#summary {
 float: left;
}

#notes {
 float: right;
 width: 120px;
 text-align: right;
}

.error {
 font-style: italic;
 color: red;
}

===

Source code of solar.html:

===

<!DOCTYPE html>

61

<!-- Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
 for details. All rights reserved. Use of this source code is governed by a
 BSD-style license that can be found in the LICENSE file. -->

<html>
 <head>
 <meta charset="utf-8">
 <title>Solar System Demo</title>
 <link type="text/css" rel="stylesheet" href="solar.css">
 </head>
 <body>
 <h1>Solar System</h1>

 <p>A solar system visualization using requestAnimationFrame.</p>

 <div>
 <canvas id="container" width="500px" height="400px"></canvas>
 </div>

 <footer>
 <p id="summary"> </p>
 <p id="notes"> </p>
 </footer>

 <script type="application/dart" src="solar.dart"></script>
 <script src="https://dart.googlecode.com/svn/branches/bleeding_edge/dart/client/
dart.js"></script>
 </body>
</html>

===

62

https://dart.googlecode.com/svn/branches/bleeding_edge/dart/client/dart.js
https://dart.googlecode.com/svn/branches/bleeding_edge/dart/client/dart.js
https://dart.googlecode.com/svn/branches/bleeding_edge/dart/client/dart.js
https://dart.googlecode.com/svn/branches/bleeding_edge/dart/client/dart.js

Appendix D Source Code of Solar Application with
Modifications

Source code of solar.dart with modifications:

===

// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file for details.
// All rights reserved. Use of this source code is governed by a BSD-style license that
// can be found in the LICENSE file.

/**
 * A solar system visualization.
 */

library solar;

import 'dart:html';
import 'dart:math';

/**
 * The entry point to the application.
 */
void main() {
 var solarSystem = new SolarSystem(query("#container"));

 solarSystem.start();
}

double fpsAverage;

/**
 * Display the animation's FPS in a div.
 */
void showFps(num fps) {
 if (fpsAverage == null) {
 fpsAverage = fps;
 }

 fpsAverage = fps * 0.05 + fpsAverage * 0.95;

 query("#notes").text = "${fpsAverage.round().toInt()} fps";
}

// TODO: remove this once dart:html Point works cross-platform
class Point {
 num x, y;

 Point(this.x, this.y);
}

/**
 * A representation of the solar system.
 *

63

 * This class maintains a list of planetary bodies, knows how to draw its
 * background and the planets, and requests that it be redraw at appropriate
 * intervals using the [Window.requestAnimationFrame] method.
 */
class SolarSystem {
 CanvasElement canvas;

 num _width;
 num _height;

 PlanetaryBody sun;

 num renderTime;

 SolarSystem(this.canvas) {

 }

 num get width => _width;

 num get height => _height;

 start() {
 // Measure the canvas element.
 window.requestLayoutFrame(() {
 _width = (canvas.parent as Element).clientWidth;
 _height = (canvas.parent as Element).clientHeight;

 canvas.width = _width;

 // Initialize the planets and start the simulation.
 _start();
 });
 }

 _start() {
 // Create the Sun.
 sun = new PlanetaryBody(this, "Sun", "#ff2", 14.0);

 // Add planets.
 sun.addPlanet(
 new PlanetaryBody(this, "Mercury", "orange", 0.382, 0.387, 0.241));
 sun.addPlanet(
 new PlanetaryBody(this, "Venus", "green", 0.949, 0.723, 0.615));

 var earth = new PlanetaryBody(this, "Earth", "#33f", 1.0, 1.0, 1.0);
 sun.addPlanet(earth);
 earth.addPlanet(new PlanetaryBody(this, "Moon", "gray", 0.2, 0.14, 0.075));

 sun.addPlanet(new PlanetaryBody(this, "Mars", "red", 0.532, 1.524, 1.88));

 List<PlanetaryBody> planets = sun.getPlanets();

 modifyPlanets(planets);

 for(int i = 0; i < planets.length; i++) {
 planets[i]._calculateSpeed(0.0);
 }

64

 addAsteroidBelt(sun, 150);

 final f = 0.1;
 final h = 1 / 1500.0;
 final g = 1 / 72.0;

 var jupiter = new PlanetaryBody(
 this, "Jupiter", "gray", 4.0, 5.203, 11.86);
 sun.addPlanet(jupiter);
 jupiter.addPlanet(new PlanetaryBody(
 this, "Io", "gray", 3.6 * f, 421 * h, 1.769 * g));
 jupiter.addPlanet(new PlanetaryBody(
 this, "Europa", "gray", 3.1 * f, 671 * h, 3.551 * g));
 jupiter.addPlanet(new PlanetaryBody(
 this, "Ganymede", "gray", 5.3 * f, 1070 * h, 7.154 * g));
 jupiter.addPlanet(new PlanetaryBody(
 this, "Callisto", "gray", 4.8 * f, 1882 * h, 16.689 * g));

 // Start the animation loop.
 requestRedraw();
 }

 void modifyPlanets(List<Object> objects) {
 objects.add("DummyPlanetString");
 }

 void draw(num _) {
 num time = new Date.now().millisecondsSinceEpoch;

 if (renderTime != null) {
 showFps((1000 / (time - renderTime)).round());
 }

 renderTime = time;

 var context = canvas.context2d;

 drawBackground(context);
 drawPlanets(context);

 requestRedraw();
 }

 void drawBackground(CanvasRenderingContext2D context) {
 context.fillStyle = "white";
 context.rect(0, 0, width, height);
 context.fill();
 }

 void drawPlanets(CanvasRenderingContext2D context) {
 sun.draw(context, width / 2, height / 2);
 }

 void requestRedraw() {
 window.requestAnimationFrame(draw);
 }

65

 void addAsteroidBelt(PlanetaryBody body, int count) {
 Random random = new Random();

 // Asteroids are generally between 2.06 and 3.27 AUs.
 for (int i = 0; i < count; i++) {
 var radius = 2.06 + random.nextDouble() * (3.27 - 2.06);

 body.addPlanet(
 new PlanetaryBody(this, "asteroid", "#777",
 0.1 * random.nextDouble(),
 radius,
 radius * 2));
 }
 }

 num normalizeOrbitRadius(num r) {
 return r * (width / 10.0);
 }

 num normalizePlanetSize(num r) {
 return log(r + 1) * (width / 100.0);
 }
}

/**
 * A representation of a plantetary body.
 *
 * This class can calculate its position for a given time index, and draw itself
 * and any child planets.
 */
class PlanetaryBody {
 final String name;
 final String color;
 final num orbitPeriod;
 final SolarSystem solarSystem;

 num bodySize;
 num orbitRadius;
 num orbitSpeed;

 List<PlanetaryBody> planets;

 PlanetaryBody(this.solarSystem, this.name, this.color, this.bodySize,
 [this.orbitRadius = 0.0, this.orbitPeriod = 0.0]) {
 planets = [];

 bodySize = solarSystem.normalizePlanetSize(bodySize);
 orbitRadius = solarSystem.normalizeOrbitRadius(orbitRadius);
 orbitSpeed = _calculateSpeed(orbitPeriod);
 }

 void addPlanet(PlanetaryBody planet) {
 planets.add(planet);
 }

 List<PlanetaryBody> getPlanets() {
 return planets;

66

 }

 void draw(CanvasRenderingContext2D context, num x, num y) {
 Point pos = _calculatePos(x, y);

 drawSelf(context, pos.x, pos.y);

 drawChildren(context, pos.x, pos.y);
 }

 void drawSelf(CanvasRenderingContext2D context, num x, num y) {
 context.save();

 try {
 context.lineWidth = 0.5;
 context.fillStyle = color;
 context.strokeStyle = color;

 if (bodySize >= 2.0) {
 context.shadowOffsetX = 2;
 context.shadowOffsetY = 2;
 context.shadowBlur = 2;
 context.shadowColor = "#ddd";
 }

 context.beginPath();
 context.arc(x, y, bodySize, 0, PI * 2, false);
 context.fill();
 context.closePath();
 context.stroke();

 context.shadowOffsetX = 0;
 context.shadowOffsetY = 0;
 context.shadowBlur = 0;

 context.beginPath();
 context.arc(x, y, bodySize, 0, PI * 2, false);
 context.fill();
 context.closePath();
 context.stroke();
 } finally {
 context.restore();
 }
 }

 void drawChildren(CanvasRenderingContext2D context, num x, num y) {
 for (var planet in planets) {
 planet.draw(context, x, y);
 }
 }

 num _calculateSpeed(num period) {
 if (period == 0.0) {
 return 0.0;
 } else {
 return 1 / (60.0 * 24.0 * 2 * period);
 }
 }

67

 Point _calculatePos(num x, num y) {
 if (orbitSpeed == 0.0) {
 return new Point(x, y);
 } else {
 num angle = solarSystem.renderTime * orbitSpeed;

 return new Point(
 orbitRadius * cos(angle) + x,
 orbitRadius * sin(angle) + y);
 }
 }

}

===

68

References

[1] Ali, M., Correa, L. T. Jr., Ernst, D. M., Papi, M. M., & Perkins, H. J. Practical Pluggable
Type for Java, 2008. Proceedings of the 2008 International Symposium on Software Testing and
Analysis, July 20-24, 2008, Seattle, WA, USA.

[2] Bracha, G. Optional Types in Dart, 2011. Retrieved January 8, 2013, from http://
www.dartlang.org/articles/optional-types/.

[3] Bracha, G. Pluggable Type Systems, October 2004. OOPSLA Workshop on Revival of
Dynamic Languages.

[4] Bracha, G. & Griswold, D. Strongtalk: Typechecking Smalltalk in a Production Environment,
1993. Proceedings of the ACM Conference on Object-Oriented Programming: Systems,
Languages, and Applications (OOPSLA).

[5] Brandt, E. Why Dart Types are Optional and Unsound, 2011. Retrieved January 7, 2013 from
http://www.dartlang.org/articles/why-dart-types/#generics-covariant.

[6] Griffith, R. The Dart Programming Language for Non-Programmers - Errors and Warnings,
2011. Retrieved January 8, 2013, from http://www.greatandlittle.com/studios/index.php?post/
2011/11/06/The-Dart-Programming-Language-for-Non-Programmers-Part-2.

[7] Haldimann, N. TypePlug, Pluggable Type Systems for Smalltalk, 2007. Master's thesis,
University of Bern (April 2007).

[8] Ladd, S. Generics in Dart, or, Why a JavaScript Programmer Should Care About Types,
2011. Retrieved January 8, 2012, from http://blog.sethladd.com/2012/01/generics-in-dart-or-
why-javascript.html.

[9] Loitsch, F. & Nystrom, B. Why Not a Bytecode VM?, 2011. Retrieved January 7, 2013, from
http://www.dartlang.org/articles/why-not-bytecode/.

[10] Malone, Matt. Variance Basics in Java and Scala, 2008. Retrieved January 8, 2012, from
http://oldfashionedsoftware.com/2008/08/26/variance-basics-in-java-and-scala/.

[11] The Checker Framework: Custom pluggable types for Java. Retrieved January 8, 2012,
from http://types.cs.washington.edu/checker-framework/current/checkers-manual.html.

69

http://www.dartlang.org/articles/optional-types/
http://www.dartlang.org/articles/optional-types/
http://www.dartlang.org/articles/optional-types/
http://www.dartlang.org/articles/optional-types/
http://www.dartlang.org/articles/why-dart-types/
http://www.dartlang.org/articles/why-dart-types/
http://www.greatandlittle.com/studios/index.php?post/2011/11/06/The-Dart-Programming-Language-for-Non-Programmers-Part-2
http://www.greatandlittle.com/studios/index.php?post/2011/11/06/The-Dart-Programming-Language-for-Non-Programmers-Part-2
http://www.greatandlittle.com/studios/index.php?post/2011/11/06/The-Dart-Programming-Language-for-Non-Programmers-Part-2
http://www.greatandlittle.com/studios/index.php?post/2011/11/06/The-Dart-Programming-Language-for-Non-Programmers-Part-2
http://blog.sethladd.com/2012/01/generics-in-dart-or-why-javascript.html
http://blog.sethladd.com/2012/01/generics-in-dart-or-why-javascript.html
http://blog.sethladd.com/2012/01/generics-in-dart-or-why-javascript.html
http://blog.sethladd.com/2012/01/generics-in-dart-or-why-javascript.html
http://oldfashionedsoftware.com/2008/08/26/variance-basics-in-java-and-scala/
http://oldfashionedsoftware.com/2008/08/26/variance-basics-in-java-and-scala/
http://types.cs.washington.edu/checker-framework/current/checkers-manual.html
http://types.cs.washington.edu/checker-framework/current/checkers-manual.html

	STATIC TYPE CHECKER TOOLS FOR DART
	Recommended Citation

	298_final_report

