
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Fall 2011 

Clustering of twitter technology tweets and the impact of Clustering of twitter technology tweets and the impact of 

stopwords on clusters stopwords on clusters 

Surya Bhagvat 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Bhagvat, Surya, "Clustering of twitter technology tweets and the impact of stopwords on clusters" (2011). 
Master's Projects. 323. 
DOI: https://doi.org/10.31979/etd.xyck-7nnx 
https://scholarworks.sjsu.edu/etd_projects/323 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/323?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


CS298 Report 

1

 

 

 
 
Clustering of twitter technology tweets and the impact of stopwords on 

clusters 
 

 
 
 
 

A Writing Project Report 
 

Presented to 
 

The Faculty of the Department of Computer Science 
 

San José State University 
 

 
 
 
 

In Partial Fulfillment 
 

Of the Requirements for the Degree 
 

Master of Science 
 

 
 
 
 

By Surya 

Bhagvat 

2011 



CS298 Report 

2

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2011 
 

Surya Bhagvat 
 

ALL RIGHTS RESERVED 



CS298 Report 

3

 

 

 
 
 
 
 
 
 
 
 

Clustering of twitter technology tweets and the impact of stopwords on 
clusters 

By 
Surya 

Bhagvat 
 
 

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE 

Dr. Teng Moh, Department of Computer Science 

 

 
 

Dr. Mark Stamp, Department of Computer Science 
 
 
 
 
 
 
 

Dr. Robert Chun, Department of Computer Science 



CS298 Report 

4

 

 

 
 
 
 

ABSTRACT 
 
 

Clustering of twitter technology tweets and the impact of stopwords on 
clusters 

 
Year of 2010 could be termed as the year in which Twitter became completely 

mainstream. Twitter, which started as a means of communicating with friends, became much 

more than its beginning. Now Twitter is used by companies to promote their new products, used 

by movie industry to promote movies. A lot of advertising and branding is now tied to Twitter 

and most importantly any breaking news that happens, the first place one goes and tries to find 

is to search it on Twitter. Be it the Mumbai attacks that happened in 2008, or the minor 

earthquakes that happened in Bay Area in 2010 or the twitter revolution cause of the Iran 

elections, most of the tech and not so tech savvy viewers were following twitter rather than any 

main stream news channels. In fact most of the breaking news now comes on Twitter because of 

the huge number of user base rather than the traditional mainstream media.  

The focus of this paper is clustering with the TF-IDF weighted mechanism of daily 

technology news tweets of prominent bloggers and news sites using Apache Mahout and to 

evaluate the effects of introducing and removing stop words on the quality of clustering. This 

project restricts itself to only tweets in the English language. 
 
 
 
 
 
 
 
 
 
 



CS298 Report 

5

 

 

ACKNOWLEDGEMENTS 
 

 
 
My sincere thanks to Dr. Teng Moh for guiding me throughout the entire project and providing 

suggestions which helped me immensely for completing the project. Also my thanks to 

committee members Dr. Mark Stamp and Dr. Robert Chun.



CS298 Report 

6

 

 

 
 
 
 
 
 
 
 
 
 
 

Table of Contents 
 
 
1) Introduction              8 
2) Related Work               9 
3) Methodology for gathering and scrubbing the data    10 
  3a.Gathering the data          11 
    Identify Twitter Sources        11 
    Programmatically collect tweets      13 
    Twitter libraries/SDK         14 
    Collecting the Tweets         14 
    Challenges with using the Twitter API    15 
    Using Amazon Cloud for collecting the Tweets  16 
  3b. Scrubbing the data          18 
  3c. Preparing the data          19 
4) Background on TF‐IDF            20 
5) Apache Mahout              21 
6) Running the Clustering 
  6a. Convert the input tweets to a sequence file    22 
  6b. Convert the sequence file to a vector      23 
  6c. Custom analyzer for stop words        25 
  6d. Running the clustering           26 
7) Reading the cluster output          29 
8) Evaluating the cluster quality          32 
9) Conclusion               36 
10) References              36 

 
 
 
 
 
 
 
 
 
 
 
 
 



CS298 Report 

7

 

 

 
 
 
 

List of Figures 
 

 
Figure 1     Overall Process            10 
Figure 2     Process involved till data is gathered      11 
Figure 3     Different phases in gathering the data      11 
Figure 4     Amazon EC2              15 
Figure 5     Amazon cloud infrastructure         17 
Figure 6     Process involved till data is scrubbed      18 
Figure 7     Different phases in scrubbing the data      18 
Figure 8     Preparing the data            20 
Figure 9     Various steps in clustering          21 
Figure 10     Sequence file format            22 
Figure 11    Command to generate the sequence file      23 
Figure 12    Directory structure after generating the vectors    24 
Figure 13    Command to generate the vectors        25 
Figures 14a‐14d   Kmeans representation          27‐28 
Figure 15     Command to run the kmeans clustering      29 
Figure 16     Command to run the cluster dumper      31 
Figure 17     Database table structure          32



CS298 Report 

8

 

 

 
 
 

1) Introduction 
 

 
Twitter initially started as a service where users who were friends or have common 

interests could share things together. The idea was very similar to group Short Message Service. 

However, within a year or so after twitter’s launch it became very popular. The popularity of the 

twitter can be gauged by the fact that even the White House held a town hall meeting on July 6th, 

2011 in which users had a chance to ask questions using the hashtag #AskObama[1]. Even our 

own SJSU has an official twitter account @SJSU [2]. Twitter uses hashtag mechanism as in the 

case of #AskObama so that users can simply search using the hashtag [6]. 

The impact of twitter on technology-related news and blogs is also tremendous. For 

example when it was found recently that CarrierIQ was installing root kit software on the mobile 

android and ios devices, the technology blogs that received most hits were those with Twitter 

accounts, specifically @Gizmodo[3], @Techcrunch[4], and @engadget[5]. These technology 

blogs would naturally post news on their respective blogs, but to entice readers and to reach a 

wider audience, the first place they posted news would be on their Twitter accounts. 

Twitter, when it was first launched was given the moniker microblogging site and the 

reason being till that point all the blogs were one to two pages long but in the case of twitter that 

maximum you can post is 140 characters. The challenge would then be to convey the message in 

the most succinct manner as possible. To give the brief introduction, to tweet(post) something on 

twitter you create a twitter account on www.twitter.com and then to follow the other twitter users 

for example @BarackObama, @Gizmodo or @SJSU you simply use the follow button on the 

twitter website. 

Being a technology and open source enthusiast and who uses twitter in a big way on a daily 

basis, for me the one thing that is of interest is to cluster the tweets to get related but different 

perspectives on the technology. For example if we take the case of HP touchpad fire sale we may 

also be interested in the tweets that have similar kind of fire sales going on in the electronics 

department, if we are following the CarrierIQ root kit fiasco we may be also interested in the 

tweets that have the security implications.  



CS298 Report 

9

 

 

 

The related works done in this area and which serve as a reference point for this project 

include Tweets mining using WIKIPEDIA and impurity cluster measurement by Qing Chen et 

al.[8], Breaking News Detection and Tracking in Twitter by Swit Phuvipadawat et al.[7] and 

Using twitter to recommend real-time topical news by Owen Phelan et al.[9]. This project used 

the related work done by Qing Chen et al. [8] as a baseline and compared the results. 

Clustering of the documents usually implies removing the stop words from the documents 

and then running the clustering algorithms on it. One cannot apply the same concept when it 

comes to the tweets, cause of the fact that each tweet is limited to 140 characters and applying 

the full set of English stopwords would lose the essence of the tweet completely resulting in 

meaningless clusters. Therefore, in this project there are two important things we need to 

consider, first to choose only the subset of the standard English stop words and second 

identifying the custom set of stop words applicable to our input set of tweets. The project used 

the open source Apache Mahout [12] as a technology platform for machine learning algorithms. 

To evaluate the quality of clustering, we compared the TF-IDF weights with our custom 

identified stop words. 

 The project also identified the API limitations with regards to Twitters API [13] and how 

this project used Amazon Cloud services [14] to overcome it. Also, Apache Mahout being 

relatively new, some of the features such as calculation of cluster quality and reading of clustered 

data were not user friendly. The paper discusses the extensions we wrote for reading the cluster 

data in a much more intuitive manner.  

     2) Related Work 
Mining of Twitter data is relatively complex since tweets are free-flowing text and are 

limited to 140 characters each [16]. One of the interesting approaches taken by Qing Chen et al. 

[8] in their paper was to use Wikipedia [15] as the search engine.  

Qing Chen et al. proposed to use Wikipedia search by identifying the important words in a 

tweet, which the authors called, “the trend,” and then do a Wikipedia search based on the trend 

name [8]. When a search is done with Wikipedia, it could potentially return hundreds of records. 

The top five to six search records are then selected, and the short snippet in the search result is 

added to the tweet, which is then used as an input record. We deviated from this approach by 

using random thousands of tweets, running them against the clustering algorithms and evaluating 

the TF-IDF weights of the top terms. In addition, we used custom stop words.Swit Phuvipadawat 



CS298 Report 

10

 

 

et al. used the hashtag #breakingnews and collected all the tweets with that hashtag [7]. Once the 

tweets were collected, they used Stanford Named Entity Recognizer to classify the keywords into 

proper nouns. Once this step was completed, similar tweets were grouped together with a number 

and a group label so that every message would belong to a particular group [7].. 

     3) Methodology 
There were three main phases with respect to data collection: gathering the data, scrubbing the 

data and preparing the data. Once the data was available then the next two phases would be to 

apply the clustering algorithms and then evaluate the results. The overview of the process is 

shown in Figure 1.  

 

Store 
data

Gather data  

 

 

 

Scrub data  
 
 

Prepare data  
 
 

Evaluate 
results

Cluster data 
 
 
 
 

                                               Fig 1.Overall Process 
           
3a) Gathering the data 
 

Gather data 
 

 

 

 

   

Store 
data 

         Fig 2. Process involved till data is gathered 



CS298 Report 

11

 

 

 

The data gathering phase can be further divided into three steps: identifying the Twitter 

sources, programmatically collecting tweets and storing the data into the local disk. The overview 

of the process is shown in Figure 3. 

    

    

  

 

 

 

 

 

   

                                  Fig 3. Different phases in gathering the data 

Identify Twitter sources 

Data gathering plays a major role in any project especially the one which involves machine 

learning and this project is no different. For this project, the dataset would be the technology 

tweets. The first step in this process is to establish the prominent news sources/bloggers from 

whom we would collect the tweets on a daily basis.  

The sources that we chose include popular bloggers who have a large number of followers on 

twitter, well known news sites, and news blogs, Apple and Microsoft related sites cause of their 

popularity among consumers and blogs, security related blogs and deals sites. This ensures that we 

have as much diversification as possible in our tweets. The sources, the grouping and the 

additional information is provided in the t 

Category Twitter id Details 

Individual KevinRose KevinRose was the founder of Digg a popular 

crowd souring site, he has lot of inside information 

on the technology and has now started Milk a 

mobile application development company. 

Individual Jason Jason Calacanis is an entrepreneur and blogger and 

has sold his company weblogs to AOL and is now 

the founder of Mahalo and the podcast This Week 

Store 
data 

Programmatically
collect tweets

Identify Twitter 
sources



CS298 Report 

12

 

 

In Startups. 

Individual LeoLaporte LeoLaporte was involved in technology related 

broadcasting shows right from early 90’s. He 

currently runs TwiT.tv an online network which 

broadcasts shows on a daily basis. 

News site Wired Covers technology news and how it impacts the 

culture, economy and politics. 

News site Cnet Needs no introduction, if you want to know all 

about the technology then Cnet is the place to be. 

News site NyTimesTech The technology stories of New York times 

Gadget blog Engadget Covers the news about all the latest cool gadgets. 

News blog  ArsTechnica Covers the news and also publishes reviews, guides 

on the various technologies. 

Controversial blog Gizmodo Controversial website which publishes all about 

digital culture and gadget news. They were the ones 

who caused a major furor when they leaked the lost 

iphone4 story. 

Technology blog GigaOM Started by Om Malik, this covers the web 2.0 news 

as well as the related technology news. 

Startup/Technology 

blog 

Techcrunch Needs no introduction, started by Michael 

Arrington this blog essentially covers all about 

technology startups. This is currently owned by 

AOL. 

Social media news Mashable This site basically covers social media news. 

Technology blog ReadWriteWeb Yet another technology blog. 

Apple fan boys MacWorld The name itself suggests what it’s all about. Covers 

anything and everything related to Apple and its 

products. 

Everything Microsoft EverythingMS If Apple has MacWorld then Microsoft has 

EverythingMS. 

Emerging tech Techreview Owned and published by MIT, covers emerging 

technologies and their impact. 



CS298 Report 

13

 

 

Gadgets Techland Owned by TIME, mainly covers gadgets, about web 

in general. 

Tech news from India  tech2eets They publish tweets about all the technology news 

happening in India and around the world. 

Nonprofit TechSoup Their goal is to help other non-profits and with the 

technology resources. 

Security related SecurityNews Provides all the latest security news regarding 

hacking, malware, technology and so on. 

Security related Itsecnews Very similar so security news. 

Deals Woot Very popular one day one deal web site. 

Deals  Fatwalletdeals Twitter feed of the user contributed fat wallet deals. 

Mobile(ios) app store 148Apps Reviews all about ios apps, the name comes from 

the fact that when iphone was initially launched you 

could only have 148 apps on your iphone. 

Mobile(ios) app store Appcraver One more ios app review site. 

 

Programmatically collect tweets 

We used Twitter API as an asynchronous means of collecting tweets. One uses Twitter 

API by creating a developer account on their website, then submitting an application. Once 

approved, one can use Twitter API [13] to collect tweets. The challenge with using any external 

API is to understand its limitations with regards to the number of request per hour that an 

application can make. Twitter API has very strict restriction limits of 150 requests per hour for 

unauthenticated calls and 350 requests per hour for oauth authenticated calls [13].  

As we can see the number is very low and once a developer id hits the limit, there is a 

chance that the application would be blacklisted and you would not be able to make the calls. 

Twitter provides REST API to make the calls or you can use open source Java libraries for using 

the Twitter API’s. 

Twitter libraries/SDK 

  As mentioned in the Twitter developer documentation site [13], these are the available 

Twitter libraries for Java 

I. Scribe by Pablo Fernandez – an OAuth library 

II. Twitter4J by Yusuke Yamamoto – a Twitter API library (Java platform > v1.4.2, Android 

and GAE ready) 



CS298 Report 

14

 

 

III. Twitter API ME by ernandesmjr – a Twitter API library (xAuth only) 

 

Choosing the Twitter library 

For the project, the library we choose to use was Twitter4J. The reason that we choose this 

over the other two libraries is constant updates to the library and having much more robust api 

mechanism over the other two. 

Collecting the Tweets 

  We need an automated mechanism where the program asynchronously collected Tweets 

from our chosen prominent bloggers and news sites on a daily basis. We use Twitter4j library and 

write a program called UserStream.java which collects the tweets on a daily basis. The algorithm 

for gathering the tweets is as follows 

I. Algorithm 1. Collecting Tweets Using the Twitter4J LibraryInstantiate the TwitterStream class 

II. Implement the StatusListener class and the following methods 

onStatus – Whenever the change of status occurs this method will get triggered. 

onDeletionNotice – Called upon deletionNotice notices [17] 

onTrackLimitationNotice – This notice will be sent each time a limited stream becomes 

unlimited. If this number is high and or rapidly increasing, it is an indication that your 

predicate is too broad, and you should consider a predicate with higher selectivity.[17] 

onScrubGeo – Called upon location deletion messages [17]. 

onException – When the Exception object is thrown. 

III. Add the listener 

IV. Call the filter method of the TwitterStream passing in the id’s of the Twitter sources 

 

Challenges with using the Twitter API 

As mentioned before Twitter is very strict with regards to the usage of its API and has very 

strict restriction limits of 150 requests per hour for unauthenticated calls and 350 requests per 

hour for oauth authenticated calls. Initial setup of collecting the tweets included running the 

above Java program UserStream.java from my home computer which asynchronously collected 

the data. 

The program ran without any issues for couple of days and then ran into the Twitter API 

limit. Once Twitter recognizes your userid and the Oauth credentials along with the IP address as 

the cause of the rate limit problem, it blocks it immediately. So definitely using the twenty-five 



CS298 Report 

15

 

 

different resources and collecting the Twitter data over one home computer was not going to work. 

The only alternative then was to use the cloud based services like Rackspace or Amazon and use 

the virtual machines to collect the Tweets asynchronously on daily basis. 

The choice of Amazon versus Rackspace basically boiled down to the cost of using the 

servers. Rackspace had a starting flat fee of $10.95/month or 1.5 cents/hr [18] compared to 

Amazon of $0.02 per hour  for micro instances[19]. We chose Amazon EC2 for the project. 

 

Using Amazon Cloud for collecting the Tweets 

We used Amazon EC2 Cloud’s services [19] to overcome Twitter API’s limitations by 

using five virtual machines and dividing the Twitter sources into five sources for each virtual 

machine. 

 
Fig 4. Amazon EC2 instances 

 

Each of the virtual machine is using its unique twitter account, so for this project five 

separate Twitter accounts were used and each was running the same copy of UserStream. Twitter 

API also expects an application to be associated to a twitter account. The following is the account 

information for each box.  

 

Box name Associated twitter account Application name 

ec2-107-20-94-65.compute-

1.amazonaws.com 

surya1902 TestApplicationST2 

ec2-50-17-54-102.compute-

1.amazonaws.com 

Suryab Tweets Clustering 

ec2-107-20-94-171.compute-

1.amazonaws.com 

Suryasignup Tweets Clustering 1 

ec2-184-73-120-69.compute-

1.amazonaws.com 

suryab_sjsu Clustering of Tweets 



CS298 Report 

16

 

 

ec2-107-22-15-143.compute-

1.amazonaws.com 

Sbhagvat Tweets project 

 

The twenty-five twitter sources have been broken into five sources for each individual box 

and the data is asynchronously collected and it is pulled every week into the local disk as shown in 

the figure below 

 
 

             Fig 5. Amazon cloud infrastructure 

   
After the above steps and copying the files over to the local computer on a weekly basis we would 
have the consolidated tweets for each box the file would look something like this 

 

 
3b)Scrubbing the data 
 
  Gather data



CS298 Report 

17

 

 

 
 

Scrub data

Store 
data 

 
 
 
 

 

 

 

           Fig 6. Process involved till data is scrubbed 

The data scrubbing phase can be further divided into the following steps as shown in the 

figure below 

Store  
scrubbed 
data 

Remove error 
messages 

Remove 
shortened URLs 

Remove retweets 

 

 

 

 

 

 

 

 

 

  Fig 7. Different phases in scrubbing the data 

Twitter provides the streaming API for near real-time access to the twitter data [13]. For 

our project we will be using the User streams which provides the information about the user like 

his direct messages, mentions, followers and so on. We are more interested in getting the direct 

messages of a particular user or source. The streaming API needs the oauth credentials of the 

twitter account and we must provide them. 

Since we are using the Twitter4j and we are interested in the user resources we need to 

make use of the twitter4j.StatusListener and twitter4j.TwitterStream classes. When we make use 

of the status listener we not only obtain the tweets made by a particular source but we also end up  

 

having the retweets as part of the stream. In this project we don’t necessarily make use of the 

retweets, so we filter out the retweets. Also most of the tweets use URL shorteners at the end of 



CS298 Report 

18

 

 

the tweets which actually point to the original link of the article, this would affect the clustering 

and as such we are going to strip away the shortened URL’s like http://bit.ly. The algorithm for 

scrubbing the tweets is as follows 

i. Go through each Tweet and if the Tweet begins with @<source> filter it out. 

ii. Strip out the shortened URL’s from the Tweets. 

iii. Write all the filtered tweets to a separate file. 

As mentioned above even after breaking the sources into five different sources and having five 

Amazon based virtual machines in the cloud we would still run into issues with the API limit and 

the streamed source file would end up having all the information related to the connection as 

shown in below 

  Stream closed.Relevant discussions can be on the Internet at: 
  http://www.google.co.jp/search?q=70971d2e or 
  http://www.google.co.jp/search?q=000687bf 

TwitterException{exceptionCode=[70971d2e‐000687bf 70971d2e‐0006876e], statusCode=‐1, 
retryAfter=‐1, rateLimitStatus=null, featureSpecificRateLimitStatus=null, version=2.2.5‐
SNAPSHOT(build: daa2ef4273f09c48cfedddf8317ce12d6f22997b)} 
at 
twitter4j.AbstractStreamImplementation.handleNextElement(AbstractStreamImplementation.java
:167) 

  at twitter4j.StatusStreamImpl.next(StatusStreamImpl.java:67) 
  at twitter4j.TwitterStreamImpl$TwitterStreamConsumer.run(TwitterStreamImpl.java:443) 

Caused by: java.io.IOException: Premature EOF 
at 
sun.net.www.http.ChunkedInputStream.readAheadBlocking(ChunkedInputStream.java:53
8) 

    at sun.net.www.http.ChunkedInputStream.readAhead(ChunkedInputStream.java:582) 
    at sun.net.www.http.ChunkedInputStream.read(ChunkedInputStream.java:669) 
    at java.i o.FilterInputStream.read(FilterInputStream.java:116) 
 
We need to clean up our tweets file by removing the irrelevant information and since the error 

message is not standardized we do this step manually.  

 
3c) Preparing the data 
 

Scrub data

Store 
data 

Gather data
 
 
 
 
 
 

 

http://bit.ly/


CS298 Report 

19

 

 

 

 

Prepare data

 
 

 

  Fig 8. Process involved till data is prepared 

 

Apache mahout expects each input of the text to be in its own separate file. When we used the 

Twitter streaming API and scrubbed the data, we ended with one file with all the tweets (retweets 

removed). We needed to make sure that each tweet inside the file was contained in a file of its 

own. 

i. Algorithm 2. Preparing the Input DataTake the filtered tweet file as the input. 

ii. Read each line and effectively write it to a separate file, the file name begins with 

‘Twitter_’ count of the file. 

iii. This would effectively serve as the input to the clustering algorithms. 

 

4) Background on TF‐IDF 
 

TF-IDF stands for Term Frequency-Inverse Document Frequency. Term Frequency 

represents the importance of a term in a specific document whereas Inverse Document Frequency 

represents the importance of a term relative to the entire corpus. Thus, under TF-IDF the stop 

words had smaller weight since they appeared frequently in the documents, and the non-stop 

words or the words that gave the gist of the topic had greater weight. One of the goals of the 

project was to see the effect of using the correct stop word. 

5) Apache Mahout 
 

For this project we would be using Apache Mahout which has scalable machine learning 

libraries including the clustering algorithms [12]. Mahout is very new but has become quite 

popular as an open source library for mining of large data sets. 

Some of the challenges with using a technology as new as Mahout is the lack of 

documentation. To understand the usage of the libraries going through the source code was the 

only option. Recently Manning on Oct 14th, 2011 released a book called Mahout in Action which 

was referenced in the project. 
 



CS298 Report 

20

 

 

6) Running the clustering  
 

Quite a lot of understanding and prep work needs to be done before running the actual 

clustering algorithms. The sequence is outlined and shown in the figure below 

i. Convert the input tweets to a sequence file. 

ii. Converting the sequence file to a vector. 

iii. Run the analyzer for the stop words. 

iv. Running the actual clustering algorithm. 

 

Convert sequence file to vector

Convert input tweets to sequence file
 

 

 

 

 

Run the analyzer for stop words 

 

 

 

   

Run the clustering algorithm

Fig 9. Various steps in clustering 

     



CS298 Report 

21

 

 

 

6a & 6b) Convert the input tweets to a sequence file and then vector 

Converting the input tweets into a vector would be the first step in clustering process. 

When we are trying to cluster text documents then we essentially represent document as a vector. 

We can think of a vector as something that contains the words as well as number of times each 

word occurs in the document. In Apache Mahout we need to first convert the input tweets into 

sequence file format and then from the sequence file format you create vectors. 

There are two steps involved when using Apache Mahout in the generation of the vectors. 

The first step would be to generate the sequence file and the next would be to generate the vectors 

passing the sequence file as the input. 

Step 1: Generate the Sequence File 

First run the following command to generate the sequence file in the chunked manner [20] 

$MAHOUT_HOME/bin/mahout seqdirectory \‐‐input <PARENT DIR WHERE DOCS ARE LOCATED> ‐‐output 
<OUTPUT DIRECTORY> \<‐c <CHARSET NAME OF THE INPUT DOCUMENTS> {UTF‐8|cp1252|ascii...}> \<‐
chunk <MAX SIZE OF EACH CHUNK in Megabytes> 64> \<‐prefix <PREFIX TO ADD TO THE DOCUMENT ID>> 

 

The sequence file can be considered as sort of an intermediary file which essentially has 

the document id and the content of the text, in our case the tweet. It’s not an ascii text file, so the 

content shown here is essentially a screen shot of how the sequence file looks like 

 
Fig 10. Sequence file format 

 
The screen shot to generate  the sequence file is shown below 
 



CS298 Report 

22

 

 

 
Fig 11. Command to generate the sequence file 

Step 2: Generate the vectors from the Sequence File 

When one tries to cluster text documents, one represents each document as a vector. One 

can think of a vector as an entity that contains words as well as number of times each word occurs 

in the document. Mahout provides three different classes for vectors namely DenseVector,  

RandomAccessSparseVector and SequentialAccessSparseVector. From the Java API [21] the 

following are the users of the three classes 

DenseVector – Implements the vector as an array of doubles 

RandomAccessSparseVector – This vector only stores non-zero doubles 

SequentialAccessSparseVector – Similar to RandomAccessSparseVector wherein it stores non-

zero doubles and the elements would be accessed in a sequential fashion. 

In out project we are going to use SequentialAccessSparseVector. The class to generate 

SequentialAccessSparseVector from the sequential file is 

java org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles ‐‐input <SequenceFile> ‐‐output 
<Output folder> ‐‐namedVector ‐‐minDF <int> ‐‐maxDFPercent <int> ‐‐weight TFIDF ‐‐analyzerName 
<CustomAnalyzerClass> 
 
 

 



CS298 Report 

23

 

 

 

The required and important parameters are described below 

Parameter Name Description 

input Location of the sequence file. 

output Location of the output folder where the sparse vectors will be written. 

namedVector Output vectors should be NamedVectors. 

minDF The minimum document frequency, the minimum number of documents the 
term should occur. If it is less than the provided value then it won’t be the 
part of the dictionary. 

maxDFPercent The maximum document frequency, if the term occurs in more than the 
specified value then it is ignored. 

Weight In this case we use TF-IDF, we can also just use TF. 

analyzerName This should be a Java class that extends Lucene’s Analyzer where we would 
define our own custom stop words. 

 
Once the above command is run the following would be the output 

 
Fig 12. Directory structure after generating the vectors 

 
The dictionary file contains the term to its ID, the tokenized-document folder is where the custom 

analyzer if specified is applied or the standard analyzer is used and the words are tokenized. The 

tfidf-vectors folder contains the actual vectors of the documents. 

The screen shot to generate  the vectors is shown below 
 



CS298 Report 

24

 

 

 

Fig 13. Command to generate the vectors 

6c) Custom analyzer for the stop words 

Mahout provides the class org.apache.lucene.analysis.DefaultAnalyzer. This class extends 

the org.apache.lucene.analysis.Analyzer class and provides a default constructor without any 

arguments. This is the class where we define the stop words and choosing the right set of stop 

words would play a crucial role in clustering. 

By default Mahout’s DefaultAnalyzer doesn’t include any stop words. The goal was to 

compare the weightiness of the top terms in three runs; the first run with no stop words defined, 

the second with the chosen English set of stop words from the full set of MySQL stop words [22] 

and the final run with the custom stop words that we identified. 

The following are the stopwords that are used for the second run i.e., regular English 

stopwords that we chose from the full set of MySQL stopwords [22] . Only a subset of the 

stopwords from the MySQL stop words was chosen. These stop words were compiled by running 

many rounds of the clustering algorithms and then comparing the results. If we include the full set 

of MySQL stopwords [22] and compared the results, the clusters that were obtained were 

essentially meaningless because of the 140 character twitter limit. We would like to compare the 

results of using the chosen regular English stopwords versus combining these with the custom 



CS298 Report 

25

 

 

stop words that we have identified. 

Regular English stopwords  "a","able","about","across","after","all","almost","also","am","among","an
","and","any","are","as","at","be","because","been","but","by","can","can
not","could","dear","did","do","does","either","else","ever","every","for","
from","get","got","had","has","have","he","her","hers","him","his","how",
"however","i","if","in","into","is","it","its","just","least","let","like","likely",
"may","me","might","most","must","my","neither","no","nor","not","of","
off","often","on","only","or","other","our","own","rather","said","say","sa
ys","she","should","since","so","some","than","that","the","their","them",
"then","there","these","they","this","tis","to","too","twas","us","wants","
was","we","were","what","when","where","which","while","who","whom"
,"why","will","with","would","yet" 

 
The custom stop words in addition to the above words that are specific to the twitter world are the 
following. These words were obtained by collecting the tweets on a weekly basis, then running the 
clustering algorithms, verify whether the top terms that were generated added value to the cluster or 
not. If the word didn’t really add value to that cluster it would be a stop word. This was a manual 
effort done on a weekly basis. 

Custom Stop words  "you","your","takes","chat","live","stage","tells","help","become","withou
t","doing","come","call","needs","find","more","check","using","before","
weekly","found","finds","many","first","time","others","here","much","ver
y","during","taking","starts","updates","anything","called","works","well",
"haha","comes","five","isnt","keep","really","ways","save","thanks","thank
","last","take","know","want","need","based","talk","under","getting","get
s","looking","back","make","down","pass","less","next","week","grab","go
ne","soon","lots","trying","goes","http","itself","agree" 

 
The way the regular and custom stop words were identified was by collecting the tweets on a 
regular basis, running the clustering algorithms on the input, evaluate the impact the stop words 
have on the weight of the prominent terms and then include or exclude it from the set. This was a 
manual process which could be improved by means of an algorithmic approach. 
6d) Running the clustering  
 

We would be using TF-IDF along with Kmeans clustering to cluster the tweets. The K 

means algorithm is as follows 

i. Assume there are n points and k groups in which you want to cluster these n points. 

ii. The first step would be to start with an initial set of k centroid points. 

iii. Define the max number of iterations. 

iv. The algorithm continues its processing and will keep refining the centroids until it 

comes to max number of iterations or the centroids converge. 



CS298 Report 

26

 

 

An example follows (taken from Mahout in Action book) 

Assume initially we have three centroids c1, c2 and c3 

 
(Fig 14a) 

The map stage assigns each point to the cluster nearest to it 

 

(Fig 14b) 

In the reduce stage, the associated points are averaged out. This would result in the centroid location 

shifting as shown in the figure and produces new centroids. 

 

(Fig 14c) 

Once the iteration completes, this configuration from the above figure becomes the starting point 
for the loop and continues till the centroids converge to their final positions 



CS298 Report 

27

 

 

 

(Fig 14d) 

Selecting the distance measure 

From distance measures, such as CosineDistanceMeasure, EuclideanDistanceMeasure and 
TanimotoDistanceMeasure, we chose CosineDistanceMeasure after doing some trail runs. 

Command to run clustering 

Mahout provides the class org.apache.mahout.clustering.kmeans.KmeansDriver to run the Kmeans 
clustering. The class takes the following parameters 

java org.apache.mahout.clustering.kmeans.KMeansDriver -i <input location> -c <initial clusters 
location> -o <output location> -cd <distance> -x <iterations> -k <Number of clusters> -cl  -dm 
<Distance measure> 

The required and important parameters are described below 

Parameter Name Description 

i Path to the input directory. 

c Path to the initial clusters directory . 

o Output directory name. 

cd The convergence delta value. 

x The maximum number of iterations. 

k Number of clusters. 

cl Indicates that the clustering needs to be run after the iterations have 
taken place. 

dm The distance measure that needs to be used, in our case we use 
CosineDistanceMeasure. 

 



CS298 Report 

28

 

 

 

The screen shot to run the kmeans clustering is shown below 

 
Fig 15. Command to run the Kmeans clustering 

After running the Kmeans we get the following directory structure 
 
 
 

 

This would vary depending on each run, in our case we choose the number of clusters to be 50 and 
the number of iterations before the clusters converge was set as 20, the clusters may converge 
before as is the case shown above. 

7) Reading the cluster output 
 

Mahout provides a utility called org.apache.mahout.utils.clustering.ClusterDumper which 

provides all the clusters information. The way to run this program is 

java org.apache.mahout.utils.clustering.ClusterDumper -s <Sequence files directory for the 

clusters) -p <Directory containing point sequence files> -n <Number of top terms that we want to 

print> -d <Location of the dictionary file> -dt <The dictionary file type> -o <Output directory> 

The required and important parameters are described below 



CS298 Report 

29

 

 

 

Parameter Name Description 

s This is the sequence file directory which is 
generated after running the Kmeans algorithm. 

p All the clustered points are stored in 
clusteredPoints directory, this would point the 
location of the directory. 

n The number of top terms (the terms with the 
highest weights that we want to print), in our 
case we are printing the top five terms. 

d This is the location of the dictionary file that 
was generated with the 
SequentialAccessSparseVector. 

dt The type of the dictionary file type whether it’s 
sequential or text. 

o The output directory. 

 

Once we run the above program we would get the following file in the output directory 
clusteroutput. If we look at the content of the clusteroutput file it’s one huge file with all the 
clusters listed along with the weight for each term and the weights for the top five terms. A sample 
output is shown below (note this is just a sample, this file has lots of data) 

 

As we can see the cluster dumper output nicely prints out the top terms in each cluster and their 
weights along with all the files that form part of the cluster. 

The screenshot to run the ClusterDumper utility is shown below 



CS298 Report 

30

 

 

 

Fig 16. Command to run the cluster dumper 

Problem with the cluster dumper output 

Running the above program results in one file that contains all the cluster information and 
which is very difficult to read. Also, it is very difficult to associate the input tweet files in the 
cluster with the actual contents. To facilitate the viewing of the data in the clusters and to print the 
contents of the input tweets, we wrote a custom java program that employed the algorithm 
described below 

Algorithm 3. Algorithm for Better Viewing of Clustering Data 

I. Opens the output file generated from ClusterDumper. 
II. Reads each line of the file and looks for the following strings CL- and VL-, this basically 

indicates the start of the cluster. 
III. From the position to the next CL- or VL- it reads each line, the following would be the lines  

Top Terms:  
       iphone    => 0.15075426587055726 
       apple      => 0.12412147780659481 
       mobile    => 0.11814728919291656 
        jobs       =>  0.1115138864090512 
       samsung =>  0.1009606923032927 

IV. For each cluster we create a new file and first write the top terms. 



CS298 Report 

31

 

 

V. The next line in the file generated from Mahout utility would be something along these lines 
as an example 
1.0 : [distance=0.9258744922524543]: /Tweet_1018.txt = [deutsche:7.992, mango:5.227, 
monday:7.673, sets:7.673, telekom:8.125] 

VI. The program parses this line, figures out what the file is in this case Tweet_1018.txt, then 
opens this file and writes the contents of it. 

VII. The end result would be a file for each cluster with the top terms and the actual content of 
the Tweet included as shown below. 
        Top Terms:  
 changes    =>   4.999809711210189 
 facebook  =>  2.0083499416228263 
 reveal       =>   1.546768403822376 
 consume  =>  1.0918245623188634 
 mean        =>  0.7425660933217695 
Tweet_1000.txt RT @mashable: COMIC: Facebook Changes Getting Out of Hand -  
Tweet_1039.txt Facebook changes getting to you? This #comic shows you how it could be 
worse Tweet_105.txt Sears Ultra Plus Powdered Laundry Detergent 1/2 price $11.99  
Tweet_1082.txt Facebook Changes in a Nutshell [COMIC] 

 

8) Evaluating the cluster quality 
To evaluate the quality of the cluster, we basically take the approach of calculating the TF-IDF 
weights for prominent terms with the following analyzers 

• TweetsAnalyzer with no stop words. 
• TweetsAnalyzer with common English stop words. 
• TweetsAnalyzer with common English stop words + custom stop words. 

 
Mahout doesn’t really provide any mechanism to store the top terms in any database, we extend 
Mahout and provide a custom program that essentially writes the top terms to the database for each 
run. 

The database that we use for this purpose is MySQL and the database table that we have created for 
this purpose is named TermsAndWeights and the structure is in the following fashion. 

 

(Fig 16) 

RunType – Basically describes the run type of the whole process, this could be one of 
NoStopWords, DefaultStopWords or CustomStopWords. 



CS298 Report 

32

 

 

Term – The actual term. 

Weight – The value of the assigned weight by that particular RunType. 

Field_1 – Additional field.  

Field_2 – Additional field. 

Algorithm 4. Algorithm to track the top terms and insert into the databaseThe algorithm to track the 
top terms and insert into the database is given below 

1. Opens the output file generated from ClusterDumper. 
2. Reads each line of the file and looks for the following strings CL- and VL-, this basically 

indicates the start of the cluster. 
3. Connect to the database. 
4. From the position to the next CL- or VL- it reads each line, the following would be the lines  

    Top Terms:  
         iphone   => 0.15075426587055726 
         apple     => 0.12412147780659481 
         mobile   => 0.11814728919291656 
         jobs        =>  0.1115138864090512 
         samsung =>  0.1009606923032927 

5. Read each top term and insert into the table along with the run type. 
 
We run the program with different analyzers  

• TweetsAnalyzer with no stop words. 
• TweetsAnalyzer with common English stop words. 
• TweetsAnalyzer with common English stop words + custom stop words. 

We then look at the top terms and their weights for each run. 

The results of the weights of the following five terms, siri, apple, iphone, augmented and with, for 
different runs, are shown in the tables below. These terms were chosen randomly 

siri 

 

We notice for siri that when we didn’t include any stop words it was not even part of the cluster but 
for default and custom stop words it carried the weights as shown above and for custom it appeared 
even twice. 



CS298 Report 

33

 

 

apple 

 

For the term apple the weight is more when we have used the CustomStopWords when compared 
to no stop words and default stop words 

iphone 

 

iphone is relatively common term in the tech industry and as such for custom the value is little bit 
less than that of default though it appeared in more times than default. 

augmented 

We see the term like augmented appears only when we have the custom stop words and if we look 
at the cluster to which it is assigned its relevance is immediately apparent 

 

Tweet_11533.txt Scientists testing HUD contact lenses on rabbits, hope to bring augmented reality 
to your eyeballs 

Tweet_1267.txt Lego's augmented reality at IDF, eyes-on (video)  

Tweet_1269.txt 'What Was Here' project adds a pinch of history to augmented reality  

Tweet_12749.txt Playing with Augmented Reality 

with 

We see that the meaningless terms like with which doesn’t add much value show up only for 
NoStopWords 



CS298 Report 

34

 

 

 

 
The consolidated table is shown below for the following five terms siri, apple, iphone, augmented 
and with 
Term  No stop words  Default stop words  Custom stop words 
Siri  Not part of cluster  1.5073364045884874  3.5180675863362043 
apple  0.5385988283673778  0.6785155087709427  4.620405804027211 
iphone  2.178985970975669  4.1664243917912245  3.071035173501861 
augmented  Not part of cluster  Not part of cluster  1.5207760339464461 
With  0.8422637692204228  Not part of cluster  Not part of cluster 
 
Clearly, the important terms have more weightiness when we chose custom stop words compared 
to us using no and default stop words. Hence, choosing the correct set of stop words for 
microblogging sites such as Twitter is very important to get good clusters. 
   

The second experiment that was conducted was to first collect sample of thousand random 
tweets and then use the approach taken by Qing Chen et al.[8] in their paper “Tweets mining using 
WIKIPEDIA and impurity cluster measurement”. As outlined in the paper we use wikipedia search 
by identifying the important words in the tweet which the authors call the trend and then do a 
wikipedia search based on the trend name. We combine the original text with the wikipedia text 
and use it as an input. Please note that since the tweets are collected on a daily basis there may not 
be any Wikipedia pages associated with the top terms. In this case we have used the original tweet 
as the input. 

 
        The results are shown for the top ten terms when using the above approach with default stop 
words versus the approach we took of using custom stop words and is shown in the table below.  
The second column shows the weights of the top terms under the approach that we took. The third 
column shows the weights of the terms under the approach that Qing Chen et al. took [8]. We 
noticed that terms had the highest weight when we chose the right set of stop words compared to 
combining the tweets with Wikipedia search results, showing that choosing the right set of stop 
words plays a major role in getting good clusters. 



CS298 Report 

35

 

 

 
 
Term Custom stop words Wikipedia (Default stop words) 
hadoop 5.9972124099731445 3.5919069877037635 

internet 4.997677008310954 1.4604256780524003 

wired 4.031572866439819 2.644033670425415 

nokia 3.9821564934470435 4.583253523882697 

free 3.9537076155344644 2.5828651428222655 

storage 3.895374298095703 2.7575849056243897 

interface 3.8416065216064452 1.6496093273162842 

engadget 3.8365699276328087 2.8410439314665616 

drop 3.7278315226236978 1.9779029173009537 

million 3.5409763560575596 N/A 

 
 
9) Conclusion 
 

One of the main challenges in clustering Twitter data is that the length of each tweet is only 
140 characters, and so, identifying the right set of custom stop words is very important. 

This project was challenging because of the Twitter API limitations, evaluating and 
understanding cloud technologies such as Rackspace and Amazon and last but not least trying to 
understand Apache Mahout, which is a relatively new technology. 

The work by no means is complete, one of the ideas that we can continue working on would 
be to use stop words and combine the twitter text with google news and then cluster the data. One 
other idea could be to see whether we can give a higher weightage to the tweet in the cluster based 
on how much the users are sharing it on social networking sites like Facebook and google plus.  

10) References 
 
[1] Schulman, Kori. "#AskObama at the First Ever Twitter @Townhall at the White House | The 
White House." The White House. N.p., n.d. Web. 21 Dec. 2011. 
<http://www.whitehouse.gov/blog/2011/06/30/askobama-first-ever-twitter-townhall-white-house>. 
 
[2] "Twitter." Twitter. N.p., n.d. Web. 21 Dec. 2011. <http://twitter.com/sjsu>. 
 
[3] "Twitter." Twitter. N.p., n.d. Web. 21 Dec. 2011. <http://twitter.com/Gizmodo>. 



CS298 Report 

36

 

 

 
[4] "Twitter." Twitter. N.p., n.d. Web. 21 Dec. 2011. <http://twitter.com/Techcrunch>. 
 
[5] "Twitter." Twitter. N.p., n.d. Web. 21 Dec. 2011. <http://twitter.com/engadget>. 
 
[6] "Twitter Help Center | What Are Hashtags ("#" Symbols)?." Twitter Help Center . N.p., n.d. 
Web. 21 Dec. 2011. <http://support.twitter.com/articles/49309-what-are-hashtags-symbols>. 
 
[7] Swit Phuvipadawat and Tsuyoshi Murata. 2010. Breaking News Detection and Tracking in 
Twitter. In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence 
and Intelligent Agent Technology - Volume 03 (WI-IAT '10), Vol. 3. IEEE Computer Society, 
Washington, DC, USA, 120-123. DOI=10.1109/WI-IAT.2010.205 http://dx.doi.org/10.1109/WI-
IAT.2010.205 
 
[8] Qing Chen; Shipper, Timothy; Khan, Latifur; , "Tweets mining using WIKIPEDIA and 
impurity cluster measurement," Intelligence and Security Informatics (ISI), 2010 IEEE 
International Conference on , vol., no., pp.141-143, 23-26 May 2010 
doi: 10.1109/ISI.2010.5484758 
 
[9] Owen Phelan, Kevin McCarthy, and Barry Smyth. 2009. Using twitter to recommend real-time 
topical news. In Proceedings of the third ACM conference on Recommender systems (RecSys '09). 
ACM, New York, NY, USA, 385-388. DOI=10.1145/1639714.1639794 
http://doi.acm.org/10.1145/1639714.1639794 
 
[10] Twitter API: Up and Running 
Learn How to Build Applications with the Twitter API 
By Kevin Makice 
Publisher:O'Reilly Media 
Released: March 2009 
 
[11] Mahout in Action 
By Sean Owen, Robin Anil, Ted Dunning, Ellen Friedman 
Publisher:Manning Publications 
Released: October 14, 2011 
 
[12] "Apache Mahout: Scalable machine learning and data mining." Apache Mahout: Scalable 
machine learning and data mining. N.p., n.d. Web. 22 Dec. 2011. <http://mahout.apache.org>. 
 
[13] "Documentation | Twitter Developers." Documentation | Twitter Developers. N.p., n.d. Web. 
21 Dec. 2011. <dev.twitter.com/>. 
 
[14] "Amazon Web Services ." Amazon Web Services . N.p., n.d. Web. 22 Dec. 2011. 
<http://aws.amazon.com> 
 
[15] "Wikipedia." Wikipedia. N.p., n.d. Web. 22 Dec. 2011. <http://www.wikipedia.com>. 
 
[16] "Twitter." Twitter. N.p., n.d. Web. 22 Dec. 2011. <http://www.twitter.com> 
 

http://doi.acm.org/10.1145/1639714.1639794


CS298 Report 

37

 

 

[17] "StatusListener." Twitter4J - A Java library for the Twitter API. N.p., n.d. Web. 26 Dec. 2011. 
<http://twitter4j.org/ja/javadoc/twitter4 
 
[18] "Cloud Server and Virtual Server Hosting by Rackspace." Cloud Computing, Managed 
Hosting, Dedicated Server Hosting by Rackspace. N.p., n.d. Web. 26 Dec. 2011. 
<http://www.rackspace.com/cloud/cloud_hosting_products/servers/> 
 
[19] ""Amazon EC2 Pricing." Amazon Web Services. N.p., n.d. Web. 26 Dec. 2011. 
<http://aws.amazon.com/ec2/pricing/> 
 
[20] "Creating Vectors from Text." Mahout Wiki. N.p., n.d. Web. 30 Dec. 2011. 
<https://cwiki.apache.org/MAHOUT/creating‐vectors‐from‐text.html#CreatingVectorsfromText‐
ConvertingdirectoryofdocumentstoSequenceFileformat> 
 
[21] "AbstractVector (Mahout Math 0.6‐SNAPSHOT API)." Search Lucene . N.p., n.d. Web. 30 Dec. 2011. 
<http://http://search‐lucene.com/jd/mahout/math/org/apache/mahout/math/AbstractVector.html> 
 
[22] "MySQL :: MySQL 5.6 Reference Manual :: 11.9.4 Full‐Text Stopwords." MySQL :: Developer Zone. N.p., 
n.d. Web. 30 Dec. 2011. <http://dev.mysql.com/doc/refman/5.6/en/fulltext‐stopwords.html>. 


	Clustering of twitter technology tweets and the impact of stopwords on clusters
	Recommended Citation

	tmp.1378181303.pdf.Lvqjf

