
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2012

Face Detection from Images Using Support Vector Machine Face Detection from Images Using Support Vector Machine

Parin M. Shah
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Shah, Parin M., "Face Detection from Images Using Support Vector Machine" (2012). Master's Projects.
321.
DOI: https://doi.org/10.31979/etd.wg5s-gyqn
https://scholarworks.sjsu.edu/etd_projects/321

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/321?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

1

Face Detection from Images
Using

 Support Vector Machine

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Parin M Shah

May 2012

2

© 2012

Parin M Shah

ALL RIGHTS RESERVED

3

SAN JOSE STATE UNIVERSITY

The Designated Thesis Committee Approves the Thesis Titled

Face Detection from Images

Using

Support Vector Machine

by

Parin M Shah

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2012

 Dr. Teng-Sheng Moh, Department of Computer Science Date

 Dr. Mark Stamp, Department of Computer Science Date

 Dr. Sami Khuri, Department of Computer Science Date

4

ABSTRACT

Detection of patterns in images using classifiers is one of the most promising topics of research

in the field of computer vision. A large number of practical applications for face detection exist

and contemporary work even suggests that any specialized detectors can be approximated by

using fast detection classifiers. In this project, I have developed an algorithm which will detect

face from the input image with less false detection rate using combined effects of computer

vision concepts. This algorithm utilizes the concept of recognizing skin color, detecting edges

and extracting different features from face. The result is supported by the statistics obtained

from calculating the parameters defining the parts of the face. The project also implements the

highly powerful concept of Support Vector Machine that is used for the classification of images

into face and non-face class. This classification is based on the training data set and indicators

of luminance value, chrominance value, saturation value, elliptical value and nose, eye & mouth

map values.

`

5

ACKNOWLEDGEMENTS

I am thankful to each and every person who has contributed his plethora for the

completion of this project. Working on this project was unique experience. Knowledge and

experience gained from this project will remain with me as an ingratiating memory.

I would like to express my sincere appreciation to my project advisor Dr. T.S. Moh for

guidance, cooperation and time in making my project a success. Thanks for the benevolent

support and kind attention. I would also like to thank my committee members Dr. Mark Stamp

and Dr. Sami Khuri for their support and patience.

We would also like to thank our department for providing us with the necessary

software required in our project. We are also thankful to the library for providing necessary

books and materials required to learn different concepts for our project.

Last but not the least, sincere thanks to my parents, family and friends for constant

moral support, inspiration, encouragement and blessings without which the task of completing

the project successfully would have been next to impossible.

6

Table of Contents

1. Introduction………......11

2. Literature Review……14

2.1. Skin color detection…………………………………………………………………………………………………….14

2.2. Edge detection……...15

2.3. Extracting features of face……………………………………………………………………………………….…15

2.4. Color space – RGB, YCbCr and HLS………………………………………………………………………………17

2.5. Support Vector Machine……………………………………………………………………………………………..22

2.6. Haar Cascade Classifier……………………………………………………………………………………….………30

2.7. Programming in OpenCV…………………………………………………………………………………………….32

2.8. Tools and Image data set…………………………………………………………………………………………….33

3. Algorithm…….34

4. Results & Limitation………………………………………………………………………………………………………..…53

5. Future Work……...58

6. Conclusion…….58

7. Reference……..59

7

List of Figures

Figure 1. Color Cube image……………………………………………………………………………………….18

Figure 2. HSV Color Model…………………………………………………………………………………………20

Figure 3. Support Vector machine for linearly separable data………………………….…….…23

Figure 4. Maximum margin and support vectors for the given data sets…………..……...24

Figure 5. Support Vector Machine for non-linearly separable data…………………………...25

Figure 6. Haar Cascade Classifier…………………………………………………………………………..….30

Figure 7. Input Image………………………………………………………………………………………………..35

Figure 8. RGB image converted to Binary image……………………………………………………….36

Figure 9. YCbCr image converted to Binary image…………………………………………………....38

Figure 10. HSV image converted to Binary image……………………………………………………..…40

Figure 11. Final Binary Image…………………………………………………………………………………...…42

Figure 12. Four major points in tracing and labeling points………………………………………….45

Figure 13. Face Feature Extraction process……………………………………………………..…………..46

Figure 14. Final Result of my algorithm………………………………………………………………………..50

8

Figure 15. Histogram calculation for RGB image ……………….……………………………………….52

Figure 16. Limitations-1 of my algorithm…………………………………………………………………...57

Figure 17. Limitations-2 of my algorithm…………………………………………………………………….57

9

List of Equations

Equation 1. Calculate Normalized Red Component……………………………………………………………..14

Equation 2. Calculate Normalized Green Component………………………………………………………….14

Equation 3. Eye map value for Chrominance Value………………………………………………………….….16

Equation 4. Eye map value for Luminance Value………………………………………………………………….16

Equation 5. Mouth map value………….………………………………………………………………….……….……..17

Equation 6. Formula for finding positive labels in SVM…………………………………………………….….23

Equation 7. Formula for finding negative labels in SVM……………………………………………….….….23

Equation 8. Formula for finding hyper plane in SVM……………………………………………………….….23

Equation 9. Calculate Margin between plane of two class in SVM…………………………………......24

Equation 10. Soft Margin Hyper plane…………………………………………………………………………………..26

Equation 11. Polynomial Kernel………………………………………………………………………………..…………..27

Equation 12. Radial Basis Function………………………………………………………………………………..………27

Equation 13. Haar Classifier Features Equation…………………………………………………………………….31

Equation 14. Blue Difference Chrominance Component……………………………………………………....38

Equation 15. Red Difference Chrominance Component………………………………………………………..39

10

Equation 16. Calculate Delta – Difference between minimum & maximum component…….…40

Equation 17. Error Rate (ER)……………………………………………………………………………..………………….53

Equation 18. Face Detection Success Rate (FDSR)…………………………………………………………….…..54

List of Tables

Table 1. Results of our algorithm…………………………………………………………..……………….….….54

Table 2. Results of AdaBoost Haar Cascade Detector Algorithm…………….………………..……55

11

1. Introduction

In the early few years several papers have been published on face detection in the

community which discusses different technique like neural network, edge detectors and

many more. There is a good survey by Chellapa, Wilson and Sirohey (1995) which tells

about the trends of paper in face detection [11]. Previously, many researchers and

engineers have designed different purpose specific and application specific detectors.

The main goal of this kind of classifiers was to achieve a very high detection rate along

with low computational cost. Few examples of different detectors are corner detectors,

AdaBoost Haar Cascade detector by Jones and Viola [10] are very useful. This kind of

detectors mostly use simple and fast classifiers that reject the most common negative

samples and then they use progressively more complex classifiers to deal with the more

difficult and odd negative samples.

Another approach to detect the face is through skin color classification algorithm [4].

Kjeldsen and Kender used the concept of different color space model to separate the skin

patches from the image [18]. But if those algorithms are used solely, then it becomes

difficult to detect more than one face from the image. Hsu, Abdel-Mottaleb, and Jain

came up with the tactics of calculating the eye, mouth and nose map values [4]. Eyes,

nose and mouth are significant features of face which distinguishes face from other

12

parts of the body. Studies have shown that they exhibit unique properties in the YCbCr

color model, so it becomes easy to detect the face region using this feature extraction.

Poggio, Heisele and Ho presented a component based approach of locating facial

components, extracting them and combining into a single feature vector which is used

for classification of faces by Support Vector Machine. The authors used the gray scale

image to define the feature vector for classification. Authors’ using the approach of

Support Vector Machine iterates through the whole image and compares it with face

template to classify the region of interest. This takes very high computation time and

error rate. Also, some of them can detect faces only from gray scale images. But our

algorithm overcomes these drawbacks of classification. In our approach, preprocessing

stages are applied which extracts the region of interest and feature vector is applied on

this ROI instead of whole image for classification of the face region.

Detecting the face from color images poses various difficulties under varying lighting

conditions, pose change and when there are additives on the face region like beard,

moustache, etc. To overcome this, we applied certain preprocessing stages to my

algorithm so that it detects the face region accurately with less error rate and low

computational cost. In the first step, we would haul out and identify the face region

based on the skin color segmentation algorithm. There are lots of variations in the

human race or lighting condition, so to accurately detect the skin patch region we

converted the image into RGB, YCbCr and HSV color space. This would take advantage of

all models and find out the all the skin region from images. Afterwards the face feature

13

extraction process is applied which calculates the map values of different face features

[4]. This threshold values and preprocessing values are passed to the feature vector of

Linear SVM which would classify the image in face and non-face class. This classification

is based on the training of the data set. Our data set consists of around 125 images with

305 faces. The images are taken from the internet and from my collection of

photographs.

The next section discusses computer vision concepts used in this algorithm and

approaches adopted by other authors. Section 3 describes the detailed approach and

explanation of our algorithm. It gives step by step elucidation of how each step is

executed in our algorithm. Section 4 discusses the results obtained from our algorithm

and shows the comparison with Haar cascade classifier method. Section 5 points out the

limitations of our algorithm and displays few scenario on which our algorithm does not

show satisfactory results. In section 6 we listed out the future work which we will adopt

in current methodology. Section 7 discusses the final conclusion and findings from our

approach.

14

2. Literature Review

In this section we discuss various concepts like skin color detection, edge detection,

morphological operators and support vector machine used by prominent authors of

face detection.

2.1 Skin color detection

Many algorithms have been developed to determine the face using the skin color.

There has been past findings to detect the skin color by determining the geometric

correlation between position of hair and face [13]. In that, authors used the

normalized RGB model to extract skin

r

 (eq. 1)

g

 (eq. 2)

For determining the skin color from the input images we have to convert the image into

different color space like RGB, YCbCr and HLS. After wards they process each image to

pull out the skin color utilizing the properties of color space. The implementation of this

is very simple and depends upon the threshold value of the skin color. First step is to

mask the skin color and then extract the part of the image which resembles the skin.

The skin color detection has the limitation of detecting only one face per image. Crowley

15

and Coutaz [14] proposed simpler method for distinguishing pixels of skin by making use

of skin color algorithm.

2.2 Edge detection

In the edge detection phase, edges of the object from the images are detected using a

particular threshold value. Using the Gaussian filter the noise from the images is

filtered out. The next step would involve calculating the intensity gradient of the

image. This would help eliminate the varying lighting condition. Then the

morphological operators like elation and dilation are applied which reduces the noise

from the background image. The non-suppression is applied which helps in removing

the points that are not part of the edge.

The most important step of this phase is to detect the edge of the objects. So

depending upon the threshold pixel the edges are accepted or rejected. The value of

the threshold is selected based on the average of the tested training data set of

image.

2.3 Extracting features of face

Eyes, nose and mouth are the most prominent facial features which help in detecting

the face. Based on the luminance and chrominance values we can locate the

boundaries for eyes, nose and mouth from the image [2]. Luminance (Y) represents

the brightness in the image i.e. the black and white portion of the image. It represents

16

the details of image without any of its color information whereas the chrominance

represents the color information. Chrominance is represented as two color

difference: where Cb is defined as Blue-Y’ and Cr is defined as Red-Y’.

Eye Map

In this we calculate luminance component and chrominance component of eyes. The

results of both these are added and combined. These values are calculated based on

the properties of higher value of chrominance and lower value of luminance found

near eyes [2]. The formula for calculating are follows

 (eq. 3)

 (eq. 4)

17

Mouth Map

The mouth color has higher red component and lower blue component as compared

to supplemental regions of the face. So we can conclude that the chrominance is

greater than the luminance component. So we can calculate the mouth map as

follows [2]:

 (eq. 5)

Using this we form the possible combinations for forming triangle of mouth and eye.

From that we can detect whether the given image is face or not.

2.4 Color Space – RGB, YCbCr and HLS

Active development in the content based image field has led to great concentration to

the study of skin color classification. Locating different image object like face, eye, car,

etc can be exploited for different purpose like recognition, editing, detection, indexing

and various other interactive purposes. Tracking the position of face using skin color

also provides a vital stepping stone in studies related to facial expression [15]. Recent

researches in the algorithms for face localization mostly prefer to utilize the color

information to approximate the skin color. Skin color classification can be considered as

an important task as most of the prevalent algorithm for face identification use color

18

information to estimate skin region. Estimating skin color region is most often

considered as the vital step of face localization process. Nowadays, most of the research

development in face detection using skin color is established on the concept of HSV,

RGB and YCbCr color spaces. In this section we describe brief information about these

different color models.

RGB

The perceived human color is proportional to the varying condition of illumination.

Using the normalized color histogram we can sense the pixels for skin region which can

be further normalized to resist the varying luminance condition. The Red, Green and

Blue vector of the image is converted into a normalized form which provides a rapid

means for detecting the skin and thereby confines the face region. There are limitations

to this algorithm if there are some more skin regions like hands, neck, legs, etc in the

image then it cannot detect it properly.

Fig 1. : Color Cube image.

19

YCbCr

Research related to the computer vision on YCbCr space have established that pixels

that fits as the skin region display similar values for chrominance and luminance.

Using chrominance and luminance values in skin color model can provide good result

for detecting skin of different ethnicity and human races. Based upon the threshold

value of that pixel, the face portion in color image is retrieved using the skin color

distribution. This algorithm also has similar restriction that whole image should have

only one face as the skin region.

YCbCr color space belongs to the family of video transmission color spaces that was

designed specifically to handle the increasing demands for digital algorithms used in

retrieving video related information. YCbCr was designed for digital color system

whereas other color spaces that belonged to the same family like YUV and YIQ were

designed for analog spaces [15]. All color models belonging to the family of video

transmission color spaces separate Red, Green and Blue components into luminance

and chrominance components that are useful in video compression applications. The

specification of colors through this model space is less sensible but we follow the

specification as defined by the Recommendation 601 [16]. The Recommendation 601

specifies 8 bit (i.e. 0 to 255) coding of YCbCr, whereby the luminance component Y

has a digression of 219 and an offset of +16. This coding places black at code 16 and

white at code 235, which allow for overshoot and undershoot [16]. The chrominance

20

components Cb and Cr have excursions of +112 and offset of +128, producing a range

from 16 to 240 inclusively [16]. So, the Cb and Cr samples use the value 128 to

encode a zero value, as used when encoding a white, grey or black area. The values

used for sync encoding are 0 and 255.

HSV

We make use of the HSV space to separate the skin regions from background.

Classification in HSV color space is the same as YCbCr color space but here the

accountable values are saturation (S) and hue (H) instead of luminance and

chrominance. A pixel is categorized to have skin tone if the value of Hue and

Saturation fall within the specified threshold value and the distribution gives the

localized face image [2].

Fig 2. : HSV Color Model [16]

21

The HSV color space does not require an exact proportion of primary colors to get

the resultant color; instead the variation is based on the values of Hue, Saturation

and Intensity to produce a required color. For example an adjustment in saturation

causes a shift between color violet and blue, a variation in intensity of pixel causes to

make it darker or lighter. Operations like detecting object from image, histogram

equalization, intensity transformation, etc are performed with much ease on an

image in the HSV color space. Hue (H) is represented as the angle 0, varying from 0°

to 360°, Saturation (S) corresponds to the radius, varying from 0 to 1 and Value (V)

varies along the z axis with 0 being black and 1 being white.

In HSV color model, the color is of grey color with intensity equal to 1 if we have the

corresponding value of pixel’s Saturation =0. And if Saturation=0 then color is present

on the boundaries of model represented by HSV. Moreover, color is more distant

from grey, white or black if they have greater value of Saturation. Adjusting the hue

will vary the color from red at 0°, through green at 120°, blue at 240°, and back to red

at 360°. When Value = 0, black color is obtained and when Saturation = 0 the color of

the image is grey or in different shades of grey. Hue value is indeterminate, when we

have Saturation=0 and Value=0. By adjusting Value (Intensity), a color can be made

darker or lighter. By maintaining Saturation= 1 and adjusting Value or Intensity we

obtain different shades or traces of that particular color.

22

2.5 Support Vector Machine

In machine learning, task of deducing a category from supervised training data is

known as Supervised Learning. In supervised learning the training data consist of a

set of training examples, where each example is a pair consisting of an input and an

anticipated output value. A supervised learning algorithm analyzes the training data

and then predicts the correct output categorization for given data-set input. For e.g.

Teacher teaches student to identify apple and oranges by giving some features of

that. Next time when student sees apple or orange he can easily classify the object

based on his learning from his teacher, this is called supervised learning. He can

identify the object only if it is apple or orange, but if the given object was grapes the

student cannot identify it.

Understanding Support Vector Machine for linearly separable data

Consider each image to be a single dot in the figure. And dot of different color

specifies different category. Here we have image of two category and we have to find

the boundary separating two images.

23

Fig 3. : Support Vector machine for linearly separable data.

The Margin of a linear classifier is the width by which the length of the boundary can be

increased before hitting the data points of different category. The line is safe to pick having

the highest margin between the two data-sets. The data points which lie on the margin are

known as Support Vectors.

The next step is to find the hyper plane which best separates the two categories. Support

Vector Machine performs this by taking a set of points and splitting them using

different application specific mathematical formulas. From that we can find the

positive and negative hyper plane. The mathematical formula for finding hyper plane

is:

(p · q) + r = +1 (positive labels) (eq. 6)

(p · q) + r = -1 (negative labels) (eq. 7)

 (p · q) + r = 0 (hyper plane) (eq. 8)

From the equation above and using linear algebra we can find the values of p and r.

Thus, we get the model that contains the answers for p and r and with margin value

of 2/ . The margin is calculated as follow.

24

 Margin (eq. 9)

In Support Vector Machine, this model is used to categorize new data. With the

above solutions and calculated margin value, new coming data can be categorized

into different category. The following figure demonstrates the margin and support

vectors for linearly separable data.

Fig 4. : Maximum margin and support vectors for the given data sets are

shown in figure.

Understanding Support Vector Machine(SVM) for non-linearly

separable data

For non-linearly separable plane, data are input in an input space which cannot be

separated with a linear hyper plane. So, we map all the points to feature space using

25

specific type of kernel, in order to separate the non-linear data on a linear plane.

After separating the points in the feature space we can map the points back to the

input space with a curvy hyper plane. The following figure demonstrates the data

flow of SVM.

Fig 5. : Support Vector Machine for non-linearly separable data.

In reality, you will find that most of the data sets are not as simple and well behaved.

There will be some points that are not correctly classified, these points that are far

off from the classes, or points that are mixed together in a spiral or checkered

pattern. Researchers have found the solution to tackle the problem of

misclassification error through Support Vector Machine. It minimized the following

equation to create what is called a soft-margin hyper plane.

26

(eq. 10)

The higher value of C maximizes the margin value whereas the lower value of C lowers the

margin value.

TYPES OF KERNEL

Computation of various points in the feature space can be very costly because

feature space can be typically said to be infinite-dimensional. The kernel function is

used for to reduce this cost. The reason is that the data points appear in dot product

and the kernel function are able to compute the inner products of these points. So

there is no need of mapping the points explicitly in feature space. By making use of

different kernel function we can directly compute the data points through inner

product and find equivalent points on the hyper plane.

The kernel functions which are being developed for SVM are still a research topic. No

appropriate kernel has been found out which is universal for all kind of data.

Anybody can develop their own kernel depending upon requirements.

The following are some basic types of kernel:

27

 1.) Polynomial kernel with degree d.

 (eq.11)

 2.) Radial basis function kernel with width s

 (eq. 12)

There are many other different kinds of kernel available. The user can also be

developed kernel specific to the application.

STRENGTH OF KERNELS

Kernels are the most tricky and important part of using SVM because it creates the

kernel matrix, which summarize all of the data points. Initially, a low degree

polynomial kernel or Radial Basis Function (RBF) kernel with a reasonable width is a

good try for most applications. Linear kernel is considered to be the most important

choice for text classification because of the already-high-enough feature dimension.

There are many ongoing researches to estimate the kernel matrix.

28

ADVANTAGES AND DISADVANTAGES OF SUPPORT VECTOR MACHINE

ADVANTAGES

There are many folds advantages of using the supervised learning approach of

Support Vector Machine (SVM). They are very effective when we have very high

dimensional spaces. Also, when number of dimensions becomes greater than the

existing number of samples, in such cases too SVM is found to be very effective.

SVM uses a subset of training point also known as support vectors to classify

different objects hence it is memory efficient. Support Vector Machines are

versatile, for different decision function we can define different kernel as long as

they provide correct result. Depending upon our requirement and application we

can choose types of kernel which is most productive for our application.

DISADVANTAGES

The disadvantage of SVM is that if the number of features is much greater than

the number of samples, the method is likely to give poor performances. SVM

gives efficient result for small training samples as compared to large ones. SVMs

do not directly provide probability estimates, so these must be calculated using

indirect techniques. Also, we can have Non-traditional data like strings and trees

as input to SVM instead of featured vectors. Lastly selecting appropriate kernel

for the project is a big issue which depends upon user’s requirement.

29

Using SVM for Face Detection

The algorithm proposed by Osuna, Freund and Girosi detects faces by

exhaustively scanning an image for face-like patterns at many possible scales, by

dividing the original image into overlapping sub-images and classifying them

using a SVM to determine the appropriate class [3]. Multiple scales are handled

by examining windows taken from scaled versions of the original. Before storing

the image some pre processing steps like masking, illumination and histogram

equalization are performed. In the masking process unnecessary noise like the

background pattern is reduced from the objects of interest. And then histogram

equalization is used that manages the distribution of colors in images.

The images of class face and class non face are used to train the SVM using the

kernel and upper bound margin values. Once a decision surface has been

obtained through training, the run-time system is used over images that do not

contain faces, and misclassifications are stored so they can be used as negative

examples in subsequent training phases. In order to increase the precision of

detecting face we can use negative examples for training misclassification class.

There are ample non-face images available which can be trained in SVM. Non

face images are richer and broader than face images.

30

2.6 Haar Cascade Classifier

In statistical model based training, we take multiple positive and negative samples

and extract different features from these samples. These distinctive features are then

compressed into statistical model parameters which are used as special property to

classify different objects. By making adjustments in these parameters we can improve

the accuracy of classification for these algorithms. The fundamental concept for

detecting objects from images for Haar classifier is the Haar-like features. These

features exploit the difference in contrast values between contiguously grouped

pixels instead of using the intensity values of that particular pixel. These contrasting

values between the grouped pixels are used to detect relative light and dark spot

from the images. These two to three contiguous groups with a comparatively

contrasting values form a Haar-like feature. In images we have object of different

sizes, these Haar features can be scaled by increasing or decreasing the size of the

grouped pixel being examined. This scaling of the pixels makes it possible to detect

and extract objects with varying sizes.

Figure 6. : Haar Cascade Classifier

31

Feature vector’s value in Haar classifier is calculated as the difference between the

sum of the pixels within the white and black region of interest. This region of interest

is that region which iterates through the whole image to find out a specific template.

This template is for the object that is to be detected from the image.

 ………………..eq (13)

 h(x) = 1 if if > threshold.

 = -1 if if <threshold.

In opencv, we first take the positive and negative samples and form the

corresponding database. After that we create a vector file and then build the

classifier. After building the classifier we check for the performance and accuracy of

the training dataset. If we find satisfying results we create a xml file which contains all

the features for detecting objects. This is the whole procedure for detecting faces or

any objects using Haar classifier. Afterwards we retrieve the classifier’s data from the

xml file and use this data to classify objects for the testing data set.

)Sum(r)Sum(r black i, whitei, if

32

2.7 Programming in openCV

OpenCV acronym for Open Source Computer Vision Library is a library containing

functions for computer vision. It is developed by Intel and now handled and

supported by Willow Garage. The library is functional cross platform and runs on

Windows, Android, FreeBSD, Maemo, iOS, OpenBSD, Linux and Mac OS. The current

release of the library is obtained from the Sourceforge and they also provide the

binaries for the user, so that they can develop according to their requirements.

OpenCV makes use of CMake to compile source files to start using the library [12].

The main focus of this library is on the real-time image processing functionality and

implementing the machine learning algorithms. By using this we can improve the cost

of computation and take an initiative to advance the CPU – intensive applications.

The areas of application where openCV can be useful are facial recognition system,

mobile robotics, gesture recognition, segmentation, object identification, motion

tracking and many more. OpenCv also includes a statistical machine learning library

that supports the above areas of application. The name of the functions that

supports this library are decision tree learning, expectation maximization, gradient

boosting trees, , Naïve Bayes classifier, k- nearest neighbor, artificial neural network,

support vector machine(SVM) and many more [12].

33

The goals of the developing libraries of opencv are manifold. I have utilized these

goals to the benefit of my project:

 Advance vision research by providing open source as well as optimized code for

basic vision infrastructure.

 Distribute vision knowledge by providing a common infrastructure for all

developers so that they can share their research and knowledge.

 Making portable, performance-optimized code available for free, so that others

can contribute computer vision based application.

The library was previously written in C language and because of this C interface the

language is portable to different platforms. To increase the adoption of the openCV

language, the wrapper class for different languages like C#, Python, Ruby and Java

have been written [12].

2.8 Tools and Image dataset

The tools which I have used in my projects are Microsoft Visual C++and Git. The

image dataset used in this project was developed from the images which I had

clicked from my camera. Also some photos were taken from the internet (not

containing copyright issues) to test varying conditions.

34

3. Algorithm

In this section we will discuss our algorithm which we have developed using different

concepts as explained earlier.

High level design of my algorithm:

Input the image.

Convert the input image into different color space model with the goal of

obtaining specific region from the image.

RGB space

YCbCr space

HLS space

Convert the image obtained from different color models into combined binary

image. This step would put the value of pixel as 1 if it falls within the specified

criteria; otherwise it puts the value as 0.

Filter the obtained binary image by applying different morphological operators

like erosion and dilation.

Detect blob type region from the binary image and extract those elliptical region

of interest.

Determine the face features from extracted region by calculating the mouth, eye

and nose map.

35

Collect the parameters from above preprocessing stages in the form of support

vectors and pass them to the function of linear SVM to classify them into face and

non-face region.

Highlight the classified face region by using rectangle box in the original image.

Let’s take an example for understanding how the face detection works. Following is the

input image, which we are using to show various processing steps and display the

corresponding result.

Fig 7. Input image

36

3.1 Convert Image into RGB, YCbCr and HSV color model and obtain Binary Image.

RGB Model

Red, Green and blue are the three additive primary colors for the RGB color space.

Combination of these components in assorted proportion would produce different

color. The RGB model is represented by a three-dimensional cube with red, green

and blue defining the each axis (Figure 1). Black is defined at the origin (0, 0, 0)

whereas white is at the other side the cube i.e. at (1, 1, 1). The gray color follows the

diagonal line alongside the color cube starting from white to black. The image

consists of three channels 8 bits each, with each color representing different

channel. The RGB color model condenses the design of computer graphics systems,

but is not ideal for all applications as all three components are highly correlated with

each other, making it difficult to implement different image processing algorithms as

they will be not resistant against different lighting conditions [15]. Here we analyze

the image for skin region, so we will look for combination of R, G and B components

in such a way that resultant color is the skin color.

Image 8. : RGB image converted to Binary image.

37

The threshold values we use for extracting the skin region from the image are as

follows:

Red Component: r_min = 194,r_max=230.

Blue Component: b_min=140,b_max = 168.

Green Component: g_min = 155,g_max = 184.

Pseudo – code for converting the RGB image into binary image.

// Iterate every pixel of the image.

For i:0 to number of pixels

Then

If(r_min<=r_value<=r_max && b_min<=b_value<=b_max &&

g_min<=g_value<=g_max)

 Pixel_value = 1;

 Else

Pixel_value = 0;

End If.

End For.

38

YCbCr Model

Researchers have led to the results that skin region shows up same values of

chrominance and luminance. So here, we implemented the skin color extraction

algorithm that depends upon the chrominance and luminance values of the

image. Skin region of humans vary depending upon the human race;

experiments have showed that studies of skin region using Cb and Cr model have

shown more successful results in detecting skin region. Minimum and maximum

values are to be determined to classify a particular pixel as a skin tone. The range

of this can be defined as Cr_min to Cr_max and Cb_min to Cb_max. This

extraction would yield the different skin region present in the image.

Image 9. : YCbCr image converted to Binary image.

The formula by which we convert the RGB components into YCbCr components

is given as follows:

cb_value = (-0.169 * Red) + (-0.331 * Green) + (0.5 * Blue) + 128; (eq. 14)

39

cr_value = (0.5 *Red) +(-0.419*Green) +(-0.081*Blue) + 128; (eq. 15)

And the threshold values we use for extracting the skin region are as follows:

cb_min = 112,cb_max = 151,cr_min = 139,cr_max = 155;

[cr1:cr2] = [139:155] and [cb1:cb2] = [112:151]

The above are the results obtained by analyzing the histogram of the faces

present in the training dataset. After careful analyze, the average value of

chrominance and luminance is taken which is equivalent to the above threshold

range.

Pseudo – code for converting the YCbCr image into binary image.

// Iterate every pixel of the image.

For i:0 to number of pixels

Then

Calculate the Cr and Cb component from R,G & B using eq no:

 If(crmin<=cr_value<=crmax && cbmin<=cb_value<=cbmax)

 Pixel_value = 1;

 Else

Pixel_value = 0;

40

HSV Model

Skin color extraction in HSV model is similar to that of YCbCr model, but the

accountable values here are Hue and Saturation. The HSV color space helps to

distinguish the skin regions from background. Analogous to the YCbCr model the

Hue values are chosen between h_min to h_max whereas the saturation values

are taken from s_min to s_max. Depending upon this range, a pixel is classified

as a skin tone.

Image 10. : HSV image converted to Binary image.

Now, we will explain how the values of hue and saturation are calculated. First,

calculate the minimum and maximum from the red, green and blue components

of the image. The value defines the brightness of the color for that particular

pixel and that is equal to the maximum component. Next step is to calculate the

difference between minimum and maximum component.

Delta = max - min (eq. 16)

41

The saturation value is defined as delta over max. And the threshold values we

use for extracting the skin region are as follows:

h_min = 6 and h_max = 18; [h1:h2] = [6:18]

The threshold values are obtained by observing the histogram of the faces

present in the training dataset. After careful analyze, the average value of hue

was taken as in the range of 6 to 18.

Pseudo – code for converting the HSV image into binary image.

// Iterate every pixel of the image.

For i:0 to number of pixels

Then

Calculate min and max component from R,G & B. Also calculate

delta = max-min.

Calculate Brightness value = max and Saturation = delta/max.

Calculate Hue.

Wrap the outlier points.

 If(h_value > 6 && h_value <= 18)

 Pixel_value = 1;

 Else

Pixel_value = 0;

42

Now I have created a final binary image, by adding all three binary images

created from different color model. We then applied basic morphological

operators like erosion and dilation to the binary image, which removes the noise

from the image.

Fig 11. : Final Binary Image

The structuring element is the fundamental concept of morphological operators.

It is defined as an arrangement of pixels (defining shape) on which an origin is

located.

Applying a morphological filter consists of probing each pixel of the image using

this structuring element. When the origin of the structuring element is aligned

43

with a given pixel, its intersection with the image defines a set of pixels on which

a particular morphological operation is applied. In principle, the structuring

element can be of any shape, but most often, a simple shape such as a square,

circle, or diamond with the origin at the center is used (mainly for efficiency

reasons)

As with all other morphological filters, the two filters of this recipe operate on

the set of pixels (or neighborhood) around each pixel, as defined by the

structuring element. Recall that when applied to a given pixel, the anchor point

of the structuring element is aligned with this pixel location, and all pixels

intersecting the structuring element are included in the current set. Erosion

replaces the current pixel with the minimum pixel value found in the defined

pixel set. Dilation is the complementary operator, and it replaces the current

pixel with the maximum pixel value found in the defined pixel set. Since the

input binary image contains only black (0) and white (255) pixels, each pixel is

replaced by either a white or black pixel. A good way to picture the effect of

these two operators is to think in terms of background (black) and foreground

(white) objects. With erosion, if the structuring element when placed at a given

pixel location touches the background (that is, one of the pixels in the

intersecting set is black), then this pixel will be sent to background. While in the

case of dilation, if the structuring element on a background pixel touches a

foreground object, then this pixel will be assigned a white value. This explains

44

why in the eroded image, the size of the objects has been reduced. Similarly, the

dilated objects are now larger and some of the "holes" inside of them have been

filled.

During the erosion and dilation operation when an empty matrix is passed in the

parameters it takes a 3x3 square (taken as cv::Mat()) as a structuring element.

Depending upon your requirement and application you can vary the size of the

structuring element by imparting a non-zero element matrix that defines the

anchor point.

3.2 Detecting Blobs from Binary Image

After getting the binary image, the next step is to obtain the blobs that may

represent the face. Blobs are typically elliptical in shape or can be considered as

a connected dense component.

In this method of contour detecting and tracking, it scans a binary image from

top to bottom and from left to right for every line scanned. Conceptually, this

process of contour detection can be divided into four stages as illustrated in

Figures a to d. In stage 1 represented by figure a, when an external contour

point is encountered the first time, we make a complete trace of the contour till

we again reach to the original point. In this way of tracking contour points, we

label all the points of that contour. In the next Figure b, when a labeled external

contour point A' is encountered, we track all the succeeding black colored pixels

(if they are present) through the scan line and assign them the same tag as A'. In

45

Figure c, when an internal counter point, say B, is encountered the first time, we

assign B the same label as the external contour of the same component. We

then trace the internal contour containing B and also assign to all contour points

the same label as B. In Figure d, when a labeled internal contour point, say B’, is

encountered, we follow the scan line to find all subsequent black pixels (if they

exist) and assign them the same label as B’.

Figure 12. : Four major steps in tracing and labeling points

We used the cvBlobsLib which is based on the above concept and contains

various functions to detect the blob. The result of this stage is store in elements

of CvSeq which contains array for location of detected blobs. The locations of

these blobs are stored in the form of cvPoints which contains the starting co-

ordinates and height and width of that particular contour.

3.3 Face Feature Extraction

Next preprocessing stage involves extracting different face features like eyes,

mouth and nose from the detected blobs. Once the blobs are detected the

46

extracted face region becomes the Region of Interest (ROI), and is converted into

YCbCr model space. This image is then split into three different channels of

chrominance and luminance. Then using eq. (3), eq. (4) and eq. (5) we calculate

the eye map values and mouth map values. Then we will combine these images

and apply the filtering operation of dilation and erosion [4]. This will yield the

eye and mouth region.

Fig 13. : Face Feature Extraction process

After locating the eyes and mouth region the geometrical position of the spots

are checked. If the eyes and mouth center form a structure that is equivalent to

the equilateral triangle, then we can confirm the position of face. The locations

of the center of these regions are passed over to the next stage for classification,

which checks over with face template from the data set.

3.4 Classification of ROI using Support Vector Machine

There is a large difference between the face and other parts of the body

containing skin. Features like rich texture, eyes, mouth create a huge difference

between the face and other body parts like hands, arms, shoulders, legs and

neck. The Linear SVM kernel function K(xi ,xj) = <xi , xj> is designed to classify the

Face

Region

Split

Image

Calculate

Map Values

Filter &

Extract

47

data into face and non-face and we used openCV library to train the samples. As

the number and size of faces are often different in images, in order to detect all

the faces, we have to take pyramid analysis. In that case we scale every image

few times till the size of the skin color region is fixed. In every scale, we scan the

original color image from left to right, top to bottom in the effective skin color

regions, and intercept image as a detected sample. After the detection sample is

processed with a mask, the sample feature vector is put into the SVM classifiers

to classify. This classifier uses the data from the pre processing stages.

In our algorithm, values obtained from the preprocessing stages of the training

data sets are formed into vector and used as 2D array with class label of face and

non-face. The class label and training data are stored as follows: for eg

Float labels[2]= {1,1}

Float trainingdata[2][2]={vector of pixel values for RGB, YCbCr or HSV color

model, map values}.

The result of this classifier is then cascaded to the face feature extraction. In this

phase of classification the face features extraction. In this phase the different

map values like nose map, eye map and mouth map are calculated for the face

region and then passed into the array of training data with corresponding label

of face class. Afterwards we require the training data to be stored as an objecto

of Mats, so we create Mat object from the array of floats:

48

Mat trainingDatatoMat(3, 2, CV_32FC1, trainingData);

Mat labelstoMat (3, 1, CV_32FC1, labels);

Now before starting the training we need to define certain parameters for SVM

like which kind of kernel to use, type of SVM to use and termination condition.

CvSVMParams parameter;

Parameter.svm_type = CvSVM::C_SVC; (used for n-class classification & n>=2)

Parameter.kernel_type=CvSVM::LINEAR; (Select different types of kernel)

Parameter.term_crit =cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);

(specifying maximum number of iterations and tolerance error before algorithm

ends)

Next step is to train the SVM using the training data. For that we use the

following function:

CvSVM SVM_train;

SVM_train.train(trainingdatatoMat, labelstoMat, Mat(), Mat(), parameter);

Once we train the data, then we use the predict method to determine face or

non-face class. We can also get the useful information about the support vector.

Cv::get_support_vector gives general information about the support vectors

49

used and cv::get_support_Vector_count gives the number of support vectors

used.

There will be times when the same face will be detected many times in the

adjacent position or at different scales. We need to merge the overlap regions,

and obtain the region’s location and size. In most cases we have tried to remove

this overlapping region by neglecting the region which are similar in area greater

than 70% and considering them as single face. This can be the reason when

certain face is not detected when they are nearby each other. According to the

average of the location and size, we determine the location and size of the face

candidate regions. The next step is passing the value of mouth region and eye

region to the classifier. If the centers of the region form geometrical shape then

we can conclude that the region of interest is the face region; otherwise its non-

face region. This will classify the region and will mark the region’s height and

width, which will help to highlight the face by drawing a bounded rectangle.

Now, here we can mark the difference in how the Support Vector Machine is

implemented. Previously many researchers used SVM by iterating over the

whole image and finding respective face from defined classifier. As it has to go

through entire image the computation time and cost is high. Our approach is

different, in which we apply the preprocessing stage and extract the supposed

face region. This region of interest passes through the SVM and classifies into

face and non-face. Many authors used the preprocessing approach, but they

50

used for gray-scale images only. Whereas our algorithm overcomes all drawback

and works for different color images.

3.5 Final Results

Here we can observe the final result of the image. All the faces in the input

image are detected. The results and limitation of the algorithm are discussed in

the next section. After the SVM classifies the region into face label, we highlight

that part of the original image bounded with rectangle of red color.

Fig 14. : Final Result of my algorithm

3.6 Analyzing the Histogram of each channel

In the previous sections, we found the average values of different channels

determining the skin region by analyzing the histogram. The obvious way of

51

doing this is to split the image into different channels, then calculate histograms

of array of images and then normalize this array. Starting from the basics, we

define histogram as number of counts of data belonging to a particular range.

For eg: Consider the following matrix which has different values of pixel ranging

from 0 to 255 for single channel.

23 47 87 23 87 47 78 87 71

53 134 64 53 64 134 173 64 145

222 210 42 222 42 210 140 42 119

213 190 67 213 67 190 90 67 188

45 178 96 45 96 178 19 96 10

90 167 213 90 213 167 240 213 60

88 2 34 88 34 2 80 34 51

Now to count the number of values of pixel we can segment the values in

particular range known as bin. So, values ranging from 0 to 15 comes under bin1,

values from 16 to 31 comes under bin2 and so on. Considering this we have total

of 16 bin each having values range of 16. Now to figure out the actual average

value related to skin region we extracted the face from the images in the training

dataset and obtained corresponding histogram for each channel. Then we

observed the different bins and channel with maximum values, those values

52

were taken as threshold for that particular color model. This process was

repeated for all color models like RGB, YCbCr and HSV.

Figure 15. Histogram calculation for RGB image.

We observed each and every image from the training data set and calculated the

histogram values for every pixel corresponding to the face region. Thus we

showed how to calculate the threshold values pertaining to the skin region in the

images.

53

4. Results and Limitations

Result

The proposed algorithm was trained and evaluated on the dataset of around 125

images containing 305 face images. This dataset was build from my collection of

photographs and some random images from internet. The test images consisted

of images with different lumination condition – night time, daytime and

combination of them. The image formats acceptable to the algorithm are jpeg,

png, bmp, etc. The dataset consist of images of size ranging from 400x320 to

2000x1800. If the size of the image is more than 2000x1800 then it would create

problem in processing the image. We implemented the algorithm on an Intel®

Core™ i5 CPU M 430 @ 2.27 GHz with 4.00 GB of memory.

We defined two parameters to measure the success of our proposed algorithm.

First is the Error Rate (ER) which is defined as number of false detection in the

image divide by the total number of detections (face and non-face).

Error Rate (ER) =

 x 100% (eq .17)

Here, number of false detection means those objects that are identified as face

but are not face. The total number of detections is the summation of face

detected and non-face object detected.

54

Second parameter that is of interest is the Face Detection Success Rate (FDSR). It

is defined as the number of faces detected correctly over the total number of

faces.

Face Detection Success Rate (FDSR) =

 x 100% (eq. 18)

The experimental results of my face detecting algorithm are described in the

below table. The algorithm achieved a FDSR of 90.82% and ER of 16.57%.

Total

Number

of Faces

Number of

faces detected

Number of non

faces detected

Total Number

of Detection

305 277 55 305

Table 1. : Results of my algorithm.

Using equation (17) to calculate ER we get,

Error Rate (ER) =

 x 100% = 16.57%

Using equation (18) to calculate FDSR we get,

Face Detection Success Rate (FDSR) =

 x 100% = 90.82%

Our proposed scheme was compared with the AdaBoost classifier used by Viola

and Jones [10]. We tested the same training data set in this method and found

55

comparatively better results. The algorithm achieved a FDSR of 84.92% and ER of

25.79%.

Total

Number

of Faces

Number of

faces detected

Number of non

faces detected

Total Number

of Detection

305 259 90 305

Table 2. : Results of Adaboost Detector algorithm.

Using equation (17) to calculate ER we get,

Error Rate (ER) =

 x 100% = 25.79%

Using equation () to calculate FDSR we get,

Face Detection Success Rate (FDSR) =

 x 100% = 84.92%

From results conducted on both methods, we can observe that the error rate or

false detection rate is comparatively low in our algorithm. The reason for this is

that we perform extra preprocessing step of filtering noise using morphological

operator. Also we calculate the nose, eye and mouth map values describing the

face feature extraction process, which helps in reducing the error rate.

56

Limitation

There are certain limitations on my proposed algorithm for face detection. First

of all, I have carefully analyzed my data set and based on that I have kept the

threshold ranges for detecting skin region. If due to varying condition, the skin

color does not fall into specified range than my preprocessing stage will not be

able to detect the skin region. Sufficient cautionary steps are taken to detect the

skin region by using three different color models, but there may be times when

skin region is not detected.

Second, if the face in the image is tilted by some angle then it cannot detect the

face because we consider the image height and width during certain calculation

like merging, overlapping. If the face is tilted then the height and width are

changes, so the supposed face region is automatically neglected in the pre

processing stage.

Also, my algorithm calculates map values during the face feature extraction

process. This is highly dependent on the visibility of face features. For example in

the below figure the person in the middle has covered his eyes, in that case the

face is not detected.

57

Figure 16. : Limitation-1 of Algorithm

There can be variation to the lighting condition because of which the skin color is

not detected in the final binary image, in such case we are not able to detect the

faces from the image. Below figure represents the scenario.

Figure 17. : Limitation-2 of algorithm

58

5. Future Work

In depth research for detecting the variation in human pose should be carried

out. Current algorithm needs some efforts in detecting various pose from

images. Also, experiments should be carried out to observe and analyze different

kernels for classification using Support Vector Machine.

6. Conclusion

In this project I have presented face detection algorithm using the skin color

detection, edge detection, facial feature extraction and using the concept of

different color space. After these pre processing stages, the algorithm utilizes the

highly powerful concept of Support Vector Machine (SVM) to classify the image

into face and non-face region. We have significantly reduced the

misclassification errors as compared to the Adaboost classifier of Viola and Jones

[10]. The computation time for our algorithm is very less and the accuracy on

the image data set of 125 images with 305 face image is around 90% with error

rate of approximate 16%. We overcame the limitation of detecting one face from

image using skin color algorithm; by combining the concept of different color

space and face feature extraction process.

59

7. Reference

[1] Garcia, C., & Tziritas, G. (1999). Face detection using quantized skin color regions

merging and wavelet packet analysis. Multimedia, IEEE Transactions on, 1(3), 264-277.

[2] Hsu, R. L., Abdel-Mottaleb, M., & Jain, A. K. (2002). Face detection in color images.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(5), 696-706.

[3] Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector machines: An

application to face detection. Paper presented at the Cvpr, 130.

[4] Rein-Lien Hsu, Abdel-Mottaleb, M., & Jain, A. K. (2002). Face detection in color images.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(5), 696-706.

[5] Rowley, H. A., Baluja, S., & Kanade, T. (1998). Neural network-based face detection.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(1), 23-38.

[6] VIOLA, P. AND JONES, M.J. 2004. Robust real-time face detection. International journal

of computer vision 57, 137-154. .

[7] Yang, G., & Huang, T. S. (1994). Human face detection in a complex background. Pattern

Recognition, 27(1), 53-63.

[8] Shih, P., & Liu, C. (2006). Face detection using discriminating feature analysis and

support vector machine.

60

[9] KADIR, T., BRADY, M. 2001. Saliency, Scale and Image Description. International Journal

of Computer Vision, Volume 45, Number 2.

[10] P. Viola and M. Jones.(2001). Rapid Object Detection Using a Boosted Cascade of

Simple Features. IEEE Conf. CVPR, Vol. 1, pp. 511-518.

[11] R. Chellapa, C. Wilson, and S. Sirohey. (1995). Human and machine recognition of

faces: a survey. Proceedings of the IEEE, 83(5):705-741.

[12] OpenCV library function. Retrived October 12, 2011 from

http://en.wikipedia.org/wiki/OpenCV.

[13] Yao-Jiunn Chen, & Yen-Chun Lin. (2007). Simple face-detection algorithm based

on minimum facial features. Paper presented at the Industrial Electronics.

Society, 2007. IECON 2007. 3rd Annual Conference of the IEEE, 455-460.

[14] Crowley, J. L. and Coutaz, J. (1997). “Vision for Man Machine Interaction,” Robotics and

Autonomous Systems, Vol. 19, pp. 347-358.

[15] Sanjay Kr. Singh, D. S. Chauhan, Mayank Vatsa and Richa Singh. (2003). A Robust

Skin Color Based Face Detection Algorithm.Tamkang Journal of Science and

Engineering, Vol. 6, No. 4, pp. 227-234.

[16] Recommendation 601. Retrieved February 12, 2012 from

http://en.wikipedia.org/wiki/Rec._601.

[17] HSV Color Model. Retrieved December 25th, 2011 from

http://en.wikipedia.org/wiki/OpenCV
http://en.wikipedia.org/wiki/Rec._601

61

http://software.intel.com/sites/products/documentation/hpc/ipp/ippi/ippi_ch6/

ch6_color_models.htm.

[18] Kjeldsen, R. and Kender., J. (1996). “Finding Skin in Color Images,” Proceedings of

the Second international Conference on Automatic Face and Gesture Recognition,

pp. 312-317.

[19] C. C. Chang, C.J. Lin. (2008).LIBSVM -- A Library for Support Vector Machines.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://software.intel.com/sites/products/documentation/hpc/ipp/ippi/ippi_ch6/%20ch6_color_models.htm
http://software.intel.com/sites/products/documentation/hpc/ipp/ippi/ippi_ch6/%20ch6_color_models.htm

	Face Detection from Images Using Support Vector Machine
	Recommended Citation

	tmp.1378181551.pdf.KURuN

