San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

Comparative Analysis of Two Clustering Algorithms: K-means and
FSDP (Fast Search and Find of Density Peaks)

Li Miao
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

6‘ Part of the Computer Sciences Commons

Recommended Citation

Miao, Li, "Comparative Analysis of Two Clustering Algorithms: K-means and FSDP (Fast Search and Find
of Density Peaks)" (2015). Master's Projects. 427.

DOI: https://doi.org/10.31979/etd.3jun-nst4

https://scholarworks.sjsu.edu/etd_projects/427

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/427?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Comparative Analysis of Two Clustering Algorithms:

K-means and FSDP (Fast Search and Find of Density Peaks)

A Thesis
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By

Li Miao

Aug 2015

© 2015

Li Miao

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

Comparative Analysis of Two Clustering Algorithms:

K-means and FSDP (Fast Search and Find of Density Peaks)

Li Miao

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

Aug 2015

Dr. Sami Khuri Department of Computer Science
Dr. Teng Moh Department of Computer Science

Dr. Chris Pollett Department of Computer Science

ABSTRACT

Comparative Analysis of Two Clustering Algorithms:

K-means and FSDP (Fast Search and Find of Density Peaks)

by

Li Miao

With the overwhelming amount of data pouring into our lives, obtaining
meaningful information from them is becoming a must task for people. How can
people mine for "gold" in this area? Or, what tools can they use to do that? It has
been proved that clustering is one of the best tools.

In this project, two clustering algorithms are studied and numerically
compared with various data sets. The first one is the K-means clustering which
starts with initial roughly-guessed clusters, tries to classify some data points into
one cluster, and iteratively repeats until converges. The second algorithm is
called Fast Search and Find of Density Peaks (FSDP), which is able to
automatically detect the correct number of clusters according to the inherent

property of its decision graph. It is based on the following assumptions: 1) the

vil

cluster centers have higher density than their neighbor data points; 2) the
distance between the cluster center and any data points with higher local density
is relatively large. Its decision graph is a graphic and intuitive expression for the
clustering. One may get more or fewer clusters, by setting smaller or larger
thresholds.

The two algorithms are described in the following chapters. They are
implemented in Java. To compare how well they perform on four milestone data
sets, we use two metrics: Entropy and Purity. The results demonstrate that K-

means clustering is faster, while the FSDP is more accurate.

Keywords: Clustering, K-means, Fast Search and Find of Density Peaks,

Decision Graph, Entropy, Purity.

viil

ACKNOWLEDGEMENTS

| would like to offer my sincere thanks to my advisor Dr. Sami Khuri. It is my
pleasure to have access to his guidance. And thanks to Dr Natalia Khuri for her
invaluable insights and discussions during this project. | would also like to thank
my committee members Dr. Teng Moh and Dr. Chris Pollett for their invaluable
supports. Also many thanks to our University, who has my beautiful memory.

| would also like to thank my family, my husband, daughter and son, for

their generous supports.

1X

TABLE OF CONTENTS

Chapter 1. INtrOAUCHION.....ccuiiiiieiieeiieiie ettt ettt ettt e s e enbeeseaeensaes 1
1.1 What 1S CIUSTETING. ... cecuvieiiieiiietieeieeiee ettt et ste et e s e eteesateebeessneenseesaseens 1
1.2 Criteria to evaluate clustering algorithms.............cccoeeieiiiieiiiiiiinieeeeee, 1
1.3 OFZANIZATIONSveeiiieiieeiiiecite et et e et eetteeteesseeeabeesbeesnbeenteeenseenseesnseeseesnseenseennns 2

Chapter 2. K-means clustering algorithm............ccccoooiiiiiiiiiniiiieceeeee e 3
2.1 Introduction to K-means ClUSteringccceeuieriiiniieniienieeriie e 3
2.2 The steps of the K-means algorithmccoccoeriiiiiiiniiiniiiceeceeeen 4
2.3 IMPIEMENTALION ...ttt et ettt ete et e saeeseesaseens 5

2301 TEETALION 1 cueiiiiiiiiiieieeite ettt ettt st 5
2.3.2 0 TEETATION 2 ..ottt sttt ettt et sb et et be et st nae s 6
2.4 K-means clustering Hmitationsccoeceeriiieniieniienienie e 7

Chapter 3. Fast Search and Find of Density Peaks (FSDP) Clustering........................ 9
3.1 INtrOAUCEION ...ttt 9
3.2 The FSDP AlOTithimcccviiiiiiiiiiiieiiee et 10

3.2.1 Step 1: find CONLETS.....cccuieiiieiieiieeieee et 11
3.2.2 Step 2: assign data points to different clusters.........c..coocevvveverieniineniennnn. 12

3.2.3 (Optional) Step 3: separate the objects of any cluster into cores and halos.. 12

3.2.4 Flowchart of FSDP algorithm........ccccccoeeiiiiiiiniiiiieciieeeeeee e 13

33 IMPIEMENTALION ...ttt ettt e seae s 13
Chapter 4. Comparative experiments on typical data Sets..........cccocveverveereenieniiennnn 17
4.1 Test with Flame data Setcoouiviiviiiienieiiieeeeeecee e 17

4.1.2 0 KAMCANS ...ttt 19

4.2 Test with Aggregation data SEtcccveeiuierieeiiieie et 21
42,1 FSDP .ttt ettt 21
4.2.2 KAMCANS ..ottt et st 24

4.3 Test With Iris Data SEt.......cceeviiriiiiiiiiieseetecee e 26
B3] FSDP .ttt sttt 26
4.3.2 KAMCANS «..eeiiiiiieiieeee ettt 28

4.4 Olivetti FACe data SEt.........coeiviiiiiiiiiiiierieeie ettt 29
A4.1 FSDP .ottt 29
442 KAMCANS ...ttt et 32

4.5 Valldation....c.ooouiiiiiiiieiieeee et 33
N B 2115 (]) 2SO 34
A.5.2 PUIIEY ettt ettt et ettt et e et e et ebeeenbeenseeenne 34
Chapter 5. CONCIUSIONS.....ccueeiiiiiieiiiieiie ettt et seae et e eseeseaeesee e 40
RETETEICES ...ttt ettt et st 42
APPENAIX: SOUICE COUECuviiuiiiiiiiieeiieeiie ettt et et e et estteebeesteesbeesseeenseeseesaseeseesnsaens 43

X1

List of Figures

Figure 1 Demonstration of K-means CluStering process...........eocueeeveereeervveenieeeeeereesvennnn 3
Figure 2 Flowchart for K-means clustering algorithmccccooeieniiiiiinieiiieieee, 5
Figure 3 K-means clustering results for data set in Table 1ccccoocevieiiniiniinininenne. 7
Figure 4 A deciSion @raph........cc.oociiiiiiiiiiiiieiiece ettt ettt et et ens 10
Figure 5 Flowchart of FSDP AlZOTithimc.cocoiiiiiiiiiiiiiiiieeeeeseeee e 13
Figure 6 Decision graph for EXample 2.........cccooiiiiiiiiiiiiiiiiieiee et 14
Figure 7 Two clusters for the eight data points...........cccoeeieriiieiieniiiiiieeieeiece e 15
Figure 8 The decision graph (left) and clusters (right) of Flame data set by FSDP 18
Figure 9 Clustering result of the Flame Data set by K-means............cccceeveevenienennicnnne 20
Figure 10 Decision graph of Aggregation Data Setccceeceriereriiinieneenienieneeienne 21
Figure 11 Clustering result of Aggregation Data set by FSDP.........cccocovviiiiiininnnnnn. 21
Figure 12 Clustering result of Aggregation Data set by K-means...........ccccecevvevvnnennnen. 24
Figure 13 Decision graph (left) and cluster result (right) of Iris Data set by FSDP 27
Figure 14 Clustering result of Iris data set by K-meanscoceveiiiiniininiiniincnnennne 28
Figure 15 First 100 faces from Olivetti Face data set...........ccccevvieviiiiniininnenienciiene 29

Figure 16 Decision graph of Olivetti Face data set (left), and the clusters (right) by FSDP

... 30
Figure 17 Colored FSDP CIUSLEISccueriiriiiiieiiniieieeierteieee st 31
Figure 18 K-means clusters of Olivetti Face data setcccoooeeveiiiniinieienienciienne 32
Figure 19 Colored K-means CIUSLErS.......cc.cevuiriiriiniiriiiieieeieteccceecee e 32

X1l

List of Tables

Table 1 Data set to be CIUSTETEdccuevuiiriiiiiiieieeieeeet e 5
Table 2 Initial K-means clUStEr CENLETSccuevuieriiriiriieriiiieriteie e 5
Table 3 Euclidean distance from each object to centroids...........ccccueevuieriienienciieniienieenee. 6
Table 4 Euclidean distances from each element to updated cluster centers 6
Table 5 Euclidean distance between data POINtS.........ceeeveeriieriieniieniieniieeie e eie e 14
Table 6 p and & for all data points of Example 2.........ccccoevviieiiiiiiiiieiieceeeeeeeee 14
Table 7 The properties of the four data Sets..........cceevuieerciieeiiiiieiie e 17
Table 8 Clustering result of the Flame data set by FSDP........cccccoevviiiiiiiiiiieeieeeees 19
Table 9 Clustering result of the Flame data set by K-meanscccccoevvvevciiencieencnnnns 20
Table 10 Clustering result of Aggregation data set by FSDP.........ccccvvvviiiiiiiiiiieens 22
Table 11 Clustering result of Aggregation data set by K-means...........cccceeeveercuieencnnens 25
Table 12 Clustering result of Iris data set by FSDP.......ccooooiiiiiiiiiiieeeeeeeee, 27
Table 13 Clustering result of Iris data set by K-means...........ccccceeevvieeniieiiieeeieeciieens 28
Table 14 Cluster result of Olivetti Face data set by FSDPccccooviiiiiiiiiiiiieieeees 31
Table 15 Detailed K-means clusters of Olivetti Face data set............ccooceeviiiiiniinnenne 33
Table 16 FSDP Entropy / Purity values of Flame data setc.cccccveeviieniiienieeeieens 35
Table 17 K-means Entropy / Purity values of Flame data set............ccccoccvvevevienciieninnns 35
Table 18 FSDP Entropy / Purity values of Aggregation data setcccceceveevueeiennnnne 35
Table 19 K-means Entropy / Purity values of Aggregation data set.........c..cccceevueruennnene 36
Table 20 FSDP Entropy / Purity values of Iris data Set..........cccceoeeiiirieneniienienienienenn 36
Table 21 K-means Entropy / Purity values of Iris data set........cc.ccocevveneniineinicnniennnn 36

xiil

Table 22 FSDP Entropy / Purity values of Olivetti face data set...........ccccecevvenieriennene 37

Table 23 K-means Entropy / Purity values of Olivetti data set.........c.cccccevvvevienieneennnne 37
Table 24 Summary of Entropy and Purity values for FSDP and K-means 37
Table 25 Summary of running time for FSDP and K-means............c.cccocevvieniininncnnenn. 38

Xiv

Chapter 1. Introduction

1.1 What is Clustering

Clustering, or cluster analysis, is to group, classify or categorize a set of objects
into many subsets, called clusters, in such a way that the items inside one subset are more
"similar" to each other, while "dissimilar" to items inside other subsets. Therefore there
must be a way to distinguish between "similar" and "dissimilar" items. There are many
measurements, or metrics to calculate the similarity. However, nobody knows which one
is best. The research about measurement is one of the challenges. Distance is one of
them. The most frequent used distance is the Euclidean distance [9]. The Euclidean
distance between points x and y is the length of the line segment connecting them. In

Cartesian coordinates, for two points x = (x1, x2, ..., X,) and y = (y1, y2, ..., }p), their
Euclidean distance is given by d{x,v) = |Z__|x; — v;1*>, where p is called the

dimension of a data point. Smaller distance means more similar. For example, there are 3
points A(xy, y1), B(x2, y2), and C(x3, y3), if d(4, B) < d(4, C), then the similarity of 4 and B
is bigger than A4 and C. Clustering belongs to unsupervised learning problem. All the

items do not have labels, and there is no prior knowledge on what the clusters look like.

1.2 Criteria to evaluate clustering algorithms

There are many clustering algorithms to choose from. Choosing a suitable

algorithm and a suitable measurement depends on the clustering task and the features of

clustering items. Generally speaking, internal criterion and external criterion are two
conventional measurements.

Internal criterion: Based on the data's intrinsic information alone.

External criterion: Based on pre-known knowledge about the data.

In this article, we mainly use two external criteria, namely, purity and entropy, to

evaluate the performance of the discussed clustering algorithms.

1.3 Organizations

The rest of this work is organized in the following fashion. Chapter two introduces
the K-means algorithm. Chapter three is about FSDP clustering algorithm. Chapter four
numerically compares the experiment results of the two clustering algorithms on four
typical data sets. Both advantages and disadvantages of the two algorithms are briefly

discussed. The last chapter gives a summary of the work including future directions.

Chapter 2. K-means clustering algorithm

2.1 Introduction to K-means clustering

K-means is a centroid based clustering algorithm. "K" represents the number of
clusters, and it is also an input parameter. Each element in the data set is assigned to a
cluster center with the smallest distance to it. There are two core steps to achieve the
clustering task: 1) find the centroids, which may or may not be very accurate; 2) assign
each data element to the cluster based on their distance. These two steps iterate until the
algorithm converges to one optimum value(most likely, it is a local optimum).

K-means is a popular algorithm since it is very easy to implement. Provided that
there is a suitable distance definition and reasonable setting of K value, it usually
achieves reasonable results. Figure 1 [3] depicts the process of the standard K-means

clustering algorithm where K = 3.

® L)
=] o 2 [] 1 a
8 H o . c\ n
a .
g o ¢ o ® G\ i
e_ o o |m Q
o a u\n
oo o
1. K initial "means” (in this 2. k clusters are created by 3. The centroid of each of the 4. Steps 2 and 3 are repeated
case k=3) are randomly associating every observation Kk clusters becomes the new until convergence has been
generated within the data with the nearest mean. mean. reached.

domain (shown in color).
Figure 1 Demonstration of K-means clustering process
From Figure 1, one can see that the K-means algorithm is not too complicated to

comprehend. The details of the algorithm are as follows.

2.2 The steps of the K-means algorithm

Given a set of n elements {xj, x5, ..., x,}, where each element is a d-dimensional
vector (d being one integer), our goal is to partition the set into & different clusters or
groups.

The steps of the K-means clustering algorithm are:

1. Initialize £ centroids m, mo, ..., m;. For simplicity, let’s select them randomly.

2. Repeat until all centroids keep constant:

Assign an element x; to the cluster S;, according to

'
L— |+
[[+

e,

i
.- |
Yit i Y

i

A

al . S 1
._??1.“ = |l — a1 1 = + = L L
I — i b 2) {

I)

Update the center of §;, namely, m;.

Figure 2 is the flowchart of K-means clustering algorithm.

preset k

.

initialize

'

assign items

¥

update centers

convergence

Figure 2 Flowchart of K-means clustering algorithm

2.3 Implementation

We use one small data set to show the steps of the K-means clustering algorithm.
Example 1: Given 8 data points: (1, 1.5), (1.2, 1.3), (1.5, 1.8), (5.0, 5.01), (5.1, 4.7),
(5.15, 5.3), (5.75, 5.2), (2.0, 6.0). Use K-means clustering algorithm to partition the set

into 2 clusters. Table 1 is the initial data set.

Table 1 Data set to be clustered

Object Number A B
0 1 1.5
1 1.2 1.3
2 1.5 1.8
3 5.0 5.01
4 5.1 4.7
5 5.15 53
6 5.75 52
7 2.0 6.0

The following two subsections 2.3.1 and 2.3.2 state the process step by step.

2.3.1 lteration 1

Initialize cluster centers: m; = (1.5, 1.8), my = (5.0, 5.01).

Table 2 Initial K-means cluster centers

Cluster Object Number Centers
Cluster 1 2 my: (1.5, 1.8)
Cluster 2 3 my: (5.0, 5.01)

Compute the Euclidean distance between all the objects and centroids. The results

are given in Table 3.

Table 3 Euclidean distance from each object to centroids

Object Number Distance to m; Distance to m;
0 0.583095 5.321663
1 0.583095 5.310753
2 0.000000 4.749116
3 4.749116 0.000000
4 4.622770 0.325730
5 5.056926 0.326497
6 5.442656 0.773692
7 4.229657 3.159130

Each object is assigned to the closest cluster. Then, the set is divided into 2 clusters:

cluster 1 = {0, 1, 2} and cluster 2 = {3, 4, 5, 6, 7}.

Update the two centroids m; and m,:

Calculate the average of all the data points in cluster 1 to get updated m;.

my=((1+12+1.5), (1.5+ 1.3+ 1.8))/3 = (1.23333, 1.53333)

Calculate the average of all the data points in cluster 2 to get updated m.

my=((5+5.1+515+575+2),(5.01 +4.7+53+52+6))/5= (4.6, 5.242)

2.3.2 lteration 2

Use the updated centroids to compute the distances once more. Table 4 shows the

results.

Table 4 Euclidean distances from each element to updated cluster centers

Object Number Distance to m/ Distance to m2
0 0.23570 5.19255
1 0.23570 5.20570
2 0.37712 4.63221

3 5.12591 0.46241
4 4.99789 0.73740
5 5.43397 0.55305
6 5.81762 1.15077
7 4.53199 2.70824

Then, we put each object into the closest cluster. The set is divided into the new
clusters: cluster 1 = {0, 1, 2}, and cluster 2 = {3, 4, 5, 6, 7}.

From the generated clusters of iteration 1 and iteration 2, we see that iteration 2
generates exactly the same clusters as iteration 1. Therefore the process converges and

ends.

Figure 3 visualizes the result.
N L
-»
-

-
!/

Figure 3 K-means clustering results for data set in Table 1

’

We can see from Figure 3 that the three blue points are relatively close to each
other; similarly for the five red points. The clustering results are expected. K-means

clustering works well for this set.

2.4 K-means clustering limitations

K-means clustering works well for the data set in Example 1. However, it does not

do so well for all kinds of data sets. Generally, K-means clustering has some limitations.

e It highly depends on the initial cluster centroids, especially when sets do not
contain many objects.

e K, the number of clusters, has to be set in advance. In fact, finding a suitable K
value is one of the challenges of the K-means clustering algorithm.

e Given the same data; it may generate different results after the objects are placed
in different orders. This is a disadvantage that might be amplified as the number
of data points increases.

e K-means clustering algorithm cannot detect non-spherical clusters. We shall see
the disadvantage of K-means clustering algorithm in Figure 9 in chapter 3.

In the next chapter, we introduce and discuss the various steps of the Fast Search and

Find of Density Peaks Clustering algorithm.

Chapter 3.Fast Search and Find of Density Peaks (FSDP) Clustering

This is a very new clustering method, which was first published on Science in June
2014 [1]. It uses one kernel function to compute each point's local density and the

minimum distance between it and other data points. We use p(i) and o(i) to represent

the two quantities of any data point i. If the data set contains a few data points, it is better
to use exponential kernel as described in Cheng [10]. Otherwise, use cut-off kernel. The
algorithm's basic idea is that the cluster center is surrounded by points with lower density,
and is far away from other points with higher density. The details of the algorithm are

discussed in the next actions of this chapters.

3.1 Introduction

In addition to the basic idea, FSDP has another excellent feature, namely decision
graph. Decision graph offers a visual foundation of this algorithm. One can figure out the
number of the most reasonable partitions of one data set by using its related decision
graph. An example of a decision graph is given in Figure 4 [1]. The horizontal axis is the
set of local density p, and the vertical axis the set of the minimum distance §. From
Figure 4, we see 5 colored points. It is reasonable to partition this data set into 5 groups

and the 5 colored points are the centers of these groups.

0.4 ®
0.3 o -
o ;
0.2 ® '
o]
01 o
' N
k—ﬁ -
0.0 j

0 150 3bo = 4s0
p

Figure 4 A decision graph

3.2 The FSDP Algorithm

Prerequisites: dc, Pmin, §,,.,. Exponential kernel, Cut-off kernel.

dc is a pre-set numerical value, which controls how many neighbors one item can
have , and also controls whether a data point belongs to a halo (to be explained in section
3.2.3) or not. It can be experimentally shown that the choice of dc will affect the
clustering results. The rule of thumb is to set its value to allow any data point have 1% -
2% of the total number of points as neighbors.

Pmin and & are threshold values for determining clustering centers, or

min

determining the number of clusters. If the density p of one point is not less than Pmin, and

the & of the point is not less than &,..., the point is one of the centers. Setting these

values requires help from decision graph.

10

7.X2

Exponential Kernel: f(x,m)= em ,m #0.

ILx<O0

Cut-off Kernel: y(x)= o
0, otherwise

3.2.1 Step 1: find centers

The first step is to find the cluster centers. To do this, we have to compute some
numerical values as follows.

Suppose one data set is S. For each point i .S, compute po(i) and o(i)
1. Compute density p(i) :

For sets with few points, use Exponential Kernel.

_di
pli)= e
ij,ieS

For sets with more points, use Cut-off Kernel.

p)= > x(d;-d,)

jeS,i#j
where d; is the distance between point i and point /, and d, is one preset value.
2. Compute O(7):
e if point i has the biggest density,
6(i)=max ;_(d;)
e otherwise,

o()= min (d;)

Jjpj>pirJes

11

3. Compute the nearest neighbor: nearest(i)

If point j satisfies the formula: d, = mind, , point j is called the nearest

p(k)>p(i)
k,jeS ki, j#i

neighbor of point i and nearest(i) =j.
4. Plot decision graph:

Once p and & are computed, one can plot the decision graph of o (as the horizontal

axis) and 4 (as the vertical axis). Based on the graph, one can set thresholds (g,..;,., §,,.:5.)

to get the set of cluster centers:.

centers = {ZES | pi 2 pmin’é‘i ngin}

3.2.2 Step 2: assign data points to different clusters

After the cluster centers are determined, it is straightforward to assign other data
points to clusters.
1. Sort points in terms of their density values.

2. Assign data point i to the same cluster as its nearest neighbor.

3.2.3 (Optional) Step 3: separate the objects of any cluster into cores and halos

Considering that many data sets may be contaminated by noise, FSDP introduces the
concepts of halo and core. In terms of threshold dc, any cluster is separated into two sets:

core and halo.
The steps to find the halo and core are as follows:

1. Find the boarder region for each cluster.

If points i and j belong to cluster(7) and cluster(;), and dist(i, j) is less than dc, then

12

i is in the boarder region of cluster(i), and j is in the boarder region of cluster(y).

2. Figure out the boarder region p, for each boarder region.

The boarder region p, has the largest value in the density set of all the data points

in this border region.

3. Split data points into halo and core according to p, .

If one data point has bigger density than the boarder region p, of its cluster, the

data point is assigned into the core of the cluster, otherwise it is assigned to the halo.

3.2.4 Flowchart of FSDP algorithm

J

compute
distance matrix

[

centers

|

figure out | ——>

assign points
to clusters

|

set Pmin and &,y

(optionally)
compute halo

set dc by decision graph
compute p d
and & for each raw.
. decision
data point
graph

3.3 Implementation

Figure 5 Flowchart of FSDP Algorithm

Example 2: Consider the data set of Table 1.

13

Step 1. Calculate the distance matrix of this data set (here we use Euclidean

distance). It is a symmetric matrix, so only one half of the values need to be computed,

and shown in Table 5.

Table 5 Euclidean distance between data points

Figure 6 Decision graph for Example 2

14

0 1 2 3 4 7
0 0.2828 0.5831 5.3217 5.201 5.6269 6.0210 4.6098
1 0.5831 5.3108 5.174 5.6216 5.9927 4.7676
2 4.7491 4.6228 5.0569 5.4427 4.2297
3 0.3257 0.3265 0.7737 3.1591
4 0.6021 0.8201 3.3615
5 0.6083 3.2268
6 3.8344
7
Step 2. Set dc = 0.384. We use Exponential Kernel to compute pand & .
Table 6 p and & for all data points of Example 2
0 1 2 3 4 5 6 7
P 0 0.5813 | 0.1993 | 3.7e-67 |0.4870 | 0.5708 | 0.1090 |4.3e-30
) 0.2828 6.021 0.5831 0.3257 10.6021 | 5.6216 | 0.6083 |3.2268
Step 3. Plot decision graph.
: _ 2
4l
£

In Figure 6, the two points, in the upper right corner, are outliers. Therefore, it is

the most reasonable choice to partition this set into 2 clusters.

Step 5. Based on Table 6, g,...... and &,...» find centers are point 1 and point 5.

Step 6. Group the data set into 2 clusters: {0, 1, 2}, {3,4, 5,6, 7}.

|
ud |
o ° 5
* &

Figure 7 Two clusters for the eight data points
Here we can see, for this data set, the algorithm has the same clustering results as
K-means. The advantage of FSDP is that it does not need to iterate and set the initial

centers. This is due to the fact that FSDP can give out the number of centers by itself.

15

In the next chapter, we will compare the two clustering methods by considering

various data sets.

16

Chapter 4. Comparative experiments on typical data sets

In previous chapters, we have discussed the K-means clustering algorithm and FSDP
clustering algorithm. To demonstrate their differences, we apply them to four typical data
sets. These data sets are the Flame data set, the Aggregation data set, the Iris data set and
the Olivetti Face data set [5]. Their basic information is listed in Table 7. The first three
data sets are from speech and image processing. The Olivetti Face Data set is from ATT,
which is composed of pictures of 40 individuals. Each individual has 10 pictures. The
first 100 pictures and the distance matrix [6] are adopted here.

Note that each data set has its definite clustering result, called initial clustering. In
what follows, we will apply the two clustering algorithms to each set. Then we compare

the generated results with the initial clustering.

Table 7 The properties of the four data sets

Data set name Data set size Dimension Initial clusters
Flame 240 2 2
Iris 150 4 3
Olivetti Face 100 (pictures) 64x64 pixels (grayscale) 10

4.1 Test with Flame data set

41.1 FSDP

For the Flame data set, we preset parameters: dc = 1.8, Pmin= 12 and §,,;,= 6. The

left graph of Figure 8 is its decision graph, and the right graph is the clustering results.

17

......

.....

.
. "..'0‘- ., L
AT A P e

Figure 8 The decision graph (left) and clusters (right) of Flame data set by FSDP
From Figure 8, we can see that the two points in the circle have high p and §
values and are far from the other points. They can be set as cluster centers, and thus the
two clusters are obtained, as can be seen in different colors in the right graph of Figure 8.
Moreover, the data set actually contains two different partitions according to provided

initial clusters. This also shows that FSDP can provide the most reasonable partitions.

The centers and data members are given in Table 8.

18

Table 8 Clustering result of the Flame data set by FSDP

Items

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,
77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,
100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,
117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,
134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,

151,152,153,157,158,163

Cluster Center
0 83
1 236

0,1,154,155,156,159,160,161,162,164,165,166,167,168,169,170,171,172,
173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,
190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,
207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,

224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239

In Table 8, only two points (number 157 and number 158, in red) were not assigned

into their original groups. The running time is 3024 microseconds.

4.1.2 K-means

Let us compare the result to the one obtained by the K-means algorithm. Figure 9

shows its two clusters in blue and red, respectively. It can be observed that many points

are assigned to the wrong cluster. Their numbers are listed (in red) in Table 9.

19

Figure 9 Clustering result of the Flame data set by K-means
This is a case of non-spherical clustering. This case reveals one of the limitations of the
K-means clustering.

Table 9 Clustering result of the Flame data set by K-means

Cluster Center Items

0 38 B2, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
108,109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
127,128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,

146, 147, 148, 149, 150, 151, 152, 155, 157, 158, 159, 174

1 30 0,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 33, 34, 35, 36, 153, 154, 156, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189,
190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,

228,229,230, 231,232, 233, 234, 235, 236, 237, 238, 239

From Table 9, we see that 41 items are misclassified. The running time is 58.0

20

microseconds.

4.2 Test with Aggregation data set

The second data set is Aggregation data set.

4.2.1 FSDP

We preset dc = 1.5, Pmin= 1, and & ,;;,= 6. Figure 10 is the decision graph. Figure

11 is the clustering result.

£.6300400257 50947

& 810450520050402

Figure 10 Decision graph of Aggregation data set

Figure 11 Clustering result of Aggregation data set by FSDP

21

This example shows FSDP can handle non-spherical data. Table 10 gives the detailed

clustering result. However, Table 10 is too big to fit in one page.

Table 10 Clustering result of the Aggregation data set by FSDP

Cluster Center Items

0 126 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,
33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,
62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,
91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,1 11,112,113,
114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,
134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,

154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169

1 198 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,

190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206

2 382 207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,
227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245 246,
247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,
267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,
287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,
307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,
327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,
347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,
367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,
387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,
407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,
427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442 443,444,445 446,
447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,

467,468,469,470,471,472,473,474,475,476

3 553 477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,
497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,

517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,

22

537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,
557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,

571,578,579, 580,581,582

4 658 583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,
603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,
623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,
643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,
663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,
683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,

703,704,705,706,707,708

5 753 709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,
729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,

749,750,751,752,753

6 778 754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,

774,775,776,777,778,779,780,781,782,783,784,785,786,787

From Table 10, we can see that FSDP performs pretty well to identify these clusters.
Only 7 objects (marked in red in Table 10) were misclassified. The running time is 5237

microseconds.

23

4.2.2 K-means

We set K to 7. Then let us see how K-means clustering algorithm works. Figure 12

shows the clustering result. Table 11 gives the detailed result. Table 11 is still divided

into two parts.

L] []
-
n__l__-_.-..-._-_-_ _-_......
. . w8 W
"% e N M
g ae® Tttt N,
L L -
.-.....-..I....-.-_-._-.....-._-_ .ﬂ-_t
.t-_....l.h.-...._-__-_... 1.
. -
....u.._-_.-_-._.....-..-._-_"...._-ﬂ....f....__.-_......
PR LT B L

Figure 12 Clustering result of Aggregation data set by K-means
24

Table 11 Clustering result of Aggregation Data set by K-means

Cluster

Initial centroid

Items

255

327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344,
345, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369,
370,371,374, 375, 376, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398,
399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416,
419, 420, 421, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437,
438,439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455,
456,457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473,

474, 475,476

140

1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28,29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52,53, 54,55,56,57, 58,59, 60,61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,73, 74, 75,
76,77,78,79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118,119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,

154,155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 167, 168, 169

286

207,208,211, 212,213, 214, 215, 216, 217, 218, 219, 220, 221, 222,223, 224, 225, 226,
227,228,229, 230, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265,
266, 267, 268, 269, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285,
286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303,
304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321,
322,323, 324, 325, 326, 346, 347, 348, 349, 350, 351, 352, 372, 373, 377, 378, 379, 380,

381, 382, 383,384, 385,417, 418, 422

509

477,478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494,
495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512,
513,514, 515,516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530,
531,532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548,
549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566,

567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580

25

4 156 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598,
599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616,
617,618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634,
635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652,
653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670,
671,672, 673,674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688,
689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706,

707, 708

5 260 170, 171,172, 173,174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,

188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203,
754,755, 756,757, 758, 759, 760, 761, 762, 763,

764,765, 766, 767, 768, 769, 770, 771, 772,773, 774, 775, 776, 777, 778, 779, 180, 781,

782,783,784, 785, 786, 787

6 38 0, 165, 166, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723,
724,725,726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741,

742,743,744, 745, 746, 747, 748, 749, 750, 751, 752, 753

From Figure 12, we can see that the clusters of the non-spherical data set are not
well captured by K-means clustering algorithm. Table 11 also shows 49 items to be

misclassified (marked in red in Table 11). The running time is 86.0 microseconds.

4.3 Test with Iris Data set

4.3.1 FSDP

Preset dc = 1.1, Pmin= 30, and & ,;,= 0.93. FSDP also gives a reasonable partitions

of this data set.

26

0.4372300021 13451
£327370053088817
i

. .. . “. .". o = o
I LATCE e KV PO

Figure 13 Decision graph (left) and cluster result (right) of Iris data set by FSDP

Table 12 Clustering result of Iris data set by FSDP

Cluster |Center Items

0 49 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,

36,37,38,39,40,41,42,43,44,45,46,47,48,49

1 99 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,73,74,75,76,77,78,79,80,81,82,84,

85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,106

2 149 70,72,83,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121
,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144

,145,146,147,148,149

FSDP partitions it into three clusters. Figure 13 includes the decision graph and the
plot of clustering result. Only four items (items in red in Table 12) are misclassified. The

running time of the program is 2469 microseconds.

27

4.3.2 K-means

Figure 14 Clustering result of Iris data set by K-means

Table 13 Clustering result of Iris data set by K-means

Cluster | Initial center Items

50, 52,77, 100, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 115, 116, 117, 118, 120, 122,

0 129
124,125, 128,129, 130, 131, 132, 134, 135, 136, 137, 139, 140, 141, 143, 144, 145, 147, 148

1 79 0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29,30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49

2 55 51,53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,74, 75, 76, 78,

79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 106, 113, 114,

119, 121, 123, 126, 127, 133, 138, 142, 146, 149

Table 13 shows that 17 items are misclassified. The running time of the program is

27 microseconds.

28

4.4 Olivetti Face data set

Given a set of face photos, how can we determine which photos belong to the
same person? In other words, how can we partition the images such that the pictures that
are in the same partition belong to the same person? This is easy for humans, but it is
hard for computers. Let us test the two clustering methods on this data set. Figure 15
shows some of the photos. It includes 10 rows, and each row is composed of 10 photos of

one same people.

I T

3 e JE

Figure 15 First 100 faces from Olivetti Face data set

441 FSDP

The data set is special for FSDP since the number of real clusters is comparable to

the number of items. This makes a reliable estimate of the densities difficult. Thus, we

29

assign images to a cluster following a slightly more restrictive criterion than in the
preceding examples. An image is assigned to the same cluster of its nearest image with
higher density only if their distance is smaller than dc. As a consequence, the images
further than dc from any other image of higher density remain unassigned.

Preset dc = 0.07, Pmin=0.6 and &,,;,= 0.2,

Figure 16 contains the decision graph and the plot of the clustering result of

Olivetti Face data set by FSDP algorithm. Figure 17 shows the clustering result.

1.0100384058884479
02338

Figure 16 Decision graph of Olivetti Face data set (left), and the clusters (right) by FSDP

30

Figure 17 Clustering result of Olivetti Face data set by FSDP clustering algorithm

Table 14 lists the details.

Table 14 Cluster result of Olivetti Face data set by FSDP

Cluster Center Items
0 19 10,12,16,17,19
1 27 26,27
2 29 28,29
3 37 30,32,37
4 46 40,43,46
5 59 53,54,55,59
6 68 60,61,62,63,64,65,66,67,68
7 77 72,74,75,77
8 97 91,94,95,97

This algorithm assigns the photos of the same person into the same cluster. But
there are some photos not assigned into any cluster due to the restrictive criterion.

Finally, 36 images are correctly grouped. The running time of this program is 2217

31

ds.

miCroSecon

means

44.2 K-

i

SR
- i
-

.
.
.
=

.
"

.
|
.

!
|
|
|
|

-

-

s

Figure 18 K-means clusters of Olivetti Face data set

et

-

=
i

.

B
-

-

-

s
-
.

-

&

i

-
e

-
P

-

-

-
-

&

8

4]

i
.

.
-

-

.

-
-

-

.

-

L

.

Figure 19 Clustering result of Olivetti Face data set by K-means clustering algorithm

32

Table 15 Cluster result of Olivetti Face data set by K-means

Cluster | Initial center Items
0 44 , 35,40, 43,44, 46, 55, 98
1 85 45,47, 48, 85, 86
2 82 41, 80, 81, 82, 83, 84, 87, 88,
3 51 , 30, 36, 38,42, , 89,92,93,94, 96, 97
4 62 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72,73, 74,75, 76, 77, 78, 79
5 22 21,22,28,29, 31, 33,34, 63,99
6 96 ,32,37,39,49, 53, 54, 56, 59
7 1 0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19
8 95 20, 50, 52,91, 95

From Table 15, we can see that K-means put all items into different clusters.

However, many photos of one same person are assigned into different clusters. Only

cluster 8 contains photos of the same person. The running time of the program is 13.0

microseconds.

4.5 Validation

Two criteria are applied to compare the two algorithms.

The following terminology is used for both criteria.

cluster i.

L: the number of classes.

k: the number of clusters.

m;: the number of items in cluster ;.

m;;: the number of items which belong to class j and are assigned into

m: the total number of items.

33

pii= mj/m;: the "probability" that one member of cluster i belongs to class j.

4.5.1 Entropy

The Entropy of each cluster j is calculated using the standard formula:

L
= _Zpij 10g2 y4n

j=1

The total entropy for a set of clusters is:

=2

i=

4.5.2 Purity
The purity of cluster j is given by
~max?2a;
The total purity for a set of clusters is
5 om,
urit —Lp,
purity = Z P,

The entropy and purity of FSDP and K-means clustering algorithm for the previous
four data sets are listed separately in Tables 16 to 24. Higher purity and lower entropy

mean better clustering result.

By comparing the two tables, we see that FSDP works better than K-means on this

data set. The values (in bold) show the results of entropy and purity.

34

Table 16 FSDP Entropy / Purity values of the Flame Data set

Cluster Class 1 Class 2 Entropy Purity
0 2 153 0.09948 0.98710
1 85 0 0.0 1.0
Total 87 153 0.06424 0.99167

Table 17 K-means Entropy / Purity values of the Flame Data set

Cluster Class 1 Class 2 Entropy Purity
0 5 117 0.24678 0.95902
1 83 35 0.87711 0.70339
total 88 152 0.55669 0.8333

Table 18 FSDP Entropy / Purity values of the Aggregation data set

Cluster [Class 1 (Class 2 [Class 3 (Class 4 (Class 5 |Class 6 [Class 7| Entropy Purity
0 0 170 0 0 0 0 0 0.0 1.0
1 0 0 0 3 0 0 34 0.40598 0.91892
2 0 0 0 0 270 0 0 0.0 1.0
3 0 0 102 0 0 4 0 0.23181 0.96226
4 0 0 0 0 0 126 0 0.0 1.0
5 45 0 0 0 0 0 0 0.0 1.0
6 0 0 0 0 34 0 0 0.0 1.0
Total 45 170 102 3 304 130 34 0.05024 0.99112

35

Table 19 K-means Entropy / Purity values of the Aggregation data set

Cluster [Class 1 |Class 2 |Class 3 |Class 4 |Class 5 |Class 6 |Class 7 | Entropy Purity
0 0 0 0 129 0 0 0 0.0 1.0
1 0 167 0 0 0 0 0 0.0 1.0
2 0 0 0 134 0 0 0 0.0 1.0
3 0 0 102 2 0 0 0 0.13710 0.98077
4 0 0 0 0 0 128 0 0.0 1.0
5 0 0 0 10 34 0 34 1.42429 0.43590
6 45 3 0 0 0 0 0 0.33729 0.93750
Total 45 170 102 265 34 128 34 0.17962 0.93782
Table 20 FSDP Entropy / Purity values of the Iris data set
Cluster Class 1 Class 2 Class 3 Entropy Purity
0 50 0 0 0.0 1.0
1 0 47 1 0.14609 0.97917
2 0 3 49 0.31822 0.94231
Total 50 50 50 0.157065 0.97333
Table 21 K-means Entropy / Purity values of the Iris data set
Cluster Class 1 Class 2 Class 3 Entropy Purity
0 0 3 36 0.39124 0.92308
1 50 0 0 0.0 1.0
2 0 47 14 0.77715 0.77049
Total 50 50 50 0.41777 0.88667

36

Table 22 FSDP Entropy / Purity values of the Olivetti face data set

Cluster Class1Class2| C3 | C4 | C5 | C6 | C7 | C8 | C9 |CI0 Entropy|Purity
0 0 5 0 0 0 0 0 0 0 0 0.0 1.0
1 0 0 2 0 0 0 0 0 0 0 0.0 1.0
2 0 0 2 0 0 0 0 0 0 0 0.0 1.0
3 0 0 0 3 0 0 0 0 0 0 0.0 1.0
4 0 0 0 0 3 0 0 0 0 0 0.0 1.0
5 0 0 0 0 0 4 0 0 0 0 0.0 1.0
6 0 0 0 0 0 0 9 0 0 0 0.0 1.0
7 0 0 0 0 0 0 0 4 0 0 0.0 1.0
8 0 0 0 0 0 0 0 0 0 4 0.0 1.0
9 0 0 0 0 0 0 0 0 0 0 0.0 0.0

Total | 0 5 4 3 3 4 9 4 0 4 0.0 1.0

Table 23 K-means Entropy / Purity values of the Olivetti data set

Cluster Class1 Class2 | C3 | C4 | C5 | C6 | C7 C9 |C10 | Entropy | Purity
0 0 0 1 1 4 1 0 0 0 1 2.0 0.5
1 0 0 0 0 3 0 0 0 2 0 10.970950 0.6
2 0 0 0 0 1 0 0 0 7 1 10.98643 | 0.77778
3 0 0 1 3 1 3 0 0 1 5 12.29883 |0.357143
4 0 0 0 0 0 0 9 10 | 0 0 10.99800 | 0.52632
5 0 0 4 3 0 0 1 0 0 1 1.75272]0.444444
6 0 0 3 3 1 4 0 0 0 0 |1.86763 [0.363636
7 10 10 0 0 0 0 0 0 0 0 1.0 0.5
8 0 0 1 0 0 2 0 0 0 2 11.52193 0.4
9 0 0 0 0 0 0 0 0 0 0 0.0 0.0
Total | 10 10 10 |10 [13 |10 |17 [10 | 12 | 10 | 1.44806 0.49
Table 24 Summary of Entropy and Purity values for FSDP and K-means
Data set Purity Entropy
FDSP K-means FDSP K-means
Flame 0.99167 0.83333 0.06425 0.55669
Aggregation 0.99111 0.937817 0.05025 0.17962
Iris 0.97333 0.88667 0.15706 0.41777
Olivetti 1.0 0.49 0.0 1.44806

37

Table 25 shows the running time on the four data sets by the two algorithms.

Table 25 Summary of running time for FSDP and K-means

Running time (microseconds)
Data set
FSDP K-means
Flame 3024 58
Aggregation 5237 86
Iris 2469 27
Olivetti 2217 13

From Tables 16 to 24, we conclude the following:
1. FSDP is more accurate than K-means on the 4 data sets. The fact is true due to the
following 3 reasons:

e The values of purity by FSDP clustering algorithm are bigger than the ones
by the K-means clustering algorithm. The value of purity is between 0 and 1.
When the result of clustering is completely incorrect, the value of purity will
be 0. Larger values of purity correlate with better accuracy. So FSDP
clustering algorithm is more accurate than K-means clustering algorithm.

e The values of entropy by FSDP clustering algorithm are smaller than the
ones obtained by the K-means clustering algorithm. A smaller value of
entropy means better accuracy. So FSDP clustering algorithm is more
accurate than K-means clustering algorithm.

e The number of misclassified items by FSDP clustering algorithm is less than

the ones obtained by the K-means clustering algorithm. The fewer the

38

misclassified items, the more accurate the algorithm. So FSDP clustering
algorithm is more accurate than K-means clustering algorithm.

2. FSDP clustering algorithm is more stable than K-means clustering algorithm.

The results of K-means clustering algorithm strongly depend on the initial centers
and the order of items. The initial centers are usually chosen randomly. In addition, when
the order of items is changed, it is possible that the clustering result will be different. On
the other hand, FSDP clustering algorithm does not have this problem. So FSDP
clustering algorithm is more stable than K-means clustering algorithm.

However, K-means clustering algorithm is faster than FSDP clustering algorithm.
From Table 25, one can see that K-means was much faster than the FSDP algorithm. For
example, with the Olivetti data set, K-means is 2217/13 = 170 faster than the FSDP
algorithm. The main reason behind the slow pace is the drawing of the decision graph.

In this chapter, we tested the performance of the two algorithms, the K-means and
FSDP by running them on 4 data sets: Flame, Aggregation, Iris, and Olivetti. We
concluded that FSDP is more accurate but much slower than the K-means algorithm.

In the next chapter, we conclude this work and suggest future extensions.

39

Chapter 5. Conclusions

In this work, we discussed two clustering algorithms, the K-means clustering

algorithm and Fast Search and Find Density of Peaks (FSDP) clustering algorithm.

K-means clustering algorithm partitions by using multiple iterations. This algorithm
is easy to understand and implement. However, its results depend on initial cluster
centers and the order of items inputted. Moreover, for non-spherical data sets, K-means

clustering algorithm does not work well.

The FSDP clustering algorithm is new. It is based on the observation that a cluster
center has a high density of data points, but the center is far away from other centers. The
FSDP clustering algorithm needs to compute the density p and the distance 6 for all
items. The o -vs- p decision graph helps decide the number of clusters, and it also

indicates which data point should be the cluster center.

In the two algorithms, the distance between all pairs of data points has to be
computed. Choosing the distance function is one important step for solving clustering
problems. However, nobody knows which distance function can work well for one data

set. It is a challenging topic.

40

As possible future extensions of this works, one can work on the decision graph.
The decision graph is the core feature of the FSDP clustering algorithm. With the
decision graph, we can set the thresholds and search for the centers. However, the
decision graph takes a long time to complete for large sets. Decreasing the time of getting

decision graph is one of the future targets.

Another possible challenge for the future work is using the parallel computation.
Both algorithms in this work are easy to be parallelized. In FSDP, for example, the
computation of the distance 6 and the density p of all data points is independent of each
other. They can be distributed to many computational nodes/CPUs. In K-means, updating

the cluster centers is easy by parallel computation.

41

References

[1] Alex Rodriguez and Alessandro Laio, “Clustering by fast search and find of density

peaks,” Science, Vol. 344, No. 6191, pp. 1492-1496, 2014.

[2] Rui Xu, Donald Wunsch, “Survey of Clustering Algorithms,” IEEE Transactions on

Neural Networks, Vol. 16, No. 3, pp. 645-678, 2005.

[3] https://en.wikipedia.org/wiki/K-means_clustering, last checked on 11/08/2015

[4] Yizong Cheng, “Mean shift, mode seeking and clustering,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 17, No. 8, pp. 790-799, 1995.

[5] Clustering data set, http://cs.joensuu.fi/sipu/data sets/, last checked on 11/08/2015

[6] http://people.sissa.it/~laio/Research/Res_clustering.php, last checked on 11/08/2015

[7] https://en.wikipedia.org/wiki/DBSCAN, last checked on 11/08/2015

[8] https://en.wikipedia.org/wiki/Apache_Hadoop, last checked on 11/08/2015

[9] https://en.wikipedia.org/wiki/Euclidean_distance, last checked on 11/08/2015

[10] Y. Cheng, “Mean shift, mode seeking, and clustering”, IEEE Trans. Pattern Anal.
Mach. Intell, vol. 17, no. 8, pp. 790-799, 1995.

42

Appendix: Source code

The following is the source codes for FSDP.

package ¢s298;

import javax.swing.*;

import calculateDistanceMatrix. *;
import mdsj.MDSJ;

import org.math.plot.*;

import java.util. ArrayList;

import java.io.*;

public class FFSP {
double[][] distanceMatrix;
int[] clusterArray;
int[] centers;
double cutoffdc;
public static double[] rhoArray;
public static double[] deltaArray;
//double[] sortedDeltaArray;
int[] originallndexOfDelta;
double[] sortedRhoArray;
int[] originallndexOfRho;
double rhomin;
double deltamin,;
static int clusterNumbers;
static ArrayList<ArrayList<Integer>> group;

ArrayList<Integer> halo;

43

int[] index;

//this constructor for files which contains the distance between points

/*

* The only input needed is a distance matrix file

The format of this file should be:

Column 1: id of element i

Column 2: id of element j

Column 3: dist(i,j)

* %/

public FFSP(double[][] distanceMatrix, double cutoffdc, double thomin, double deltamin){
clusterNumbers = 0;
clusterArray = new int[distanceMatrix[0].length];
for(int i = 0; i < distanceMatrix[0].length; i++){

clusterArray[i] = -2;
H
centers = new int[distanceMatrix[0].length];
for(int i = 0; i < distanceMatrix[0].length; i++){
centers[i] = -1;

H
this.distanceMatrix = distanceMatrix;
this.cutoffdc = cutoffdc;
this.rhomin = rhomin;
this.deltamin = deltamin;
rhoArray = new double[distanceMatrix[0].length];
deltaArray = new double[distanceMatrix[0].length];
group = new ArrayList<ArrayList<Integer>>();

halo = new ArrayList<Integer>();

originallndexOfDelta = new int[distanceMatrix[0].length];

index = new int[distanceMatrix[0].length];

44

for(int i = 0; i < index.length; i++){

index[i] =1;

}

//this constructor for the file which contains the points
public FFSP(String dir, double cutoffdc, double rhomin, double deltamin){
CalculateDistanceMatrix cdm = new CalculateDistanceMatrix(dir);

distanceMatrix = cdm.distanceMatrix();

clusterNumbers = 0;

clusterArray = new int[distanceMatrix[0].length];

for(int i = 0; i < distanceMatrix[0].length; i++){
clusterArray[i] = -2;

}

centers = new int[distanceMatrix[0].length];

for(int i = 0; i < distanceMatrix[0].length; i++){
centers[i] = -1;

}

this.cutoffdc = cutoffdc;

this.rhomin = rhomin;

this.deltamin = deltamin;

rhoArray = new double[distanceMatrix[0].length];

deltaArray = new double[distanceMatrix[0].length];

group = new ArrayList<ArrayList<Integer>>();

halo = new ArrayList<Integer>();

originallndexOfDelta = new int[distanceMatrix[0].length];

index = new int[distanceMatrix[0].length];

for(int i = 0; i < index.length; i++){

index[i] =1i;

45

}

/Nocal density of point index: rho. here we use X(chi) function
//% "Cut off" kernel
%
public int localDensity(int index){
int rho = 0;
for(int i = 0; i < distanceMatrix[0].length; i++){
if(distanceMatrix[index][i] < cutoffdc && i != index)

rho++;

return rho;

*/

// Gaussian kernel

double localDensity(int index){
double rho = 0;
for(int i = 0; i < distanceMatrix[0].length && i != index; i++){
rho = rho + Math.exp(-
(distanceMatrix[i][index]/cutoffdc)*(distanceMatrix[i][index]/cutoftdc));

}

return rho;

/IthoArray and deltaArray
void calculateRhoArrays(){
for(int i = 0; i < distanceMatrix[0].length; i++){

rhoArray[i] = localDensity(i);

46

//System.out.println("rho:"+rhoArray[i]);

//sort Arrayi'i"ascendi’a%o and remember the original index

void sortRhoArray(){

sortedRhoArray=rhoArray;

double temp;

int temp2;

for(int i = 0; i <sortedRhoArray.length-1; i++){

for(int j = i+1; j < sortedRhoArray.length; j++){
if(sortedRhoArray[i] > sortedRhoArray[j]){

temp = sortedRhoArray[i];
sortedRhoArray[i] = sortedRhoArray[j];

sortedRhoArray[j] = temp;

temp2 = index[i];

index[i] = index[j];

//System.out.println (" *#AskHAddH1

//System.out.print("i"+"j"+i+","+j);

index[j] = temp2;

47

//calculate neighbor
int neighbor(int 1) {

int neighborOfi = Integer. MAX VALUE;

double temp = Double. MAX VALUE,;

for(int j = 0; j < distanceMatrix[0].length; j++){

if(index[j] == i){
for(int k = j+1; k < distanceMatrix[0].length; k++){
if(distanceMatrix[index[k]][i] < temp){
temp = distanceMatrix[index[k]][i];

neighborOfi = index[k];

break;

if(neighborOfi == Integer. MAX_ VALUE)
neighborOfi = i;

return neighborOfi;

//distance delta from higher points of higher density point
public double distanceFromHigherDensity(int point){
double delta;
double tempMaxValue = Double. MIN_VALUE;
for(int i = 0; i < distanceMatrix[0].length; i++){
for(int j = i+1; j < distanceMatrix[0].length; j++){
if(distanceMatrix[i][j] > tempMaxValue){

tempMaxValue = distanceMatrix[i][j];

48

delta = tempMaxValue;

for(int i = 0; i < distanceMatrix[0].length; i++){
if(index[i] == point){
for(int j = i+1; j < distanceMatrix[0].length; j++){
if(distanceMatrix[point][index[j]] < delta){

delta = distanceMatrix[point][index[j]];

break;

}

deltaArray[point] = delta;

return delta;

}

//calculate the deltaArray
void calculateDeltaArrays(){
for(int i = 0; i < distanceMatrix[0].length; i++){
deltaArray[i] = distanceFromHigherDensity(i);

//System.out.println("rho:"+rhoArray[i]);

// sort delta array

49

/%
void sortDeltaArray(){
double temp;
for(int i = 0; i <sortedRhoArray.length-1; i++){
for(int j = i+1; j < sortedRhoArray.length; j++){
if(deltaArray[i] > deltaArray[j]){
temp = deltaArray[i];
deltaArray[i] = deltaArray[j];

deltaArray[j] = temp;

*/
//assign points: points with bigger delta and rho are centers

//all data sets except olivetti face sets

void cluster(){

for(int i = 0; i < distanceMatrix[0].length; i++){
if(localDensity(i) >= rhomin && deltaArray[i] >= deltamin){
System.out.println("the center point:"+i);
System.out.println("rho"+localDensity(i));
System.out.println("delta"+deltaArray[i]);
clusterArray[i] = clusterNumbers; // clusterNumbers: the NO. of cluster.

clusterCenters[i]: point i is the center if clusterCenters[i] = -2

50

centers[clusterNumbers] = i;

clusterNumbers++;

for(int j = distanceMatrix[0].length-1; j >= 0; j--){
if(clusterArray[index[j]] == -2){

clusterArray[index[j]] = clusterArray[neighbor(index[j])];

}
//initialize group
for(int i = 0; i < clusterNumbers; i++){
group.add(new ArrayList<Integer>());
}
if(clusterNumbers != 0){
for(int k = 0; k < distanceMatrix[0].length; k++){
for(int i = 0; i < clusterNumbers; i++){
if(clusterArray[k] == 1){

group.get(i).add(k);

51

/fjust for olivetti face data sets
/%

void cluster(){

for(int i = 0; i < distanceMatrix[0].length; i++){
if(localDensity(i) >= rhomin && deltaArray[i] >= deltamin){
System.out.println("the center point:"+i);
System.out.println("rho"+localDensity(i));
System.out.println("delta"+deltaArray[i]);
clusterArray[i] = clusterNumbers; // clusterNumbers: the NO. of cluster.
clusterCenters[i]: point i is the center if clusterCenters[i] = -2
centers[clusterNumbers] = i;

clusterNumbers++;

for(int j = distanceMatrix[0].length-1; j >= 0; j--){
if(clusterArray[index[j]] == -2 &&
distanceMatrix[index[j]][neighbor(index[j])]<cutoftdc){

clusterArray[index[j]] = clusterArray[neighbor(index[j])];

}
//initialize group
for(int i = 0; i < clusterNumbers; i++){

group.add(new ArrayList<Integer>());

52

if(clusterNumbers != 0){
for(int k = 0; k < distanceMatrix[0].length; k++){
for(int i = 0; i < clusterNumbers; i++){
if(clusterArray[k] ==1){

group.get(i).add(k);

*/

//halo for any data set but olivetti face data set

void halo(){

double[] boarderRho = new double[clusterNumbers];

System.out.println("first halo size:"+halo.size());
for(int i = 0; i < distanceMatrix[0].length-1; i++){
for(int j =1+ 1; j < distanceMatrix[0].length; j++){
if(clusterArray[i] != clusterArray[j] && distanceMatrix[i][j] < cutoffdc){
if(boarderRho[clusterArray[i]] < localDensity(i)){
//System.out.println("******cluster
"+clusterArray[i]+":"+i+":"+localDensity(i));
boarderRho|[clusterArray[i]] = localDensity(i);

}

if(boarderRho[clusterArray[j]] < localDensity(j)){

53

//System.out.printIn("******cluster
"+clusterArray[j]+":"+j+":"+localDensity(j));

boarderRho|[clusterArray[j]] = localDensity(j);

for(int i = 0; i <clusterNumbers; i++){

System.out.println("cluster boardRho"+i+":"+boarderRho[i]);

for(int j = 0; j < group.size(); j++){
System.out.println("group "+j);
for(int k = 0; k < group.get(j).size();k++){
System.out.print(localDensity(group.get(j).get(k))+" ");

}

System.out.println();

System.out.println("first group size:"+group.size());
for(int i = 0; i < group.size(); i++){

for(int j = 0; j < group.get(i).size(); j++){

if(localDensity(group.get(i).get(j)) < boarderRho[i]){

halo.add(j);

//halo.get(i).add(j);

54

// for olivetti face set
/*
void halo(){

double[] boarderRho = new double[clusterNumbers];

System.out.println("first halo size:"+halo.size());
for(int i = 0; i < distanceMatrix[0].length-1; i++){
for(int j =1+ 1; j < distanceMatrix[0].length; j++){
if(clusterArray[i] != clusterArray[j] && distanceMatrix[i][j] < cutoffdc){
if(clusterArray[i] != -2 && boarderRho[clusterArray[i]] < localDensity(i)){
//System.out.println("******cluster
"+clusterArray[i]+":"+i+":"+localDensity(i));
boarderRho[clusterArray[i]] = localDensity(i);
}
if(clusterArray[j] != -2 && boarderRho[clusterArray[j]] < localDensity(j)){
//System.out.println("******cluster
"+clusterArray[j]+":"+j+":"+local Density(j));

boarderRho[clusterArray[j]] = localDensity(j);

55

for(int i = 0; i <clusterNumbers; i++){

System.out.println("cluster boardRho"+i+":"+boarderRho[i]);

for(int j = 0; j < group.size(); j++){
System.out.println("group "+j);
for(int k = 0; k < group.get(j).size();k++){
System.out.print(localDensity(group.get(j).get(k))+" ");

}

System.out.println();

System.out.println("first group size:"+group.size());
for(int i = 0; i < group.size(); i++){

for(int j = 0; j < group.get(i).size(); j++){

if(localDensity(group.get(i).get(j)) < boarderRho[i]){

halo.add(j);

//halo.get(i).add(j);

56

void print(){

System.out.println("distance matrix is:");
for(int i = 0; i < distanceMatrix.length; i++){
for(int j = i+1; j < distanceMatrix.length; j++){
System.out.print(distanceMatrix[i][j]+" ");

}

System.out.println();

System.out.println("index of sorted array is:");
for(int i = 0; i < distanceMatrix[0].length; i++){

System.out.print(index[i]);

System.out.println();
System.out.println("delta is:");
for(int i = 0; i < distanceMatrix[0].length; i++)

System.out.print(deltaArray[i]+",");

System.out.println();

System.out.println("rho is:");

for(int i = 0; i < distanceMatrix[0].length; i++)

System.out.print(localDensity(i)+",");

System.out.println();

System.out.println("neighbors:");

57

for(int i = 0; i < distanceMatrix[0].length; i++)

System.out.print(i+":"+neighbor(i)+",");

System.out.println();
System.out.println("clusterNumbers:"+clusterNumbers);

System.out.println();

System.out.println("clusters:");

for(int i = 0; i < distanceMatrix[0].length; i++)

System.out.print(i+":"+clusterArray[i]+",");

System.out.println();

System.out.println("centers:");

for(int i = 0; i < distanceMatrix[0].length; i++){
if(centers[i] !=-1){

System.out.print(i+":"+centers[i]+",");

System.out.println("groups are following:");

for(int i = 0; i < group.size(); i++){
System.out.println("the cluster "+i+":");
for(int j = 0; j < group.get(i).size(); j++){

System.out.print(group.get(i).get(G)+",");

58

System.out.println();

//centers decision graph

public void plot(){

double[][] positionMatrix=MDS]J.classicalScaling(distanceMatrix); // apply MDS
//decision graph
try{
File file = new File("d:/cs298/positionMatrix_iris.txt");
if(!file.exists()){
file.createNewFile();
}
FileWriter fw = new FileWriter(file.getAbsoluteFile());
BufferedWriter bw = new BufferedWriter(fw);
for(int i = 0; i < distanceMatrix.length; i++){
bw.write(positionMatrix[0][i]+","+positionMatrix[1][i]);
bw.newLine();
H
bw.close();
} catch(Exception e){

System.out.println(e);

59

double[] x = new double[deltaArray.length];
double[] y = deltaArray;
for(int i = 0; i < deltaArray.length; i++){
x[i] = localDensity(i);
}
Plot2DPanel plotl = new Plot2DPanel();
plotl.addScatterPlot("example distance", X, y);
JFrame frame = new JFrame("decision graph");
frame.setSize(600, 600);
frame.setContentPane(plot1);
frame.setVisible(true);
// clusters graph
Plot2DPanel plot2 = new Plot2DPanel();
for(int i = 0; i < clusterNumbers; i++){
double[] k = new double[group.get(i).size()];
double[] z = new double[group.get(i).size()];
for(int j = 0; j < group.get(i).size(); j++){
k[j] = positionMatrix[0][group.get(i).get(j)];

z[j] = positionMatrix[1][group.get(i).get(j)];

plot2.addScatterPlot("clustering", k, z);

double[] haloK = new double[halo.size()];
double[] haloZ = new double[halo.size()];
for(int j = 0; j <halo.size(); j++){

haloK[j] = positionMatrix[0][halo.get(j)];

60

haloZ[j] = positionMatrix[1][halo.get(j)];
}
System.out.printIn(""halo:*¥# ¥ kskskskddswwwkkk) .
System.out.println("halo size:"+halo.size());
for(int i = 0; i < halo.size(); i++){

System.out.println(halo.get(i));

JFrame frame2 = new JFrame("clustering");
frame?2.setSize(600, 600);
frame?2.setContentPane(plot2);
frame2.setVisible(true);
%
double[] ga = new double[100];
double[] n =new double[100];
Plot2DPanel plot3 = new Plot2DPanel();
for(int i = 0; 1 < 100; i++){
ga[i] = localDensity(i)*distanceFromHigherDensity(i);
nfi] =i
H
plot3.addScatterPlot("ga", n, ga);
JFrame frame3 = new JFrame("ga");
frame3.setSize(600, 600);
frame3.setContentPane(plot3);
frame3.setVisible(true);

*/

//border region

61

public static void main(String[] arg){

long start = System.currentTimeMillis();

//DistanceMatrix dm = new DistanceMatrix("d:/cs298/100olivetti.txt",100);

//dm.convertFile();

//double[][] temp = dm.getDistanceMatrix();

//FFSP ffsp = new FFSP(dm.getDistanceMatrix(),0.07, 0.6, 0.2);

FFSP ffsp = new FFSP("d:/cs298/iris.txt", 1.1, 30, 0.93);

ffsp.calculateRhoArrays();

ffsp.sortRhoArray();

ffsp. calculateDeltaArrays();

ftsp.cluster();

ffsp.halo();

ffsp.print();

ffsp.plot();

long end = System.currentTimeMillis();

long runningTime = end - start;

System.out.println("running time:"+runningTime);

62

class DistanceMatrix {

int numberOfElements;

static double[][] distanceMatrix;

String dir;

public DistanceMatrix(String dir, int numberOfElements) {
this.numberOfElements = numberOfElements;
distanceMatrix = new double[numberOfElements][numberOfElements];
this.dir = dir;

}

void convertFile(){
File file = new File(dir);
try{
FilelnputStream fis = new FilelnputStream(file);
DatalnputStream in = new DatalnputStream(fis);
BufferedReader br = new BufferedReader(new InputStreamReader(in));
String current;
while((current =br.readLine()) !=null){
if (current.length()==0)
continue;
String[] split= current.trim().split("\\s++");
//System.out.println(split[0]+","+split[1]+","+split[2]);
distanceMatrix[Integer.parselnt(split[1])-1][Integer.parselnt(split[0])-
1]=Double.parseDouble(split[2]);
distanceMatrix[Integer.parselnt(split[0])-1][Integer.parselnt(split[1])-1] =

Double.parseDouble(split[2]);

63

br.close();

} catch(Exception ¢){

System.out.println(e);

double[][] getDistanceMatrix(){

return distanceMatrix;

s
package calculateDistanceMatrix;

import java.lang.*;

import java.io.*;

import java.util.*;

import mdsj.MDSJ;

64

public class CalculateDistanceMatrix {
ArrayList<ArrayList<Double>> arr;

File file;

public CalculateDistanceMatrix(String dir) {
file = new File(dir);

arr = new ArrayList<ArrayList<Double>>();

public double[][] distanceMatrix() {
try {
FileInputStream fis = new FilelnputStream(file);
DatalnputStream in = new DatalnputStream(fis);

BufferedReader br = new BufferedReader(new InputStreamReader(in));

String current;

while ((current = br.readLine()) != null) {
if (current.length() == 0)

continue;

String[] split = current.trim().split("\\,");
//String[] split = current.trim().split("\\s++");
ArrayList<Double> temp = new ArrayList<Double>();
temp.add(Double.parseDouble(split[0]));
temp.add(Double.parseDouble(split[1]));
temp.add(Double.parseDouble(split[2]));
temp.add(Double.parseDouble(split[3]));

arr.add(temp);

br.close();

65

} catch (Exception e) {

System.out.println(e);

double[][] distanceMatrix = new double[arr.size()][arr.size()];

for (int i = 0; i < arr.size(); i++) {
for (int j = 0; j < arr.size(); j++) {
double x = arr.get(i).get(0) - arr.get(j).get(0);
double y = arr.get(i).get(1) - arr.get(j).get(1);
double z = arr.get(i).get(2) - arr.get(j).get(2);
double k = arr.get(i).get(3) - arr.get(j).get(3);
double distance = Math.sqrt(x *x +y *y +z * z+ k * k);
//double distance = Math.sqrt(x * x +y * y);

distanceMatrix[i][j] = distance;

return distanceMatrix;

public static void main(String[] args) {
CalculateDistanceMatrix iris = new CalculateDistanceMatrix("d:/cs298/aggregation_3a.txt");
double[][] tempMatrix;
tempMatrix = iris.distanceMatrix();
double[][] positionMatrix=MDS]J.classicalScaling(tempMatrix); // apply MDS
for(int i=0; i<positionMatrix[0].length; i++) { // output all coordinates
System.out. println("### stk kst okt

System.out.println(positionMatrix[0][i]+" "+positionMatrix[1][i]);

66

*******************************Validation******************************

package clusterValidation;

import java.io.BufferedReader;
import java.io.DatalnputStream;
import java.io.FileInputStream;
import java.io.InputStreamReader;

import java.util. ArrayList;

public class ClusterValidation {
// the input string array is {mlj, m2j, ..., mlj}

// the sum is sum(mlj + m2j +...+mlj)

double[] p;

double[] e;

ArrayList<int[]> clusterMatrix;
double[] purity;

double[] entropy;

double overallEntropy;

double overallPurity;

int[] rowsum;

public ClusterValidation(String file) {

67

clusterMatrix = new ArrayList<int[]>();
readFile(file);

//readFile();

p = new double[clusterMatrix.get(0).length];

e = new double[clusterMatrix.get(0).length];

purity = new double[clusterMatrix.get(0).length];
entropy = new double[clusterMatrix.get(0).length];

rowsum = new int[clusterMatrix.get(0).length];

public void readFile(String file) {

try {
FileInputStream fis = new FilelnputStream(file);
DatalnputStream in = new DatalnputStream(fis);

BufferedReader br = new BufferedReader(new InputStreamReader(in));

String current;
while ((current = br.readLine()) = null) {
if (current.length() == 0)
continue;
String[] split = current.trim().split("\\s++");
int[] temp = new int[split.length];
for (int i = 0; 1 < split.length; i++) {
temp[i] = Integer.parselnt(split[i]);
//System.out.println(temp[i]);
H
//System.out.println("*******"+clusterMatrix.size());

clusterMatrix.add(temp);

68

} catch (Exception e) {
System.out.println(e);
}
//System.out.println(clusterMatrix.get(0));

}

%
public void readFile(){
int[] temp1 = {2, 153};
int[] temp2 = {85, 0};
clusterMatrix.add(temp1);

clusterMatrix.add(temp2);

*/

void execute() {

//double maxP = 0;
for (int i = 0; i < clusterMatrix.size(); it+) {
int tempsum = 0;
for (int j = 0; j < clusterMatrix.get(i).length; j++) {
/I System.out.println(args[i]);
tempsum += clusterMatrix.get(i)[j];
H
rowsum|[i] = tempsum;

//System.out.println("sum:" + rowsum);

69

for (int j = 0; j < clusterMatrix.get(i).length; j++) {
pLi] = (double) (clusterMatrix.get(i)[j]) / rowsum[i];

//System.out.println("p[j]:" + p[j]);

double maxP = 0;
for (int j = 0; j < clusterMatrix.get(0).length; j++) {
if(p[j] '=0)
//p[j1*Math.log10(p[j]) / Math.log10(2) = 0;
entropy[i] += 0 - p[j] * Math.log10(p[j]) / Math.log10(2);
if (p[j] > maxP) {

maxP = p[j];

purity[i] = maxP;

void overall() {
int totalSum = 0;
for(int i = 0; i < clusterMatrix.size(); i++){

totalSum += rowsum[i];

for(int j = 0; j < clusterMatrix.size(); j++){

overallEntropy = overallEntropy + (double) rowsum[j]/totalSum *entropyf[j];

70

overallPurity = overallPurity + ((double)rowsum([j]/totalSum)*purity(j];

}
}
void print(){

//System.out.println("overallPurity"+overallPurity);

for(int i = 0; i < purity.length; i++){

System.out.println("purity:"+purity[i]+","+"entropy:" +entropy[i]);

H

System.out.println("overallpurity"+":"+overallPurity+","+"overallentropy"+":"+overallEntropy);
}

public static void main(String[] args) {
ClusterValidation cv = new ClusterValidation("d:/cs298/validation/olivetti Kmeans.txt");
cv.execute();
cv.overall();

cv.print();

71

	Comparative Analysis of Two Clustering Algorithms: K-means and FSDP (Fast Search and Find of Density Peaks)
	Recommended Citation

	/var/tmp/StampPDF/d75I3ay679/tmp.1450142062.pdf.mzJDD

