
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Fall 2015 

Function Call Graph Score for Malware Detection Function Call Graph Score for Malware Detection 

Deebiga Rajeswaran 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Rajeswaran, Deebiga, "Function Call Graph Score for Malware Detection" (2015). Master's Projects. 445. 
DOI: https://doi.org/10.31979/etd.yygj-b9zd 
https://scholarworks.sjsu.edu/etd_projects/445 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/445?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


Function Call Graph Score for Malware Detection

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Deebiga Rajeswaran

Dec 2015



c○ 2015

Deebiga Rajeswaran

ALL RIGHTS RESERVED



The Designated Project Committee Approves the Project Titled

Function Call Graph Score for Malware Detection

by

Deebiga Rajeswaran

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

Dec 2015

Dr. Mark Stamp Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Dr. Robert Chun Department of Computer Science



ABSTRACT

Function Call Graph Score for Malware Detection

by Deebiga Rajeswaran

Metamorphic malware changes its internal structure with each infection, while

maintaining its core functionality. Detecting such malware is a challenging research

problem. Function call graph analysis has previously shown promise in detecting such

malware. In this research, we analyze the robustness of a function call graph score

with respect to various code morphing strategies. We also consider modifications of

the score that make it more robust in the face of such morphing.
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CHAPTER 1

Introduction

Today, computer systems are a basic necessity and malware has become a com-

mon problem faced by users of such systems. Cryptolocker [7] is a well-known example

of a class of malware known as ransomware [5]. As another example, it is claimed

that the Carberp banking trojan [7] looted approximately $250 million from banks

and financial institutions. When the hacker who created Carberp was arrested, the

source code was leaked and the code served as a resource for other aspiring hackers.

With the increase in the number of networked devices, there has been a rapid

growth in the malware population, which has led to an arms race between anti-

virus developers and malware writers [2, 18]. Anti-virus vendors have to be equally

competitive and try to stay one step ahead of the malware developer. McAfee labs

claim that some of their predictions for 2015 like the master boot record getting wiped,

rapid growth in malvertising like the came true within a span of two months [16].

The most common malware detection method is signature based detection [6]. In

this method, malware is matched with a database of known patterns. To evade sig-

nature detections, malware writers may obfuscate their code. Metamorphic malware

morphs its code structure at each infection, without changing its essential function-

ality [13, 21]. A variety of code obfuscation techniques have been used to generate

metamorphic code. Metamorphic detection is a challenging research problem. Among

the techniques previously analyzed for metamorphicdetection [13, 9], function call

graph analysis has been among the most successful [6, 17, 21].

The function call graph in [6, 17] is constructed by forming a graph with vertices
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representing subroutines and edges corresponding to control flow between the func-

tions. This score is based on these graphs, where we distinguish between external

functions and internal functions, and the score also uses opcode statistics and cosine

similarity.

In this research, we first implement the function call graph score as described

in [17, 21]. We then score several challenging malware families and we analyze the

effect of various code obfuscations [14, 15, 28] on the score. The goal is to determine

an effective and practical means of defeating this function call graph score. Based

on these results, we then consider ways to construct an improved function call graph

score.

This paper is structured as the follows. Chapter 2 provides details on types of

malware and malware detection techniques. Chapter 3 outlines the construction of

the function call graph and the similarity score based on these graphs. Chapter 4

covers code obfuscation techniques and the impact of such techniques on function

call graph analysis. In Chapter 5, we present experimental results for related to our

function call graph analysis. Finally, Chapter 6 concludes the paper, and we also

discuss future work.
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CHAPTER 2

Types of malware and Detection Techniques

The term "malware" means a malicious software [2] that causes undesired out-

come and effects in the system either without user’s command or misusing the user’s

command indirectly. It comprises of different types like virus, worm, trojan horse,

backdoor bot, spam, spyware, adware and ransomware [11]. In this chapter, we will

look into different types of malware based on action and concealment strategy and

malware detection techniques.

2.1 Types of malware

The malwares can be broadly classified based on their infection strategy as:

Viruses, Worms and Trojans

Virus is a self-replicating malware which attaches itself to other programs and

manifests its existence. On being triggered by a specific event or file execution, the

virus infects the target and conceals itself. Viruses are parasitic by nature and hence

reside in boot sector, executables or in data files.

Worms are spread through networks and generally aim at attacking the band-

width of the system. Unlike viruses, worms can execute standalone without depend-

ing on a host. The worms can be further sub-classified into Email worms, Instant

Messaging worms, Internet worms, IRC worms, File-sharing network worms.

Trojan horse deceives the user by representing itself as a useful application

but executes malicious code and harms the system. They can infect the system

through remote access, data destruction, down loader, server Trojan, anti-virus
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software dialog box or as a Denial of Service(DoS) attack. Trojan.Zbot [23] and

Trojan.ZeroAccess [24] used in our experiments are examples of Trojan virus.

Backdoor: Backdoor [2] is another notable malware that bypasses authentica-

tion, obtains remote access to the infected system and uses stealth techniques to lock

the resources of the system. It does not execute standalone but waits for orders from

the remote system. Harebot.M [8] is an example of the backdoor and has been used

in our research.

Few other notable types of malware are:

Bots: The bot is a malware that is vulnerable and lets the attacker or botmaster

to control it [19]. Once infected, the bot operates and obeys commands issued by the

botmaster without the system owner’s knowledge.

Spam: Spam are not malware by themselves but a medium for spreading mal-

ware files. Bulk messages are sent through the electronic messaging system with

malware attachments to random users.

Spyware: Spyware mainly aim at spying on the host system and stealing data

like user keystrokes.

Adware: Adware are the annoying pop up ads that we encounter. They display

ads without any user input or misleads a genuine user interaction.

Ransomware: Ransomware has been the worst form of malware [11]. It en-

crypts data in infected system or alters its access privileges and demands ransom

from the user to retrieve data. It not just fools people into paying ransom to save

data but most are not even ethical enough to provide data in return to the ransom [11].

In recent times, viruses are designed by malware writers such that they are
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undetected by the traditional signature based detection used by most of the anti-

virus softwares. With respect to the strategies used to conceal the signature of the

virus, they are classified into encrypted virus, oligomorphic virus, polymorphic virus

and metamorphic virus [22, 26].

2.1.1 Encrypted virus

In an encrypted virus, the malicious part of the code is encrypted by performing

a simple XOR operation with a key or a constant. The encryption is kept simple as

complicating it will affect the performance efficiency of the virus. Though not detected

initially [22], once a malware is identified, the decryption code in the malware is not

encrypted and hence it can be used as a signature and easily detected.

2.1.2 Oligomorphic virus

Oligomorphic virus is a slightly sophisticated version of the encrypted virus. The

only difference is that there are several copies of the decryption code that are used

at random. But again as discussed in encrypted virus, it will not take long for the

anti-virus software to add all the copies of decryptor code to the signature database.

2.1.3 Polymorphic virus

Polymorphic virus is a form of encrypted virus that posed a serious threat to

malware detection techniques [22]. The malware is encapsulated in a layer of encryp-

tion, the decryption code is programmed in such a way that it changes its form and

hence makes it difficult for the signature detection method. On every infection, the

decryption code restructures itself to evade signature check. These viruses can be

detected by executing the virus in an emulator where the decryption code decrypts
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and the actual malware code is exposed which can be checked for a signature match.

2.1.4 Metamorphic virus

Metamorphic virus are more advanced than the previous attempts by malware

writers. They are a challenging problem for the virus scanners [22, 26]. As the name

suggests, the virus changes the form of the whole code. The metamorphic virus

has a mutation engine which uses several obfuscation techniques [15] to tamper the

signature with no damage to the actual functionality of the malware. [22, 26] The code

has no encryption but the whole structure and pattern of the malware is modified

and hence detection by signature is almost impossible. The mutation engine may

be carried along by the virus or standalone generating multiple copies of the same

malware. The former may have limitations in the amount of metamorphism that can

be achieved as the mutation engine has to morph itself to stay undetected in signature

detection, but the latter is hard to be detected by signature detection.

2.2 Malware detection techniques

The malware detection techniques can be broadly classified as signature based,

heuristics based and statistics based of the malware.

2.2.1 Signature based detection

The signature based detection is the simplest and most effective detection means

for scanning known malwares. After a malware is identified, a unique string of the

malware is labeled as the signature of the malware and stored in the database of iden-

tified malwares by the anti-virus softwares. After the initial identification phase, when

the system is scanned the bytecodes of the files are compared with the signatures in
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the database. When any of the file matches the signature, it is considered as a mal-

ware and notified to the user. [26] The only limitation in the signature based detection

is that it fails to identify new malwares and advanced malwares like polymorphic or

metamorphic malwares.

2.2.2 Heuristics based detection

The heuristics based detection has a more practical approach towards detecting

malware. The executable is tested in a simulated environment [22] which strips out a

layer of obfuscation. The actual execution of the code in a safe environment exposes

the true intent of the file. Any suspicious file can be isolated from the rest of the files

and prevent the spread of the malware. This method effectively identifies new viruses

whose signature may not be in the database of the anti-virus software.

2.2.3 Statistics based detection

Statistics based detection is a detection technique in which in recent times more

research are done and there has been promising advancements. Machine learning has

been used to classify malware from benign files on many aspects as API calls, opcode

sequences, function calls, value set analysis etc. Hidden Markov Model (HMM) has

been a very effect means of static analysis that classifies malware but since it does not

store the position information of the hidden states it may not classify metamorphic

malware that effectively. But the Profile Hidden Markov Model (PHMM) solves the

limitation and has been found successful in classifying the metamorphic malwares [25].
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CHAPTER 3

Function call graph implementation

We will be discussing about the previous work done in functionality based analy-

sis of viruses, the construction of the function call graph and the similarity detection

between the malwares in this chapter.

3.1 Previous work

The detection of metamorphic malware by searching for a unique string is almost

impossible [13]. The code obfuscation layer has to be removed as part of the detection

and the score must be based only on the functional part of the malware or the behavior

of the malware.

Christodorescu and Jha [4] were the first to implement a static analysis based

on a control flow graph to eliminate code obfuscation techniques. Since then, there

has been many researches in the detection of metamorphic malware based on static

analysis like external functions [29] and cosine similarity between the functions [10].

Ming et al. [17] explains a similarity metric based on the function calls in the malware

and Shang et al. [21] details the time and space complexities involved in control flow

graphs and proposes a function call graph based detection method.

Shahid and Ibrahim [1] have proposed an annotated control flow graph in which

the instructions are grouped into 21 patterns and they have also parallelized the

process to boost the performance of the detection technique. Prasad [6] has proposed

a function call graph analysis in which a graph coloring technique is used to eliminate

several other obfuscation layers.
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3.2 Construction of the function call graph

This section details the pre-processing involved before constructing the function

call graph and construction.

3.2.1 Defining function boundaries

The executables are disassembled using IDA Pro disassembler. The functions in

the malware can be classified as local functions and external functions. The start of

the local functions are of format sub_xxxxxx proc near and ends with sub_xxxxxx

endp. The external functions comprises of the system functions and the library rou-

tines. The local functions are labeled differently in each malware but the external

functions are consistently named the same across all malwares. Our detection tech-

nique only considers the functions or sub-routines and the instruction sequences that

they execute. This defeats code transposition or sub-routine ordering obfuscations in

the code.

3.2.2 Building the Function call graph

Function call graph 𝐺 = (𝑉,𝐸) are composed of vertices V and edges E in which

the vertices denote the functions and the edges denote the function calls between

them [17, 21]. The functions and the corresponding instruction sequences are parsed

to identify the entry point in the program. We have used Breadth First Search

(BFS) [12] technique in the graph construction. We identify the entry point func-

tions in the code. The non-entry point functions are added in the graph based on

their function call relationship with the entry point functions. So, the entry point

functions are in the first level and the non-entry point functions are mapped in the

subsequent levels, thus demonstrating breadth first search. The function that calls
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another function is called the "caller", the function that is being called is called the

"callee" and the relationship is called a "caller-callee" relationship [6].

All the sub-routines in the program are stored in FuncSet. The entry point sub-

routine are identified and saved in EntryFuncSet. The FuncQ is the function queue in

which the EntryFuncSet is initialized and until empty, the function dequeued from

the front of the queue is saved as baseVertex. The baseVertex is then added to

the graph and the enQ flag is set true to avoid duplicate additions to the graph. The

baseVertex is then scanned for its callee set and stored in VerSet. Each function

in VerSet is inserted in FuncSet if it is not present already and assigned as the

headVertex. If not added to the graph it is added with an edge to the baseVertex,

if else it just increments the outDeg of the caller and the inDeg of the callee by one.

If enQ flag of the headVertex is not set true yet, it is set true and enqueued to the

FuncQ. On building the vertices in the graph, the sub-routine name, type, callee list,

indegree, outdegree, EnQ flag status and opcode sequences are stored as shown in

Figure 1. The time complexity of this algorithm is 𝑂(|𝑉 | * |𝐸|) where V is the total

number of vertices and E is the total number of edges [21].

Figure 1: Function attributes stored in vertex for a Zbot file
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Table 1: Building the Function call graph [17]

// Input: Functions in the malware 𝐹 , Output: Function call graph 𝐺𝐹

// Initializations
𝐺𝐹 .𝑉 = 𝜑 and 𝐺𝐹 .𝐸 = 𝜑
EntryFuncSet = 𝜑, FuncSet = 𝜑, FuncQ = 𝜑, VerSet = 𝜑
FuncSet = SplitFuncs(𝐹 )
EntryFuncSet = IdentifyEntryPointFuncs(𝑀)
FuncQ = InitQ(EntryFuncSet)
while(FuncQ is not empty)

baseVertex = Dequeue(FuncQ)
Insert baseVertex in 𝐺𝐹

baseVertex.enQFlag = true
VerSet = getCallee(baseVertex)
for each vertex in VerSet

if(vertex is not in FuncSet)
continue

endif
headVertex = vertex
// Construct an edge between tailVertex and headVertex
if(𝑒 ∈ 𝐺𝐹 .𝐸)

baseVertex.outDeg++
headVertex.inDeg++

else
Insert headVertex in 𝐺𝐹

Insert edge 𝑒 in 𝐺𝐹

endif
if(headVertex.enQFlag == false)

Enqueue headVertex in FuncQ
headVertex.enQFlag = true

endif
next vertex

end while
return 𝐺𝐹

end
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3.3 Function Call Graph Scoring

On building the function call graph, to find the similarity score between the

two malware variants we need to compare the corresponding graphs. The similarity

check between the graphs would imply finding common vertices which represents the

functions or sub-routines. The functions cannot be identified based on specific string

or pattern search as it can be easily defeated using several obfuscation techniques.

The scoring of the similarity is calculated by matching external and internal functions.

The system or library functions have common function names which are of the same

naming convention in all files. So, the external functions are matched based on their

function names. In the local functions, to overcome challenges set by code obfuscation

techniques the instructions are color coded based on its type of action.

3.3.1 Common vertices based on External Functions

External functions generally refer to the system calls or library routine calls. The

system functions are also called the atomic functions. Usually, the external functions

form the leaf node in the graph with an indegree of 1 and outdegree of 0. They can be

mapped using the symbolic names that are same across all executables. For example,

VirtualAllocA, GetWindowsDirectoryA, lstrcatA, CreateFileA are the external

functions that forms the leaf nodes in the Zbot function call graph shown in Fig 2.

Table 2 displays an algorithm that has been used to find common vertices based on

external functions [17].

The external functions are taken from function call graphs of the two malware

variants that are being scored for similarity 𝐺1, 𝐺2 and stored in ExtFuncSet1 and

ExtFuncSet2 respectively. The instructions in the vertices of both sets are anal-

ysed .Each of the i vertices in ExtFuncSet1 are assigned to 𝑈𝑠 and checked with
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Figure 2: Function call graph with external functions

Table 2: Pseudocode to find common vertices using external functions [17]

// Input: Function call graph of two malware variants 𝐺1 and 𝐺2

// Output: common_vertex(𝐺1, 𝐺2)
ExtFuncSet1 ← External function from 𝐺1

ExtFuncSet2 ← External function from 𝐺2

Copy vertices from 𝐺1 into 𝑈𝑠

Copy vertices from 𝐺2 into 𝑉𝑠

foreach vertex 𝑈𝑠𝑖 𝜖 ExtFuncSet1 do
foreach vertex 𝑉𝑠𝑗 𝜖 ExtFuncSet2 do

if(𝑈𝑠𝑖.name = 𝑉𝑠𝑗.name)
common_vertex(𝐺1, 𝐺2) ← common_vertex(𝐺1, 𝐺2) ∪ (𝑈𝑠𝑖,𝑉𝑠𝑗)
Remove 𝑈𝑠𝑖 from 𝑈𝑠

Remove 𝑉𝑠𝑗 from 𝑉𝑠

end
end

end

all j vertices in ExtFuncSet2 assigned to 𝑉𝑠 and finds if both graphs have any ver-

tices that call the same external function. If such a vertex is found it is stored in
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common_vertex(𝐺1, 𝐺2).

3.3.2 Match local functions based on external functions similarity

If two or more external functions are found matching in a vertex, then it is

considered as a similarity between the local functions that make the call to external

functions. Table 3 is the pseudocode that was used to find matching local functions

pair [17, 21].

Table 3: Pseudocode to find similar local functions based on external functions [17]

// Input: Function call graph 𝐺1 and 𝐺2,𝑈𝑠,𝑉𝑠,common_vertex(𝐺1, 𝐺2)
//Output: common_vertex(𝐺1, 𝐺2)
foreach vertex 𝑈𝑠𝑖 𝜖 𝑈𝑠 do

foreach vertex 𝑉𝑠𝑗 𝜖 𝑉𝑠 do
if(ExtFunc(𝑈𝑠𝑖) ∩ ExtFunc(𝑉𝑠𝑗) ≥ 2) then

common_vertex(𝐺1, 𝐺2) ← common_vertex(𝐺1, 𝐺2) ∪ (𝑈𝑠𝑖,𝑉𝑠𝑗)
Remove 𝑈𝑠𝑖 from 𝑈𝑠

Remove 𝑉𝑠𝑗 from 𝑉𝑠

end
end

end

each of the local functions in the function call graphs 𝐺1, 𝐺2 are matched to

see if they call the same external functions. If the external functions count ex-

ceeds 2, then the function pair is considered as common vertices and added to the

common_vertex(𝐺1, 𝐺2).

3.3.3 Similarity between local functions based on opcode sequence

Finding the similarity between the local functions based on a specific pattern or

signature will not be effective as it can be defeated on using simple dead code insertion

itself. So, we use a unique graph coloring technique. Every vertex is vectorized based
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on the occurrence and frequency of the opcodes which are classified into 15 types as

shown in Table 4.

Table 4: x86 instruction classification [17]

Code Instruction Type Description
𝐶1 Data Data Transfer as mov stmt
𝐶2 Stack Stack Operations
𝐶3 Port In and out
𝐶4 Lea Destination address trans-

mit
𝐶5 Flag Flag transmit
𝐶6 Arithmetic Shift, Rotate etc.
𝐶7 Logic Bitbyte operation
𝐶8 String String operation
𝐶9 Jump Unconditional transfer
𝐶10 Branch Conditional transfer
𝐶11 Loop Loop control
𝐶12 Halt Stop instruction execution
𝐶13 Bit Bit test and bit scan
𝐶14 Processor Processor control
𝐶15 Float Floating point operation

All vertices in the graph are colored base don a 15-bit variable which marks the

occurrence of instructions in each color code. The variable is initialized to 0. On

reading an instruction, the color code that it belongs to based on its operation is

marked 1 in the corresponding bit. Another 15-bit vector stores the frequency of the

corresponding color codes. Table 5 shows a sub-routine from Zbot virus and Table 6

displays the corresponding color codes and frequency vector.
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Table 5: A sub-routine in Zbot virus

sub_401000 proc near
push ebp
mov ebp, esp
mov esp, 0Ch
mov [ebp+var_8], 1E4DCh
mov [ebp+flAllocationType], 3000h
mov [ebp+flProtect], 40h
mov eax, [ebp+flProtect]
push eax
mov ecx, [ebp+flAllocationType]
push ecx
mov edx, [ebp+dwSize]
push edx
push 0
push 0FFFFFFFFh
call VirtualAllocA
mov esp, ebp
pop ebp
retn
sub_401000 endp

Table 6: Occurrence and Frequency color coded vector of the above Zbot sub-routine

Opcode’s C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Occurrence 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
Frequency 9 7 0 0 0 0 0 0 2 0 0 0 0 0 0

The frequency vector of the two graphs are stored as 𝑋 = (𝑥1, 𝑥2, ..., 𝑥15) and

𝑌 = (𝑦1, 𝑦2, ..., 𝑦15) and the cosine similarity of them are computed as shown in

formula (1) [17]:
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sim(𝑋, 𝑌 ) =

∑︀15
𝑖=1 𝑥𝑖.𝑦𝑖√︁∑︀15

𝑖=1 𝑥
2
𝑖 .
√︁∑︀15

𝑖=1 𝑦
2
𝑖

(1)

The calculated cosine similarity is checked for whether it is greater than or equal

to a threshold value of 𝛼 and we also compare the color codes of the two vertices

and if found the same the local functions are found as a common vertex match.

Table 7 shows a pseudocode that is used to compute the color similarity between the

vertices [17, 21].

Table 7: Pseudocode to find color similarity between two functions [17]

// Input: Functions 𝑓1 and 𝑓2
// Output: color similarity between 𝑓1 and 𝑓2
colorCode1 ← getColorSequence from 𝑓1
colorCode2 ← getColorSequence from 𝑓2
if(color1=color2)

freqVector1 ← getVector from 𝑓1
freqVector2 ← getVector from 𝑓2
color_sim ← compute cosine similarity between vector1 and vector2

end
return color_sim

In the pseudocode, the computation of color similarity between two functions

is described. Similarly, all the functions in the malware variants are computed.The

functions 𝑓1 and 𝑓2 are provided as input to calculate the cosine similarity between

the functions. The functions are first assigned a color based on the occurrence of

the instructions which are stored as colorCode1 and colorCode2 from 𝑓1 and 𝑓2.

If the color code of the two functions are found similar, then the frequency of the

corresponding instructions are stored in vectors freqVector1 and freqVector2. The

cosine similarity between the frequency vectors are computed using the formula(1)

mentioned above. Aiming for perfection, two more criteria as the length of the opcode
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sequences which refers to the number of bytes in the function and the total degree of

the function which is calculated by adding the indegree (total number of times the

function is called) and the outdegree (total number of times the function is called by

other functions) are used for scoring. If the cosine similarity of the two frequency

vectors is greater than or equal to 𝛼 and the length similarity (len_sim) is greater

than or equal to 𝛽 and degree similarity(degree_sim) is greater than or equal to 𝛾.

The length similarity is computed based on the formula (2) as shown below. The

length(𝑓1) is the number of bytes in function 𝑓1 and length(𝑓2) is the number of

bytes in function 𝑓2. The smaller value of the two is divided by the other to obtain

a value between 0 and 1.

length_sim(𝑓1, 𝑓2) =

⎧⎪⎨⎪⎩
length(𝑓1)
length(𝑓2)

if length(𝑓1) ≤ length(𝑓2)

length(𝑓2)
length(𝑓1)

otherwise.
(2)

The degree similarity is computed using the formula (3) in which the degree(𝑓1)

is the total degree of the function 𝑓1 and degree(𝑓2) is the total degree of the function

𝑓2. The degree_sim is assigned 1 if the degrees of the two functions are equal, else

the unsigned reciprocal of their differences is used.

degree_sim(𝑓1, 𝑓2) =

{︃
1 if deg(𝑓1) = deg(𝑓2)

1
|deg(𝑓1)− deg(𝑓2)|

otherwise. (3)

The threshold values of 𝛼, 𝛽 and 𝛾 are set as 0.98, 0.83 and 0.5 respectively

based on previous experiments [17, 21]. Table 8 details the pseudocode to find similar

function pair using the color similarity [6].
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Table 8: Pseudocode to find similar local functions using color similarity [17]

// Input: Function call graph 𝐺1 and 𝐺2,𝑈𝑠,𝑉𝑠,common_vertex(𝐺1, 𝐺2)
//Output: common_vertex(𝐺1, 𝐺2)
foreach vertex 𝑈𝑠𝑖 𝜖 𝑈𝑠 do

foreach vertex 𝑉𝑠𝑗 𝜖 𝑉𝑠 do
if(color_sim(𝑈𝑠𝑖,𝑉𝑠𝑗) ≥ 𝛼 ∩
length_sim(𝑈𝑠𝑖,𝑉𝑠𝑗) ≥ 𝛽 ∩
degree_sim(𝑈𝑠𝑖,𝑉𝑠𝑗) ≥ 𝛾) then

common_vertex(𝐺1, 𝐺2) ← common_vertex(𝐺1, 𝐺2) ∪ (𝑈𝑠𝑖,𝑉𝑠𝑗)
Remove 𝑈𝑠𝑖 from 𝑈𝑠

Remove 𝑉𝑠𝑗 from 𝑉𝑠

end
end

end

3.3.4 Similarity between local functions based on matched neighbors

Now that we have found common vertices between the two graphs based on

the internal and external functions, we can further analyze based on the results.

There is a high probability that two vertices are similar if their neighbors match in

graph theory. So, if the predecessor or successor of a specific vertex is a common

vertex then the vertex may also be a common vertex. In Figure 3 the vertices 𝑉1

and 𝑉2 are already identified as common vertices, then its neighbors A, B and C,

D respectively are rechecked using a color_relaxed_sim to find whether they are

similar. The color_relaxed_sim is computed same as the Table 7 except that the

functions’ color codes need not match and the cosine similarity can be computed

from the frequency vectors directly. Table 9 presents the pseudocode used to find

similar functions based on matched successors and the same pseudocode applies for

predecessors too by replacing successor(u) and successor(v) by predecessor(u) and

predecessor(v) respectively. [21].
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Figure 3: Successors of common vertices 𝑉1 and 𝑉2 are candidate vertices

Table 9: Pseudocode to find similar local functions based on matched successor [17]

// Input: Function call graph 𝐺1 and 𝐺2,𝑈𝑠,𝑉𝑠,common_vertex(𝐺1, 𝐺2)
//Output: common_vertex(𝐺1, 𝐺2)
vertexQ ← InitvertexQ(common_vertex(𝐺1, 𝐺2))
while (vertexQ is not empty)

(u,v) ← vertexQ.dequeue()
foreach vertex 𝑈𝑠𝑖 𝜖 successor(u) ∩ 𝑈𝑠 do

foreach vertex 𝑉𝑠𝑗 𝜖 successor(v) ∩ 𝑉𝑠 do
if(color_relaxed_sim(𝑈𝑠𝑖,𝑉𝑠𝑗) ≥ 𝛿) then

common_vertex(𝐺1, 𝐺2) ← common_vertex(𝐺1, 𝐺2) ∪ (𝑈𝑠𝑖,𝑉𝑠𝑗)
Remove 𝑈𝑠𝑖 from 𝑈𝑠

Remove 𝑉𝑠𝑗 from 𝑉𝑠

vertexQ.enqueue(𝑈𝑠𝑖,𝑉𝑠𝑗)
end

end
end

end
return common_vertex(𝐺1, 𝐺2)

The vertexQ is initialized with the vertices in the common_vertex(𝐺1, 𝐺2). Each

vertex in the queue are dequeued one by one and the successor or predecessor of the

corresponding vertices. If the color_relaxed_sim of the successor or predecessor

vertices are found to satisfy or exceed the threshold value set for 𝛿 then the vertices
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are considered similar.

3.3.5 Similarity between function call graph

To compute the consolidated score of similarity between the function call graphs,

the common edges are computed. The edge is the "caller-callee" relationship that

was mentioned before. If common vertices W and X share an edge in graph 𝐺1 and

common vertices Y and Z share an edge in graph 𝐺2 then it is called a common edge.

The overall similarity between the two malware function call graphs are computed

using Formula (4) [17, 6]:

sim(𝐺1, 𝐺2) =
2|common_edge(𝐺1, 𝐺2)|
|𝐸𝑑𝑔𝑒(𝐺1)|+ |𝐸𝑑𝑔𝑒(𝐺2)|

* 100 (4)

in which |common_edge(𝐺1, 𝐺2)| denotes all the common edges between the two

function call graphs 𝐺1 and 𝐺2 and |𝐸𝑑𝑔𝑒(𝐺1)| + |𝐸𝑑𝑔𝑒(𝐺2)| represents the total

number of edges in graph 𝐺1 and 𝐺2. Scoring the same file should give a value of 1

and scoring a malware variant should give a value between 0 and 1 based on the level

of obfuscation in which the less obfuscated would be closer to 1.
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CHAPTER 4

Types of obfuscation techniques

The metamorphic virus detection has been a tough task because the virus is

capable of mutating its body to an extent that no two versions of the same malware

can be assigned a common signature for detection and hence are undetectable by

signature based detection [14]. This level of obfuscation in the code is achieved

by one or a combination of multiple code obfuscation techniques which are detailed

below:

4.1 Instruction substitution

The instruction substitution is a simple obfuscation technique in which the com-

mon instructions that have similar usage are replaced instead of the other. [15] By

substituting the instruction with a similar one, the functionality of the code remains

intact and the code also does not look the same as before. For example, the instruc-

tions JB (Jump if Below), JC (Jump if Carry), JNAE (Jump if Not above or Equal)

all perform the same action of setting CF (Carry Flag) as 1. Using these instructions

interchangeably will not affect the function of the code.

Considering this technique to impede the function call graph similarity it may

not be effective, as in our detection technique, the opcodes are color coded based

on functionality and used for computing the score. So, even if we substitute the

instructions they will fall under the same group and will be no different from the

previous code.
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4.2 Register swap

Register swap is another simple technique in which the registers are swapped by

not hindering the intended action of the part of the code; at the same time it forms

another generation of the malware as it can evade signature based detection having

altered registers all through the code. For example, the register EAX, EBX, EDX are

swapped with EBX, EDX, EAX respectively. This small change is enough to fool the

signature based detection. But if the detection method has wildcard search in place

of registers it can be easily identified. [28]

Applying this technique to weaken our detection method will not fetch results as

we only consider the opcodes for finding similarity and the registers are not considered

for evaluation.

4.3 Subroutine ordering

In subroutine ordering, the order of the subroutines are altered in a random

manner. [15, 14] Such an action will not change the effect of the code as the program

with subroutines are not sequential, they call for the start address of the subroutine

and thus does not hinder the functionality. For example, if a malware is composed of

8 subroutines, there are 8! ways, that is 40320 ways to mutate the malware [28].

In function call graph method, it may not be effective as we compute a graph

from subroutines based on their calls and not by position.

4.4 Code transposition

Similar to the subroutine ordering, the code within the subroutine are re-

ordered [15] if they do not demand computation in sequence. By shuffling the in-
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structions, the signature detection can be defeated.

This technique may not be effective in our detection as the instruction sequence

is not considered and only the list of opcodes are used to compute the score.

4.5 Code integration

The code integration is a more sophisticated means of obfuscating the code in

which the virus on spreading the infection, attaches itself to the executable of the

host. For example, Zmist virus [6] decompiles PE (Portable Executable) of the host

file and smartly inserts the malware code by part, integrates itself and repackages the

executable making it extremely hard to detect.

4.6 Dead code insertion

Dead code insertion is the most commonly used detection technique. Dead code

is the piece of code that just performs meaningless actions which does not produce

any results. When dead code is appended to any program it will not affect the code.

For example, the No Operation (NOP) on being inserted will not perform any action

but may tamper the signature of the malware [14, 13]. The dead code can be inserted

in two ways:

1. Block morphing: In this type of morphing, a block of the dead code is inserted

in the malware [15]. This may hinder the signature based detection and prove

effective based on the malware. If the block added is not part of the unique

part of malware extracted to make signature then it may not prove effective.

2. Random morphing: In random morphing, single or few of lines of the dead

code are inserted at random all through the malware code. Sometimes, when
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the percentage of benign code added to malware code increases there may be

a chance all the mutated codes are quite similar. The dead code used to be

inserted has to be varied in each generation to fetch better results.

Dead code insertion technique used to defeat the function call graph score may

result in any of the three scenarios:

1. On using block morphing, if the benign dead code is added as a block in between

two subroutines or at start or end of program, the score will not be affected as

the detection method only takes the subroutines and the instructions in it into

consideration.

2. On using block morphing, if block of dead code is added within a subroutine,

it will only affect one sub-routine and hence will not make a big difference

3. On using random morphing, if significant number of lines of dead code are

inserted in all subroutines, it may be deter or boost the scores depending on

whether the code is inserted to a an already obfuscated dead coded subrou-

tine (as we are dealing with metamorphic malware) or a matching sub-routine

respectively.

The same random morphing technique when applied using external function calls

as dead code is very effective in defeating the function call graph based detection.
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CHAPTER 5

Experiments

In this chapter, we will be discussing on the results obtained on scoring metamor-

phic malware files using function call graph analysis and few experiments on defeating

the score by using code morphing.

5.1 Chosen Dataset

We have used NGVCK, Zbot, ZeroAccess and Harebot files to be scored. The

New Generation Virus Generation Kit (NGVCK) is a metamorphic worm that has

been created to defeat the Hidden Markov Model (HMM) detection technique [6] using

obfuscation techniques as dead code insertion and instruction substitution. Zbot [23]

and ZeroAccess [24] are trojans that infects the host system and uses stealth tech-

niques to collect sensitive data. Harebot [8] is a backdoor which usually attacks the

Operating system and consumes the system resources bringing down the system’s

productivity. For this research, we have used 30 cygwin files for the benign dataset.

Table 10 lists the number of files used in each malware family.

Table 10: Malware files

Malware family Number of files
Zbot 22

NGVCK 38
Zeroaccess 38
Harebot 52
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5.2 Receiving Operating Characteristics

Receiving Operating Characteristics(ROC) is a graphical plot that is used to

measure the accuracy of detection. The ROC curve is drawn using the true positive

rate(TPR) and false positive rate(FPR) by assessing several other criteria. The area

under the curve (AUC) is the measured value from the plot that is used for comparing

the performance from experiments. The best case of obtaining an AUC of 1.0 implies

that it was a perfect classification with no false positives or false negatives. The value

of the ROC may range between 0.5 and 1. Figure 4 shows the an ROC curve with an

AUC value of 1.0.

Figure 4: An ROC curve with AUC = 1.0 [25]

5.3 Scoring of the files

We have implemented the function call graph detection method using Java as

discussed in Chapter 3. Initially, the executable in assembly language format is pre-

processed to obtain the sub-routines of the specific file. After the first set of trial

experiments in NGVCK family as shown in Fig 5, we had to adjust the threshold

values of 𝛼, 𝛽 and 𝛾 as 0.80, 0.5 and 0.5 respectively as it produced more accurate

results for the chosen dataset.
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Figure 5: NGVCK ROC curve with change in threshold values

5.3.1 NGVCK files

We scored the NGVCK files using our detection method and was able to classify

the benign files and malware variants. On scoring the malware files with benign files,

most of the scores were 0.0 denoting no similarity between the files and the maximum

score was 0.044 whereas scoring the malware variants within themselves most of the

scores were above 0.2.

Figure 6 shows the scatter plot that clearly classifies the files and Figure 7 shows

an ROC curve based on the scores obtained which gives an AUC of 0.99 which is

good as it is very close to 1.0.
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Figure 6: NGVCK Scatterplot
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Figure 7: NGVCK ROC Curve
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5.3.2 Zbot files

The Zbot files were also scored using the function call graph implementation

and successfully classified the benign and malware files. The malware variants when

scoring within themselves gave high values and on scoring with benign files they

showed no similarity by scoring 0.0 for most files.

Figure 8 displays the differentiation between benign and malware files and Fig-

ure 9 shows the ROC curve which are plotted using the scores and it provides an

AUC of 0.96.
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Figure 8: Zbot Scatterplot
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Figure 9: Zbot ROC Curve
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5.3.3 ZeroAccess files

On scoring the ZeroAccess files using our detection method, we found that it

failed to get classified as clear as the previous families. The benign files when scored

with malware files had the maximum score of 0.03 and on scoring with its malware

variants scores an average of 0.07.

Figure 10 shows the scatter plot of the ZeroAccess files in which the benign and

malware files seem to score similar except for a few outliers and Figure 11 shows an

ROC curve of the ZeroAccess files with an AUC of 0.77.
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Figure 10: ZeroAccess Scatterplot

5.3.4 Harebot files

On scoring the Harebot files, the results were relatively worse than the ZeroAccess

family. Most of the benign files and malware files score the same and there is no

distinct classification between the two files.
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Figure 11: ZeroAccess ROC Curve

Figure 12 shows the scatter plot in which it is evident that the benign and

malware files are not distinctly clear and Figure 13 shows an the ROC plotted with

the results fetching an AUC of 0.60.

5.3.5 Analysis of scores

In the four families, NGVCK and Zbot have scored well by using function call

graph analysis. But, function call graph detection failed to classify the malwares in

ZeroAccess and Harebot families. On having a closer look at the files, it was evident

that in cases when two files which had big difference in their file sizes did not score

well. In Chapter 3, when computing similarity between the graphs using Formula (4)

as the common edges are not normalized with respect to the total number of edges in

each graph they fail to score well. To clarify the assumption we scored the ZeroAccess

and Harebot files in sets classified based on file size.
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Figure 12: Harebot Scatterplot
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Figure 13: Harebot ROC Curve
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5.4 Scoring the files in sets

The files are partitioned in sets based on file sizes and scored using the function

call graph analysis.

5.4.1 ZeroAccess family

On scoring the 120 ZeroAccess files as sets, the ZeroAccess family scored well. In

fact, it achieved a perfect AUC of 1.0 in one of the sets. Table 11 shows the details

of the files in the sets and the corresponding AUC values. Figure 14 shows the ROC

curves of the sets in the ZeroAccess family.

Table 11: Zero Access files set

No. of files Filesize Range AUC Values
Set 1 20 25 - 30 KB 0.91
Set 2 40 31 - 40 KB 0.74
Set 3 40 110 - 112 KB 0.96
Set 4 20 114 - 128 KB 1.0

5.4.2 Harebot family

On scoring 40 Harebot files in two sets, though there is a substantial increase in

the AUC values the classification is not discrete. On further analysis on the files, we

found that the reason for low scores in Harebot was because it had only a couple of

external functions in each program. Since atleast two external functions from same

sub-routine has to match to be considered common vertex, Harebot may not have

any similarity in the external functions attribute. Table 12 shows the details of the

files in the sets and the corresponding AUC values. Figure 15 shows the ROC curves

of the sets in the ZeroAccess family.
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Figure 14: ZeroAccess ROC curve of the sets

Table 12: Harebot file sets

No. of files Filesize Range AUC Values
Set 1 20 7 - 11 KB 0.74
Set 2 20 13 - 31 KB 0.62

5.5 Defeating the score

In this section, we have defeated the function call graph scoring method. The

code obfuscation used to morph the malware is dead code insertion. As discussed

in Chapter 4, block morphing will fail to defeat the method as it only affects one

sub-routine. We have used external functions as dead code and randomly inserted it

as chunks of code in all subroutines.
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Figure 15: Harebot ROC curve of the sets

5.5.1 NGVCK family

Starting from 15% random morphing, we can see the effect in the AUC values.

Figure 16 shows the ROC curves starting from 5% to 40% in which there is a significant

change from 10% to 15%Ṡince there is a hill climb behavior in 35% we plotted the

morphed values from 10% to 200% in which the score gradually increases. This

indicates that a threshold of 15% to 35% should be set for morphing to defeat the

NGVCK score. Figure 17 clearly visualizes the necessity to set a threshold value for

morphing.

5.5.2 Zbot family

Similar to the NGVCK family, Zbot also has low AUC values starting from 15%

and the pattern continues until 35% after which a gradual increase is to be noted. The

difference in the scores from 10% to 15% is graphically depicted using ROC curves in
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Figure 16: NGVCK Morphed ROC Curve

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

P
os

it
iv

e
R

at
e

5% morphing
10% morphing
15% morphing
20% morphing
25% morphing
30% morphing
35% morphing
40% morphing

Figure 18.

5.5.3 Consolidated results

The consolidated results from the external function dead code random morphing

is displayed in Table 13. Both NGVCK and Zbot files starting 15% show promising

results. Notably, as the morphing % increases the malware variants are found similar

within themselves. Hence, a threshold must be set on the level of morphing to defeat

the method consistently.

5.6 Scoring files on a larger number of files

To find whether the results are consistent, the function call graph scoring is

experimented on more no. of files. Table 14 shows the malware families and the

38



Figure 17: NGVCK Morphed 10% - 200%
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Table 13: AUC curve results for morphed NGVCK and Zbot files

AUC
Morphing NGVCK Zbot

0% 0.99 0.96
5% 0.99 0.96
10% 0.98 0.93
15% 0.75 0.84
20% 0.64 0.87
25% 0.65 0.84
30% 0.62 0.83
35% 0.65 0.84
40% 0.67 0.83
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Figure 18: Zbot Morphed ROC Curve

number of files used for this experiment.

Table 14: Number of files used in each family

Malware family Number of files
Zbot 100

NGVCK 100
Zeroaccess 100

5.6.1 NGVCK family

On scoring the larger dataset, the AUC values are lower which maybe because

of a few outliers in the total files used. Figure 19 shows an AUC of 0.94 which is still

a good score and classifies most malwares from the files.
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Figure 19: NGVCK ROC Curve (100 files)

5.6.2 Zbot family

The Zbot family seem to have a setback in the AUC value. As shown in Figure 20

has an AUC of 0.8 which fails to classify the malware effectively. At a closer look on

the files used, similar to ZeroAccess it has a larger difference in the file sizes used.

By dividing it into sets based on filesize, we can have a clearer picture of the overall

score for Zbot family. Table 15 shows the details about each set and Figure 21 shows

the AUC values of the sets.

Table 15: Zbot sets

No. of files Filesize Range AUC Values
Set 1 30 4 KB 0.84
Set 2 60 5 KB 0.72
Set 3 20 6 - 8 KB 0.96
Set 4 40 9 - 13 KB 0.8
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Figure 20: Zbot ROC Curve (100 files)
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Figure 21: Zbot ROC curve in sets
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5.6.3 ZeroAccess family

The score of the ZeroAccess family is consistent with the previous experiment.

Figure 22 shows the AUC value of 0.75 in the Zero Access ROC curve.
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Figure 22: ZeroAccess ROC Curve (100 files)
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CHAPTER 6

Conclusion and Future Work

The main goal of our project was to study the function call graph analysis [6, 17,

21], implement and score it on metamorphic malware families and defeat the score to

understand how the detection method can be made more effective and efficient. The

function call graph analysis scores the metamorphic malware based on similar external

functions, local functions that have similar external functions, cosine similarity based

on frequency of opcodes which are classified and color coded based on the purpose of

the instructions and matching neighbors of similar local functions. Additionally, the

length of the functions and degree similarity are also added as thresholds to make the

detection effective. From all the above comparisons, the common vertices between

the function call graphs of the two malware variant is found. Using these common

vertices, the total number of common edges between the vertices of the graphs are

found and used to score the malwares.

We scored four malware families: NGVCK, Zbot, ZeroAccess and Harebot to

analyze how the detection technique is effective in these families. The NGVCK and

Zbot detected the malware and classified them by scoring higher than the benign

files. But the ZeroAccess and Harebot families were not very successful in detecting

the malwares. We also tried to defeat the NGVCK and Zbot scores using random

block morphing and achieved considerable success in it.

For future work, these experiments can be implemented in comparison of different

threshold parameters 𝛼, 𝛽 and 𝛾, as some malware families perform well at higher

thresholds and some at lower thresholds. The annotated call graph similarity [1],

44



external functions similarity [29], opcode graph similarity [20] and the function call

graph similarity [17] can be incorporated to build a hybrid robust detection technique

that can overcome all the limitations of the detection methods. The common vertices

by external functions happen to be the most contributing factor in the score which

can be exploited by random morphing of benign external function calls. The external

function based match has to be normalized based on total number of external function

calls. The function call graph detection technique is more effective in files with

same number of sub-routines. On considering two malware variants, in which one

is obfuscated extensively by adding dead code the function call graph method fails

to identify one file as the subset of other which implies it is similar. To rectify this

flaw, the common edges need to be normalized not just by the total number of edges

in both graphs but by total number of edges in each graph.
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