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ABSTRACT

Defeating 𝑛-gram Scores for HTTP Attack Detection

by Samyuktha Sridharan

Web applications that generate malicious HTTP requests provide a platform

that attackers use to exploit vulnerable machines. Such malicious traffic should be

identified by network intrusion detection systems, based on traffic analysis. Previous

research has shown that 𝑛-gram techniques can be successfully applied to detect

HTTP attacks. In this research, we analyze the robustness of these 𝑛-gram techniques.

We show that 𝑛-gram scores are surprisingly robust, but can be defeated using certain

obfuscation strategies. We also consider the need for a more costlier HMM-based

intrusion detection system.
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CHAPTER 1

Introduction

Cybersecurity has become one of the most critical elements in our networked

world. Most of the real-world applications, including bank transactions, e-health,

finance management, e-commerce, rely on the Internet. With the evolution of cloud-

based computing, the use of the Internet is becoming an integral part of everyone’s

life.

Malicious code writers have constructed web-based applications that generate

malicious Hypertext Transfer Protocol (HTTP) requests. These malicious HTTP

requests provide opportunities to attack vulnerable machines. Many Intrusion Detec-

tion Systems (IDS) are available to alert administrators when there is abnormal or

suspicious activity on the system.

There are two different types of intrusion detection techniques namely, signature-

based intrusion detection and anomaly-based intrusion detection. According to [13],

Signature-based systems are effective in detecting known attacks. However, they are

inefficient in detecting carefully morphed variants of the same attacks. To detect

variants of known attacks and other intelligent attacks—otherwise known as “zero-

day attacks”—anomaly-based detection techniques [18] are efficient. It can be complex

to design and implement anomaly based detection techniques. In [12], an efficient,

simple, and effective HTTP attack detection technique based on 𝑛-gram analysis was

implemented and tested. In [2], a more complex and costly HMM-based approach

was explained.

Obfuscation of HTTP data is not uncommon. There are several obfuscation
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techniques that attackers can use to disguise the original data. Typically, obfuscated

data is transmitted through the network for the purpose of bypassing the IDS at the

receiving end.

This research aims to analyze the robustness of the 𝑛-gram scores in [12], by

obfuscating the HTTP attack traffic. This research is intended to aid in developing

more robust and efficient algorithms to detect HTTP based attacks.

The rest of the chapters are organized as follows. A thorough review of litera-

ture is provided in Chapter 2. Chapter 3 gives a detailed explanation of the research

methodology adopted in this research. The datasets used in the research, different

experiments conducted for each of the research methodology and the results are pre-

sented in Chapter 4. The conclusions for this research and future work are discussed

in Chapter 5.
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CHAPTER 2

Literature Survey

Cybersecurity has been studied extensively in the academia as well as in the

industry. In this chapter, background related to the current research is reviewed

to identify any gaps in literature and to leverage the obfuscation techniques useful

to this research. The background to intrusion detection techniques are explained

during the course of this chapter. Several obfuscation techniques to defeat detection

scores have been identified from literature and discussed in this chapter. Different

𝑛-gram techniques, which were proved to be very efficient in detecting the attacks by

researchers in [12], are studied in the subsequent sections.

2.1 Network Intrusion Detection Systems

Web-based applications are gaining popularity due to its platform-independence

feature, ease of development and maintenance, as well as the low cost, pay-per use

model. However, no code is error-free, which includes its vulnerability to attacks,

which have posed a risk for several years now. Additionally, the large number of web

applications also increase the threat of exploitation. Hence, it has become essential

to detect these attacks. There are two different intrusion detection techniques:

∙ Signature based detection

∙ Anomaly based detection

3



2.1.1 Signature Based Detection

Majority of the commercial detection programs are based on signature based

techniques. A signature based network intrusion detection [13] looks for ‘signatures’

in the attack payload. The signatures are then matched with the existing signatures

that are stored in the databases. Due to the increasing number of signatures, the

databases are getting huge and difficult to maintain. Signature based methods are

very efficient in detecting ‘known attacks’. Signature based detection has very quick

processing time and is very reliable. There are very less false alarms in this detection

technique.

2.1.2 Anomaly Based Detection

Anomaly based detection technique [18] allows anti-virus programs to detect

‘unknown attacks’, alternatively termed as ‘zero-day attacks’. These types of attacks

are harder to detect. Hence, anomaly based detections are complex and costlier to

implement. The authors of [12] have implemented a minimally expensive, simple,

robust methodology to detect unknown attacks. The authors have filtered out benign

traffic, which is easy to implement, and have applied more costly techniques to the

filtered traffic. However, according to [17] the zero-day attacks are increasing every

year. Table 1 shows the number of new zero-day attacks found during the years from

2006 - 2015 [17]. In 2015, a zero-day attack was detected once every week.

Due to the increasing number of zero-day attacks, it is necessary that the software

is able to detect the sophisticated attacks in a robust and efficient manner.
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Table 1: New Zero-Day Attacks Found During Each Year [17]

Year Number of
Zero-Day Attacks

2006 13
2007 15
2008 9
2009 12
2010 14
2011 8
2012 14
2013 23
2014 24
2015 54

2.2 HMM-based detection technique

Hidden Markov Model (HMM) based techniques were implemented by authors

of [2] to detect zero-day attacks efficiently. This technique uses a costly multi classifier

approach for increased accuracy. Though the results showed that these techniques

are very accurate in detecting the attacks, however it is very complex to implement.

Figure 1 explains the different stages in the implementation of the HMM-based tech-

nique. The important step in the implementation is the feature extraction. The

features extracted are 𝑛-grams from the payload.

2.3 𝑁-gram techniques

The 𝑛-gram based techniques have been applied to different problems over the

years. The most common application which uses the 𝑛-gram based detection is the

plagiarism detection. The other applications which use 𝑛-gram based detection are

file type classification [1], and attack traffic detection [20]. There are different 𝑛-

gram techniques. Some of the techniques related to this research are explained in this
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Figure 1: HMMPayl [2]

section. In order to defeat the scores in research [12], it is important to understand

how the scores are calculated for the techniques.

2.3.1 𝜒2 Technique

The 𝜒2 technique uses frequency vector as the scoring technique. Figure 2 shows

the scoring method for this technique. The formula used to calculate the distance is

𝐷2(𝑋, 𝑌 ) =
∑︀𝑁

𝑖=1
(𝑋𝑖−𝑌𝑖)

2

𝑌𝑖
. Since this technique uses frequency vector, when obfus-

cating the code, the frequency of the obfuscated bytes should be considered.

2.3.2 Ad-hoc 𝑁-Gram Technique

The Ad-hoc 𝑁 -gram technique also uses frequency vector as the scoring tech-

nique. This technique is similar to the 𝜒2 technique, except that the formula to

calculate the distance is different. The formula used to calculate the distance is

𝐷2(𝑋, 𝑌 ) =
∑︀𝑁

𝑖=1(𝑋𝑖 − 𝑌𝑖)
2. Since this technique uses frequency vector, when obfus-

cating the code, the frequency of the obfuscated bytes should be considered.

6



Figure 2: 𝜒2 Technique [12]

2.3.3 Pattern Counting Technique

Pattern counting technique is the most simple and extremely efficient technique.

Pattern counting technique does not use frequency for the scoring technique. This

is a binary classification technique. Figure 3 explains the scoring methodology. This

technique has scored almost perfect scores for 𝑛-gram sizes 2, 3, 4 and 5.

2.4 Obfuscation Techniques

Obfuscation was identified as a transformation technique, to modify code to

disguise its original form. This technique was used to hide confidential information

and to make reverse engineering of application difficult. Obfuscation of applications

protects the integrity of the application. Malware writers constantly identify new

ways to infect victims without getting detected or at the least, increase the time

before getting detected. The longer they go undetected, the higher the damage they

can cause to the victims.
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Figure 3: Pattern Counting Technique [12]

Attackers often use obfuscation techniques to disguise the attack traffic and at-

tack the victims [6]. Attack traffic will look similar to benign packets, as a result of

obfuscation. This way, when classifying benign and attack traffic, the classification

algorithm is defeated, as the attack looks more like benign, that is, there are more

false negatives.

Obfuscation techniques defeat both signature based intrusion detection and

anomaly based intrusion detection. In the case of signature based intrusion detection,

as a result of obfuscation, the signature is altered for the attack traffic and the IDS

does not detect the attack as an ‘attack’. Hence, the attack successfully infects the

victim. In case of anomaly based intrusion detection, as a result of obfuscation, the

statistics and algorithm to classify as benign and attack is defeated. IDS classifies

‘attack’ as ‘benign’. The obfuscation process is presented in figure 4.

Genuine benign HTTP traffic usually consists of ASCII characters. According

to [1], HTTP data with non-ASCII characters indicate the presence of suspicious

8



Figure 4: Obfuscation Process

executable code. Anomaly based IDS is very efficient in classifying these types of

benign and attack traffic. This is because, the pattern of benign and attack are

completely different. Attackers are aware of this idea and hence obfuscate attack data,

to disguise attack packets to look more like benign. Obfuscation of data prevents the

attack to be easily detected using the existing techniques.

There are different types of obfuscation techniques. Some of the obfuscation

techniques are used in this research to analyze the robustness of different 𝑛-gram

techniques. A background of these obfuscation techniques are explained in this sec-

tion.

2.4.1 Insertion of dead bytes

Insertion of dead bytes [16] is one of the simple obfuscation techniques. This

technique has been used by malicious code writers and application developers, to

insert dead code. ‘Dead Code’ refers to the insertion of code that never gets executed

by the application. The dead code is inserted by application developers to make

reverse engineering of application difficult. Malware code writers insert dead code

to prevent anti-virus programs from detecting them. Anti-virus programs often use

statistics / pattern matching to detect ‘abnormality’ in the code. Inserting dead code

9



gives incorrect statistics, in addition to what it is intended to do.

The attackers successfully infect the victim with this obfuscation technique as

the IDS do not detect them. This obfuscation technique can be applied to HTTP

payload by adding bytes from the benign traffic. The attack traffic reaches the victim

system and will be able to cause the harm. We use this obfuscation technique to

defeat the scores in [12].

2.4.2 Codebook Cipher

The codebook cipher [15] is a simple, yet efficient encoding/decoding technique

used in cryptology. Codebooks were in the ancient times called as Morse Code and

Enigma [15]. Enigma was used in World War II. The telegraph operators used the

Morse code to map sentence to shorter words. A codebook can be considered as a

look-up table.

The book stores the mapping of benign and malware bytes, called the code, and

can be transported securely to the receiver’s end. At the receiving end, the attack

cipher text can be decoded to obtain the actual attack text. The codebook acts

as the ‘key’ to encode and decode the attack packets. The attack cipher text can

be decrypted only if we have access to the codebook. If there is no access to the

codebook, decoding is not possible. This is a powerful obfuscation technique.

10



CHAPTER 3

Research Methodology

This chapter explains in detail the research methodology adopted. Different

obfuscation techniques explained in Chapter 2 are implemented to the attack data

packets. The 𝑛-gram detection techniques used by the authors of [12] are implemented

for the obfuscated data.

3.1 Terminologies

Intrusion detection techniques often leverage machine learning to distinguish

between benign and malware [5]. Machine learning techniques are most effective

in detecting zero-day attacks. Using benign data, the models are developed based

on different machine learning techniques such as Random Forest and Support Vector

Machine (SVM). The attack data is tested against the model to classify it as either

benign or attack. The scores are obtained for the attack dataset. The Receiver

Operating Characteristics (ROC) curves [8] are plotted based on the true positive

rate and the false positive rate.

A False positive refers to a ‘false alarm’. This means that the benign data was

marked as ‘attack’. A true positive means that the attack was correctly identified as

‘attack’.

AUC [3] value of 0.9 – 1.0 is termed to be excellent. It denotes that the benign

and attack are identified efficiently. In order to defeat the detection score for an

existing approach, the AUC value should be less than 0.7. AUC value lesser than 0.7

denotes that the model does not efficiently distinguish between attack and benign [8].

11



AUC value of 0.7 means that the attack data could look similar to the benign

data [8]. In order accomplish the premise, this research adopts different obfuscation

techniques.

3.2 Insertion of Dead Bytes

Insertion of dead code has been one of the most common obfuscation techniques.

Several researchers have adopted this technique. The dead code never gets executed

in the application. It is inserted in the malware to go undetected. This approach has

been used in this research. Instead of dead code, ‘dead bytes’ of data are inserted into

the attack packets. The inserted bytes should be similar to the bytes of the benign

data. Hence, benign data bytes are inserted as ‘dead bytes’ in the attack HTTP

packets.

3.2.1 Random 𝑁-gram

Pattern counting technique is a very simple and efficient technique to implement.

This technique models by creating a list of unique 𝑛-grams from the benign data

packets. Here, 𝑛 refers to the size of the sliding window. Attack packet data is

matched for the patterns in the benign model. The score is calculated per attack

packet. In order to defeat the scores, two methodologies are followed.

In the random 𝑛-gram approach, the list of random 𝑛-gram is obtained from the

benign data set. 𝑛-gram value is picked randomly from the set and is appended to

each of the attack packets. The random 𝑛-gram approach is shown in Figure 5. In

this approach, the data appended to each of the packets varies for different 𝑛-gram

sizes.
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Figure 5: Random 𝑁 -gram

3.2.2 Maximum Occurring 𝑁-gram

Literature shows that the detection techniques should be robust enough to detect

well crafted ‘intelligent’ attacks. This section explains another method of obfuscating

the attack data by inserting dead bytes ‘intelligently’. In contrast to the random 𝑛-

gram approach, a 𝑛-gram value is picked with some intelligence. Once the 𝑛-gram list

is obtained in the same manner as the random 𝑛-gram approach, the different possible

combinations for each 𝑛-gram are obtained. The 𝑛-gram with maximum occurrence,

that is, occurrence of 𝑛-gram and the combination of 𝑛-gram, is chosen. This would

increase the raw scores efficiently. The methodology is explained in Figure 6. Similar

to random 𝑛-gram approach, the data appended to each of the packets varies for

different 𝑛-gram sizes.

13



Figure 6: Maximum Occurring 𝑁 -Gram

The maximum occurring 𝑛-gram approach is adopted for HMMPayl method.

The maximum occurring 𝑛-gram is appended to the attack set and HMMpayl is

implemented. Hidden Markov Model (HMM) is developed based on benign payload.

The model is tested based on the attack payload.

3.2.3 Random Benign Bytes

Ad-hoc 𝑛-gram technique and 𝜒2 technique consider frequency of occurrence of

each bytes in the sliding window, whereas the pattern counting technique considers

patterns. Hence, in order to defeat the score for the frequency techniques in [12],

the methodology in Figure 7 is adopted. First, the data bytes from benign packets

are obtained. Then, these bytes are appended to each of the attack packets with no

14



change in the order of the bytes in benign data. In this approach, the data to be

appended remains the same for all 𝑛-gram sizes.

Figure 7: Random Benign Bytes

3.3 Codebook Cipher

In Section 3.2, the length of the packet increases exponentially as the dead bytes

are inserted. The 𝑛-gram techniques implemented by the authors in [12] use a nor-

malized score based on the packet length. Hence, a more efficient way to defeat the

scores is to substitute the data bytes in the payload. In this section, the research

methodology explains the substitution methodology for the three 𝑛-gram techniques

explained in the literature section.
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As in traditional codebook cipher, the ‘mapping book’ of the substitutions are

obtained. The ‘mapping book’ consists of the mapping of attack data bytes with

benign data bytes. The approach is explained in Figure 8. During encoding, the

codebook cipher is implemented and the attack bytes are obfuscated. While decoding,

the codebook cipher is implemented with reverse lookup. The decoded packets are the

attack packets. This approach is feasible due to the fact that the codebook cipher is

one of the strong cryptanalysis techniques. Decoding codebook cipher is difficult and

is possible only if the codebook is obtained. This is like a one-time pad [7]. Similar

to random 𝑛-gram approach, for each of the 𝑛-gram sizes, a different codebook is

maintained.

Figure 8: Codebook Cipher
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CHAPTER 4

Experiments and Results

The 𝑛-gram techniques described in literature were simple to implement and

were able to detect attack packets with high accuracy. The techniques were based

on a ‘single benign model’. In this research, we exploit the ‘single benign model’,

obfuscate the attack data packets and score each attack packet using the benign

model. The methodology is explained in Chapter 3. The Section 4.1 describes the

benign and attack datasets used in the research to conduct experiments. The results

are presented in Section 4.2.

4.1 Datasets

A variety of datasets have been used in this research to conduct the different

experiments. This section provides details on the benign and attack datasets used

in this research. The experiments were conducted with DARPA datasets and also

real world simulated dataset. The DARPA datasets were generated by MIT Lincoln

laboratory. DARPA datasets [5] have been used by many researchers for testing their

models for over a decade. However, according to [4], the author has highlighted the

need of more recent traffic data to build more robust models for attack detection. The

author suggests that the datasets the researchers use should be a realistic dataset to

model and test the detection algorithms. The recent dataset would consists of more

recent malware and its variants. Understanding the requirement, the authors of [12]

has used Metaspoilt [11] to simulate HTTP benign and attack traffic.
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4.1.1 Benign Traffic

The first sets of experiments were conducted using DARPA benign traffic data [5].

The DARPA datasets consists of three weeks of benign traffic. For the purpose of

comparison, similar to the research in [12, 2], we have used five days of training data

from the DARPA datasets in this research. The details of the data set are provided

in Table 2

Table 2: DARPA Benign Dataset

Day Number of Data Packets
1 28,187
2 34,446
3 33,051
4 44,185
5 26,315

The simulated benign traffic consists of 42,128 data packets. This dataset consists

of simulated traffic from wordpress [21] website. According to [12], the simulated

traffic resembles original traffic and is made as realistic as possible. The details of

the dataset are provided in Table 3.

Table 3: Simulated Benign Dataset

Number of Data Packets
42,128

4.1.2 Attack Traffic

We have used four types of attack datasets to test the benign model. The HTTP

attack data consists of generic attacks, shellcode attacks, CLET attacks and simu-
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lated attacks. The authors of [9] have provided the generic attack dataset publicly.

The generic attack dataset consists of 66 different attacks namely, denial of service,

shellcode, and more. Generic attack dataset consists of ASCII bytes. Shellcode at-

tack comprises of 11 types of attacks which injects code exploiting the buffer-overflow

vulnerability. The CLET attack dataset comprises of 8 variants of shellcode attack.

The details of the HTTP attack datasets are provided in Table 4.

Table 4: DARPA Attack Dataset

Attack dataset Number of Data Packets
Generic attack 205
Shellcode attack 93
CLET attack 792

The complete attack dataset consists of four attacks. The complete attacks,

related to PHP based vulnerabilities, were generated by simulating the traffic for a

wordpress website. Table 5 provides details of the simulated attack datasets from

the article [12]. In our experiments, the simulated benign model is tested against the

complete attack dataset.

Table 5: Complete Attack Dataset [12]

Attack Average packets per attack
WordPress OptimizePress Theme File 24
Wordpress W3 PHP code execution 55
WordPress Foxypress code execution 12
WordPress lastpostdate code execution 17
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4.2 Results

In this section, we describe the different experiments conducted for each of the

research methodology explained in Chapter 3. We also present the results and obser-

vations for each of the experiments. The 𝑛-gram technique and the dataset used to

evaluate the models are explained for each of the methodology.

4.2.1 Random Bytes Approach

As mentioned in Chapter 2, pattern counting methodology is a simple and pow-

erful detection technique. This 𝑛-gram technique detected the attack packets in less

than 0.1ms [12] with very high accuracy and minimal processing. In this research, we

analyze the robustness of the methodology by obfuscating the attack data. Obfusca-

tion technique used in this approach is insertion of dead bytes from benign dataset.

Inserting data from benign set means that the number of attack patterns match-

ing the benign patterns would increase. The attack packet would resemble the benign

dataset even more. Experiments with varying the number of bytes to append, that

is, to obfuscate the attack packets were conducted and presented in this section. The

results for 𝑛-gram size 2 and 3 are shown in Figure 9 and 10.

Figure 9 show that the obfuscation of attack data defeats the score from the score

in [12], for all HTTP attack packets. However, for 𝑛-gram size of 3, the scores are

almost perfect even when appending 100,000 bytes to the shellcode attack dataset,

from benign set. This shows that the 𝑛-gram techniques are robust.

Figure 11 shows the payload size for the shellcode attack packets, and payload

size for the benign packets. It can be seen that the payload size of attack packets

are higher than those of the benign packets. The benign model consists of high raw

20



Figure 9: N=2 Random Bytes Approach Method Results

scores. This is because the scores are normalized based on the payload size. In order

to defeat the attack score for this technique, when incoming attack packet is scored

using the benign model, the attack score should reach the benign score. However,

even when inserting large number of bytes, and the scores are normalized to the

payload size, the attack scores may not reach the benign scores. Figure 12 shows the

scatter plots for 𝑛-gram size of 2.

4.2.2 Maximum Occurring 𝑛-gram

Random bytes approach showed that the 𝑛-gram technique is robust and is dif-

ficult to defeat. In order to defeat the technique, a novel obfuscation technique is

required. The maximum occurring 𝑛-gram technique is an ‘intelligent’ version of ran-

dom bytes insertion technique. Instead of choosing 𝑛-gram randomly from the benign

set, the 𝑛-gram to append is chosen using the methodology explained in Chapter 3.

For these experiments, the DARPA benign dataset was used to model the approach.

The model was evaluated for three types of attack dataset as explained in Section 4.1.
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Figure 10: N=3 Shellcode Attack - Pattern Matching Technique Random Bytes
Method Results

The results for this approach are summarized in this section.

Figures 13, 14 and 15 show the line plots for 𝑛-gram sizes 2–5 for generic attack

data, shellcode attack data and CLET attack data respectively. The results show that

the 𝑛-gram techniques are robust and the scores are difficult to defeat. However, with

‘intelligent’ large number of dead bytes inserted, the scores get defeated. Attackers

would try to insert large number of dead bytes to go undetected. The insertion of

dead bytes makes the attack packet look similar to benign packet. The reason why it

is difficult to defeat the scores by inserting dead bytes, is that, the scores computed
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Figure 11: Payload Size

for pattern counting technique are normalized to payload size.

Table 6 shows the number of bytes required to defeat pattern counting technique

scores. Figure 16 shows the 3D plot of number of bytes required to defeat the scores

for each of the attack datasets for the pattern counting 𝑛-gram technique. As we

recall, generic attack dataset consists of ASCII bytes, and is difficult to detect us-

ing statistical techniques. The results in our experiments show that generic attack

requires lesser number of bytes to be obfuscated to the attack dataset to defeat the

score. CLET attack, being the variant of the shellcode attack, requires almost the

same number of bytes to obfuscate, to defeat the score.

Table 6: Number Of Dead Bytes Inserted to Defeat Pattern Counting 𝑁 -gram
Technique

𝑛-gram size Generic Attack Shellcode Attack CLET Attack
2 400 12,000 1,000
3 10,000 66000 72,000
4 24,000 30,000 30,000
5 16,800 25,600 25,600
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(a) No Bytes Obfuscation

(b) 1600 Bytes Obfuscation

(c) 3600 Bytes Obfuscation (d) 7600 Bytes Obfuscation

Figure 12: N=2 Random Bytes Pattern Counting Technique for varying number of
bytes

Figure 17 shows the trend in the number of dead bytes to be inserted for shellcode

attack. The number of dead bytes to be inserted increases for 𝑛-gram size of 3. For

𝑛-gram size 4 and 5, there is a decreasing trend. This is plausible because the number

of unique 𝑛-grams increases for 𝑛-gram sizes 4 and 5. The number of patterns that

match with the model increases, and hence, the number of bytes required to defeat

the score decreases.
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Figure 13: Generic Attack - Maximum Occurring 𝑁 -Gram Approach
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Figure 14: Shellcode Attack - Maximum Occurring 𝑁 -Gram Approach

4.2.3 Random Benign Bytes

The random benign bytes methodology from Chapter 3 was applied to the

DARPA dataset and experiments were conducted. The results in the research in [12]

gave perfect AUC value for all 𝑛-gram sizes. The experiments with random benign
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Figure 15: CLET Attack - Maximum Occurring 𝑁 -Gram Approach

Figure 16: Number Of Dead Bytes Inserted to Defeat Pattern Counting 𝑛-gram
Technique

bytes insertion were conducted for 𝑛-gram sizes 1, 2, 3, 4 and 5. Figure 18 show the

result for 𝑛-gram size 3 for the generic attacks, shellcode attacks and CLET attack

dataset. The figure shows that for all types of attacks, the number of bytes to be in-

serted are the same. This is plausible because, these 𝑛-gram techniques use frequency
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Figure 17: Shellcode Attack - Number Of Dead Bytes Inserted to Defeat Pattern
Counting 𝑁 -gram Technique

of occurrence 𝑛-gram in the detection approach.

Figure 18: Random Benign Bytes

27



4.2.4 Codebook Cipher

As we recall, codebook is an ancient cryptanalysis technique. A codebook can

be considered as a ‘mapping’ book, which acts as a simple substitution cipher. The

codebook technique is applied to the datasets in Section 4.1. Figure 19 shows the

AUC values for 𝑛-gram sizes 2, 3, 4 and 5 for the pattern matching technique.

Figure 19: Codebook Cipher - Pattern Matching

The codebook cipher methodology is a substitution obfuscation technique. In

this methodology, the length of the packet do not change. Hence, it is easier to defeat

the 𝑛-gram techniques with this obfuscation techniques. As explained in Chapter 2,

the scores for 𝑛-gram techniques are normalized based on the length of the payload.

Since the substitution methodology do not increase the size of the payload, the scores

are defeated easily. As an attacker, the codebook cipher obfuscation methodology is

easier to implement and is efficient.
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4.3 HMM-based Techniques

The HMMPayl technique explained in Chapter 2 was applied to the DARPA

dataset and the experiments were conducted. The results in the research in [2] showed

that there was perfect detection for all 𝑛-gram sizes. The experiments were conducted

for 𝑛-gram size 2 and with 1 HMM. This case is the simple case of HMM implementa-

tion. Figure 20 shows that even for 𝑛-gram size 2, the AUC scores were not defeated,

even after adding 25,000 additional bytes. This shows that the HMM-based scores

are even more robust as compared to the 𝑛-gram techniques.

Figure 20: HMMPayl n-gram size 2 Shellcode attack

A more sophisticated multiple classifier system is adopted in the next approach.

The multiple classifier system is implemented for a more accurate attack detection.

Statistical methods like average, minimum, maximum, standard deviation are used

as fusion classification scheme. Figure 21 shows the result with maximum rule as

explained by the authors of HmmPayl [2]. It can be seen that there is no noticeable
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difference in the AUC between single HMM and multiple classifier system. However,

sometimes when more than one HMM is used in classification, one or more HMM can

perform worse compared to the others. In such cases, the multiple classifier scheme

proves to be very efficient as in [2].

Figure 21: HMMPayl n-gram size 2 Shellcode attack - Multiple Classification System

4.4 Insertion of Obfuscation Data in Random Position

Inserting obfuscated data in random position instead of at one position can be an

interesting obfuscation technique. The results in Figure 22 show that this obfuscation

technique performs as comparable to the append of benign data to the attack packets.

Since the pattern counting technique and chi- squared technique are both scored per

packet, the results are comparable to the maximum occurring 𝑛-gram technique and

random benign bytes technique.

4.5 Summary of Results

The major highlights of the results in this research are summarized in this section.

Pattern counting technique is surprisingly robust to obfuscation using insertion of
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Figure 22: RandomPosition

dead bytes. This can be observed from Figure 10 which shows that the technique

is robust even when 100,000 bytes are inserted. However, with ‘intelligence’, the

technique can be defeated. Carefully identifying the bytes to be inserted, based on

maximum occurrence of 𝑛-gram across all possible combinations, defeats the score.

This type of obfuscation defeats generic attacks using lesser number of inserted bytes

compared to shellcode attacks and CLET attacks, as shown in Figure 16. This is

possible since generic attacks consists of ASCII characters, while shellcode and CLET

attacks consists of non-ASCII executable bytes. Results show that even when the

bytes are inserted at random positions, the scores are robust, but can be defeated.

The number of bytes required to defeat shellcode and CLET attacks are the same

for all 𝑛-gram sizes. This means that the attackers can obfuscate the attack and its

morphed variants in a similar manner and defeat pattern counting technique.

𝜒2 technique and ad-hoc 𝑛-gram technique are also robust to obfuscation using

insertion of dead bytes. These techniques require the same number of obfuscated dead

bytes for all types of attacks. This is because these techniques consider frequency of
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occurrence of 𝑛-grams as opposed to binary pattern matching of 𝑛-gram in the pattern

counting technique. Moreover, these techniques are equally robust irrespective of

whether the attacks consists of ASCII or non-ASCII characters.

Substitution obfuscation techniques are more efficient in terms of defeating the

𝑛-gram techniques compared to insertion obfuscation techniques. Figure 19 shows

that the pattern counting technique is defeated by implementing codebook cipher

as the obfuscation methodology. This is because the scores for 𝑛-gram techniques

are calculated by normalizing with the payload size. In substitution techniques, the

payload size do not increase. However, the number of patterns that now resemble

benign patterns increase. With these observations, this research emphasizes the need

to develop more robust and simple network intrusion detection techniques.

The HMM-based techniques proved the robustness and established the need for

a more costlier approach for intrusion detection. The detection scores did not get

defeated even for 𝑛-gram size 2. Though the implementation is complex and costlier,

the efficiency of the technique is very robust.
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CHAPTER 5

Conclusion and Future Work

This chapter summarizes the motivation for this research and provides an

overview of the different research methodologies adapted to defeat 𝑛-gram techniques.

Possible extensions to this research work will be outlined as part of the future work.

5.1 Research Summary

With the increasing threat to cybersecurity, different techniques are being evolved

to detect malicious attacks. These include the less sophisticated signature-based

detections to more sophisticated 𝑛-gram techniques. However, the robustness of such

techniques need to be analyzed, and improved techniques should be developed. This

research is aimed at analyzing the robustness and defeating the 𝑛-gram techniques as

a step forward towards developing more robust detection systems.

5.2 Conclusions

The number of web applications and the number of malicious attacks exploiting

the vulnerabilities are growing exponentially. Even if few of them are not detected,

they can cause enormous damage. Hence, robustness in the detection techniques

is a necessity. We have elaborated on two obfuscation techniques in this paper to

defeat the detection techniques explained by the authors of [12]. The techniques are

insertion of dead bytes and codebook cipher.

The 𝑛-gram techniques were very robust for insertion of dead bytes. It required

large number of benign bytes to be appended which is not uncommon. generic at-

tack dataset gets defeated with lesser number of benign bytes for pattern counting
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technique than shellcode attack dataset and CLET attack dataset. For example, the

robustness can be observed for 𝑛-gram size 3 in Figure 16, which shows that it re-

quires about 70,000 additional benign bytes to defeat the detection score of shellcode

and CLET attack. For the same 𝑛-gram size with generic attack dataset, the scores

get defeated with only about 10,000 benign bytes. However, malware writers could

exploit the vulnerability of 𝑛-gram techniques by inserting large amounts of benign

data that could go undetected. With the growth in the Internet speed over every

year, the detection techniques need to be robust and efficient in detecting the packets

at this speed, even after obfuscation.

The codebook cipher,which substitutes bytes instead of inserting additional

bytes, is better to defeat the robust 𝑛-gram techniques. In the dead bytes inser-

tion method, additional bytes also increase the overall payload size, thereby decreas-

ing the effectiveness in defeating the detection scores. In the codebook cipher tech-

nique, the payload size remains the same with increased obfuscation, thus increasing

the effectiveness in defeating the detection scores. Both the obfuscation techniques

implemented in this research are simple and very effective. The codebook cipher

methodology establishes that there is a need for more robust techniques to detect

HTTP attacks.

Authors of [2] have implemented a costlier Hidden Markov Model (HMM) based

technique to detect HTTP attacks. In this research we consider the benefit of this

costlier detection technique based on HMM. Obfuscation techniques were be imple-

mented and robustness of HMM technique were analyzed. The obfuscation techniques

do not get defeated even for 𝑛-gram size of 2. This proves the need for a more costlier

and sophisticated approach to attack detection.
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5.3 Future Work

This research has considered two most common obfuscation techniques. There

are many other efficient obfuscation techniques, mentioned in the literature. Mal-

ware writers often also implement sophisticated obfuscation techniques. Identifying

sophisticated obfuscation techniques to defeat detection scores can be a useful direc-

tion to enhance this research. The use of a combination of substitution technique

and insertion of dead bytes technique can be another direction for future research to

defeat detection scores. Another area for future researchers to explore could be by

inserting the bytes in random positions before the TCP segmentation is done. This

will help to analyze the robustness of the 𝑛-gram techniques more accurately.
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