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ABSTRACT

Based on Kolmogorov Complexity, a finite set x of strings has a pattern if the
set x can be output by a Turing machine of length that is less than minimum of all |x|;
this Turing machine, that may not be unique, is called a pattern of the finite set of string.
In order to find a pattern of a given finite set of strings (assuming such a pattern exists),
the ALERGIA algorithm is used to approximate such a pattern (Turing machine) in
terms of finite automata. Note that each finite automaton defines a partition on formal
language =*, ALERGIA algorithm can be viewed as Granular Rough Computing based
approximations. Any subset of Z*, such as DNA, can be approximated by equivalence
classes. Based on this view, this thesis analyzes and improves the ALERGIA algorithm
via minimization of deterministic finite automaton. Hypothesis testing indicates that the
minimization does improve the ALERGIA. So the new method will have high usability

in pattern recognition/data mining.
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1. Introduction

1.1 What is Machine Learning?

Machine Learning (ML) is a multidisciplinary discipline, which involves the theory of
probability, statistics, approximation theory, convex analysis, algorithm complexity

theory, pattern recognition, and computational learning theory in artificial intelligence.

It is a study of computer algorithms that improve and optimize a performance
criterion automatically through data examples or past experience. ML is also the core
of artificial intelligence, a basic method to make intelligent computers. Its application

mainly uses comprehensive induction, rather than deduction.

Machine learning has been widely used in natural language processing, data mining,

DNA sequence analysis, search engine and robots.

1.2. What is Pattern Recognition?

Pattern recognition is a filed of machine learning that focuses on regularities in data
and recognition of patterns. Pattern recognition algorithms commonly aim to
approximate a reasonable pattern for all possible input data and to perform most

likely matches of input data.

There are several typical applications of pattern recognition, such as automatic speech
recognition, classification of text in to several categories, automatic recognition of

handwritten postal codes, and automatic recognition of images of human faces.



1.3. Why use Statistical Method?

Statistical method is a powerful way to describe data. When data size is large, it is hard
for human to read and judge the results. Through statistics, we can clearly present the
results and make them easier for humans to understand. The most important thing is
that, by using statistics, it can help summarize and analyze the data. Through this
process, we can digitalize the useful information behind the data. In this paper, since
the world languages can be infinite while the performance of computers is limited, it
is hard to validate the results. Therefore, in order to help us analyze the data, statistics

is introduced to generate the distribution of the results.

1.4. Use of Automata theory

This thesis generates a prefix tree acceptor (PTA) from incoming sentences of a
specific regular language, then applies the ALERGIA algorithm to regenerate the PTA
iteratively by merging all compatible states. This process leads to a finite automaton
(FA) model that contains equivalent and useless states. A finite automaton
minimization algorithm is implemented to improve the ALERGIA algorithm to find the

minimum finite state automatons.



2. Approximation Theory

2.1 Thoughts of Integral in Turing Machine

In pattern recognition [1], approximation theory [2] is concerned with how a pattern
can get best approximated with quantitatively characterizing the errors introduced

thereby.

Based on Kolmogorov Complexity, a finite set x of strings come from one alphabet has
pattern if the set x can be output by a Turing machine of length less than minimum of
all |x]| [3]; this Turing machine, which may not be unique, is called a pattern of the
finite set x. We consider a formal language L, which contains stings from one alphabet,
has a Turing machine. In thoughts of Integral, we assume L represent an irregular
figure. In order to calculate area of L, it will be cut into squares as shown in Figure 1;
and we can approximate this area by adding all squares considering lower boundary,
which includes all squares that have no interaction with the curve in this figure, and
upper boundary, which includes squares in lower boundary and all others that the
curve has interaction with. Both boundaries are used as rough sets to calculate the

most accurate area of this figure.



Figure 1: Integral example for area calculation

2. Thoughts of Integral in Pattern Recognition

Equivalently any Turing machine (enumerable recursive set) can be approximated by
finite automata (equivalence classes [4]). Turing machine of a formal language =* can
be partitioned into small squares, which are equivalence classes with each can be

presented as a pattern of one or more strings.

In order to present the Turing machine of a formal language X*, pattern recognition
is needed to get all patterns for upper and lower boundaries as rough patterns [3]. In
order to find a pattern of a partitioned square, which is a given finite set of strings;
assume such a pattern exists. The ALERGIA algorithm is used to approximate such a
pattern (Turing machine) by stochastic deterministic finite automata [5]; note that
each finite automaton defines a partition on formal language X*; and such
approximation is based on Granular Rough Computing (GRC). ALERGIA algorithm can

be viewed as GRC based approximation theory, any subset of Z*, such as DNA, can be



approximated by equivalence classes. Once pattern recognition is done for all subsets
from Z* by the ALERGIA algorithm, the Turing machine of Z* can be indicated by rough

sets of finite automatons.



3. Deterministic Finite Automaton

3.1 Definition of Deterministic Finite Automaton

A deterministic finite automaton [5] M is represented as
M=(Q 2,6, qo F)
o Q: Afinite set of states with symbols q.
e 3 : Afinite set of input symbols.
e & : Atransition function that takes a state and a symbol returning a state.
® (o: The initial state.

e F: Aset of final/accepting states.

® (go<Q
e FCQ
e QxX>Q

e (Qx2isthesetof 2-tuples (g, a) withg €Qanda €

3.2 Example of Deterministic Finite Automaton

A DFA example is denoted M = (Q, Z, §, qo, F), where Q = {qo, q1, 92, 93}, 2 =1{0, 1}, F =

{q0}, and & is shown in Figure 2.



States 0 1

Ao 4z 4
q1 S Yo
q2 Yo ds3
ds3 A1 9z

Figure 2: State transition table

The transition diagram of M is shown in Figure 3.

Figure 3: State transition diagram

3.3 Stochastic Deterministic Finite Automaton

A stochastic finite state automaton (SFA) [7] provides transition probabilities to each
of the next states for a set of strings as the given input. Consider input symbols 0 and
1, for example, there are possibilities of two transitions §(q, 0) or §(g, 1) for a state qg.

SFA helps us in analysis and evaluation on the probabilities of the transitions to each

of the states.



The probability function to calculate arbitrary transitions is given by,

Pir + Z Zpij(a) =1

qjEQ acA



4. ALERGIA Algorithm

4.1 Introduction of ALERGIA Algorithm

The ALERGIA algorithm [7] is a learning algorithm which specializes in merging the
states of a generated automaton from a probabilistic perspective. For example, the
algorithm is able to learn the Deterministic Frequency Finite Automata (DFFA) [5] and
the Deterministic Probabilistic Finite Automata (DPFA) [5] of a sample set that

contains duplicate strings.

When the probability of appearance of a string follows a well approximated
distribution, ALERGIA has the ability to merge states when the resulting automatons

are compatible with the observed frequency of strings.

Firstly, the algorithm generates a Prefix Tree Accepter (PTA) from the input strings and
analyzes the relative frequency of outgoing transactions at every node. The PTA

captures all of this information.

Let n; be the number of strings arriving at node q;.
fi(a) : Number of strings following arc &;(a)

fi(#) : Number of strings terminating at node q;

Calculate the following probabilities:
pi(a) = fi(a)/ni

pir = fi(#)/n



The algorithm compares corresponding nodes (q;, q;). In algorithm compatible shown
in Figure 4, the value of j varies from 2 to number of states in PTA and i varies from 1

toj-1.

If the probabilities of two states are equal, then they are considered compatible and
their corresponding children are going to be checked recursively. If the difference
between the probabilities of the two states is less than the acceptance range a, these
states are considered as compatible. The formula to detect whether two states are

compatible given is by:

F_r

n n’

2.1

1
a \/ﬁ+ﬁ)

< %log

Algorithm to check COMPATIBLE is shown in Figure 4.

algorithm compatible

Boolean compatible(i,)

Input:

i, ] nodes
Output:

Boolean
Begin

If different(n, fi(#),n, fi(#))
Return false
End if
Do (Fa £ A)
If different(n,,fi(a),n;,f(a))

Return false

End if
If not compatible(&(i,a),5(j,a))
Return false
End if
End do
Return true
End algorithm

Figure 4: Algorithm compatible

10



Algorithm for merging in ALERGIA is shown in Figure 5.

algorithm ALERGIA
Input:
S: sample set of strings
a: 1 - confidence level
Output:
Stochastic DFA
Begin
A = stochastic prefix tree acceptor from S
Do (for j = successor(first node(A) to last node(A))
Do (for i = firstnode(A) to j)
If compatible(i,j)
Merge(A.i,))
Determinize(A)
Exit (i loop)
End if
End for
End for
Return A

End algorithm
Figure 5: Algorithm ALERGIA

4.2 Example of ALERGIA Algorithm

CT: Termination Probability Check which is P(#)/n

CO: Transition 0 check which is P(0)/n

C1: Transition 1 check which is P(1)/n

Sequence = {110, A\, A, A, O, A, 00, 00, A, A, A, 10110, A, A, 100}

a=0.8

11



Build the Prefix Tree Acceptor tree as shown in Figure 6:

Figure 6: PTA tree of ALERGIA example

Start to merge:

_«/

=~ 10 -
.

81,0 )

1.  Check node 0 and 4. Results are shown in Table 1:
CcT co Cc1
Input n: 15 Input n: 15 Input n: 15
Input f: 9 Input f: 3 Input f: 3
Input n': 3 Input n': 3 Input n': 3
Input f': 1 Input f': 2 Input f': 0
Diff is: 0.26666668 Diff is: 0.4666667 Diff is: 0.2
Range is: Range is: Range is:
0.5655534492421921 0.5655534492421921 0.5655534492421921
Merge: True Merge: True Merge: True

Table 1: ALERGIA algorithm example step1-1

12




Check their children by transition 0 (node 4 and 5). Results are shown in Table 2:

CcT co Cc1
Input n: 3 Input n: 3 Input n: 3
Input f: 1 Input f: 2 Input f: 0
Input n': 2 Input n': 2 Input n': 2
Input f': 2 Input f': 0 Input f': 0
Diff is: 0.6666666 Diff is: 0.6666667 Diff is: 0.0
Range is: Range is: Range is:
0.869403203239481 0.869403203239481 0.869403203239481
Merge: True Merge: True Merge: True

Table 2: ALERGIA algorithm example step1-2

Node 0 and 4 are compatible.
Break link between node 4 and parent.

Link node 0 to node 4’s parent which is 0 itself.

Add node 4 to node 0.

Fold node 4’s child to node 0’s child

Diagram after step 1 is shown in Figure 7:

|3 0[2] -
§ 2

I

oy <D

N

DD GD
> .G
N S

Figure 7: ALERGIA algorithm example stepl diagram
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2. Check node 0 and 1. Results are shown in Table 3:

cT

co

C1

Input n: 20
Input f: 12
Input n': 3
Input f': 0
Diff is: 0.6
Range is:

Merge: False

0.5421392949267191

CT False

CT False

Node 1 and 0 are not

Set node 1 to RED.

Table 3: ALERGIA algorithm example step2

compatible.

Add node 1’s children to BLUE set.

Diagram after step 2

o[s)

/N

/
)

J
J

@Dy

is shown in Figure 8:

0[2] Cd

| o[1]
0[2) 1]
Y:@l) UGl

o D

Figure 8: ALERGIA algorithm example step2 diagram
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3. Check node 0 and 6. Results are shown in Table 4:

CcT co Cc1
Input n: 20 Input n: 20 Input n: 20
Input f: 12 Input f: 5 Input f: 4
Input n': 2 Input n': 2 Input n': 2
Input f': 0 Input f': 1 Input f': 1
Diff is: 0.6 Diff is: 0.25 Diff is: 0.3
Range is: Range is: Range is:
0.6299668537682291 0.6299668537682291 0.6299668537682291
Merge: True Merge: True Merge: True

Table 4: ALERGIA algorithm example step3-1

Check their children by transition 0 (node 0 and 10). Results are shown in Table 5:

CcT co Cc1
Input n: 20 Input n: 20 Input n: 20
Input f: 12 Input f: 5 Input f: 3
Inputn': 1 Inputn': 1 Inputn': 1
Input f': 1 Input f': 0 Input f': 0
Diff is: 0.39999998 Diff is: 0.25 Diff is: 0.15
Range is: Range is: Range is:
0.8282158357555691 0.8282158357555691 0.8282158357555691
Merge: True Merge: True Merge: True

Table 5: ALERGIA algorithm example step3-2

15




Check their children by transition 1 (node 1 and 7). Results are shown in Table 6:

CcT co Cc1
Input n: 3 Input n: 3 Input n: 3
Input f: 0 Input f: 2 Input f: 1
Inputn': 1 Inputn': 1 Inputn': 1
Input f': 0 Input f': 0 Input f': 1
Diff is: 0.0 Diff is: 0.6666667 Diff is: 0.6666666
Range is: Range is: Range is:
1.067652185226821 1.067652185226821 1.067652185226821
Merge: True Merge: True Merge: True

Table 6: ALERGIA algorithm example step3-3
Recursively check successors: (2 and 8). Results are shown in Table 7:

CcT co Cc1
Inputn: 1 Inputn: 1 Inputn: 1
Input f: 0 Input f: 1 Input f: 0
Inputn': 1 Inputn': 1 Inputn': 1
Input f': 0 Input f': 1 Input f': 0
Diff is: 0.0 Diff is: 0.0 Diff is: 0.0
Range is: Range is: Range is:
1.3537287260556712 1.3537287260556712 1.3537287260556712
Merge: True Merge: True Merge: True

Table 7: ALERGIA algorithm example step3-4
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Recursively check successors: (3 and 9). Results are shown in Table 8:

CcT co Cc1
Inputn: 1 Inputn: 1 Inputn: 1
Input f: 1 Input f: 0 Input f: 0
Inputn': 1 Inputn': 1 Inputn': 1
Input f': 1 Input f': 0 Input f': 0
Diff is: 0.0 Diff is: 0.0 Diff is: 0.0
Range is: Range is: Range is:
1.3537287260556712 1.3537287260556712 1.3537287260556712
Merge: True Merge: True Merge: True

Table 8: ALERGIA algorithm example step3-5

Node 0 and 6 are compatible.

Break link between node 6 and parent.

Link node 0 and node 6’s parent which is 1.

Add node 6 to node 0.

Fold node 4’s child which is 10 to node 0’s child which is 0 itself and recursively 9 to
3,8to2and 7to 1.

Diagram after step 3 is shown in Figure 9:

Figure 9: ALERGIA algorithm example step3 diagram
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4. Check node 0 and 2. Results are shown in Table 9:

CcT co C1
Input n: 23 Input n: 23 CO False
Input f: 13 Input f: 6
Input n': 2 Input n': 2
Input f': 0 Input f': 2
Diff is: 0.5652174 Diff is: 0.73913044
Range is: Range is:
0.6197513570933598 0.6197513570933598
Merge: True Merge: False

Table 9: ALERGIA algorithm example step4

Node 0 and 2 are not compatible.

5. Check node 1 and 2. Results are shown in Table 10:

CcT co Cc1
Inputn: 4 Inputn: 4 Inputn: 4
Input f: 0 Input f: 2 Input f: 2
Input n': 2 Input n': 2 Input n': 2
Input f': 0 Input f': 2 Input f': 0
Diff is: 0.0 Diff is: 0.5 Diff is: 0.5
Range is: Range is: Range is:
0.8170475625544134 0.8170475625544134 0.8170475625544134
Merge: True Merge: True Merge: True

Table 10: ALERGIA algorithm example step5-1
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Check their children by transition 0 (node 0 and 3). Results are shown in Table 11:

CcT co Cc1
Input n: 23 Input n: 23 Input n: 23
Input f: 13 Input f: 6 Input f: 4
Input n': 2 Input n': 2 Input n': 2
Input f': 2 Input f': 0 Input f': 0
Diff is: 0.43478262 Diff is: 0.26086956 Diff is: 0.17391305
Range is: Range is: Range is:
0.6197513570933598 0.6197513570933598 0.6197513570933598
Merge: True Merge: True Merge: True

Node 1 and 2 are compatible.

Table 11: ALERGIA algorithm example step5-2

Break link between node 2 and parent.

Link node 1 and node 1’s parent which is 1 itself.

Add node 2 to node 1.

Fold node 2’s child which is 3 to node 1’s child which is O.

Diagram after step 5 is shown in Figure 10:

Figure 10: ALERGIA algorithm example step5 diagram
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Final diagram is shown in Figure 11:

0[6]

1[2]

@D

0[4]

0(0.24)

0(0.67)

Figure 11: ALERGIA algorithm example final diagram
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5. Minimization of Finite Automatons

5.1 Equivalent States

The following three statements are equivalent [4]:
e Thesetl ©I*isaccepted by some finite automaton.
e L is the union of some of the equivalence classes of a right invariant
equivalence relation of finite index.
e Let equivalence relation R, be defined by: xR,y if and only if for all zin Z*, xz is
in L exactly when yzis in L. Then Ry is of finite index.

The minimum state automaton M accepting a set L is unique and is given by M"”.

5.2 Proof of Equivalent States

Statement 1 to 2 [4]:

L: Accepted by DFAM = (Q, 2, §, qo, F)

Ry: Equivalence relation xR,y if and only if (qo, X) = 6(qo, ¥)

Rw is right invariant since, for vz &3*, if 8§(qo, X) = 8(qo, y), then 6(qo, xz) = 6(qo, yz).
Number of states in Q is limited so index of Ry is finite.

There is a string w such that 6 (go, w) is in F and L is the union of some of the

equivalence classes that include w.

Statement 2 to 3 [4]:
We show that any equivalence relation E satisfying statement 2 is a refinement of Ry ;
that is, each equivalence class of E is entirely contained in some equivalence class of

R;. Thus the index of R, is lower or equal to that of E and so is finite.
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Suppose that xEy. Since E is right invariant, for Vz C $*, xzEyz, thus yz is in L if and
only if xz is in L and xR,y and hence equivalence class of x in E is contained in
equivalence class of x in R;.

So each equivalence class of E is contained within one equivalence class of R;.

Statement 3 to 1 [4]:
Assume xR,y and w C Z*. For V z € I*, xwz € L when ywz C L. Since xR,y, for Vv C

Z*, xv € L when yv C L. R, need be proved as right invariant with letting v = wz.

Then [4]:

Q’: Finite set of equivalence classes of R,

[x]: The element of Q’ containing x

Since R, is right invariant, &([x], a) = [xa] is defined consistently. If y was chosen
instead of x, result would be &([x], a) = [ya]. Since xRy, xz © L when yz < L. In
particular, if z = az’, xaz” &L when yaz’ <1, so xaR,ya, and [xa] = [ya].

Letg’o=[g], F={[x] | x &L}. Since &' (g, x) = [x], M’=(Q’, %, &’, q’o, F’) accepts L and

thus x is in L(M’) if and only if [x] is in F’.

5.3 Deterministic Finite Automaton Minimization Algorithm

This algorithm finds the minimum finite state automaton M’, which is equivalent to a

given DFAM = (Q, 2, 6, qo, F), given by proof of theorems in section 3.1 equivalent to.

Let = be the equivalence relation on the states of M such that p = q if and only if for

each input string w, &(p, w) is an accepting state if and only if (g, w) is an accepting
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state.

If p = q, we say p is equivalent to q. We say that p is distinguishable from q if there
exists a w such that 6(p, w) is in F and 6(g, w) is not, or vice versa.

Algorithm is shown in Figure 12.

Begin
1) forpinFandqinQ-Fdomark(p, q);
2)  for each pair of distinct states (p, g) in F XFor (Q-F) X(Q-F) do

3) if for some input symbol w, (8(p, w), 6(q, w)) is marked then
begin
4) mark (p, q);
5) Recursively mark all unmarked pairs on the list for (p, g) and on the lists

of other pairs that are marked at this step.
end
else /* no pair (6(p, w), 6(q, w)) is marked */
6) for all input symbols a do
7) put (p, q) on the list for (6(p, w), &(g, w)) unless
8(p, w) =6(q, w)
End

Figure 12: Algorithm for marking pairs of inequivalent states

5.4 Example of Deterministic Finite Automaton Minimization Algorithm

Let M be the finite automaton of Figure 13.
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Figure 13: Finite automaton minimization example diagram

Based on algorithm in Figure 12, a simple process can be defined as:

Two states p and g are distinct if
e pinFandgnotinF orvice versa, or

e forsome ainZ, &(p, a)and &(g, a) are distinct

For every pair of states (p, q):
e If pisfinal and qis not, or vice versa

e DISTINCT(p, q) = €

Loop until no change for an iteration:
e For every pair of states (p, g) and each symbol a

o If DISTINCT(p, q) is blank and

DISTINCT( &(p, a), 6(g, @) ) is not blank

e DISTINCT(p, g) =

In Figure 14 it has constructed a table with an entry for all pairs of states for Step 1. A

character will be placed in the table each time a pair of states that are
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distinguishable is discovered.

h €| €

alblc|dlel|f]|g

Figure 14: Finite automaton minimization example Step 1

From Figure 15 to Figure 17, minimization is done.

b

c| 1]1

dif 1]1

effO]O0 0[O0

fllele|e]|€e]|e€

gflle|€e|e|€e|€

h 111]0]€|e
[ Talblclalelile]

Figure 15: Finite automaton minimization example Step 2
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hf|1{1]1]1]0]e]e]
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Figure 16: Finite automaton minimization example Step 3

_

b

c| 111

df 111
e[|O]0[O0]O0
f|le|€|€|€]e€
glle|€e|€e|€|€
hi 1|1 [1]1[0]€]e
alblc|d|e|f]|g

Figure 17: Finite automaton minimization example Step 4

In Figure 17 final iteration makes no changes and blank cells are equivalent pairs of

states. Combine equivalent states for minimized DFA in Figure 18.
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Figure 18: Minimized finite automaton example diagram

27



5.5 Use of Minimization in Stochastic DFA

In the ALERGIA algorithm, the output is a stochastic DFA. Figure 11 demonstrates the
ALERGIA output with string frequencies, which are used to calculate the probabilities
in the automaton output. Since there is no such a minimization method that can be
proved to be used in deterministic finite automatons with probabilities, states in a
stochastic DFA will be merged only with their string frequencies using the DFA
minimization algorithm, and the probabilities will be calculated for the final

automaton.

In Figure 19, a string frequency based stochastic DFA is given. Then DFA minimization
algorithm is applied to find out that states S1 and S2 can be merged, and the
corresponding numbers of stings are merged as:

® Number of strings go through merged states is 8+12=20.

® Number of strings terminating at merged states is 2+3=5.

® Number of strings go through transition 0 of merged states is 4+6=10.

® Number of strings go through transition 1 of merged states is 2+3=5.

Then, probabilities will be easily calculated as in Figure 19.

28



a SO
1[10] s1 |¢

‘ I\ Of6) 103] + s2 |¢
0[16] sO|s1|s2

0[10]. 1[5]

1[10]. 0[16]

) (50[26.0] >

1 0(0.50). 1(0.25)

1(0.38), 0(0.62)

- D>

Figure 19: Example of minimization on stochastic DFA

Next chapter, we will improve ALERGIA using minimization of deterministic finite
automatons algorithm on the stochastic results and analyze performance of this

improvement with linear regression [8] through statistical inference.
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6. Analyzing ALERGIA Algorithm in Statistical Inference

6.1 Introduction to R

R is a free software for statistical computing and graphics [9]. R is similar to S language
[10], and can be considered as a different implementation of S. Although they have

some difference, most code written for S can run unaltered by R.

R provides a lot different of statistical (linear and nonlinear models, statistical tests,
time-series analysis, classification) and graphical functions, and is highly extensible. R
provides an Open Source; it is a free software. It compiles and runs on a different of
UNIX platforms and similar systems (including FreeBSD and Linux), Windows and Mac

OS X.

6.2 Exponential Distribution

As more words fit into the patterns, more complexity is expected. However, if the
complexity is convergent or constant as more words fit into the patterns, we can
assume that the more words are put into patterns, a more stable pattern recognition

will be found.

To measure the convergence of the complexity of the PTAs, we introduce the
exponential distribution [11]. The probability density function (PDF) of an exponential

distribution and cumulative distribution function (PDF) are:

o) =, x>0
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Fl;)=1—e ™ x>0
PDF graph example is shown in Figure 20. CDF graph example is shown in Figure 21.

The exponential distribution is normally used for describing the Poisson process. It is

a particular case of the gamma distribution. The distribution is supported on the

interval [0, o=].

1'6 ' L] 1 1]

1.4} A=0.5

1.2} E——

1.0 A=1.5
f(x;A) 0.8f

Figure 21: CDF Exponential function
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According to the figures, the PDF of exponential distribution is convergent as x
increase. This character can be applied to the data. If the complexity of the model is
proved to follow exponential distribution, then the model has good performance on

modeling language.

6.3 Analysis on Test Results in Hypothesis Test

In order to analyze improved ALERGIA algorithm, continuous training has been used
on growing data that is randomly generated from a regular language for each case. As
a result, stochastic DFA outcomes from ALERGIA algorithm are improved with DFA
minimization to get the minimum automatons. Number of nodes in models is used to

construct a mathematical function.

3000 -

2000~ variable
Alergia

Minimum

Number of nodes

25 50

Number of words

w
O -
o

Figure 22: Program result example

Comparing two curves in Figure 22, we suppose both curves represent the same
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behavior. To confirm this assumption, linear regression and hypothesis test are

introduced in this section.

Linear regression is a common statistical model that is generally used in different fields
and industries. Linear regression is modeling the relationship among continuous
numeric variables and one or more independent variables. Simple linear regression
usually refers to one explanatory variable. The linear regression model is linearly
depended on the unknown parameters. It is easier to fit comparing to a model that
has non-linearly relationship between the explanatory variables. Because the
statistical properties of the estimators are easier to determine, linear regression was
the first regression model that was applied to most cases in the real world.

Here is a detailed linear regression model. Given a data set

{yi,xil...,xip}, i=1,...,n

n identical independent distributed (iid) variable x;; y is a dependent variable. The
relationship between y and x is modeled through a disturbance term or error variable
€;, a random variable that the model couldn’t catch, which is usually treated as noise

for the linear relationship. Thus, the model can be written as:
. . - _ LT - .
Ui = B+ -+ Brip +ai = X; B+ &, 1=1,....n,

Where " denotes the transpose, and X;'8 is the inner product between vectors x; and

8.

A statistical hypothesis test [12] is a method of statistical inference. Usually it is used

to compare two statistical data sets, or the sampling distribution and the true
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distribution. A hypothesis test is to compare an alternative hypothesis to an idealized
null hypothesis, assuming no relationship between two data sets exists. The purpose
of hypothesis tests is to determine whether to reject the null hypothesis for a pre-
specified level of significance, or to accept the null hypothesis, based on the test
outcomes. The comparison is decided by statistically significance. If the statistical
metric of the relationship between the two data sets reaches the threshold probability
(the significance level), the alternative hypothesis should be accepted. The process of
distinguishing the null hypothesis from the alternative hypothesis is aided by
identifying two conceptual types of errors (type 1 & type 2). Type 1 error (significant
level, alpha) is more important and cared, while type 2 is prefixed; usually type 1 error
is 0.01 or 0.05. In the statistics literature, statistical hypothesis testing plays a
fundamental role. The usual line of reasoning is as following:

1. Set up the research with the truth of the hypothesis unknown.

2. The first step is to set the null and alternative hypotheses. If the
hypotheses were misunderstood, it would mislead the rest of the processes.

3. The second step is to consider the statistical assumptions that are
applied in the hypothesis testing. Assume the data observed from the sampling
distribution is independent.

4. Select the appropriate testing, such as normal test, student T test [13],
and F test [14].

5. Derive the distribution of the test statistic under the null hypothesis,
such as Student's T-distribution [15] or normal distribution.

6. Select a significance level (alpha). It is a threshold; if the test statistics

is below the threshold, the null hypothesis should be rejected.
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7. Compute from the observations to observe test statistic.
8. Decide either to reject the null hypothesis, or to accept null hypothesis.
The decision rule is to reject the null hypothesis Hy if the observed test statistics is

in the critical region, and to accept the hypothesis otherwise.

How could we apply linear model to fit nonlinear model? Here we do the log

transformation for the exponential distribution.

fl;2) = ™
Log(f (x; 1)) = log(2) + log(e~**)

= log(1) — Ax

After logging the exponential distribution, it transfers to the linear function respect to
lambda. So we do log transformation to our data, and fit it to linear model; here are

the results that we get.

In order to get more convincing results, regular languages with more stars in their
regular expressions are selected to keep low repeatability of all test files with different
numbers of strings for every regular language. For instance, the regular expression of
test case 1is 0*10*(0+1)*. Each star comes as a random number from 0 to 20, and the
total number of strings is 21*21*2! =924,844,032. Since the number of strings in all
test files is from 500 to 50,000, which is way less than 924,844,032, the repeatability
of strings in test files will be extremely low. Then Patterns will be recognized from
subsets samples of strings from their corresponding regular language.
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Test Case 1:
Regular language : 0*10*(0+1)*

Date result in curve graphic as shown in Figure 23:

3000~

2000 -

Number of nodes

1000~ [if , ‘

10000 20000 30000 40000
Number of strings

Figure 23: Test casel R program result

Analysis results in R as shown in Table 12 and Table 13:

Summary Table

variable
Alergia

Minimum

50000

Attribute ALERGIA Improved ALERGIA
Formula log(y) = log(A) — Ax log(y) = log(A) — Ax
Coefficients Estimate: Intercept, x 6.540e+00, -3.219e-06 5.964772, -0.005018
Coefficients Std Error: Intercept, x 1.007e-01, 3.461e-06 0.088490, 0.001507
Coefficients t value: Intercept, x 64.97,-0.93 67.41,-3.33
Pr(>|t|) <2e-16,0.355 < 2e-16,0.00122

Table 12: Test casel R Summary Table
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Analysis of Variance Table

Attribute ALERGIA Improved ALERGIA
Degree of freedom of x 1 1
Sum of the square 0.2159 2.1595
Sum of the mean square 0.21586 2.15949
F value 0.865 11.092
Pr(>F) 0.3546 0.001219
Table 13: Test casel R Analysis of Variance Table
Summary:

From the summary table, we get the estimate coefficient of the linear regression is
y=5.964772-0.005018x. The p-value from the T test for both parameters are under the
0.01, so the two parameters are both significant at 0.01 significant level, which means
parameters exist. Also from the ANOVA table, it shows that the p-value from the F test
for the whole equation is 0.001219, which means it is significant at 0.01 significant
level, the linear equation exists. But compare to the result from ALERGIA, the F test
for the whole-equation is 0.3546, it is not significant at 0.01 significant level, so we can
conclude that ALERGIA is not follow the exponential distribution. This is sufficient to

conclude that ALERGIA algorithm performs better with improvement using finite

automaton minimization in this case.
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Test Case 2:

Regular language : (11+0)*(00+1)*

Date result in curve graphic as shown in Figure 24:
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Figure 24: Test case2 R program result

Analysis results in R as shown in Table 14 and Table 15:

Summary Table

variable
Alergia

—— Minimum

50000

Attribute

ALERGIA

Improved ALERGIA

Formula

log(y) = log(4) — Ax

log(y) = log(4) — Ax

Coefficients Estimate: Intercept, x

6.382e+00, 1.858e-06

5.842e+00, -6.471e-06

Coefficients Std Error: Intercept, x

1.055e-01, 3.628e-06

8.549e-02, 2.911e-06

Coefficients t value: Intercept, x

60.479, 0.512

68.337,-2.223

Pr(>|t])

<2e-16,0.61

< 2e-16, 0.0285

Table 14: Test case2 R Summary Table
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Analysis of Variance Table

Attribute ALERGIA Improved ALERGIA
Degree of freedom of x 1 1
Sum of the square 0.0719 0.8977
Sum of the mean square 0.071889 0.89771
F value 0.2622 4.9404
Pr(>F) 0.6098 0.02851

Table 15: Test case2 R Analysis of Variance Table

Summary:

From the summary table, we get the estimate coefficient of the linear regression is
y=5.842-6.471e-06x. The p-value from the T test for both parameters are under the 0.05,
so the two parameters are both significant at 0.05 significant level, which means
parameters exist. Also from the ANOVA table, it shows that the p-value from the F test
for the whole equation is 0.0285, which means it is significant at 0.05 significant level,
the linear equation exists. But compare to the result from ALERGIA, the F test for the
whole-equation is 0.6098, it is not significant at 0.01 significant level, so we can
conclude that ALERGIA is not follow the exponential distribution. This is sufficient to
conclude that ALERGIA algorithm performs better with improvement using finite

automaton minimization in this case.
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Test Case 3:
Regular language : 10*(0+11)*01*

Date result in curve graphic as shown in Figure 25:
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Figure 25: Test case3 R program result
Analysis results in R as shown in Table 16 and Table 17:
Summary Table
Attribute ALERGIA Improved ALERGIA
Formula log(y) = log(A) — Ax log(y) = log(A) — Ax
Coefficients Estimate: Intercept, x 6.565e+00, -3.818e-06 5.995e+00, -1.052e-05
Coefficients Std Error: Intercept, x 1.000e-01, 3.439e-06 8.394e-02, 2.859e-06
Coefficients t value: Intercept, x 65.64, -1.11 71.423, -3.678
Pr(>|t|) <2e-16,0.27 < 2e-16, 0.000382

Table 16: Test case3 R Summary Table
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Analysis of Variance Table

Attribute ALERGIA Improved ALERGIA
Degree of freedom of x 1 1
Sum of the square 0.3037 2.3704
Sum of the mean square 0.30367 2.37036
F value 1.2327 13.531
Pr(>F) 0.2696 0.0003818
Table 17: Test case3 R Analysis of Variance Table
Summary:

From the summary table, we get the estimate coefficient of the linear regression is
y=5.995-1.052e-05x. The p-value from the T test for both parameters are under the
0.01, so the two parameters are both significant at 0.01 significant level, which means
parameters exist. Also from the ANOVA table, it shows that the p-value from the F test
for the whole equation is 0.0003818, which means it is significant at 0.01 significant
level, the linear equation exists. But compare to the result from ALERGIA, the F test
for the whole-equation is 0.2696, it is not significant at 0.01 significant level, so we
can conclude that ALERGIA is not follow the exponential distribution. This is sufficient

to conclude that ALERGIA algorithm performs better with improvement using finite

automaton minimization in this case.
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Test Case 4:

Regular language : 0+1(10)*0(01)*

Date result in curve graphic as shown in Figure 26:
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Figure 26: Test case4 R program result

Analysis results in R as shown in Table 18 and Table 19:

Summary Table

variable
Alergia

Minimum

'
50000

Attribute

ALERGIA

Improved ALERGIA

Formula

log(y) = log(A) — Ax

log(y) = log(A) — Ax

Coefficients Estimate: Intercept, x

6.541e+00, -3.279e-06

5.987e+00, -1.048e-05

Coefficients Std Error: Intercept, x

1.162e-01, 3.994e-06

9.423e-02, 3.209e-06

Coefficients t value: Intercept, x

56.303, -0.821

63.530, -3.267

Pr(>[t])

< 2e-16, 0.414

< 2e-16, 0.00149

Table 18: Test case4 R Summary Table
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Analysis of Variance Table

Attribute ALERGIA Improved ALERGIA
Degree of freedom of x 1 1
Sum of the square 0.224 2.3565
Sum of the mean square 0.22398 2.35646
F value 0.6739 10.673
Pr(>F) 0.4137 0.001494
Table 19: Test case4 R Analysis of Variance Table
Summary:

From the summary table, we get the estimate coefficient of the linear regression is
y=5.987-1.048e-05x. The p-value from the T test for both parameters are under the
0.01, so the two parameters are both significant at 0.01 significant level, which means
parameters exist. Also from the ANOVA table, it shows that the p-value from the F test
for the whole equation is 0.001494, which means it is significant at 0.01 significant
level, the linear equation exists. But compare to the result from ALERGIA, the F test
for the whole-equation is 0.4137, it is not significant at 0.01 significant level, so we
can conclude that ALERGIA is not follow the exponential distribution. This is sufficient

to conclude that ALERGIA algorithm performs better with improvement using finite

automaton minimization in this case.
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Test Case 5:
Regular language : 1(0+1)*0+1(01+10)*0

Date result in curve graphic as shown in Figure 27:

4000 -
w
% 3000~
2 variable
S Alergia
8 PPN — Minimum
E 2000 -
>
< |

/|
‘ |
1000 - [l ‘
A
N |;“"'\ A
- ‘f ! ' -
10000 20000 30000 40000 50000
Number of strings
Figure 27: Test case5 R program result
Analysis results in R as shown in Table 20 and Table 21:
Summary Table
Attribute ALERGIA Improved ALERGIA

Formula log(y) = log(A) — Ax log(y) = log(A) — Ax
Coefficients Estimate: Intercept, x 6.412e+00, 4.395e-07 5.916e+00, -8.486e-06
Coefficients Std Error: Intercept, x 1.062e-01, 3.651e-06 8.829e-02, 3.007e-06
Coefficients t value: Intercept, x 60.39, 0.12 67.002, -2.822
Pr(>|t|) <2e-16,0.904 < 2e-16,0.00576

Table 20: Test case5 R Summary Table
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Analysis of Variance Table

Attribute ALERGIA Improved ALERGIA
Degree of freedom of x 1 1
Sum of the square 0.004 1.5437
Sum of the mean square 0.004024 1.54371
F value 0.0145 7.965
Pr(>F) 0.9044 0.005765
Table 21: Test case5 R Analysis of Variance Table
Summary:

From the summary table, we get the estimate coefficient of the linear regression is
y=5.916-8.486e-06x. The p-value from the T test for both parameters are under the
0.01, so the two parameters are both significant at 0.01 significant level, which means
parameters exist. Also from the ANOVA table, it shows that the p-value from the F test
for the whole equation is 0.005765, which means it is significant at 0.01 significant
level, the linear equation exists. But compare to the result from ALERLGIA, the F test
for the whole-equation is 0.9044, it is not significant at 0.01 significant level, so we
can conclude that ALERGIA is not follow the exponential distribution. This is sufficient

to conclude that ALERGIA algorithm performs better with improvement using finite

automaton minimization in this case.
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7. Future Work

Because only string frequencies are used in Stochastic DFA minimization improvement
based on results of the ALERGIA algorithm, more research and proof on finding

minimized equivalent Stochastic DFA based on probabilities will be needed.

Since the program is running on a single computer with limited memory and storage,
the maximum sample size could only reach 50000 strings. In order to further the
pattern recognition of an infinite regular language, a better program including
secondary memory implementation, better choice of data structure, and more
efficient algorithms will be needed to run on a larger scale cluster with high-speed

servers.

Tools like Hadoop and Spark will also be in future blue print to compute big data
sample within efficient computing model, such as map-reduce. Then test cases, which
train much larger sample sizes that have more various a values in ALERGIA algorithm,
can be used for a better approximation in pattern recognition with automatons on

real data, such as English text, DNA sequences, etc.
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8. Conclusion

We proposed a method for pattern recognition for symbolic data using automata and
ALERGIA algorithm. The stochastic DFA results from ALERGIA algorithm are improved
with DFA minimization with considering only string frequencies. The linear regression
from exponential distribution is used in statistical inference. Hypothesis test is used to
analyze and conclude that the improved ALERGIA algorithm has a better performance

than the ALERGIA algorithm in pattern recognition in automatons.

In all five test cases, linear regressions from the improved ALERGIA algorithm have
negative slopes, which are extremely close to 0. P values from Student’s T-Test and F-
Test are at either 0.01 or 0.05 significance level. It is concluded that the improved
ALERGIA generates stable approximation in pattern recognition with increased data
sample from a specific regular language, and may closely approximate the
corresponding DFAs of the regular expressions in all test cases if the sample size is
large enough. In this case, the ALERGIA algorithm is proved to have a good usability in
pattern recognition for a set of strings from a formal language Z* for approximating

its Turing machine, and can be taken advantage of in future research.

Dr. Lin [16] [17] has been researching related topic since 2005 with former student A.
Yazdhankhah [18] for Master’s Thesis at San Jose State University. The results seem to

be promising for future research and applications.
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APPENDIX: Development Environment

Software Specifications

Language

Java 1.8, R

Integrated Development Environment

Eclipse Java Mars, RStudio

Operating System

OS X on BSD kernel

Table 22: Software Specifications

Hardware Specifications

Model Macbook Pro (Retina, 15-inch, Mid 2015)
RAM 16 GB
CPU Intel Core i7 vPro, 2.2 GHz

Table 23: Hardware Specifications
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