








Figure 9: HMM for AuthSS/CSS

The initial emission probability at any state 𝑞𝑖 is based on the distribution of the

nucleotides {A, C, G, T} at that position. For example the state 1 will have the

distribution of nucleotides at position 1 of splice site sequences (AuthSS/CSS).

4.4 HMM Example

Since the number of splice sites is smaller than the random sites, we consider the

following skewed AuthSS and random sites for training the HMM.

Figure 10: Example: AuthSS and Random Sites

Step 1: Initializing the initial transition, transition and emission matrices.

The initial transition probability and transition probability are the same as the ones
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given in table 1 and 2, respectively. The emission probability is calculated using

Laplace pseudo counts. It is a technique used to smooth out the data. It is also known

as add-one smoothening where if an observation symbol is not present in the data,

we add one 1 to the numerator and add the number of symbols to the denominator.

The emission matrix will be of size 4X18. The first entry for the emission table is

given by:

𝑏1(𝐴) =
2 + 1

3 + 4
= 0.429

𝑏1(𝐶) =
0 + 1

3 + 4
= 0.143

𝑏1(𝐺) =
1 + 1

3 + 4
= 0.286

𝑏1(𝑇 ) =
0 + 1

3 + 4
= 0.143

Similarly for state 10, the emission matrix value is given by:

𝑏10(𝐴) =
1 + 1

5 + 4
= 0.222

𝑏10(𝐶) =
2 + 1

5 + 4
= 0.333

𝑏10(𝐺) =
1 + 1

5 + 4
= 0.222

𝑏10(𝑇 ) =
1 + 1

5 + 4
= 0.222

The remaining entries are calculated in a similar manner for the rest of states for the

example shown in figure 10. The final initial emission matrix as shown in table

Step 2: We take one training sequence and calculate the forward, backward, 𝛾 and

𝜉 values. Let us calculate the first entry of the forward pass for the 9-mer ’AGTG-

TAAGT’ given in the figure 10. We enter the values of table 4 by using eq. 19 and

eq. 20. For example,

𝛼1(1) =
0.2 * 0.429∑︀18

𝑖=1 𝛼1(1)
=

0.2 * 0.429

0.2 * 0.429 + 0.8 * 0.333
= 0.3253
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Table 3: Emission Probability Matrix for the 18 states of the Example

States
Nucleotide 1 2 2 4 5 6 7 8 9

A 0.429 0.286 0.143 0.143 0.143 0.429 0.571 0.143 0.286
C 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143
G 0.286 0.429 0.429 0.571 0.143 0.286 0.143 0.571 0.143
T 0.143 0.143 0.286 0.143 0.571 0.143 0.143 0.143 0.429

States
Nucleotide 10 11 12 13 14 15 16 17 8

A 0.222 0.111 0.333 0.111 0.111 0.111 0.222 0.111 0.222
C 0.333 0.222 0.222 0.111 0.111 0.222 0.222 0.444 0.222
G 0.222 0.222 0.333 0.667 0.111 0.333 0.222 0.222 0.222
T 0.222 0.444 0.111 0.111 0.667 0.333 0.333 0.222 0.333

Similarly, we compute the backward probabilities, gamma and xi for each training

sequence and using these we update the transition and emission probabilities. The

training continues till convergence is reached.

Once the HMM is built, the forward pass is used to calculate the log probability of

the test sequence and using an ROC curve (described in next chapter) we determine

how good the model is. We build two models one with AuthSS and RS and the other

using CSS and RS. We compare these 2 models using ROC curves by scoring CSS

against AuthSS and vice versa. Then we compare the results using ROC curves which

is explained in the next chapter.
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Table 4: Forward Probability Matrix for the 18 states of the Example

Nucleotides
States A G T G T A A G T

1 0.325 0 0 0 0 0 0 0 0
2 0 0.387 0 0 0 0 0 0 0
3 0 0 0.614 0 0 0 0 0 0
4 0 0 0 0.581 0 0 0 0 0
5 0 0 0 0 0.55 0 0 0 0
6 0 0 0 0 0 0.703 0 0 0
7 0 0 0 0 0 0 0.857 0 0
8 0 0 0 0 0 0 0 0.936 0
9 0 0 0 0 0 0 0 0 0.961
10 0.675 0.002 0 0 0 0 0 0 0
11 0 0.611 0.014 0 0 0 0 0 0
12 0 0 0.371 0.011 0 0 0 0 0
13 0 0 0 0.408 0.003 0 0 0 0
14 0 0 0 0 0.447 0.003 0 0 0
15 0 0 0 0 0 0.294 0.005 0 0
16 0 0 0 0 0 0 0.139 0.006 0
17 0 0 0 0 0 0 0 0.059 0.008
18 0 0 0 0 0 0 0 0 0.031
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CHAPTER 5

ROC Curve

For comparing the scores of HMM of AuthSS and CSS we use the Receiver

Operating Characteristics (ROC) curve. ROC is plotted using sensitivity and (1-

specificity). Sensitivity is also known as true positive rate (TPR), specificity is also

known as true negative rate (TNR) and 1-specificity is false positive rate (FPR) [11].

Figure 11 shows an example of the ROC curve, which is plotted by joining the results

from various experiments.

Figure 11: Receiver Operating Characteristics (ROC)

We calculate the sensitivity and specificity using the eq. 29 and eq. 30, respectively.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(29)
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(30)

We measure the area under the curve (AUC). When AUC is 1, it means there is a

threshold such that there is no false positive or false negative. If AUC = 0.5, we

observe a diagonal line which means the result is not meaningful and is as good as

flipping a coin. If the curve is such that the AUC is much smaller than 0.5, it is then

worse than random guessing. But we can reverse the match and non-match criteria

and thus the AUC>0.5.

In chapter 8, we use ROC curve to compare the HMM built using AuthSS, CSS and

also to observe how NSS score on AuthSS HMM and CSS HMM, respectively. In the

next chapter we explain in details the OCC decision tree implementation.
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CHAPTER 6

One-Class Classification - Decision Tree

A decision tree is a hierarchical classifier that uses the divide-and-conquer tech-

nique. it can be used for both classification and regression problems. [23].Many

researchers have used decision trees to classify positive samples from a corpus of un-

labeled dataset. De Comit’e et al. have results that show positive examples and

unlabeled data improves the accuracy of the statistical query learning algorithms and

show their results for decision tree induction [7].

In our project, we have a sample of authentic and cryptic splice site (770 and 368,

respectively), but the neighboring sites data, which we collected from DBASS [4], is

limited to 100 base pairs up-stream and down-stream of the cryptic splice site and

hence we cannot be sure if we have the entire corpus of NSS. Moreover, random sites

collected from the HS3D [16] has 12828 records, which is very large when compared to

the authentic and cryptic splice sites data. If we create decision trees using AuthSS

and random sites, the trees would be dominated by the random sites sequences. Hence

we designed an OCC decision tree having only positive class data.

6.1 Decision Tree: Background

For building a decision tree by asking a series of well organized questions about

the data’s attributes. There is a follow up question for each answer we get and this

continues till a conclusion is derived. The series of questions and their answers can be

used to build a decision tree. The tree has three types of nodes: root node, internal

node and leaf node. Each leaf node in a decision tree is assigned a class label.
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6.1.1 Building a Decision Tree

Building a decision tree employs a greedy strategy that grows a tree based on

making local optimal decisions for choosing the attribute for splitting the data. One

such algorithm is the Hunt’s algorithm [23]. It is used in many existing decision tree

algorithms, such as ID3, CART and C4.5 [17][1][22].

Hunt’s algorithm grows a tree recursively by dividing the data into non-overlapping

subsets [23].Let 𝐷𝑡 be the set of data at node t and 𝑦 = 𝑦1, 𝑦2, · · · , 𝑦𝑐 be the class

label. Hunt’s algorithm can be written as:

∙ Step 1: if all the records in 𝐷𝑡 have the same class label 𝑦𝑖, then mark t as a

leaf node.

∙ Step 2: if 𝐷𝑡 has records belonging to more than one class label then partition

the data based on an attribute test condition (For example if the attribute

is greater than or less than a certain value). For each outcome of the test

condition a child node is created and the records in 𝐷𝑡 are distributed to the

children based on the outcomes. The algorithm is then recursively applied to

each child node.

6.1.2 Measures for Selecting the Best Split

The measures to determine the best way to split the records are based on the

degree of impurity of the child node. Impurity describes how homogeneous or hetero-

geneous a data set is. The smaller the degree of impurity, the more skewed the class

distribution [23]. In our project we will use the measures entropy and information

gain (IG) for splitting the records. The higher the gain the better the split.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑛−1∑︁
𝑡=0

𝑝(𝑖 | 𝑡) log2 𝑝(𝑖 | 𝑡) (31)
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where n is the number of classes and log2 0 = 0 for entropy calculation.

𝐺𝑎𝑖𝑛(𝑡) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑡)−
𝑘∑︁

𝑖=0

𝑛𝑖

𝑛
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑖) (32)

where parent node t is split into k partitions and 𝑛𝑖 is the number of records in

partition i.

IG is also used as a splitting measure in ID3 and C4.5 algorithms [17][22].

6.2 Design and Implementation

We created an OCC [20] using the concepts of the ID3 algorithm [17].The algo-

rithm is implemented in java and takes a file containign sequences of 9-mers as input

and returns an xml file having the tree structure as output. For building the tree we

used only the positive class (authentic splice sites for building the authentic splice

site decision tree and cryptic splice site for creating the cryptic splice site decision

tree). Every node is split into 4 branches based on the nucleotides A, C, G and T,

irrespective of the value of the node. Since we have only 9-mers as training data, we

used the positions as the attributes and each attribute is split based on the IG given

the condition that the Position had a particular Nucleotide A, C, G or T. Hence, each

node has four branches as shown in figure 12.

First, we read the entire file containing the 9-mer sequences and divide the dataset

according to the 80-20 rule for training and testing in a random order. Then, the

entire training dataset of the 9-mers given as input is considered for finding the IG

of each position of the 9-mer except for position 4 and 5. we exclude position 4 and

5 since they are always G and T, respectively, and do not provide any information.

Thus we use only 7 of the 9 positions of the 9-mers to build the decision tree. The

root is the position that has the highest IG. Once the root node is found, a new

dataset is constructed such that the position chosen as root node has the nucleotide
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Figure 12: Decision Tree Node for Authentic/Cryptic Splice Site 9-mers

‘A’ and the IG is recalculated with the new data set and the branch of the tree is

either a position or a leaf node (classified as not-authentic if the decision tree is being

built with authentic sequences or not-cryptic if the decision is tree being built with

cryptic). We repeat the same process with nucleotide C, G and T, respectively. This

is repeated for all internal nodes, until all the positions are used.

6.3 Decision Tree Algorithm

Algorithm 1 Decision Tree Initialization algorithm
procedure BuildTree(𝐿)
Calculate Entropy with the data set in List L
Calculate IG for each position of 9-mer
parent← createNode()
set root to position having highest IG
Let Q be queue
Initialization: insert root into Q
Call procedure ExpandTree(Q)
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Algorithm 2 Decision Tree Induction algorithm
procedure ExpandTree(𝑄)

if Q is empty then
leaf.label← not authentic/not cryptic
𝑟𝑒𝑡𝑢𝑟𝑛 leaf

while Q is not empty do
parent← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒()
for each base pair A, C, G, T do

child← createNode()
Calculate IG for remaining position of 9-mer
if child is not leaf then

Insert child into Q
parent.add(child)
child.parent← parent
child.branchTaken← Base Pair

6.3.1 Computational Complexity Analysis of Decision Tree

Time complexity for calculating the entropy for n sequences of 9-mers is given

by:

𝑇 (𝑛) = 𝑛 * −
9∑︁

𝑖=0

𝑘 = 𝑛 * 9 * 10

2
= 𝑛 * 𝑐 = 𝑐𝑛 (33)

For calculating the time complexity for building decision tree, we know each node is

divided into 4 child nodes. Hence, for n sequences of 9-mers we have,

𝑇 (𝑛) = 4𝑇 (
𝑛

4
) (34)

The overall time complexity is a function of entropy and height of the tree. The

overall time complexity is given by:

𝑇 (𝑛) = 4𝑇 (
𝑛

4
) + 𝑐𝑛 (35)

Using the master’s theorem [6] we have, 𝑇 (𝑛) = 𝜃(𝑛 log 𝑛).
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6.4 Evaluating the Decision Tree

After the AuthSS and CSS trees are built, the AuthSS decision tree is used to

score AuthSS and CSS decision tree is used to score the CSS to measure how good

a classifier the trees are. Both trees are also used to score random sites (RS) 9-mers.

An error matrix is created that is based on the counts of test records correctly and

incorrectly classified by the Decision Tree model created. Figure 13 and 14 shows a

representation of the error matrix.

Figure 13: Error Matrix for Authentic Splice Sites

Figure 14: Error Matrix for Cryptic Splice Sites

For evaluating the performance of the decision tree, we use the performance metric,

accuracy, which is defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(36)
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6.5 Decision Tree Example

Consider the following set of AuthSS 9-mers collected from the HS3D [16]. Each

Figure 15: Example: Sample Authentic Splice Site

9-mer in figure 15 is considered as a single input record. We model our decision tree

based on the 9-mers. See figure 16.

Figure 16: 9-mer Position Representation

At each node in the tree, we select a position from 1-9 having the highest information

gain (IG), excluding positions 4 and 5 as they are always G and T, respectively. For

the given set of 9-mers, we construct a table that captures the frequency of each base
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pair at different position except 4 and 5.

Table 5: Frequency Table showing the count of Nucleotide in Each Position

Position i
Nucleotide 1 2 3 6 7 8 9

A 2 7 0 10 5 2 3
C 4 1 0 0 2 1 1
G 0 1 10 0 0 5 1
T 4 1 0 0 3 2 5

In table 5, position i represents different position in authentic splice site except for

positions 4 and 5. Nucleotide represents possible nucleotides at each position.

Since there are 4 nucleotides, the initial entropy will be:

log2 4 = 2

Using the eq. 31, let us now compute the entropy at each position using the frequency

shown in table 5. For example, the entropy at position 1 is given by:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(1) = −(
2

10
log2

2

10
+

4

10
log2

4

10
+

0

10
log2

0

10
+

4

10
log2

4

10
) = 1.52193

Table 6 gives the entropy value for each position.

Table 6: Entropy of each Position

Position i 1 2 3 6 7 8 9
Entropy 1.52193 1.3568 0 0 1.4855 1.7609 1.6855

Using the eq. 32, let us now compute the IG of each position using the entropy shown
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in table 7. For example, the IG is at position 1 given by:

𝐼𝐺(1) = 2− 1.52193 = 0.47807

Table 7: IG of each Position

Position i 1 2 3 6 7 8 9
IG 0.47807 0.6432 2 2 0.5145 0.2391 0.3145

In table 7, we can see that the IG is highest for 3 and 6. The algorithm choses 3 as

the root node. Now with position 3 as root node, we create four new dataset, one for

each nucleotide A, C, G and T at position 3. Since all the 10 9-mers given in figure

15 do not have A, C or T at position 3, the nodes will be marked as leaf node (Not

Authentic) for the respective branches. Now all the 10 9-mers have G at position 3.

hence the new data set will contain all the 10 9-mers for the branch G at node 3.

Now we will calculate the entropy and IG to find the next node for the branch taken

as G excluding position 3 since it has been already chosen as root node. Thus we will

expand the tree with the new data set that has G at position 3.

Table 8 and 9, show the entropy and IG of the new data set formed such that position

3 has G, respectively. In Table-9, position 6 has the highest information gain, hence

it will be chosen as the next node

Table 8: Entropy of each Position with G at Position 3

Position i 1 2 6 7 8 9
Entropy 1.52193 1.3568 0 1.4855 1.7609 1.6855
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Table 9: IG of each Position with G at Position 3

Position i 1 2 6 7 8 9
IG 0.47807 0.6432 2 0.5145 0.2391 0.3145

See figure 17 for the decision tree that we have so far.

Figure 17: Partial Decision Tree for the Given Example

Now we will again construct four new datasets with root node being position 3 having

G and position 6 being the first child node of the root. First, for all the sequences

position 6 is checked if it has an A, C, G or T. But since there is no C, G or T at

position 6, the nodes for the respective branch taken will be marked as leaf nodes

(not-authentic). Since the example shown in figure 15 has all the 9-mers with position

6 having the nucleotide A, the new dataset will have all the 10 9-mers. We calculate

the entropy and IG as we did earlier to find the root node and the first child node,

but now excluding position 3 and 6, since it has already been selected.

Table 10 and 11, show the entropy and IG of the new data set formed such that

position 3 has G and position 6 has A, respectively. In table 10, position 2 has the

highest information gain, hence it will be chosen as the next node. We then continue
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Table 10: Entropy of each Position

Position i 1 2 7 8 9
Entropy 1.5305 1.4355 1.4466 1.83659 1.65774

Table 11: IG of each Position with G at Position 3 and A at Position 6

Position i 1 2 7 8 9
IG 0.46950 0.5644 0.5533 0.1634 0.3422

the process recursively and based on the set of data given in figure 15 we get the

decision tree shown in figure 18

Figure 18: Complete Decision Tree for the Example

35



6.6 Testing Decision Tree

Once we have created the decision tree using the training data shown in figure

15, we can test it to find its accuracy. Let us Consider the following AuthSS and RS

for testing the decision tree created using the 9-mer sequences given in figure 15.

Figure 19: Example: AuthSS for testing

Figure 20: Example: RS for testing

Let us consider the first AuthSS 9-mer ’CAGGTACCA’ shown in figure 19.For testing

it, we will begin by checking if position 3 has G. Since this 9-mer has G at position

3, we will check if position 6 has A, which the 9-mer has. Now we further check if

position 2 of the 9-mer has A, C, G or T. Since the 9-mer has A at position 2, hence

we check if position 1 has A, C or T. Since position 1 has C we move on to verify if

position 8 has C or G and we can see that the 9-mer under test has a C. Now we move

forward to check if position 7 has C. Since it has a C, it is classified as an AuthSS.

The same process is repeated for the remaining AuthSS and RS shown in figure 19

and figure 20, respectively. Figure 21 shows the error matrix for the given example.

36



Figure 21: Error Matrix for the Test 9-mers

From the error matrix shown in figure 21, the accuracy rate of the decision tree is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
2 + 4

2 + 4 + 1
= 0.86

In the next chapter, we discuss in detail how to compare decision trees, which explains

why the spliceosome chose the CSS when the mutation caused disappearance of the

AuthSS and not any other site in the vicinity having a ‘GT’.
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CHAPTER 7

Decision Tree Comparison Algorithm

We can compare two decision tree if the data set belong to the same domain

[14].Since our datasets (AuthSS, CSS and NSS) are having sequences of 9-mers col-

lected from various genes we can compare the decision tree built from these datasets

to find how similar they are.

A single path from the root to the leaf in a decision tree can be represented by a set

of rules [14]. For e.g. in the tree shown in Fig. 13 one of the path is “IF position

3=’G’ and position 6=’C’ THEN classify not authentic”. The location of an attribute

(Position of 9-mer in our case) is fixed by the structure of the decision tree. Hence,

we will have a fixed set of rules for each decision tree. We can compare the rules

by substring mining using the questions: how many rules are identical? How many

of the rules are identical compared to all the rules? How many rules are partially

similar, that is, they are substructure of the decision tree [14]?

The similarity measure of two decision trees d1 and d2 can be measured using the

following equations [14]:

𝑆𝐼𝑀𝑖,𝑗 =
𝑖

𝑛
(𝑆𝐼𝑀1 + 𝑆𝐼𝑀2 + 𝑆𝐼𝑀3 + · · ·+ 𝑆𝐼𝑀𝑘 + · · ·+ 𝑆𝐼𝑀𝑛) (37)

where 𝑛 = max(𝑟𝑢𝑙𝑒𝑖, 𝑟𝑢𝑙𝑒𝑗) and 𝑆𝐼𝑀𝑘

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑎𝑟𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙

0, otherwise

(38)

𝑆𝑖𝑚𝑑1,𝑑2 =
𝑖

𝑙

𝑙∑︁
𝑖=1
∀𝑗

max(𝑆𝐼𝑀𝑖,𝑗) where 𝑙 = min(𝑟𝑢𝑙𝑒𝑠𝑒𝑡(𝑑1.𝑑2)) (39)

Based on the equations 37 and 39, the algorithm for comparing the decision trees is

as follows [14]:
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Algorithm 3 Decision Tree Comparison Algorithm
procedure CompareTree(𝑑1, 𝑑2)
Convert both the Decision tree 𝑑1 and 𝑑2 to rules set 𝐿1 and 𝐿2

Sort 𝐿1 and 𝐿2 according to the length of the rules
for each rule i in 𝐿1 do

for each rule j in 𝐿2 do
Find longest common substring(LCS) between rule i and j
𝑆𝐼𝑀𝑖,𝑗 ← length(LCS)/ length(Longest rule)

𝑆𝐼𝑀𝑑1,𝑑2 ← Set
∑︀

max𝑆𝐼𝑀𝑖,𝑗/min(𝐿1, 𝐿2)

The algorithm is implemented in java and currently, takes two files containing

sequences of 9-mers as input. It invokes the decision tree algorithm and builds the

two decision trees from the both the files, respectively. Then the decision trees are

traversed to convert it into set of rules.

7.1 Computational Complexity Analysis of Decision Tree Comparison
Algorithm

We can compute running time of the decision comparison algorithm as follows:

The conversion of the trees to rule set takes O(n) time, where n is the number of

nodes of the decision tree. The maximum number of rules we can get is 4ℎ, where

h is the height of the tree. Let 𝑙 be the number of leaf nodes. Now. the number of

non-leaf nodes is given by:

𝑛− 𝑙 =

log4 𝑙−1∑︁
𝑘=0

4𝑘

⇒ 𝑛− 𝑙 =

log4 𝑙−1∑︁
𝑘=0

22𝑘

⇒ 𝑛− 𝑙 = 22 log4 𝑙 − 1

⇒ 𝑛− 𝑙 =
2log2 𝑙

4
− 1

⇒ 𝑛− 𝑙 =
𝑙

4
− 1
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Hence, the number of leaf nodes is:

⇒ 𝑙 =
4𝑛 + 1

3
− 1

For comparing the rule sets, it takes 𝑂(𝑙2). Hence, the time complexity for comparing

the algorithm is 𝑂(𝑛2).

7.2 Decision Tree Comparison Example

Consider the AuthSS in figure and CSS in figure .

Figure 22: Example: AuthSS for Comparing Trees
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Figure 23: Example: CSS for Comparing Trees

The decision trees for the sequences shown in figure 22 and 23 are shown in figure

24 and 25, respectively.
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Figure 24: Decision Tree for Figure 22
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Figure 25: Decision Tree for Figure 23
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The rule set for the AuthSS decision tree is shown in table 12. Where, T repre-

sents authentic and F represents not-authentic.

Table 12: Rule Set for AuthSS Decision Tree

Rules for AuthSS Decision Tree
IF 0=A THEN F
IF 0=G THEN F
IF 0=T THEN F
IF 0=C and 1=C THEN F
IF 0=C and 1=G THEN F
IF 0=C and 1=T THEN F
IF 0=C and 1=A and 2=A THEN F
IF 0=C and 1=A and 2=C THEN F
IF 0=C and 1=A and 2=T THEN F
IF 0=C and 1=A and 2=G and 6=C THEN F
IF 0=C and 1=A and 2=G and 6=T THEN F
IF 0=C and 1=A and 2=G and 6=A and 8=A THEN F
IF 0=C and 1=A and 2=G and 6=A and 8=C THEN F
IF 0=C and 1=A and 2=G and 6=A and 8=T THEN F
IF 0=C and 1=A and 2=G and 6=G and 5=C THEN F
IF 0=C and 1=A and 2=G and 6=G and 5=G THEN F
IF 0=C and 1=A and 2=G and 6=G and 5=T THEN F
IF 0=C and 1=A and 2=G and 6=A and 8=G and 5=C THEN F
IF 0=C and 1=A and 2=G and 6=A and 8=G and 5=T THEN F
IF 0=C and 1=A and 2=G and 6=G and 5=A and 7=A THEN F
IF 0=C and 1=A and 2=G and 6=G and 5=A and 7=C THEN F
IF 0=C and 1=A and 2=G and 6=G and 5=A and 7=T THEN F
IF 0=C and 1=A and 2=G and 6=A and 8=G and 5=A and 7=T THEN T
IF 0=C and 1=A and 2=G and 6=A and 8=G and 5=G and 7=T THEN T
IF 0=C and 1=A and 2=G and 6=G and 5=A and 7=G and 8=T THEN T
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The rule set for the CSS decision tree is shown in table 13. Where, T represents

cryptic and F represents not-cryptic.

Table 13: Rule Set for CSS Decision Tree

Rules for CSS Decision Tree
IF 0=A THEN F
IF 0=G THEN F
IF 0=T THEN F
IF 0=C and 1=C THEN F
IF 0=C and 1=G THEN F
IF 0=C and 1=T THEN F
IF 0=C and 1=A and 2=A THEN F
IF 0=C and 1=A and 2=C THEN F
IF 0=C and 1=A and 2=T THEN F
IF 0=C and 1=A and 2=G and 5=A THEN F
IF 0=C and 1=A and 2=G and 5=C THEN F
IF 0=C and 1=A and 2=G and 5=G and 6=A THEN F
IF 0=C and 1=A and 2=G and 5=G and 6=G THEN F
IF 0=C and 1=A and 2=G and 5=G and 6=T THEN F
IF 0=C and 1=A and 2=G and 5=T and 7=A THEN F
IF 0=C and 1=A and 2=G and 5=T and 7=C THEN F
IF 0=C and 1=A and 2=G and 5=G and 6=C and 7=A THEN F
IF 0=C and 1=A and 2=G and 5=G and 6=C and 7=G THEN F
IF 0=C and 1=A and 2=G and 5=G and 6=C and 7=T THEN F
IF 0=C and 1=A and 2=G and 5=T and 7=G and 6=C THEN F
IF 0=C and 1=A and 2=G and 5=T and 7=G and 6=G THEN F
IF 0=C and 1=A and 2=G and 5=T and 7=T and 6=A THEN F
IF 0=C and 1=A and 2=G and 5=T and 7=T and 6=C THEN F
IF 0=C and 1=A and 2=G and 5=T and 7=T and 6=T THEN F
IF 0=C and 1=A and 2=G and 5=G and 6=C and 7=C and 8=T THEN T
IF 0=C and 1=A and 2=G and 5=T and 7=G and 6=A and 8=T THEN T
IF 0=C and 1=A and 2=G and 5=T and 7=G and 6=T and 8=T THEN T
IF 0=C and 1=A and 2=G and 5=T and 7=T and 6=G and 8=T THEN T
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The AuthSS has 25 rules in its rule set and CSS has 28 rules in its rule set. Hence

the similarity measure will be of size 25X28.

Now let us compute 𝑆𝐼𝑀1,1. The first rule for both AuthSS and CSS decision tree is

“IF 0=A THEN F”. For computation we will not consider the IF, THEN part. Hence,

the number of attributes (here it is 0, A and F) 𝑛𝑖 and 𝑛𝑗 = 3, therefore n=3. The

longest common substring (LCS) for 𝑟𝑢𝑙𝑒1 and 𝑟𝑢𝑙𝑒2 is 3 (’0AF’). Hence, we have

𝑆𝐼𝑀1,1 as:

𝑆𝐼𝑀1,1 =
1

𝑛
(𝐿𝐶𝑆) =

1

3
(3) = 1

Now let us calculate 𝑆𝐼𝑀1,7. The rule for AuthSS decision tree is “IF 0=A THEN F”

and that of CSS decision tree is “IF 0=C and 1=A and 2=A THEN F”. Here 𝑛𝑖 =3

and 𝑛𝑗 = 7. Hence n = max(3,7) =7. The LCS for these two rules is 1 (’0’). Hence,

we have 𝑆𝐼𝑀1,2 as:

𝑆𝐼𝑀1,7 =
1

𝑛
(𝐿𝐶𝑆) =

1

7
(1) = 0.143

Similarly, we can calculate the rest of the values of the similarity measures for rule

1. Table shows a similarity measure matrix for rule 1 of AuthSS decision tree against

all the rules of CSS decision tree.

Table 14: Similarity Measure Matrix for 𝑆𝐼𝑀𝑖,𝑗

CSS Rule 1 CSS Rule 2 CSS Rule 3 CSS Rule 4 CSS Rule 5 CSS Rule 6
AuthSS Rule1 1.0 0.143 0.077 0.077 0.071 0.077

CSS Rule 7 CSS Rule 8 CSS Rule 9 CSS Rule 10 CSS Rule 11 CSS Rule 12
AuthSS Rule1 0.143 0.091 0.091 0.091 0.111 0.091

CSS Rule 13 CSS Rule 14 CSS Rule 15 CSS Rule 16 CSS Rule 17 CSS Rule 18
AuthSS Rule1 0.077 0.071 0.077 0.077 0.091 0.091

CSS Rule 19 CSS Rule 20 CSS Rule 21 CSS Rule 22 CSS Rule 23 CSS Rule 24
AuthSS Rule1 0.091 0.091 0.071 0.077 0.077 0.071

CSS Rule 25 CSS Rule 26 CSS Rule 27 CSS Rule 28
AuthSS Rule1 0.077 0.077 0.071 0.077
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Using table 14, we have:

max(𝑆𝐼𝑀1,𝑗) = 1.0

Similarly, we calculate the similarity measure for all the rules of AuthSS and CSS

decision tree and the similarity of the trees is 68.7% shown as follows:

𝑆𝑖𝑚𝑑1,𝑑2 =
1

25
(1.0 + 1.0 + 1.000 + .545 + .545 + .429 + .462 + .429 + .462 + .545 + .667

+.462+.462+.429+.462+.545+.545+.545+.667+1.0+1.0+1.0+1.0+1.0+1.0) =
1

25
17.199 = 0.687

In the next chapter, we explain the results we got when we tested our decision tree,

HMM and did the decision tree comparison.
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CHAPTER 8

Results

8.1 HMM Results

We first run the AuthSS sequences through the AuthSS sequence HMM using

the following statistics.

8.1.1 Results for the AuthSS scored against AuthSS HMM

Length of the Sequence = 9

Number of Training Authentic Splice Sites = 616

Number of Training Random Sites = 3080

Number of Testing Authentic Splice Sites = 154

Number of Testing Random Sites = 770
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Figure 26: ROC Curve for AuthSS scored against AuthSS HMM

Figure 26 shows the performance of AuthSS HMM when scored with AuthSS

sequences. We trained the model with an initial transition probability of 0.2 and 0.8

to AuthSS and RS, respectively. The AUC for scoring AuthSS on AuthSS HMM is

0.88.

Next, we run the CSS sequences through the AuthSS sequence HMM using the fol-

lowing statistics.

8.1.2 Results for the CSS scored against AuthSS HMM:

Length of the Sequence = 9

Number of Training Authentic Splice Sites = 616

Number of Training Random Sites = 3080
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Number of Testing Authentic Splice Sites = 154

Number of Testing Random Sites = 770

Figure 27: ROC Curve for CSS scored against AuthSS HMM

Figure 27 shows the performance of AuthSS HMM when scored with CSS se-

quences. We trained the model with an initial transition probability of 0.2 and 0.8

to AuthSS and RS, respectively. The AUC for scoring CSS on AuthSS HMM is

0.86. Then we, run the NSS sequences through the AuthSS sequence HMM using the

following statistics.

8.1.3 Results for the NSS scored against AuthSS HMM:

Length of the Sequence = 9

Number of Training Authentic Splice Sites = 616

Number of Training Random Sites = 3080
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Number of Testing Authentic Splice Sites = 154

Number of Testing Random Sites = 770

Figure 28: ROC Curve for NSS scored against AuthSS HMM

Figure 28 shows the performance of AuthSS HMM when scored with NSS se-

quences. We trained the model with an initial transition probability of 0.2 and 0.8 to

AuthSS and RS, respectively. The AUC for scoring NSS sequences on AuthSS HMM

is 0.53.

From figure 26, 27 and 28, we can see that CSS performed better than NSS when

scored against AuthSS HMM. We then shifted to verify how CSS, AuthSS and NSS

score against a CSS HMM.

Now we run the CSS sequences through the CSS sequence HMM using the following

statistics.
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8.1.4 Results for the CSS scored against CSS HMM:

Length of the Sequence = 9

Number of Training Cryptic Splice Sites = 294

Number of Training Random Sites = 1472

Number of Testing Cryptic Splice Sites = 74

Number of Testing Random Sites = 368

Figure 29: ROC Curve for CSS scored against CSS HMM

Figure 29 shows the performance of CSS HMM when scored with CSS sequences.

We trained the model with an initial transition probability of 0.2 and 0.8 to CSS and

RS, respectively. The AUC for scoring CSS on CSS HMM is 0.87. We then run the

AuthSS sequences through the CSS sequence HMM using the following statistics.
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8.1.5 Results for the AuthSS scored against CSS HMM:

Length of the Sequence = 9

Number of Training Cryptic Splice Sites = 294

Number of Training Random Sites = 1472

Number of Testing Authentic Splice Sites = 154

Number of Testing Random Sites = 368

Figure 30: ROC Curve for AuthSS scored against CSS HMM

Figure 30 shows the performance of CSS HMM when scored with AuthSS se-

quences. We trained the model with an initial transition probability of 0.2 and 0.8

to CSS and RS, respectively. The AUC for scoring AuthSS on CSS HMM is 0.86.

We then run the NSS sequences through the CSS sequence HMM using the following

statistics.
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8.1.6 Results for the NSS scored against CSS HMM:

Length of the Sequence = 9

Number of Training Cryptic Splice Sites = 294

Number of Training Random Sites = 1472

Number of Testing Neighboring Sites = 74

Number of Testing Random Sites = 368

Figure 31: ROC Curve for NSS scored against CSS HMM

Figure 31 shows the performance of CSS HMM when scored with NSS sequences.

We trained the model with an initial transition probability of 0.2 and 0.8 to CSS and

RS, respectively. The AUC for scoring NSS on CSS HMM is 0.58. From figure 29,30

and 31, we can see that AuthSS sequences performed better than NSS sequences when

scored against the CSS HMM.
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Now we perform similar experiments with the decision tree classifier. The next section

shows the results for decision trees.

8.2 Decision Tree Results

We first run the AuthSS sequences through the AuthSS sequence decision tree

using the following statistics.

8.2.1 Results for the AuthSS scored against AuthSS Decision Tree:

Length of the Sequence = 9

Number of Training Authentic Splice Sites = 616

Number of Testing Authentic Splice Sites = 154

Number of Random Sites = 200

Figure 32: Results for the AuthSS scored against AuthSS Decision Tree

When we validate (test) the AuthSS with the AuthSS decision tree, we get an

accuracy rate of 0.83. See figure 32. Hence, AuthSS decision tree is 83% accurate in

predicting AuthSS.

Next, we run the CSS sequences through the AuthSS sequence decision tree using the

following statistics.
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8.2.2 Results for the CSS scored against AuthSS Decision Tree:

Length of the Sequence = 9

Number of Training Authentic Splice Sites = 616

Number of Testing Cryptic Splice Sites = 74

Number of Random Sites = 200

Figure 33: Results for the CSS scored against AuthSS Decision Tree

When we validate (test) the CSS with AuthSS decision tree, we get an accuracy

rate of 0.78 as shown in figure 33. Hence, AuthSS decision tree is 78% accurate in

predicting CSS.

We then run the NSS sequences through the AuthSS sequence decision tree using the

following statistics.

8.2.3 Results for the NSS scored against AuthSS Decision Tree:

Length of the Sequence = 9

Number of Training Authentic Splice Sites = 616

Number of Testing Neighboring Sites = 200

Number of Random Sites = 200
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Figure 34: Results for the NSS scored against AuthSS Decision Tree

When we validate (test) the NSS with AuthSS decision tree, we get an accuracy

rate of 0.52 as seen in figure 34. Hence, AuthSS decision tree is 52% accurate in

predicting NSS. As we can see from figure 32, 33 and 34, CSS scored higher than NSS

in the AuthSS tree. We can observe that this result is same with the result we got

in HMM.We did further experiments and scored the AuthSS and NSS sequences on

CSS sequence decision tree, respectively. The results are as follows:

8.2.4 Results for the CSS scored against CSS Decision Tree:

Length of the Sequence = 9

Number of Training Cryptic Splice Sites = 294

Number of Testing Cryptic Splice Sites = 74

Number of Random Sites = 200
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Figure 35: Results for the CSS scored against CSS Decision Tree

As we can see from figure 35, When we validate (test) the CSS decision tree with

the CSS sequences, we get an accuracy rate of 0.81. Hence, CSS decision tree is 81%

accurate in predicting CSS.

We now run the AuthSS sequences through the CSS sequence decision tree using the

following statistics.

8.2.5 Results for the AuthSS scored against CSS Decision Tree:

Length of the Sequence = 9

Number of Training Cryptic Splice Sites = 294

Number of Testing Authentic Splice Sites = 154

Number of Random Sites = 200

Figure 36: Results for the AuthSS scored against CSS Decision Tree
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As we can see from figure 36, When we validate (test) the AuthSS with CSS

decision tree, we get an accuracy rate of 0.71. Hence, CSS decision tree is 71%

accurate in predicting AuthSS.

Then we run the NSS sequences through the CSS sequence decision tree using the

following statistics.

8.2.6 Results for the NSS scored against CSS Decision Tree:

Length of the Sequence = 9

Number of Training Cryptic Splice Sites = 294

Number of Testing Neighboring Sites = 200

Number of Random Sites = 200

Figure 37: Results for the NSS scored against CSS Decision Tree

When we validate (test) the NSS with CSS decision tree, we get an accuracy rate

of 0.55 as shown in figure 37. Hence, CSS decision tree is 55% accurate in predicting

NSS.

We can see from figure 35, 36 and 37 that AuthSS scored better and NSS in CSS

decision tree and we know that CSS scored better in AuthSS decision tree. Hence

we conclude that CSS have similar pattern when compared to AuthSS. To further

analyze the findings, we did a comparison of the decision tree as mentioned in chapter
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7 and found the following results.

8.3 Decision Tree Comparison Results

Number of Authentic Splice Sites = 770

Number of Cryptic Splice Sites = 368

Number of Neighboring Splice Sites = 1516

Number of Rules for AuthSS = 883

Number of Rules for CSS = 736

Number of Rules for NSS = 2569

Table 15: Results for the AuthSS scored against CSS Decision Tree

Type of Tree 1 Type of Tree 2 Similarity %
AuthSS CSS 28.884
AuthSS NSS 16.183

CSS NSS 16.486

From table 15, we can see that the AuthSS and CSS decision tree is 28.88%

similar, whereas the AuthSS and NSS decision trees and CSS and NSS decision trees

are 16.18% and 16.49% similar, respectively. This concludes that the AuthSS and

CSS are intrinsically different, but when compared to the NSS the AuthSS and CSS

are more similar. We summarize our results in the next section.
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Table 16: Collaborated Results for the AuthSS dataset

Scored 9-mer Type
9-mer Trained On AuthSS CSS NSS 9-mer Scored better be-

tween CSS and NSS
AuthSS Decision Tree 0.83 0.78 0.52 CSS

AuthSS HMM 0.88 0.86 0.53 CSS

8.4 Collaborated Results

Table 17: Collaborated Results for the CSS dataset

Scored 9-mer Type
9-mer Trained On AuthSS CSS NSS 9-mer Scored better be-

tween AuthSS and NSS
CSS Decision Tree 0.81 0.71 0.55 AuthSS

CSS HMM 0.87 0.86 0.58 AuthSS

From the results in table 15, 16 and 17, we can conclude that AuthSS and CSS

are more similar to each other when compared to the NSS. In the next chapter, we

detail our conclusion by discussing the findings in our project and layout the possible

future works that can be done.
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CHAPTER 9

Conclusion and Future work

In this project we analyzed the authentic and cryptic 5’ splice sites using HMM

and decision trees. We observed that both methods have good accuracy rates as

evident from the results.

In this project, we developed HMMs which have position of 9-mers as states. Each

state emits the nucleotides A, C, G and T. We found that HMM performed better in

terms of accuracy when compared to the decision tree. We found that the authentic

and cryptic splice sites are different from each other as the score of AuthSS on CSS

HMM and score of CSS on AuthSS HMM are different. We also observed the CSS

performed better than the neighboring sites on an authentic HMM and AuthSS also

performed better than the neighboring sites on CSS HMM.

We next modeled the decision tree, such that the positions of the 9-mers are considered

as the attributes and the split is done based on the highest information gain based on

the nucleotide value of the node. Using the decision tree, we found that the authentic

and cryptic 5’ splice sites are different from each other as they scored differently when

tested on each other decision tree separately. We also found that the neighboring sites

have the worst accuracy score when scored against both authentic as well as cryptic 5’

splice sites, whereas the cryptic has a better score when scored against an authentic

5’ splice site decision tree and vice-versa. Thus we get similar results as that of HMM.

We further compared the decision trees of authentic and cryptic 5’ splice sites using

the comparison algorithm. We found that they are 29% similar, which shows that

they both are intrinsically different. But, by comparing the authentic 5’ splice site

decision tree and neighboring site decision tree we found that they are 16% similar.
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Thus we conclude that even if the authentic and cryptic 5’ splice sites are inherently

different, they still have better similarity score when compared to the neighboring

sites. This explains the reason for which the spliceosome chose the CSS when the

authentic splice site is altered by mutation.

As a future extension of this work, we may study the 3’ splice sites and find out if

we get similar results. We would also like to improve on the decision tree comparison

algorithm as currently it is having a time complexity of 𝑂(𝑛2). We might also focus

on specializing the problem by performing gene specific comparison of authentic and

cryptic splice sites.
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APPENDIX

DBASS Crawler

The DBASS Crawler is a Java program that uses jsoup and java htmlUnit Web-

Client libraries to crawl the website “http://www.dbass.org.uk/DBASS5”, to get the

5’ cryptic splice sites. Each page has 20 records for genes that have cryptic splice sites

and the link “View Details” renders the page that has the cryptic splice site details for

a particular gene. jsoup parses each page rendered by “View Details” link and collates

all the nucleotides which are in different HTML span tag to create a single string,

from which we extract the cryptic splice sites by looking for “/” (A marker for the

aberrant splice site used by DBASS). Once we get the cryptic splice sites, we collect

the neighboring sites data such that it has ‘GT’ at position 4 and 5, respectively, by

considering 100 characters upstream and downstream the cryptic splice site. There

are 29 pages in total for the 5’ splice sites and we use the htmlUnit WebClient to

perform the “on click” operation of the Next Page link to collect all the cryptic splice

sites. Using this crawler we collected 368 unique cryptic splice sites and 1516 unique

neighboring sites.
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