

Figure 5 - Object Diagram Interactive Exercise

The rearrange code exercise or Parsons problem is like a puzzle where the
student rearranges the statements in correct order to get full score as
depicted in Figure 6.

16

 Figure 6 - Rearrange Code Interactive Exercise

17

3. Learning Tool Interoperability

3.1 Learning Management Systems
A learning management system (LMS) is a software application or
platform used in educational institutions to deliver educational courses or
training programs. It provides the facility for administrators and the
instructor of a course to provide lecture materials, tests, quizzes, and
assignments to the students, and keep track of their submissions and
progress.

There are many existing LMS platforms used across educational institutions
as well as online teaching , such as Canvas, Moodle, Coursera, Udacity, or
edX. LMS has the facility to add lecture videos, multiple choice quizzes, and
so on, but there is a need to integrate third party applications. For example
not every learning management system run programming assignments.
Common specifications are necessary to develop one single app that can be
integrated with all the LMSes. These specifications are known as LTI
specifications and the tools that follow these specifications are known as LTI
tools.

Right now, there is no LTI tool that can integrate multiple CodeCheck or
interactive exercises in any LMS. If the instructor wants to add multiple
problems, he must create multiple assignments. This results in a large
number of columns in the LMS gradebook.

3.2 LTI tools
LTI stands for Learning Tool Interoperability. LTI are specifications from
IMS Global Learning Consortium, a nonprofit organization whose mission
is to increase innovative learning technology. Its open architecture and

18

products help education institutions to innovate and reduce the cost of
integrating external applications into their enterprise systems used widely by
teachers and students. There are many LTI tools available like coding
practice platforms, recorded lecture videos for many subjects, multiple
choice questions for chemistry, physics, history, languages, computer
science etc.

LTI specifications are designed to enable easy integration of LTI tools with
all the standard LMSes. Before LTI to connect a learning tool with a campus
platform or LMS, the university had to take help from a developer or
specialist to add the tool with the platform. This tool integration process
might take months to complete and it needed to be done individually for
each tool. The university might have to redo the complete process when the
tool’s new version became available. But if the tools follow the LTI
specifications, it is comparatively easy to integrate the tool with the
platform. LTI-compliant tools’ integration with any LMS requires less time
than what it would require if no standards are followed.

3.3 Key actors in LTI Systems

Two key actors in LTI systems are Tool Consumer and Tool Provider.

1. Tool Consumer :- The Learning Management System like Canvas or
Moodle into which links to external tools are added.

2. Tool Provider :- The system providing access to one or more LTI
Tools.

19

Figure 7 - TC and TP connection

The relationship between a Tool Consumer (TC) and a Tool Provider (TP)
established via LTI is that the TC is responsible to authenticate and
authorize users. The TC will provide TP with data about user, a user’s
current context(from where the LTI tool is launched i.e. which course or
group within that course) and user’s role within that context. This data is
provided in a secure manner so that the TP may trust its authenticity. User in
the Figure 7 is the person who is logged into LMS and launches the LTI
tool. Messages refer to the data being transferred as a signed HTTP POST
request via browser.

20

OAuth is an open standard for authorization used by Internet users to
authorize websites or applications to access their information on other
websites without giving them passwords. OAuth secures the data sent
between any LMS and LTI app.

The LTI app provider should provide the LMS with a consumer key and
secret key. The consumer key is a unique alphanumeric key assigned to each
Tool Consumer by Tool Provider. The secret key is used to sign the
messages. The LTI app provider uses consumer key to identify the Tool
Consumer and find the associated secret key for validation. The consumer
key and shared secret are added to the LMS when the LTI app is configured
in the LMS for the first time. But some LMSes like Moodle provide the
facility to add key and secret value every time you set up an assignment
using any LTI app.

There are many ways to configure an LTI app in LMS :-

1. Paste the configuration URL - The configuration URL specifies
where the XML configuration file of the LTI app is present. The XML
file contains launch_url to which the LTI Launch request is sent when
LTI app is launched within LMS.

2. Paste the XML file provided by LTI app provider to configure the app
in LMS.

3. Manual configuration

There are many advantages of LTI tools. First, there is no need for the
student or the professor to create profiles or accounts. The LTI tool uses the
user information sent from LMS and shows the appropriate landing page as
per role. The student or professor doesn’t go to any external system. The LTI
tool is loaded within a LMS in an iframe(IFrame is an HTML page
embedded within another HTML page) or in another window as per the
instructor’s settings. Many LTI tools return results or scores back to LMSes.

21

The main bottlenecks in the development of LTI applications is that there
are no easy to follow specifications for LTI. and it’s an overhead for the
developers to implement the LTI specifications for each and every tool that
he wants to integrate with LMS. LTIHub integrates CodeCheck and certain
interactive JavaScript elements, and the integration mechanism that I have
used for the latter can easily be extended to other interactive elements.

22

4. Interaction Between LMS and LTI

4.1 Interaction between LMS and LTI in Instructor View
The instructor or administrator can add a third party LTI app to his course.
To include the added LTI tool in an assignment, the instructor chooses
Submission Type as “External Tool”. A dialogue box opens either to enter
the external tool URL or find a specific tool from a list of third party tools
by clicking on “Find” button as shown below:

Figure 8 - Add External Tool to Assignment

An HTTP POST request is used for identity assertion from Tool Consumer
to Tool Provider. When the instructor clicks on an LTI app link, a HTML

23

form is filled with some pre-defined parameters. The form is submitted via
JavaScript to an iframe rendered on a page within the Tool Consumer.
Below is a list of some of the parameters that are sent from canvas LMS to
LTIHub app server:

Figure 9 - Parameters Sent from LMS to LTI

24

4.2 Interaction between LMS and LTI in Student View

When a student logins into LMS, the created assignment will be available
for him to do. Clicking on assignment link will load the assignment. The
figure below shows an assignment in Canvas that is created using LTIHub
app.

Figure 10 - Assignment as Shown in Student View

If the LTI app is supposed to send the grades back to canvas, it is sent in a
XML file as specified by IMS. Below is a sample XML file sent from
LTIHub to LMS:

25

Figure 11 - XML Grade File Sent from LTIHub to LMS

26

5. System Architecture

I have developed a system called LTIHub that follows the LTI specifications.
LTIHub acts as a mediator between any LMS and Learning Tool Provider. The
Learning Tool Provider needs to provide URL for each problem and a callback
URL. The system allows instructor to add multiple CodeCheck or interactive
problems in a single assignment. This intermediator application stores the
information related to the status of assignments and pass the grades back to the
LMS when all the assignment’s problems are done by the student.

Figure 12 - LTIHub Architecture

The system designed has been tested with Wiley interactive exercises and
CodeCheck programming problems in Canvas LMS. It can be used to add
potentially other activities into LMS.

I used an AWS EC2 instance and a MySQL database during the
implementation phase and a Google Compute Engine VM and Google Cloud
SQL during the production phase. As the communication between any LMS
and LTI is done over HTTPS only and AWS provides SSL certification at
ELB(Elastic Load Balancing) level, I used ELB to delegate the incoming
requests to the Amazon instance.

27

I used the Play Framework to write the code for the web application which is
a MVC based framework available for both Java and Scala. There are three
entities in my app: Assignment, Problem and Submission. Assignment has
one-to-many associations with Problem. Problem has one-to-many
associations with Submission.

28

6. Communication Between LTIHub and LMS
LTIHub can be added to any course by pasting the app configuration XML
file. When the instructor wants to include LTIHub in a assignment, he clicks
on LTIHub link from the list of external tools and the pre-defined
parameters are passed from LMS to LTIHub in a POST request. The
LTIHub checks the value of ext_role, lis_outcome_service_url,
lis_result_sourcedid, launch_presentation_return_url parameters. The
lis_outcome_service_url and lis_result_sourcedid parameters are sent from
LMS to LTI when a student(i.e. ext_role value is either student or learner)
accesses the LTI tool and the tool is supposed to pass back the grades to
LMS. If ext_role value is either “Faculty”,”Teaching Assistant” or
“Instructor”, the assignment creation page is opened as shown below :

Figure 13 - LTIHub Assignment Creation Page

29

The instructor adds the one problem URL per line and clicks on “Save
Assignment” button. The next window shows the added problems list and
two buttons - “Done” and “Edit”. If the instructor is ok with the assignment,
he clicks on “Done” button and a unique URL pointing to that assignment is
generated and sent back to the LMS. If the instructor wants to add more
problems or delete an added problem, he clicks on “Edit” button. The
“launch_presentation_return_url” parameter specifies the path where the
generated assignment URL should be sent. The JavaScript code used to
generate the assignment URL so that it is not tied to one domain is shown
below:

<script type="text/javascript">
 function modifyURL()
 {

 var ltiToolUrl = window.location.protocol + "//" +
 window.location.host + "@preFix" + "/assignment?id=";
 document.myform.url.value = ltiToolUrl +
 encodeURIComponent(document.myform.url.value);
 return true;
 }

</script>

The created assignment is shown in instructor login as it would be visible in
“Student Login View” with one dialog box saying that “The assignment is
shown in the instructor view” and a “Edit Assignment” button is also
available at the bottom of the assignment. The instructor can add or remove
problem URLs from an assignment even after the assignment has been
added to the LMS.

When student logs into the LMS, the assignment created by the instructor
will be available for him to do. Clicking on the assignment will load the
LTIHub tool in the same iframe or another window as per the setting chosen

30

by the instructor. There are two ways in which a student’s submission is
graded by the third-party app:-

1. Student’s submission is sent to the third-party server as in the case
with CodeCheck problem

2. Student’s response is checked in the browser window itself by a
JavaScript code as in the case with interactive exercises.

I wrote two methods to take care of saving student’s score for both types of
exercise problems. For CodeCheck problems, I wrote a JavaScript code that
runs when the window loads and appends a callback URL to each
CodeCheck problem. The code is shown below.

function onLoadHandler() {

var iframes =

document.getElementsByClassName('exercise-iframe')
 for (i = 0; i < iframes.length; i++) {
 var str = iframes[i].src;
 var patt = new RegExp("play.codecheck.ws");
 if(patt.test(str) && str.includes("?")){
 iframes[i].src = iframes[i].src + "&scoreCallback =" +
 window.location.protocol + "//" + window.location.host
 + "@preFix" + "/submissions/" + "@assignmentID"
 + "/" + "@userID" + "/" + iframes[i].id;
 }

 else if(patt.test(str)){
 iframes[i].src = iframes[i].src + "?scoreCallback =" +
 window.location.protocol +"//" + window.location.host
 + "@preFix" + "/submissions/" + "@assignmentID" + "/"
 + "@userID" + "/" + iframes[i].id;
 }

 else
 iframes[i].src = iframes[i].src;
 }

}

31

When the student submits solution for CodeCheck problem, the complete
file is sent to CodeCheck server for evaluation. After evaluation, the report
sent by CodeCheck server is shown to the student as well as sent to
controllers method as specified by the callback URL. The report is sent in
JSON format.

For interactive exercises, nothing is sent from LMS to the third party server.
Everything happens in the browser itself. To save the student’s score for this
exercise, I wrote JavaScript code to use the Window.postMessage() method
which makes it possible to pass messages across different domain. There is
no other way of knowing whether the student attempted any problem or not
because there is no communication with any server. Everything is controlled
by the JavaScript running in the browser window. I used the setInterval()
method to invoke postMessage() method to iframes to check if there is any
problem solved by a student whose score should be saved in the databases.
The code is shown below.

<script type="text/javascript">
 var exerciseScores = [];
 function checkScores() {
 exerciseScores = [];
 $('.exercise-iframe').each(function (_, iframe) {
 iframe.contentWindow.postMessage("scores", "*")
 });
 return false
 }

 function receiveMessage(event) {
var iframes =

document.getElementsByClassName('exercise-iframe')
 exerciseScores.push(event.data)
 if (exerciseScores.length === iframes.length) {
 $.ajax({
 Url: '@preFix/send-interactivescore/@assignmentID',

32

 method: 'POST',
 contentType: 'application/json',
 data: JSON.stringify(exerciseScores),
 success: function(msg) {
 var response = document.getElementById('response')
 response.innerHTML
 = "Your partially complete assignment is saved!";
 setTimeout(function() { $("#response").hide(); }, 4000);
 }

 });
 }

 }

 window.addEventListener("message", receiveMessage, false);
 setInterval(checkScores,60000);
</script>

The student responses are saved so it’s ok for the student to attempt some
problems and then take a break. The last attempted highest score for each
problem will be shown when the assignment is loaded again. If the students
want to improve their grades then they can attempt as many times as they
want. To test how strong the students are in their coding, there is also a
facility to assign timed assignment and to check the student's performance in
the time-constrainted exam.

After the student has done all the CodeCheck and interactive exercises given
in a particular assignment, the grades are sent to LMS from LTIHub. The
grades are sent in XML file from LTIHub to the LMS. The XML file has a
resourcedId that identifies the place where grades are to be sent in LMS.

33

7. Experiments and Results
The system was deployed in Spring 2017 in four classes at SJSU. In the
following sections, I describe about the students performance in terms of
average time and number of submissions as well as other experimental
result.

7.1 CMPE180-92

CMPE180-92 - Data Structures and Algorithms using C++ is a refresher
course for students who failed an entrance exam and students who have
marginal programming skills. There were 105 students in this class. 10
practice exercises were offered in this class. Students earned points for doing
the practice problems that counted towards their final grades.

To find out how this app helped in students’ learning, I analyzed the student
submissions based on two criteria: Numbers of submissions per problem and
time spent working on a problem.

Figure 14 shows the average time worked for all problems. To calculate the
average time, we took the time stamp of all submissions of a problem. We
added the time difference between submissions of a particular problem by a
student if the difference is less than 20 minutes. There were 105 students
enrolled in the course out of which more than 75 students were considered
for average time difference calculation. The student who made only single
submission were excluded. The average time calculated is error prone as we
have no information about the time that the student spent when he tried the
problem for the first time.

34

Figure 14 - Average Time Difference in Submissions for CMPE180-92

Students

As evident from the above graph, the time difference is highly variable and
does not show obvious improvement. Variations in the graph might be
attributed to the topics being hard for the students to understand. The topics
for each week were picked to match weekly homework assignments:

1. Input and output (Week 1 was dropped from the analysis because of
technical difficulties.)

2. Functions
3. Arrays
4. Pointers
5. Classes
6. Copy constructors
7. Implementing linked lists
8. (No exercises)
9. Using STL lists and iterators
10. Recursion

35

11. Maps
Figure 15 shows the total number of attempts for each problem.

Figure 15 - Total Number of Submissions Per Problem for CMPE180-92

Students

Difficulty levels of these problems were determined separately by Professor
Mak and Professor Horstmann. More than 50% problems have the same
difficulty level assigned by both professors. 40% differ by 1 point and 10%
differ by 2 points. I took the average of difficulty levels assigned by the
professors (Figure 16). Correlation coefficient between number of
submissions and difficulty level of problem is 0.264. The correlation
coefficient between average time between first and last submission vs
difficulty level of problem is 0.29. I didn’t calculate correlation between
practice problem scores and difficulty level as eventually most students got
full marks. It’s evident that there is no strong correlation between difficulty
level of problems as assigned by instructors and number of submissions and

36

average time spent per problem by the student. I conclude that there is a
difference in perception of difficulty level of a topic between instructors and
students.

Figure 16 - Difficulty Level of Problems Given to CMPE180-92 Students

To find out whether these exercises helped the students understand the topics
better and perform better in exams, I analyzed the scores of students in
practice exercises and mid term exam. I computed the linear correlation
between students’ scores in practice exercises and the midterm exam as
shown in Figure 17. I also computed the linear correlation between scores in
practice exercises and homework assignments (Figure 18).

The linear correlation between practice tests and exam scores is low at 0.17.
The linear correlation coefficient increases to 0.29, if we don’t consider
scores of 9 with low participation in practice tests that are circled in the
Figure 17.

37

Figure 17 - Midterm Vs Practice Exercises Score for CMPE180-92 Students

38

Figure 18 - Homework Vs Practice Exercises Score for CMPE180-92

Students

The linear correlation coefficient between homework and practice exercises
score is 0.42 and increases to 0.56, if we don’t consider the 9 students that
are circled in Figure 18.

In students survey[B.2], 98.4% students said that these practice exercises
helped them to prepare for homework and exams but correlation coefficient
value doesn’t indicate that practice tests and exam scores are related, but
practice test performance might be related to homework scores.

Looking at the students, I hypothesize that they fall into three groups.
Students with good programming knowledge will not improve with practice
exercises. Students who are not active participants will also not improve. I
wanted to follow the third group of students that were struggling at first but

39

participating regularly, and I wanted to know how their scores were
changing as the semester progressed. I looked at the students’ scores in the
first and second week. I took out the students who were getting full scores
and the students who were not participating. Then I was left with a group of
18 students who got very low score in week 1 and week 2 practice
exercises. I found that out of those 18 students, 12 students scores were
showing improvement week by week and their midterm scores were above
class average. I don’t have any proof that this improvement was because of
these practice exercises, but some enhanced experimentation can be done in
the future to find out.

7.2 CS151
Two practice exercises were done in this class. The first practice exercise
involved questions (labelled from p7-1 to p7-6 in the Figure 19) from
inheritance that were very basic. The second practice exercise problems
were based on Generics and wildcard that is a comparatively hard topic as
evident in the average time graph. Each practice set had one pretest and one
posttest. Unlike the practice exercises the pretest and posttest were timed (30
minutes). The pretest assignment was given to analyze the student’s
understanding of the topic. The posttest was used to see if the practice
exercises have helped the students to perform better in the posttest.

40

Figure 19 - Average Time Difference in Submissions for CS151 Students

Pre- and post-test experiment requires more thought as it is more complex to
set up than originally thought.

7.3 CS156 and CS149
CS156 is a class in artificial intelligence where the instructor uses Python,
which is not a prerequisite. There are two sections in this class. Section 1 has
31 students and section 2 has 29 students. Two practice exercises were done
in each section. The instructor declined the offer to add more exercises
because of low student participation. Only 14 students from section 1 and 5
students from section 2 participated practice exercise 1. Practice exercise 2
was done by only 4 students from section 1 and 3 students from section 2.
As there was negligible participation, we didn’t get any informative analysis
from this class.

CS149 is an operating systems class where the instructor uses C, which is
not a prerequisite. There were two sections but only one section participated

41

since I hoped to compare the sections with and without the exercises. Two
practice exercises were offered in this class. There are 70 students enrolled
in the class but grades in canvas shows that only 17 students got scores for
first practice exercise and only 5 students got scores for second practice
exercise. The instructor expressed that the practice exercises were useful but
as his homework moved on to more complex operating systems topics, it
became too challenging to provide practice exercises that were tailored to
the course contents. As there was very little participation, we didn’t get any
informative analysis from this class.

Both instructors gave no points for the practice exercises. If one were to
repeat this in the future, it would be important to make both the instructors
and students understand about the values and benefits of such exercises so
that we can have better participation.

42

8. Conclusions

Integration works fine as assignment were created successfully for both
CodeCheck and interactive exercises. Grades were successfully passed from
LTIHub to canvas but more work is needed on persisting student work.
Right now, if the student takes a break and then reloads the assignment, last
best achieved score for each problem is shown to him. If would be good if
the student’s work/submitted code is also shown as it would help student to
analyze if he is ok with the approach taken or he wants to try another
approach or logic.

There seems to be some correlation between practice and homework/exam
as depicted by CMPE180-92 students scores graph in Figure 17 and Figure
18 but it’s not very strong. Pre- and post-test experiment requires more
thought as it is more complex to set up than originally thought.

Near about 60% students from CMPE180-92 reported that they have spent
between 4 to 6 hours or more than 6 hours per week for the practice
exercises as shown in Student Survey in Appendix B.1 but the time spent is
between 1.5 to 2.5 hours as shown in Average Time graph in Figure 14
which is completely in disagreement with student perceptions. But most
students copied the problems into Eclipse and solved them there before
pasting their solutions back into CodeCheck. We don’t know how much
time or how many attempts they made in Eclipse. We compared
results/effort against perceived the instructor difficulties and found that there
is a difference in perception of difficulty of a topic between instructors and
students.

We analyzed students submissions for plagiarism and found that there is
some amount of cheating going on, even though the reward given is very

43

low. Some students cheat after having given up on their approach. It would
be useful in the future to explicitly analyze the attempts before the
successful submission. Seeing multiple submissions is a very valuable
resource for investigating plagiarism. A future version of this tool should
make it much easier for instructors to explore this.

Students liked the concept of these practice exercises as evident from CS149
students survey available in Appendix B.2. 22 students took part in survey
and 86% students claimed that these practice exercises are helpful for their
homework/ exam preparation as well as they would like to recommend it to
other students and would like these practice exercises in their other
Programming courses also. It sounds interesting as only 17 students have
participated in the practice exercises. It looks like students don’t like to
participate for such experimentation if there are no points for it. Students
received points in CMPE 180-92 for the practice exercises so the students
participated actively in all the practice exercises.

Looking at the students’ survey, we can see that students consider these
practice exercises helpful for their homeworks as well as exams preparation.
The students would like to have these exercises in their other courses also. It
seems that the LTIHub is useful for the students. With the submission
analysis feature addition and the last best solution availability, usability of
these exercises can be enhanced.

44

9. References
[Ahadi 2016] Alireza Ahadi, Raymond Lister, and Arto Vihavainen. 2016.
On the Number of Attempts Students Made on Some Online Programming
Exercises During Semester and their Subsequent Performance on Final
Exam Questions. In Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education (ITiCSE '16).
ACM, New York, NY, USA, 218-223. DOI:
http://dx.doi.org/10.1145/2899415.2899452

[Edgcomb 2017] Alex Edgcomb, Frank Vahid, Roman Lysecky, and Susan
Lysecky. 2017. Getting Students to Earnestly Do Reading, Studying, and
Homework in an Introductory Programming Class. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education
(SIGCSE '17). ACM, New York, NY, USA, 171-176. DOI:
https://doi.org/10.1145/3017680.3017732

[Edwards 2001] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008.
Web-CAT: automatically grading programming assignments. In
Proceedings of the 13th annual conference on Innovation and technology in
computer science education (ITiCSE '08). ACM, New York, NY, USA,
328-328. DOI=http://dx.doi.org/10.1145/1384271.1384371

[Edwards 2008] Stephen H. Edwards, Jürgen Börstler, Lillian N. Cassel,
Mark S. Hall, and Joseph Hollingsworth. 2008. Developing a common
format for sharing programming assignments. SIGCSE Bull. 40, 4
(November 2008), 167-182. DOI=
http://dx.doi.org/10.1145/1473195.1473240

[Jurado 2014] F. Jurado and M. A. Redondo, "Learning tools interoperability
for enhancing a distributed personal learning environment with support for

45

http://dx.doi.org/10.1145/2899415.2899452
https://doi.org/10.1145/3017680.3017732

programming assignments," 2014 International Symposium on Computers in
Education (SIIE), Logrono, 2014, pp. 87-92.
doi: 10.1109/SIIE.2014.7017710

[Moumoutzis 2014] G. Stylianakis, N. Moumoutzis, P. Arapi, M. Mylonakis
and S. Christodoulakis, "COLearn and open discovery space portal
alignment: A case of enriching open learning infrastructures with
collaborative learning capabilities," 2014 International Conference on
Interactive Mobile Communication Technologies and Learning (IMCL2014),
Thessaloniki, 2014, pp. 252-256.
doi: 10.1109/IMCTL.2014.7011142

[Lahtinen 2005] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen.
2005. ,bA study of the difficulties of novice programmers. In Proceedings of
the 10th annual SIGCSE conference on Innovation and technology in
computer science education (ITiCSE '05). ACM, New York, NY, USA,
14-18. DOI=http://dx.doi.org/10.1145/1067445.1067453

[Norris 2008] Cindy Norris, Frank Barry, James B. Fenwick Jr., Kathryn
Reid, and Josh Rountree. 2008. ClockIt: collecting quantitative data on how
beginning software developers really work. SIGCSE Bull. 40, 3 (June 2008),
37-41. DOI=http://dx.doi.org/10.1145/1597849.1384284

[Pieterse 2013] Vreda Pieterse. 2013. Automated Assessment of
Programming Assignments. In Proceedings of the 3rd Computer Science
Education Research Conference on Computer Science Education Research
(CSERC '13), Marko van Eekelen, Erik Barendsen, Peter Sloep, and Gerrit
van der Veer (Eds.). Open Universiteit, Heerlen, Open Univ., Heerlen, The
Netherlands, The Netherlands, , Article 4 , 12 pages.

46

http://dx.doi.org/10.1145/1067445.1067453

[Sheard 2011] Judy Sheard and Martin Dick. 2011. Computing student
practices of cheating and plagiarism: a decade of change. In Proceedings of
the 16th annual joint conference on Innovation and technology in computer
science education (ITiCSE '11). ACM, New York, NY, USA, 233-237.
DOI=http://dx.doi.org/10.1145/1999747.1999813

[Simon 2013] Simon. 2013. Soloway's Rainfall Problem Has Become
Harder. In Proceedings of the 2013 Learning and Teaching in Computing
and Engineering (LATICE '13). IEEE Computer Society, Washington, DC,
USA, 130-135. DOI=http://dx.doi.org/10.1109/LaTiCE.2013.44

[Thomas 2001] P. Thomas and C. Paine, "How students learn to program:
observations of practical tasks completed," Proceedings IEEE International
Conference on Advanced Learning Technologies, Madison, WI, 2001, pp.
170-173. doi: 10.1109/ICALT.2001.943891

[Vihavainen 2014] Arto Vihavainen, Jonne Airaksinen, and Christopher
Watson. 2014. A systematic review of approaches for teaching introductory
programming and their influence on success. In Proceedings of the tenth
annual conference on International computing education research (ICER
'14). ACM, New York, NY, USA, 19-26. DOI:
http://dx.doi.org/10.1145/2632320.2632349

[Zhenghao 2015] Zhenghao, Chen, Brandon Alcorn, Gayle Christensen,
Nicolas Eriksson, Daphne Koller, and Ezekiel J. Emanuel. "Who’s
Benefitting from MOOCs, and Why”." Harvard Business Review. Harvard
Business Publishing, 22 Sept. 2015. Web.

[Zingaro 2005] Daniel Zingaro, Andrew Petersen, and Michelle Craig. 2012.
Stepping up to integrative questions on CS1 exams. In Proceedings of the
43rd ACM technical symposium on Computer Science Education (SIGCSE

47

'12). ACM, New York, NY, USA, 253-258.
DOI=http://dx.doi.org/10.1145/2157136.2157215

Cay Horstmann. CodeCheck. [Online]. http://horstmann.com/codecheck/

Cay Horstmann. CodeCheck. [Online].
http://horstmann.com/codecheck/authoring.html

Cay Horstmann. InterActivities. [Online].
http://horstmann/private/apps/worksheet.html

Ims Global. [Online].
https://www.imsglobal.org/activity/learning-tools-interoperability

OAuth-wikipedia. [online]. https://en.wikipedia.org/wiki/OAuth

48

https://www.imsglobal.org/activity/learning-tools-interoperability
https://en.wikipedia.org/wiki/OAuth
http://horstmann/private/apps/worksheet.html
http://horstmann.com/codecheck/authoring.html
http://horstmann.com/Codecheck/

Appendix

A. Implementation and System Set up

 1. Steps to setup EC2 instance
● Sign up for AWS and click on “Launch Instance” button.
● Choose the AMI and then choose an Instance Type.
● Keep the default settings for Storage and click on “Review and

Launch” button.
● Configure Security Group to open HTTP, HTTPS and SSH ports.
● Clicking on “Launch” button opens a popup window to create a new

public- private key pair. Public key is stored by Amazon and private
key is stored by user. Private key is used to connect securely to the
AWS instance.

2. Required Software Installation and Setup

● SSH to your AWS instance using the private key and public IP of the
instance.

● Check which java is installed on AWS instance using command
java -version

● By default, openjdk will be installed. Remove it and all the dependent
file by using command

sudo apt-get purge openjdk-(version i.e. 7 or 8)-jre

openjdk-(version i.e. 7 or 8)-jre-headless
● We need Java 8 from sun microsystems for our program. To install

sun java8, use command
sudo add-apt-repository ppa:webupd8team/java

sudo apt update

sudo apt install oracle-java8-installer

● Set the JAVA_HOME environment variable in the file
/etc/environment.

49

Save and reload the file.
● Install apache server by command and run the service

sudo apt-get install apache2

● Download Play framework zip file from
https://www.typesafe.com/activator/download, unzip it and set
ACTIVATOR_HOME path and export it using command

export PATH=$PATH:$ACTIVATOR_HOME/bin

● Set apache as the forefront for play by adding virtualhost setting in
apache conf file. Add below lines in conf file
<VirtualHost *:80>

 ProxyPreserveHost On

 ProxyPass /excluded !

 ProxyPass / http://127.0.0.1:9000/

 ProxyPassReverse / http://127.0.0.1:9000/

</VirtualHost>

● Enable proxy mode by command a2enmod proxy and restart apache
service.

50

https://www.typesafe.com/activator/download

B. Students Survey Result
We surveyed the instructors who are teaching introductory computer science
courses and students from CMPE180-92 and CS149 to find the effectiveness
of using LTIHub in their learning. Below is a result of students’ survey. 65
students out of 105 from CMPE180-92 and 22 students out of 70 from
CS149 participated in the survey. The survey result is used to compare
students’ perception of the amount of time spent for practice exercise vs the
time spent that we got based on the timestamp of submission of a particular
problem.

B.1 CMPE180-92 Student Responses

1. On average, how many times did you need to submit each problem
until you received a perfect score?

○ 1 - 5 times 72.3 %
○ 5 - 10 times 20.0 %
○ 10 - 15 times 4.6 %
○ 15 - 20 times 3.1 %
○ More than 20 times 0.0 %

2. Please rate your agreement with this statement: These practice

exercises are effective for reviewing course materials and preparing
for the homework.

○ Strongly agree 69.2 %
○ Somewhat agree 29.2 %
○ Somewhat disagree 1.5 %
○ Strongly disagree 0.0 %

3. Please rate your agreement with this statement: These practice

exercises are effective for reviewing course material and preparing for
the exams.

51

○ Strongly agree 56.9 %
○ Somewhat agree 41.5 %
○ Somewhat disagree 1.5 %
○ Strongly disagree 0.0 %

4. Please rate your agreement with this statement: These practice

exercises made me more confident with a new programming
language.

○ Strongly agree 64.6 %
○ Somewhat agree 35.4 %
○ Somewhat disagree 0.0 %
○ Strongly disagree 0.0 %

5. Please rate your agreement with this statement: I would recommend

these practice exercises to other students.
○ Strongly agree 75.4 %
○ Somewhat agree 20.0 %
○ Somewhat disagree 4.6 %
○ Strongly disagree 0.0 %

6. If you are asked to do more practice exercises without any credit in

this course, would you be interested in doing it?
○ Very interested 46.2 %
○ Somewhat interested 38.5 %
○ Somewhat disinterested 7.7 %
○ Not interested 7.7 %

7. Would you be interested in having this kind of assignments in other

programming courses?
○ Very interested 72.3 %
○ Somewhat interested 23.1 %

52

○ Somewhat disinterested 3.1 %
○ Not interested 1.5 %

8. On average, how many hours did you spend per week with these

practice problems?
○ 0 hours 0.0 %
○ 1 to 3 hours 38.5 %
○ 4 to 6 hours 33.8 %
○ More than 6 hours 27.7 %

9. For effective practice, how many practice problems should be

assigned in a typical week?
○ None 0.0 %
○ 1 to 3 problems 27.7 %
○ 4 to 6 problems 67.7 %
○ More than 6 problems 4.6 %

10.What grade are you expecting in this course?

○ Credit 78.5 %
○ No credit 21.5 %

11.How do you rate your prior programming experience before joining

this course?
○ Very experienced 1.5 %
○ Intermediate experience 29.2 %
○ Basic familiarity 49.2 %
○ No experience 20.0 %

53

B.2 CS149 Student Responses

1. On average, how many times did you need to submit each problem
until you received a perfect score?

○ 1 - 5 times 69.2 %
○ 5 - 10 times 19.2%
○ 10 - 15 times 7.7 %
○ 15 - 20 times 3.8 %
○ More than 20 times 0.0 %

2. Please rate your agreement with this statement: These practice

exercises are effective for reviewing course materials and preparing
for the homework.

○ Strongly agree 29.2 %
○ Somewhat agree 62.5 %
○ Somewhat disagree 8.3 %
○ Strongly disagree 0.0 %

3. Please rate your agreement with this statement: These practice

exercises are effective for reviewing course material and preparing for
the exams.

○ Strongly agree 9.1 %
○ Somewhat agree 77.3 %
○ Somewhat disagree 13.6 %
○ Strongly disagree 0.0 %

4. Please rate your agreement with this statement: These practice

exercises made me more confident with a new programming
language.

○ Strongly agree 36.4 %
○ Somewhat agree 50.0 %

54

○ Somewhat disagree 13.6 %
○ Strongly disagree 0.0 %

5. Please rate your agreement with this statement: I would recommend

these practice exercises to other students.
○ Strongly agree 45.5 %
○ Somewhat agree 54.5 %
○ Somewhat disagree 0.0 %
○ Strongly disagree 0.0 %

6. If you are asked to do more practice exercises without any credit in

this course, would you be interested in doing it?
○ Very interested 31.8 %
○ Somewhat interested 54.5 %
○ Somewhat disinterested 13.6 %
○ Not interested 0.0 %

7. Would you be interested in having this kind of assignments in other

programming courses?
○ Very interested 40.9 %
○ Somewhat interested 54.5 %
○ Somewhat disinterested 4.5 %
○ Not interested 0.0 %

8. On average, how many hours did you spend per week with these

practice problems?
○ 0 hours 9.1 %
○ 1 to 3 hours 68.2 %
○ 4 to 6 hours 22.7 %
○ More than 6 hours 0.0 %

55

9. For effective practice, how many practice problems should be
assigned in a typical week?

○ None 0.0 %
○ 1 to 3 problems 72.7 %
○ 4 to 6 problems 22.7 %
○ More than 6 problems 4.6 %

10.What grade are you expecting in this course?

○ A 36.4 %
○ B 50.0 %
○ C 13.6 %
○ D/F 0.0 %

11.How do you rate your prior programming experience before joining

this course?
○ Very experienced 13.6 %
○ Intermediate experience 54.5 %
○ Basic familiarity 27.3 %
○ No experience 4.5 %

56

C. Problems Offered as Practice Exercises in CMPE180-92
=========================

w1-1
/*

 Read a sequence of integers from cin that is terminated by a zero
 (which is not a part of the sequence). Print out the average of the
 first and last value of the sequence. If there is only one value, print
 it. If there are none, print 0. Do not use an array or vector.
*/

#include <iostream>
using namespace std;

int main()
{

 cout << "Average: " << avg << endl;
 return 0;
}

=========================

w1-2
/*

 Read a sequence of integers from cin that is terminated by a zero
 (which is not a part of the sequence). Print out all peaks, with
 one output per line containing just the peak, no text. A peak is a
 value that is strictly larger than the values that come before or
 after. The initial value is a peak if it is strictly larger than the
 second. The last value is a peak if it is strictly larger than its
 predecessor. If the sequence has length 1, the sole value is a peak.
 You may assume that the sequence is not empty.
 Do not use an array or vector.
*/

#include <iostream>
using namespace std;

int main()
{

}

=========================

w1-3
/*

 Read a sequence of strings from cin that is terminated by a "."
 (which is not a part of the sequence). Print out all strings
 and their lengths in a table, with a "|" separating the two table
 columns. The first column is left-justified with width 8,

57

 and the second column is right-justified with width 4. If a value
 doesn't fit the column, don't truncate it but overflow the column
 instead, without using any whitespace.
*/

#include <iostream>
#include <iomanip>
#include <string>
using namespace std;

int main()
{

 return 0;
}

=========================

w1-4
/*

 Read a sentence; that is, a sequence of strings from cin that is
 terminated by a string ending in "." (which is a part of the sequence).
 Print out the average length of all strings, reported to two digits
 and enclosed in [], in a sentence: The average length is [x.yy] characters.
*/

#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
int main()
{

 return 0;
}

=========================

w1-5
/*

 Read a file and print out the average number of words per sentence.
 A sentence is a sequence of strings that is terminated by a string
 ending in "." (which is a part of the sequence). The file is terminated
 by a string "." which is not a sentence.Print out the average length of
 all sentences. You may assume there is at least one sentence.
*/

#include <iostream>
#include <fstream>
#include <string>

using namespace std;
int main()
{

58

 double average;
 string filename;
 cout << "File name: " << endl;
 cin >> filename;
 cout << "Average: " << average << endl;
 return 0;
}

=========================

w2-1
/**

 Computes the smallest of four values.
*/

int min(int a, int b, int c, int d)
{

 int result = a;
 if (b < result) result = b;
 if (c < result) result = c;
 if (d < result) result = d;
 return result;
}

/**

 Computes the average of the middle values of four given values
 (that is, without the largest and smallest value). Hint: Use the given
 min function. You may also want to define a max helper function or
 Take advantage of the fact that max can be computed from the min of
 the negative values.

*/

double middle(int a, int b, int c, int d)
{

 ...
}

=========================

w2-2
#include <string>
using namespace std;
/**

 Turn a string of the form firstname lastname or
 firstname middlename(s) lastname into lastname, firstname
 (and middlenames if present).
 For example, lastfirst("John Pierpont Flathead") should return
 "Flathead, John Pierpont". If the string contains no spaces, return
 it unchanged.

 Hint: If s is a string, then s.substr(i, n) is the substring
 starting at index i of length n. And if s and t are two strings,

59

 then s + t is the concatenation of the two strings. You will want
 to return a string of the form
 s.substr(i1, n1) + ", " + s.substr(i2, n2)
 except if s contains no spaces.
*/

string lastfirst(string s)
{

 ...
}

=========================

w2-3
#include "grades.h"
/**

 Given a letter grade (A, B, C, D, F) and a suffix (None, Plus, Minus),
 produce the numerical value of the grade. An A is a 4, B a 3,
 C a 2, D a 1, and F a zero. The suffix Plus adds 0.3, the suffix
 Minus subtracts 0.3. However, an A+ has value 4 and an F+ and F-
 have value zero.

 */
double gradeValue(Grade g, Suffix s)
{

 ...
}

=========================

w2-4
#include <string>
using namespace std;

/**

 Returns true if c is a vowel.
*/

bool isVowel(char c)
{

 return c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u'
 || c == 'A' || c == 'E' || c == 'I' || c == 'O' || c == 'U';
}

/**

 Sets first to the index of the first vowel in the string s
 and last to the index of the last vowel in s. If s has no vowels,
 first and last are set to -1.
*/

void firstLastVowel(string s, int& first, int& last)
{

}

60

=========================

w2-5
#include <string>
using namespace std;

/**

 Returns true if c is a vowel.
*/

bool isVowel(char c)
{

 return c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u'
 || c == 'A' || c == 'E' || c == 'I' || c == 'O' || c == 'U';
}

/**

 Swaps the first and last vowel in the string s.
 For example, if s is "Farewell", it is changed to "Ferewall".
*/

void swapFirstLastVowel(string& s)
{

 ...
}

=========================

w3-1
/**

 Computes the average of all positive elements in the given array.
 @param a an array of integers
 @param alen the number of elements in a
 @return the average of all positive elements in a, or 0 if there are none.
*/

double avgpos(int a[], int alen)
{

 ...
}

=========================

w3-2
#include <vector>
using namespace std;

/**

 Swaps the second and second-to-last value of a.
 For example, if a is {3, 1, 4, 1, 5, 9, 2, 6}
 after calling this method it is {3, 2, 4, 1, 5, 9, 1, 6}.
 If the array has length < 2, do nothing.
 @param a a vector of integers

61

*/

void swap2(vector<int>& a)
{

 ...
}

=========================

w3-3
#include <vector>
using namespace std;

/**

 Replaces each element in an array with the average of its
 neighbors. The first and last element are not changed. Do
 not declare any arrays or vectors.
 @param a an array
 @param n the length of the array
*/

void replavg(double a[], int n)
{

 ...
}

=========================

w3-4
The code below reads the following image from a file:

The pixels in the file are placed into a vector of vectors, one for each row

of the image. Each row is a vector of gray values between 0 and 255.

Color every seventh pixel black, starting from the top left corner..

62

Complete the following file:

image10.cpp
=========================

W3-5
The code below reads the following image from a file:

The pixels in the file are placed into a vector of vectors, one for each row

of the image. Each row is a vector of gray values between 0 and 255.

Detect edges in the image using the following approach:

For each pixel, compute the average gray level of the eight surrounding pixels

(fewer at the image boundaries). If that average differs by more than 10 from

the pixel value, color the pixel black (0). Otherwise, color it white (255).

You need to assemble the result in a separate array since otherwise you will

mix in pixels from the original and result.

Complete the following file:

63

image8.cpp
=========================

w4-1
/**

 Compute the minimum and maximum value in a non-empty array.
 @param arr the array
 @param n the length of the array
 @param min a pointer to a variable holding the minimum
 @param max a pointer to a variable holding the minimum
*/

void minmax(int* arr, int n, int* min, int* max)
{

 ...

}

=========================

w4-2
#include <cstring>
using namespace std;

/**

 Given a '\0'-terminated character array, split it by replacing
 each space in the character array with a '\0'. Return the number
 of strings into which you have split the input.
*/

int split(char* words)
{

 ...
}

=========================

w4-3
/*

 The print method receives as input a string followed by an asterisk
 and an integer. Print out the string as many time as indicated
 by the integer. For example, when called as print("Hi*3"),
 you print HiHiHi. If no integer is specified, print the string
 once.

 Hint: Look for the '*' starting from the back of the string.
 Then call atoi, passing a pointer to the integer starting after
 the '*'. You can also replace the '*' with a '\0' for easy
 printing of the first part.

*/

#include <iostream>
#include <cstdlib>

64

#include <cstring>
using namespace std;

void print(char* arg)
{

 ...
}

=========================

w4-4

#include <iostream>
#include <cstring>
using namespace std;

/*

 Repeats a string n times and places it into a buffer, filling
 it up as much as possible, and providing a terminating 0.
 Use strncpy.
 @param str a string
 @param n an integer
 @param result a character array to hold the result
 @param sz the size of result
*/

void repeat(const char* str, int n, char result[], int sz)
{

 if (sz <= 0) return;
 int len = strlen(str);
 char* p = result;
 for (int i = 0; i < n && p < result + sz; i++)
 {

 strncpy(...)
 ...

 }

 ...
}

=========================

w4-5
#include <cstring>
/*

 Return a pointer to the nth occurrence of a repeated character
 in the given string. For example, if str is "occurrence" and n is 2,
 return a pointer to the first r.
*/

const char* nthrep(const char* str, int n)
{

65

 const char* p = str;
 const char* r = NULL;
 int len = strlen(str);
 int count = 0;
 while (p < str + len && count < n)
 {

 ...

 }

 return r;
}

=========================

w5-1
/*

 The First National Bank of Stroustrup provides accounts in which
 deposits and balance inquiries have no charge, but there is a
 $10 charge for withdrawals if after the withdrawal the balance
 falls below $1000. Implement the withdraw member function.
*/

#include "BankAccount.h"
BankAccount::BankAccount()
{

 balance = 0;
}

void BankAccount::deposit(double amount)
{

 double newBalance = balance + amount;
 balance = newBalance;
}

double BankAccount::getBalance()
{

 return balance;
}

=========================

w5-2
/*

 The Second National Bank of Stroustrup provides accounts in which
 deposits and balance inquiries have no charge. After a deposit,
 the first two withdrawals are free, but any further withdrawals
 have a charge of $10 until the next deposit. Implement the
 deposit and withdraw member functions.
*/

#include "BankAccount.h"

66

BankAccount::BankAccount()
{

 balance = 0;
 withdrawals = 0;
}

double BankAccount::getBalance()
{

 return balance;
}

=========================

w5-3
#include "Time.h"

/*

 Provide the hours and minutes member functions.
 */
Time::Time(int hr, int min)
{

 minutesSinceMidnight = 0;
 add_minutes(60 * hr + min);

}

...

void Time::add_minutes(int minutes)
{

 minutesSinceMidnight += minutes;
 minutesSinceMidnight %= 24 * 60;

 if (minutesSinceMidnight < 0) minutesSinceMidnight += 24 * 60;
}

/**

 A time of the day between 0:00 and 23:59
*/

class Time
{

 public:
 /**
 @param hr the hour (between 0 and 23)
 @param min the minutes (between 0 and 59)

*/

 Time(int hr, int min);
 /**
 @return the hours in military time (between 0 and 23).
 */

67

 int hours();
 /**
 @return the minutes (between 0 and 59)
 */

 int minutes();
 /**
 @param the minutes to add or subtract (if negative)
 */
 void add_minutes(int minutes);
 private:
 int minutesSinceMidnight;
};

=========================

w5-4

#include <cmath>
#include "point.h"

Point::Point(double xvalue, double yvalue)
{

 x = xvalue;
 y = yvalue;
}

double Point::get_x() { return x; }
double Point::get_y() { return y; }

/**

 Compute the distance between this point and another point.
 @param other the other point
 @return the distance between them.
*/

double Point::distance(Point other)
{

 ...

}

=========================

w5-5

#include <cmath>
#include "point.h"

Point::Point(double xvalue, double yvalue)
{

 x = xvalue;

68

 y = yvalue;
}

double Point::get_x() { return x; }
double Point::get_y() { return y; }

/**

 Compute the midpoint between this point and another point.
 @param other the other point
 @return the point halfway between them.
*/

Point Point::midpoint(Point other)
{

 ...

}

=========================

w6-1
#include "path.h"
/*

 Produce a class Path that represents a path of points.
 Use a vector to store Point objects.
*/

void Path::add(int x, int y)
{

 ...
}

void Path::add(const Point& p)
{

 ...
}

Point& Path::at(int index)
{

 ...
}

int Path::length()
{

 ...
}

void Path::print()
{

 for (int i = 0; i < length(); i++)

69

 {

 if (i > 0) cout << "->";
 cout << "(" << at(i).x() << "," << at(i).y() << ")";
 }

 cout << endl;
}

=========================

w6-2
#include "path.h"
/*

 Provide a function backtrack that, given a path, produces and prints
 a path that starts like the given path and then goes back to
 the beginning. For example, when given the path (1,2)->(3,4)->(5,6)
 you should produce and print (1,2)->(3,4)->(5,6)->(3,4)->(1,2).
 DO NOT COPY the Path parameter into the function. Use a reference
 parameter.

 DO NOT COPY Point objects. Note that Point::at(int) returns a
 reference, and Point::add(Point&) receives a reference.
 The Point class is instrumented to print messages for all copies.
*/

void backtrack(...)
{

 for (int i = p.length() - 2; i >= 0; i--)
 ...

 p.print();
}

=========================

w6-3
/**

 This Path class uses an array, not a vector, to store the points
 of the path. Provide the missing constructor and member function.
*/

#include "path.h"
Path::Path(int n)
{

 ...
}

/*

 Produce a class Path that represents a path of points.
 Use a vector to store Point objects.
*/

void Path::add(int x, int y)
{

 ...

70

}

Point& Path::at(int index)
{

 return _points[index];

}

int Path::length()
{

 return _length;

}

void Path::print()
{

 for (int i = 0; i < length(); i++)
 {

 if (i > 0) cout << "->";
 Point& p = at(i);
 cout << "(" << p.x() << "," << p.y() << ")";
 }

 cout << endl;
}

=========================

w6-4
/**

 The eagle-eyed among you will have noticed that in the preceding
 exercise many points were constructed, and few were destroyed.
 Fix that by providing a destructor forr the Path class. You will
 also need to provide the constructor and add method again since
 we don't want to give away the solution to the preceding problem.
*/

#include "path.h"
Path::Path(int n)
{

 ...
}

// Destructor...

/*

 Produce a class Path that represents a path of points.
 Use a vector to store Point objects.
*/

void Path::add(int x, int y)
{

 ...

71

}

Point& Path::at(int index)
{

 return _points[index];

}

int Path::length()
{

 return _length;

}

void Path::print()
{

 for (int i = 0; i < length(); i++)
 {

 if (i > 0) cout << "->";
 Point& p = at(i);
 cout << "(" << p.x() << "," << p.y() << ")";
 }

 cout << endl;
}

=========================

w6-5
/**

 Now we make a teeny-tiny change to the runner. Instead of

 Path p2(2);

 it is

 Path p2 = p1;

 The result: disaster. Now both p1 and p2 get destroyed, and
 the destructor deletes the same memory block twice. If you are
 lucky, your program dumps core. If you are unlucky, it does
 something completely random.

 Fix this by implementing a copy constructor. Allocate
 a new array of the same capacity as the original,
 and copy over all points

 You will also need to provide the constructor, add method, and
 destructor again since we don't want to give away the solution
 to the preceding problems. Sorry about that.

72

*/

#include "path.h"

Path::Path(int n)
{

 ...
}

// Destructor...

// Copy constructor

Path::Path(const Path& other)
{

 _capacity = other._capacity;
 _length = other._length;
 ...
}

/*

 Produce a class Path that represents a path of points.
 Use a vector to store Point objects.
*/

void Path::add(int x, int y)
{

 ...
}

Point& Path::at(int index)
{

 return _points[index];

}

int Path::length()
{

 return _length;

}

void Path::print()
{

 for (int i = 0; i < length(); i++)
 {

 if (i > 0) cout << "->";
 Point& p = at(i);
 cout << "(" << p.x() << "," << p.y() << ")";
 }

 cout << endl;

73

}

=========================

w7-1
#include "list.h"
/*

 This function removes every second element from the given linked
 list. For example, if a list contains 12 15 26 25 11 (and then NULL),
 it is modified to contain 12 26 11 (and then NULL).
*/

void remove_every_second(NodePtr head)
{

 ...
}

=========================

w7-2
#include "list.h"
/*

 This function removes every even element from the given linked
 list. For example, if a list contains 16 26 25 12 11 (and then NULL),
 it is modified to contain 25 11 (and then NULL).
*/

void remove_every_even(NodePtr& head)
{

 ...
}

=========================

w7-3
/*

Your task is to break a positive number into its individual digits, for
example, to turn 1729
into 1, 7, 2, and 9. It is easy to get the last digit of a number n as n % 10.
But that gets
the numbers in reverse order. Solve this problem with a stack. Your program
should

ask the user for an integer, then print its digits separated by spaces.
*/

#include <iostream>
using namespace std;
#include "stack.h"

void print_digits(int n)
{

 Stack digit_stack;
 while (n > 0)

74

 {

 ...
 }

 while (...)
 {

 ...

 cout << ... << " ";
 }

 cout << endl;
}

=========================

w7-4
/*

 Use a stack to find out if a sequence of HTML tags is balanced.
 Your program will read in the tags, one at a time, such as

 If everything is ok, print "OK"
 When you find a closing tag that doesn't match its opening
 tag, print "BAD " followed by the tag name.
 If you reached the end of input and there are missing closing
 tags, print "UNCLOSED" followed by all unclosed tag names,
 starting with the last unclosed one.

*/

#include <iostream>
using namespace std;
#include "stack.h"

int main()
{

 string tag;
 Stack tag_stack;
 while (cin >> tag)
 {

 tag = tag.substr(1, tag.length() - 2); // Strip off "<...>"
 if (tag.substr(0, 1) == "/")
 {

 tag = tag.substr(1); // Strip off "/"
 ...

 }

75

 }

 if (...)
 cout << "OK" << endl;
 else
 {

 cout << "UNCLOSED ";
 while (...)
 cout << ... << " ";
 cout << endl;
 }

 return 0;
}

=========================

w7-5
/*

A queue is often useful when you need to break a task into simpler tasks. Here
you will use a queue to enumerate all permutations of a string.

Suppose you want to find all permutations of the string meat.

Add the string +meat on the queue.
While the queue is not empty
 Remove a string from the queue
 If that string ends in a + (such as tame+)
 Remove the + and print the string
 Else
 Remove each letter in turn from the right of the +.
 Insert it just before the +.
 Add the resulting string on the stack.
 For example, after removing e+mta, you add em+ta, et+ma, and ea+mt.
*/

#include <iostream>
using namespace std;
#include "queue.h"

int main()
{

 string word;
 cin >> word;
 Queue work_queue;
 work_queue.add("+" + word);

 while (...)
 {

76

 string str = ...
 int i = 0;
 while (str.substr(i, 1) != "+") i++;
 if (i == str.length() - 1)

 cout << str.substr(0, i) << endl;
 else

 {

 for (int j = i + 1; j < str.length(); j++)
 {

 // Make a string consisting of

 // the part of before the +

 // the letter at index j

 // +

 // everything after the + and before index j

 // everything after index j

 string to_add = str.substr(...) + str.substr(j, 1) + "+" +
str.substr(i + 1, j - i - 1) + str.substr(...);
 ...

 }

 }

 }

 return 0;
}

=========================

w9-1
#include <list>
using namespace std;
/**

 Remove the elements at position 0, 2, 4, 6, ..., of the
 linked list.

 Use an iterator.
*/

void removeEvenPositions(list<int>& lst)
{

 ...
}

=========================

w9-2
#include <list>
using namespace std;
/**

 Remove the even elements of the linked list.
 Use an iterator.
*/

void removeEven(list<int>& lst)

77

{

 ...
}

=========================

w9-3
#include <list>
using namespace std;
/**

 Swap neighboring elements of this linked list. If the
 length is odd, leave the last element unchanged.
*/

void swapNeighbors(list<int>& lst)
{

 ...
}

=========================

w9-4
#include <list>
using namespace std;

/**

 Swap the first and second half of the list. For example,
 if lst contains 1 2 4 8 16 32, afterwards it should contain
 8 16 32 1 2 4. If the list has odd length, the middle
 element should become the last element of the result.

 Use iterators.
*/

void swapHalves(list<int>& lst)
{

 ...
}

=========================

w9-5
#include <list>
using namespace std;

/**

 Changes the given lists so that they "cross over" like this:

 a: 0 ... n-1 n ...
 x

 b: 0 ... m-1 m ...

 For example, if a is [1, 2, 3, 4], b is [5, 6, 7],

78

 n is 2 and m is 1, then a becomes [1, 2, 6, 7] and
 b becomes [5, 3, 4].

 Use iterators.

 You may assume that n < a.size() and m < b.size().
 */
void crossOver(list<int>& a, int n, list<int>& b, int m)
{

 ...
}

=========================

w10-1
#include <string>
using namespace std;

/**

 Return true if the given string contains at least two
 different characters. Use recursion. Do not use loops.

 Hint: If str[0] is not the same as str[1], you have
 your answer. Otherwise, look at str.substr(1) (the substring of str
 from position 1 to the end).
*/

bool someDifferent(string str)
{

 ...
}

=========================

w10-2
#include <string>
using namespace std;

/**

 Mix two strings by alternating characters from them. If one string
 runs out before the other, just pick from the longer one.
 For example, mix("Fred", "Wilma") is "FWrieldma".
 Use recursion. Do not use loops.
 Hint: str.substr(1) is the substring of str from position 1 to
 the end.
*/

string mix(string a, string b)
{

 ...
}

=========================

79

w10-3
#include <string>
using namespace std;

/**

 Given a string, return a string of all lowercase letters contained in it.
 Use recursion. Do not use loops.
 A lowercase letter is a character between 'a' and 'z' inclusive.
 Hint: str.substr(1) is the substring of str from position 1 to
 the end.
*/

string lcl(string str)
{

 ...
}

=========================

w10-4
#include <string>
#include <vector>
using namespace std;

void lclHelper(string str, string currentGroup, vector<string>& lclGroups)
{

 ...
}

/**

 Given a string, return a vector of all substrings consisting of
 lowercase letters contained in it. For example, if str is "I like 7 and
13",

 return a vector containing "like", and "and".
 Use a recursive helper method. Do not use loops.
 A lowercase letter is a character between 'a' and 'z' inclusive.

*/

vector<string> lclGroups(string str)
{

 vector<string> result;
 lclHelper(str, "", result);
 return result;
}

=========================

w10-5
#include <string>
#include <vector>

80

using namespace std;
...

/**

 Given a vector of floating-point numbers, return the product quotient
 v[0] / v[1] * v[2] / v[3] * ...
 If the vector is empty, the product quotient is 1.
 Use a recursive helper method. Do not use loops.

*/

double prodQuot(vector<double> v)
{

 return prodQuotHelper(v, 0);
}

=========================

w10-6
#include <string>
#include "list.h"
using namespace std;

/**

 Look at the recursively defined List class in list.h.
 A List is either empty or it has a head and a tail.
 Implement the show function that yields a visual
 string of the list elements, separated by ->, and
 surrounded by [].
 If the list is empty, return "[]".
*/

string show(const List& lst)
{

 ...
}

=========================

w11-1
#include "gradebook.h"

/**

 Implement the member functions of the GradeBook class that uses
 a map to keep student scores.

*/

void GradeBook::add_student(string student)
{

 . . .
}

81

void GradeBook::add_score(string student, int score)
{

 . . .
}

int GradeBook::get_score(string student)
{

 . . .
}

=========================

w11-2
#include "gradebook.h"

/**

 The gradebook of the preceding problem wasn't very useful
 because it only keeps a single score for each student.

 In this problem, we make the gradebook more realistic by
 keeping a map of tasks to scores for each student.

*/

void GradeBook::add_student(string student)
{

 . . .
}

void GradeBook::set_score(string student, string task, int score)
{

 . . .
}

int GradeBook::get_score(string student, string task)
{

 . . .
}

=========================

w11-3
#include "gradebook.h"

/**

 Now we change the gradebook again so that one can increment the
 score of a task (like in the first program).
*/

82

void GradeBook::add_student(string student)
{

 . . .
}

void GradeBook::add_score(string student, string task, int score)
{

 . . .
}

int GradeBook::get_score(string student, string task)
{

 . . .
}

=========================

w11-4
#include <vector>
#include <map>
using namespace std;

/**

 Makes a map associating integers with the number of words
 whose length is the given integer.
 @param words a vector of strings
 @return the map

*/

map<int, int> lengthFrequency(vector<string> words)
{

 ...
}

=========================

w11-5
#include <vector>
#include <map>
#include <set>
using namespace std;

/**

 Makes a map associating integers with the words
 having that length.

 @param words an array of strings
 @return the map
*/

83

map<int, set<string>> wordsByLength(vector<string> words)
{

 ...
}

=========================

w11-6
#include <map>
#include <set>
using namespace std;

/**

 Invert the given map: Given an int->int map, return a map
 from int->set<int> whose keys are the values of the original
 map, and whose values are the keys from the original map mapping
 to the given values. For example, the inverse of the map

 1 -> 2, 2 -> 2, 3 -> 3

 is the map

 2 -> { 1, 2 }
 3 -> { 3 }
*/

map<int, set<int>> invert(const map<int, int>& m)
{

 ...
}

84

