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ABSTRACT
LANDSAT IMAGE CLASSIFICATION USING A NEURO-FUZZY SYSTEM

by Jian Zheng

This study investigates an alternative classification algorithm, NEFCLASS, and its ability
to classify remote sensing images. NEFCLASS is a Neuro-fuzzy System that is capable
of generating a set of linguistic rules. These rules allow the user to check and interpret the
classification results. This study also shows that the neural net rules stabilized after only a
few training iterations. The land-use/land-cover classification result produced by
NEFCLASS is compared to the result produced by a conventional classification
algorithm, Maximum Likelihood Classifier (MLC). NEFCLASS produced better

classification accuracy than MLC.
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Introduction

As the human population grows and the economy expands, we put increasing
demands on the environment. Our demands for more natural resources, such as fresh
water and raw materials, have outpaced the natural speed of recovery. To assess the
impact of human development on the ecosystem, the Federal and local governments in
the United States have been conducting studies, such as modeling nutrient runoff and
developing land use policies. These studies require current, regional to national scale
land-use/land-cover maps. To provide the necessary map information, the United States
Geological Survey (USGS) Multiresolution Land Characterization Consortium (MRLC)
recently has produced a 30-meter resolution land-use/land-cover map of the conterminous
Us.

The project was divided into smaller units due to the vastness of the study area.
Each study unit contained multiple Landsat Thematic Mapper (TM) images, covering
diverse geological and ecological terrain. Capturing all the TM images on the same day
was impossible. Often, the adjacent images were taken in different years and at different
points of the growing cycle. Even though the images were matched using the histogram
equaliza.tion method, the transition between scenes was often visible. Furthermore, the
large data set required many people to work on it. The quality of the classification was
strongly influenced by the operator’s experience and his/her familiarity with the area. The
compounded errors produced by these problems and the intrinsic complexity of the data

resulted in laborious post-classification editing and inter-study-unit edge matching.



In the last decade, researchers have studied the effectiveness of using Neural
Networks (NNs) to analyze remotely sensed data. Researchers have found the NNs to be
computationally expensive, but they give superior results compared to the conventional
classification algorithms, such as Maximum Likelihood Classification (MLC). A
shortcoming of the NN is that they are a black box. The program cannot communicate
the details of the classification decision criteria to the user. This study will examine an
algorithm called NEFCLASS, a Neuro-fuzzy system (a hybrid of NNs and Fuzzy Logic).
This method is different from conventional NNs due to its ability to produce a set of
decision rules, which allow users to examine the validity of the classification. In addition,
this method could remedy the inconsistency of human involvement by incorporating
more training data. This paper explores this Neuro-fuzzy classification method by

classifying complex desert landscape using satellite images.

Land-Cover/Land-Use Classification

Classification is a process of transforming data into information. The information
and spectral classes are fundamentally different (Jensen, 1996, p. 200). Spectral classes
are defined based on the statistical distribution of the remotely sensed data. From here on,
spectral classes will be referred to as “‘clusters.” Information classes, on the other hand,
are defined by the user. In this study, the user is interested in the vegetation on the ground
and the usage of the land. Therefore, the information classes consist of the vegetation
types and various human developments. The objective of this study is to analyze and

convert spectral data into information classes.



When designing a classification system, one should carefully define each class
and make certain that all the classes in the system are mutually exclusive. Furthermore,
one should also be clear on the difference between land-cover and land-use. Land-cover
classes describe the geologic condition or the vegetation on the ground. Land-use classes
define how the land or the plant life is being utilized. For example, the feature we call
“grass” in a strict land cover classification system can include natural grass, hay/pasture,
small grain, or other urban grasses. The MRLC project uses a combination of land-cover
and land-use classification systems shown in Table 1.

Aerial photographs are systematically selected for the study area to be used as
reference data. Ground truth data are collected and marked on the aerial photographs to
help the interpretation and labeling of the classes. Back in the lab, the ground truth data
are compared to the TM images and the cluster images. Some of the clusters represent
only one class of land cover. However some clusters include multiple land cover classes.
In that case, “cluster busting”, separating the cluster into various classes, will occur. The
operator looks for patches of this cluster in the image, using the ground truth data to
identify the land cover of the patches, then “spike” a number of pixels to get the values
from each data layer. The operator or a computer algorithm then creates a model based on
the differences of the observed values. This model is then applied to the image. If the
model does not successfully separate the cluster, the “spiking” is repeated, until a good

break-up value is found to separate the cluster with an acceptable amount of error.



Table 1. MRLC Regional Land-Cover, Land-Use Classification System

Water
11. Open Water
12. Perennial Ice/Snow
Developed
21. Low Intensity Residential
22. High Intensity Residential
23. High Intensity Commercial/Industrial/ Transportation
Barren
31. Bare Rock/Sand/Clay
32. Quarries/Strip Mines/Gravel Pits
33. Transitional
Forested Upland (non-wet)
41. Deciduous Forest
42. Evergreen Forest
43. Mixed Forest
Shrubland
51. Deciduous Shrubland
52. Evergreen Shrubland
53. Mixed Shrubland
Non-Natural Woody
61. Planted/Cultivated (orchards, vineyards, groves)
Natural/Semi-natural Herbaceous Vegetation
71. Grasslands
Planted/Cultivated Vegetation
81. Pasture/Hay
82. Row Crops
83. Small Grains
84. Bare Soil
85. Other Grasses (parks, lawns, golf courses)
Wetlands
91. Woody Wetlands
92. Emergent Herbaceous Wetlands




In some cases, different land use classes can be separated based on
anthropomorphic practices. For instance, watering of cropland and park gives these
features a distinctive reflectivity in the early growing season. However in many instances,
separating pixéls solely based on their spectral values is impossible. In that case, the
appropriate ancillary data source will be used to resolve the confused classes. For
example, shaded areas are often confused with water bodies. To separate these two
classes, a Digital Line Graph of hydrological features might be useful. Another example
would be separating golf courses from hay/pasture, where the two classes have very
similar spectral signatures. Manual digitizing of golf courses is necessary to solve the

confusion.

Image Classification Algorithms

Classification may be performed using a variety of supervised or unsupervised
algorithms. Supervised classification involves the use of a priori information to group
pixels into pre-defined information classes. Unsupervised classifications are performed
without any knowledge about the area under study. Instead, pixels with similar spectral
values are grouped into clusters. The clusters do not have meaning associated with them.
The operator then needs to identify the features represented by each cluster. This study
will focus on supervised classification methods.

Supervised classification algorithms can be categorized as either parametric or
nonparametric. Parametric classification makes predictions based on a particular

statistical distribution of a population, most commonly the Gaussian probability



distribution. In contrast, nonparametric methods do not rely on statistical parameters,
such as the mean or the standard deviation, to describe the probability distribution
(Schowengerdt, 1997). Nonparametric methods are particularly suitable in cases where
the sample size is small, such that the distribution of the population is unreliable or the
underlying distribution of the population is unknown.

In this study, a nonparametric supervised method, NEFCLASS — the Neuro-
fuzzy classifier, will be examined for land cover classification. This will be compared to
the Maximum Likelihood Classifier (MLC), which is a standard parametric algorithm
that can be trained using the same set of data. The results obtained from both methods

will then be compared to the ground truth information.

Conventional Classification Method — Maximum Likelihood Classifier

Each pixel in a remotely sensed image contains a number of measurements.
Therefore, each pixel can be represented as a vector, Xij=[ Vi, va, Vs, ..., vu], where i and
J represents row and column, respectively. The same type of vector data is used as input
to both the MLC and the NNs.

The MLC algorithm delineates the boundary of each class by obtaining statistics
from the training data vectors. The mean measurement vector M. and the covariance
matrix Cov. of each class are incorporated in the decision rule. The algorithm assigns
each pixel or feature vector to the most probable class (Jensen, 1996). The basic MLC
equation assumes that a pixel has an equal probability of belonging to any of the classes,

and that the input data are normally distributed.



The following equation for the maximum likelihood classifier is obtained from
the ERDAS Field Guide, a manual for the Imagine image processing software.

D = In(a,) - [0.5In(|Cov.])] - [0.5(X — M:)"(Cov. ' }(X - M.)]

Where:
D = weighted distance (likelihood)
c = a particular class
X = the measurement vector of the candidate pixel
M. = the mean vector of the sample of class ¢
a = percent probability that any candidate pixel is a member of class

¢ (defaults to 1.0, or is entered from a priori knowledge)

Cov. = the covariance matrix of the pixels in the sample of class ¢

|[Cov.| = determinant of Cov,

Covc'l = inverse of Cov,

In = natural logarithm function

T = transposition function

This algorithm’s performance will suffer if the data are not equally distributed

among the classes or if the training data are multimodal. In case of unequal distribution,
the a priori information can be incorporated into the algorithm as weights if the operator
knows the distribution of the data ahead of the time. When weights of each class are
considered in the equation, the equation is called the Bayes’ decision rule. In cases where
the data are multimodal, better results can be achieved by subdividing a class to obtain

unimodal, normal distributions.



Neural-fuzzy System
Neural Networks

The concept of Artificial Neural Networks is inspired by biological neurons.
Neurons are the basic units in a nervous system. They form the neural pathways, which
receive, process, and transmit electrochemical signals. Each neuron consists of dendrites,
a cell body, the axon, and the axonic ending. The dendrites are a branchlike structure, that
receive signals from other neurons. The cell body sums the signal, and, when excited
above a threshold, sends a signal down the axon. This signal is then received by the

dendrites of the adjacent neurons.

NEURON

'\\ , Dendrites 6

Axon Terminals (receivers)
(tramsmitters)

Cell

~
Axon

(the conducting
fiber)

©EnchantedLesrning.com

Figure 1. A Neuron

The typical computing speed of a neuron in a human brain is a few milliseconds,
where the typical computing speed in computer circuits is on the order of microseconds
(Kulkamni, 1994). However, the human brain is capable of processing visual and auditory

signals much faster than computers. This fast problem solving can be attributed to the



massive parallel nerve system. Neural Networks are designed to emulate this architecture

using electronic circuits or computer algorithms.

Input Layer Hidden Layer Output Layer

E iP5

Figure 2. A Generic Model of a Three-layered Neural Networks.

Our understanding of how the nervous system functions is still incomplete.
Researchers are trying to formulate the mechanisms of biological neural networks.
Currently several models of NNs are in existence. The three-layered perceptron
(consisting of an input layer, a hidden layer, and an output layer) is the most common
architecture. The number of nodes to incorporate in each hidden layer and even the
number of hidden layers to include in the NNs can vary. The more nodes and hidden
layers in NNs, the more complex the class boundaries are. For example, two or more
hidden layers can create discontinuous class boundaries. The user can decide on the size
of the hidden layer based on their knowledge of the input data and their experience with
using the NNs. However no known scientific method can be used to determine the

optimal number of nodes or layers to incorporate in a network.



The Error Surface

Figure 3. A Graphic Representation of the Error Surface: a depiction of
the Gradient Descending Nature of the Back-propagation Algorithm

The back-propagation algorithm is a popular learing algorithm used with the 3-
layered perceptron. The typical back-propagation algorithm belongs to the family of
iterative, gradient descending algorithms. The term “gradient descending” describes the
error minimization process during training (Figure 3). For example, larger errors will
have greater effect on the weights, therefore the NNs descend more quickly towards the

minimum of the error surface.

©, 1) ®an
Class 0: (0, 0) (1, 1)
Class 1: (1,0) (0, 1)
0, 0) (1,0)
e

Figure 4. A Graphic Representation of the XOR Problem

10



To illustrate the concept of back-propagation, a simple “exclusive or - XOR”
problem can be useful (Figure 4). In this problem, there are 2 classes, true (class 1) and
false (class 0). Class 0 contains (0, 0) and (1, 1), and class | contains (1,0) and (0, 1).
The goal is to find a set of weights for the NNs that can correctly solve the XOR
problem. To achieve this goal, the network will go through numerous cycles of training
using the back-propagation algorithm. In this example (Figure 5), the network has only 2
input nodes, 2 hidden layer nodes, and 1 output node verses 3 input nodes, 3 hidden layer
nodes, and 2 output nodes in the generic NNs model shown in Figure 2. The size of the
network can vary depending on the complexity of the problem. The following steps
describe the training process.

Input Layer . )
[nitial Weights

X =1 Hidden Layer

\
0 N
Bias=1 — ° \
Output

X =1 — / Layer
-2
/ ‘ d

Bias=1 _— -l £, 1

Bias =1

Figure 5. A 3-layered Neural Networks and Initial Weights

11



1) Select a training pattern and specify the desired output. For example, an input from
the XOR problem can be (1, 0) and the desired output is I.
2) Initialize weights to small random numbers.
3) Propagate the training data forward through the NNs.
The sigmoid function, 1/ (1 + €®), is often used in the back-propagation model. S is
the sum of the products of the inputs and the weights.
From the input layer to the hidden layer:
S = X;*weight, + X>* weight, + Bias*weight;
SI=1*2+0*%(-2)+1*0=2,
S;=1*1 +0*3 + 1*(-1)=0,
Apply S to the sigmoid function, f=1/ (1 +¢*):
fi=1/(1+e7)=0.881
£=1/(1+e%=05
From the hidden layer to the output layer:
S =fi*3 + f,* (-2) + Bias*(-1)
=0.881*3 + 0.5%(-2) + 1*(-1) =0.643
output =1/ (1 +e%%?) = 0.665
4) Accumulating the total error relative to the desired output and back-propagate the error
through the layers.

Output error: § = output * (I - output) * (t — output), where t is the desired output.

3=0.665 * (1 - 0.665) * (1 - 0.665) =-0.219

12



Error at the hidden layer: 8,=f, * (1 - f;) * Zw*3, where w is the weight between
the hidden layer and the output layer.
3, =0.881 * (1 —0.881) * (3 *(-0.219)) =-0.069;

3 =0.5*(1-0.5) *((-2) * (-0.219)) =0.110.

Input Layer .. .
[nitial Weights

X =1 ~ 5 Hidden Layer

X2=0  — -2 — 0881

/ f[ 3
Bias=1 — 0
Output Layer

0.665
Xi=1 /
\ l

Figure 6. A 3-layered Neural Networks and its First Output: after
propagating the input through the network using the initial weights,
the output is 0.665. The desired output is 1.
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5) Adjusting the weights:

weightyew = weightyg + 8, * X,

The new weights between the first input node and the hidden layer:
2+(-0.069) * 1 =1.953;
(-2) + (-0.069) *0 = -2.069;
0 +(-0.069) * 1 =-0.069;

The new weights between the second input node and the hidden layer:
1+0.110*1=1.110;
3+0.110*0=3.110;
(-1)+0.110 * 1 =0.890;

The new weights between the hidden layer and the output layer:
3+(-0.219) * 0.881 =2.807;
(-2) +(-0.219) * 0.5 =-2.110;

(-1)+(-0.219) * 1 =-1.219.

6) Select another input pattern from the XOR example and repeat steps 3 through S using

the new weights. Every input pattern will produce errors; therefore the weights will alter

every time. After all the input patterns have been through the NNs once, an epoch or

iteration is complete.

7) Repeat as many epochs as the operator specifies or until the classification accuracy

reaches a certain threshold.

14



Input La
PEESAYET Initial Weights
Xy =1 1
~ 1.953 Hidden Layer

x=0 — 200 —3 @<
/'

Bias=1 — 0% f .

X,=0 3.11 - ./

Bias =1 — -0.89 f -1.219
Bias =1

Figure 7. A 3-layered Neural Networks after Error Back-propagation: the

weights between the layers have been updated.

Once training is complete, the classification phase goes into a feed-forward mode
(Paola and Schowengerdt, 1994). Consequently the NNs operate like a hard-wired circuit
to produce the classification. The entire image is fed into the network pixel-by-pixel, and
the network output should be between 0 and 1. A simple threshold is applied to the output
to make a class selection for each pixel (Paola and Schowengerdt, 1995a, p. 982).

The accuracy of the classification results generated by NNs has varied greatly.
Most of the authors found that the NNs perform better than conventional classification
algorithms. Paola and Schowengerdt (1995a) and Foody et al. (1995) attributed the better

performance of the NNss to the fact that they are nonparametric. Since remotely sensed

15



data rarely have a normal distribution, parametric algorithms are less accurate than NNs
at predicting class membership. Paola and Schowengerdt (1994) suggested that given a
priori distribution for the data, MLC would perform as well as the Neural Networks.
Bruzzone et al. (1997) tested this claim by modifying MLC with a priori probabilities. In
his study, NNs still significantly out performed the modified MLC. The NNs are aiso
better able to differentiate classes with widely different variances, which can cause
problems for the MLC (Paola and Schowengerdt, 1994). In practical use, NNs are

relatively tolerant of missing data and noise within the data (Hepner et al., 1990).

Fuzzy Logic

In conventional computer logic, an evaluation can result in either true or false,
depending on the given criteria. The shortcoming of this method is that it does not
accommodate terms that involve degrees of intensity, such as height or speed. Similar
input values can be separated into different categories based on rigid evaluation criteria.
For example, if we define 180 centimeters or more to be tall, then someone who is 180.5
centimeters would get classified as tall, yet someone who is 179.5 centimeters would not
be classified as tall.

Fuzzy logic, on the other hand, allows for imprecise description of conditions.
One can specify a membership function, which defines the distribution or degree of truth
of a variable to each class. The fuzzy decision rules are often generated based on past
experience. All possible input-output relationships in fuzzy terms need to be specified in

arule set. These rules are expressed with if-then statements (Kartalopoulos, 1996). For

16



instance, we have two inputs, A and B, each with three conditions. There would be, at
maximum, 9 rules to define all the possible combinations of the conditions in if-then
terms:

If Al and BI, then C1, else

If Al and B2, then C2, else

If Al and B3, then C3, else

If A2 and BI, then C4, else

If A3 and B3, then C9.

The results, the C terms, can also be fuzzy terms, such as a percentage of
membership to each class. In some cases, defuzzification of the fuzzy statement will take
place. The most commonly used techniques are maximizer, which takes the output that

has the maximum value; weighted average, which uses the average of the weighted

possible outputs; and centroid, which finds the output’s center of mass.

Neuro-fuzzy

The advantage of using Neural Networks and fuzzy systems is that neither needs a
mathematical model to solve a problem. However both methods have shortcomings.
Neural Networks are black boxes. The user cannot check or interpret the solution. Fuzzy
systems do not possess the ability to learn. The advantage of combining NNs and fuzzy
systems is that Neural-fuzzy Systems have the ability to learn from the training data and
generate conditional linguistic rules (Nauck et al., 1997). The user can interpret the result
and perhaps learn the interrelations between the various input parameters from the rules.

The Neural-fuzzy system used in this study is called NEFCLASS (Nauck et al.,

1997). It was developed by researchers at the University of Magdeburg, Germany.

17



NEFCLASS can learn fuzzy rules from training patterns, perform classification, and

generate linguistic rules. NEFCLASS is a three-layer fuzzy perceptron, which learns by

using back-propagation. Similar to NN, it refines the class boundaries by iteratively

minimizing the error rate using the training data provided to the program. However,

NEFCLASS initiates the network differently than NNs. The initial rule generation

consists of the following steps:

)
2)

3)

[nput training data and the correct output value.
Find an existing membership function such that the input pattern results in the
correct target class.
[f no membership function can give a satisfactory result, then create a
membership function that will. Each input pattern usually consists of a vector
of values. The membership function is formed by assigning a range to each of
the input parameters: small, medium, or large. For example:
[f parameter | is small, and parameter 2 is large, and parameter 3 is
medium, and ..., thenclass z.
These ranges are created using triangular membership functions. The function
consists of three values: a, b, and c. The center of the triangle is identified by
b, while a and ¢ determine the spread to the right and left, respectively. In
addition, the triangular membership function is allowed to overlap. The
membership varies between 0 (no match) and | (perfect match). The learning

process will later refine the ranges to better fit the training data.

18
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a, bs 3n Cs bma cn b C

Figure 8. Triangular Membership

4) Repeat steps 1-3 until all the patterns are processed.

Once the initial rule base has been created, one can choose to refine the rule base
by using a back-propagation learning algorithm. This process is similar to the previously
mentioned algorithm used on NNs. The algorithm described below is applied to every
training pattern cyclically until a given criterion, such as an accuracy rate, is met.

1) Select the next input pattern, and calculate the output vector o..

2) For each output unit, determine the error value E. = t, - o., where t. is the

correct output.

3) Now propagate the error back through the system

a) Determine the error for each rule unit in the hidden layer:

Er =or-(l -0r)-Z W(R, ) - E
where or is the actual rule value and ZW(R, c) is the sum of all the
weights between the hidden layer and the output layer. This formula is

almost identical to the one used in NNs.

19



b) Find the input unit x' such that

W(x', R)(0ox ) = min{W(x, R)( ox)}
where min stands for “the minimum of,” W(x, R) is each weight between
the input layer and the hidden layer, and ( o) is the output value. This step
is unique to NEFCLASS.
c) Determine the modification for the parameters a, b, ¢ for the fuzzy set
W(x', R).

Ab =0 - Eg - (c-a) - sgn(ox - b),

Aa=-c - Eg -(c-a) + Ab,

Ac=ac - Er - (c-a) + Ab,
where o is the user specified learning rate and ¢ > 0, and sgn(x) is the
sign (+/-) of x.

4) If an epoch has been completed, and the stopping criterion is met, the

calculation ends; otherwise repeat steps | through 3.

For any given value x, its membership in a certain group can be established with the

following functions;

(x—a)/(b-a) if x € [a, b),
(c-x)/(c-b) ifx € [b, c],
0 Otherwise

20



A pattemn is interpreted by the system using this fuzzy rule set, and the system assigns
membership degree to the various classes. For example, Table 2 is a small section of the
network generated by the experiment. NEFCLASS uses a maximizer interpretation that

maps the pattern to the class that has the highest association (Nauck et al., 1997).

Table 2. An Example of the NEFCLASS Output

% These are the parameters of the (triangular) fuzzy sets:

% <a> <b> <c> <LeftShouldered> <RightShouldered> [name]
FUZZY

3

0.000000 99.000000

0.000000 16.500000  49.500000 1 0 small

16.500000  49.500000  82.500000 00 medium
49.500000  82.500000  99.000000 O large

The source code for NEFCLASS is available at the University of Magdeburg, School of
Computer Science, Department of Knowledge and Language Engineering's website:

http://fuzzy.cs.uni-magdeburg.de.

Experimental Results and Discussion

The study region covers mainly Utah and adjacent areas in Colorado, Arizona,
and Nevada. The vast Great Basin Desert lies within the boundary of this study site. The
harsh desert environment supports unique ecosystems with desert plant and animal life.
To survive the harshness of the desert climate, plants have evolved various adaptations
including water-swollen stems; furry, gray leaves; thorns; or no leaves at all (Bowers,

1993). These characteristics make it difficult to distinguish desert land cover classes such
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as shrub, natural grass, and bare rock/sand using satellite imagery. A great amount of
time is devoted to post-classification editing to correct the misclassification among the

three classes.

Data Description

The spectral data used in this study includes the leaves-on and leaves-off Landsat
Thematic Mapper (TM) images collected between 1991 and 1993. Due to the large size
of the study area and the effectiveness of the data for analysis, only TM bands 3 (0.63 —
0.69 micrometers), 4 (0.76 - 0.90 micrometers), 5 (1.55 — 1.75 micrometers), and 7 (2.08
— 2.35 micrometers) were used. The USGS EROS Data Center in Sioux Falls, SD
performed the pre-classification processing of the source data, which included destriping,
terrain correction, geo-registration, and scene mosaicking. To mosaic, a base scene was
selected, the histogram of the base scene was extracted, and other scenes were updated to
approximate spectral properties of the base scene (Vogelmann et al., 1988). The
mosaicked image was clustered into 100 spectrally distinct classes using the CLUSTER
algorithm developed at the Los Alamos National Laboratory (Kelly and White, 1993;
Benjamin et al., 1996). The EDC also supplied a Normalized Vegetation Index (NDVI)
based on the TM image for each season, digital elevation, and slope data. The complete

data set is listed in Table 3.

22



Table 3. Data Layers
Leaf-on Images Leaf-off Images Others

| 100-cluster image 7 | 100-cluster image 13 | Elevation
Landsat TM Band3 |8 | Landsat TM Band 3 14 | Slope
Landsat TM Band4 |9 | Landsat TM Band 4
Landsat TM Band 5 | 10 | Landsat TM Band 5
Landsat TM Band 7 | 11 | Landsat TM Band 7
NDVI 12 | NDVI

| | & W N

Data Classification

Four sites were selected from the study area in order to evaluate the effectiveness
of the classification methods. Figure 9 shows the four sites in Landsat TM image in band
combination 5, 4, 3. These sites were selected because they represent the characteristic
desert landscape. The land-cover/land-use classes that appeared in these four sites include
water, urban, bare soil/rock, evergreen forest, shrub, nature grassland, and hay/pasture.
Four aerial photographs for the corresponding sites were used as reference. Training data
were selected for each class based on ground truth and aerial photographs. Great care was
taken to ensure that only homogeneous pixels were selected as training data.

The MLC and the accuracy assessment of all the classifications were carried out
using ERDAS Imagine software. The binary image data were exported to the ASCII text
format using ERDAS Imagine software, because NEFCLASS was created to analyze
databases in text file format. The text data were then trained and tested in NEFCLASS.

The training time varies for both MLC and NEFCLASS depending on the number of

23



epochs pre-specified by the user. In this experiment, MLC training terminated if 95% of
the sample data remains in the same class or after 6 epochs, whichever criteria was
satisfied first. NEFCLASS was trained at 1, 5, 15, and 25 epochs for assessment of the
classification performance. In general, more training cycles will generate rule sets that
will yield better classifications for the given training data, and ideally will also classify
the rest of the data better. However, over training runs the risk of losing generality of the
rule set. Therefore the terminating criteria, percent of samples unchanged, would never

be set to 100%.

Accuracy Assessment
The accuracy assessment used a random stratified method. The number of
samples needed for accuracy assessment is debatable. Fitzpatrick-Lins (1981) suggested

using the binomial probability theory to determine the sample size.
N=Z’(p)q) / E7,
Where Z is the standard score that corresponds to the confidence level, p is
expected accuracy, q is (1 — p), and E is the allowable error.
For example, for an accuracy of 85% and an acceptable error of 5%, a minimum of 204
samples should be selected. In addition, Congalton (1991) suggested that, as a practical
rule, using a minimum of 50 samples for each class in the error matrix. In this study, 50
samples were selected for the class bare, forest, shrub, and grass. Twenty-five samples

were selected for the class water, urban, and hay/pasture, because they are much smaller

classes. In total, 275 points are used for the accuracy assessment.
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Site 21 Site 27

Site 47 Site 52

Figure 9. The Landsat TM Images of the Four Sites in Band 5 (Red), Band 4 (Green), and
Band 3 (Blue).
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Figure 10 shows the classification result using the MLC algorithm. The over
estimation of the hay/pasture class can be seen in Sites 21, 27, and 52. An over estimation
of bare rock/sand class in Site 27 and some misclassification of the urban class in Site 47
can also be observed.

Table 4: Maximum Likelihood Classification Result Error Matrix

Bare | Ever-
rock/ | green | Shrub- | Grass- | Hay/ |Classified
Water | Urban | sand | forest { land land | pasture | Total
Water
25 25
rban
3 22 2 27
are
ock/sand 9 | 26 14 50
vergreen
orest 48 6 | | 56
Shrubland
25 l 21 5 52
Grassland
6 14 9 29
Hay/pasture
15 14 7 36
eference
otal 28 22 40 50 84 43 8 275

The overall accuracy for the MLC is 50.91% and the Kappa accuracy is 0.4169.

Table 5: Maximum Likelihood Classification Result Accuracy Total

Reference|Classified| Number | Producer's User's

Total Total Correct Accuracy Accuracy

Water 28 25 25 89.29% 100.00%
Urban 22 27 22 100.00% 81.48%
are rock/sand 40 50 9 22.50% 18.00%
vergreen forest 50 56 48 96.00% 85.71%
Shrubland 84 52 21 25.00% 40.38%
Grassland 43 29 9 20.93% 31.03%
ay/pasture 8 36 6 75.00% 16.67%
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Site 47

- Water : Bare rock/sand - Shrubland : Hay/pasture
B - Bl o [ crossin

Figure 10. Maximum Likelihood Classification Results
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Figure 11 shows the classification result using NEFCLASS. Some of the shrub
class pixels are mistaken for urban in all four scenes. For example, a large part of the
power plant at the bottom of Site 47 is misclassified. However, the highway is correctly
classified in Site 52.

Table 6: NEFCLASS Classification Result Error Matrix

Bare Ever-
rock/ | green | Shrub- | Grass- | Hay/ |Classified
Water | Urban | sand forest | land land | pasture | Total
Water
25 25
{Urban
21 1 | 2 25
are
ock/sand 20 14 1 35
[Evergreen
forest 44 1 45
Shrubland
17 5 28 16 66
Grassland
3 28 17 48
ay/pasture
25 25
eference
otal 25 21 40 50 71 37 25 275

The overall accuracy for the NEFCLASS is 65.45%, and the Kappa accuracy is 0.5872.

Table 7: NEFCLASS Classification Result Accuracy Total

Reference| Classified { Number | Producer's User's

Total Total Correct | Accuracy | Accuracy

Water 25 25 25 100.00% | 100.00%
rban 21 25 21 100.00% 84.00%
[Bare rock/sand 40 35 20 50.00% | 57.14%
Evergreen forest 50 S1 44 88.00% 86.27%
Shrubland 71 66 28 39.44% 42.42%
Grassland 37 48 17 45.95% 35.42%
[Hay/pasture 31 25 25 80.65% 100.00%
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Site 27

Site 47 Site 52

- Water : Bare rock/sand - Shrubland : Hay/pasture
- Urban - Evergreen forest - Grassland

Figure 11. Neuro-fuzzy System Classification Results
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The four sets of rules generated by training NEFCLASS with 1, 5, 15, and 25
epochs produced classification results of similar accuracy, varying from 88.65% to
91.17%. However the classification accuracy on the test data declined slightly. The
NEFCLASS rule base stabilized very quickly, probably within the first I to 5 epochs.
Since NEFCLASS is more tolerant, it can be used on multiple images or multi-temporal
images (Paola and Schowengerdt, 1995a, p- 995). Therefore, potentially this
classification method could save training time when a large data set is involved. A

sample of the classification rules generated by NEFCLASS is in the Appendix.

Table 8: Accuracy Summary of the NEFCLASS Classifications

Training Data Testing Data Kappa Coefficient
Accuracy Accuracy
1 epoch 88.65% 67.25% 0.6106
5 epoch 90.47% 64.36% 0.5761
15 epoch 91.06% 66.16% 0.5975
25 epoch 91.17% 65.45% 0.5872

In summary, both classification methods gave reasonable accuracy in water,
urban, and forest classes. NEFCLASS also classified hay/pasture class relatively well,
however this class was grossly overestimated using MLC. This shortcoming could be the
result of the equal probability assumption made by the MLC algorithm. Neither method
classified bare rock/sand, shrub, and grass well. The reason could be that these three
classes often co-exist in the desert landscape. Mixed pixels are very difficult to
distinguish and separate. Adding a mixed shrub/grass class might represent the ground

condition more accurately.

30



Discussion

Since the NN are initialized with different weights and biases each time, the
learning process will produce a different set of final weights. In addition, varying
learning rates and the occurrences of local minima can also affect the outcome. Many
researchers see this inconsistency in training as a shortcoming. Although NEFCLASS
also exhibits this inconsistency in training, the difference in the end result is insignificant,
as shown in Table 8. In addition, NEFCLASS uses numerous linguistic rules instead of
using just one set of weights as in NNs, which avoids problems such as local minima.
The learning rates in NEFCLASS could influence the shape of the membership functions,
however the maximizer interpretation on class membership could minimize some of that
effect unless the change is significant.

The MLC and NEFCLASS algorithms are similar in some respects. Both MLC
and NNs, NEFCLASS included, form class borders in an arbitrary non-linear fashion (Ji,
2000). Both algorithms estimate the likelihood of the class membership. MLC compares
the input values with the representative values of the possible classes, and assigns the
candidate to the most likely class. It is very similar to the maximizer approach of
NEFCLASS. NEFCLASS’ approach to classification is analogous to the parallelepiped
classification algorithm, a non-parametric method, used in conjunction with MLC.
NEFCLASS?’ ability to classify data without considering the data distribution, yet still
being able to form a complex class border, is certainly an advantage over MLC. This

ability is demonstrated in the better classification of the hay/pasture class in this study.
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The MLC classifier, being a parametric method, used mean and covariance
statistics, but NNs used only the means (Paola and Schowengerdt, 1995b, p. 3053). The
NNs, NEFCLASS included, obtain the mean by iteratively cycling through data during
training, rather than using conventional statistical formulas. The NEFCLASS' fuzzy
parameters do take into account the distribution of each class and they represent class
mixing. MLC considers only the training data for the given class in calculating the
parameters for that class. The Neural Networks perform a more mutually exclusive
partitioning of the feature space by using ail the training data to help delineate each class.
Not only does the training data for a given class describe where that class exists in the
feature space, but also the training data for all the other classes describe where that class
does not exist (Paola and Schowengerdt, 1995b, p. 3035). These advantages of the
NEFCLASS could have contributed to the overall better classification performance.

The NEFCLASS algorithm might possibly provide even more information on
land classification than have been currently explored. Before the de-fuzzifying step,
classification information existed in fuzzy terms. These fuzzy terms represent the degree
of membership of a pixel to various classes. A study on this information may potentially

yield information on class mixture for each pixel.

Conclusion

The goal of this study is to assess the ability of the NEFCLASS Neuro-fuzzy
system to classify land-use/land-cover. The classification results obtained by using

NEFCLASS were compared with classification results from MLC. Given the same
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training data, NEFCLASS performed better than MLC. The nonparametric approach and
the learning ability of the algorithm are the main reasons for the superior performance in

land-use/land-cover classification problem compared to the standard parametric method.
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Appendix

The following is an example of rules generated by NEFCLASS using the training data
selected for this study.

[Rules]

#Rule 1:

IF on3 IS medium AND on4 IS medium AND
on35 IS medium AND on7 IS medium AND
onclust IS medium AND onndvi IS medium AND
off3 IS large AND off4 IS medium AND
off5 IS medium AND off7 IS medium AND
offclust IS medium AND offndvi IS medium AND
dem IS medium AND slop IS small

THEN 71

#Rule 2:

IF on3 IS large AND on4 IS large AND
on5 IS large AND on7 IS medium AND
onclust IS medium AND onndvi IS medium AND
off3 IS large AND off4 IS large AND
off5 IS medium AND off7 IS large AND
offclust IS medium AND offndvi IS medium AND
dem IS medium AND slop IS small

THEN 51

#Rule 3:

IF on3 IS medium AND on4 IS medium AND
onS5 IS small AND on7 IS small AND
onclust IS medium AND onndvi IS medium AND
off3 IS medium AND off4 IS medium AND
off5 IS medium AND off7 IS medium AND
offclust IS medium AND offndvi IS medium AND
dem IS medium AND slop IS small

THEN 51

#Rule 4:
IF on3 IS small AND on4 IS medium AND
onS5 IS small AND on7 IS small AND
onclust IS small AND onndvi IS medium AND
off3 IS small AND off4 IS medium AND
off5 IS small AND off7 IS medium AND
offclust [S medium AND offndvi IS medium AND
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dem IS medium AND slop IS small
THEN 21

#Rule 5:

IF on3 IS medium AND on4 IS medium AND
on$ IS medium AND on7 IS medium AND
onclust IS medium AND onndvi IS medium AND
off3 IS medium AND off4 IS medium AND
off5 IS medium AND off7 IS medium AND
offclust IS medium AND offndvi IS medium AND
dem IS medium AND slop IS small

THEN 51

#Rule 6:

IF on3 IS medium AND on4 IS medium AND
on3 IS medium AND on7 IS medium AND
onclust [S medium AND onndvi IS medium AND
off3 IS small AND off4 IS medium AND
off5 IS medium AND off7 IS medium AND
offclust IS medium AND offndvi IS medium AND
dem IS medium AND slop IS small

THEN 51

#Rule 7:
IF on3 IS small AND on4 IS medium AND
on3 IS small AND on7 IS small AND
onclust IS small AND onndvi IS small AND
off3 IS small AND off4 IS medium AND
off5 IS small AND off7 IS medium AND
offclust IS medium AND offndvi IS medium AND
dem IS medium AND slop IS smalil
THEN 21

#Rule 8:

IF on3 IS medium AND on4 IS medium AND
on35 IS medium AND on7 IS small AND
onclust IS medium AND onndvi IS medium AND
off3 IS medium AND off4 IS medium AND
off5 IS medium AND off7 IS medium AND
offclust IS medium AND offndvi IS medium AND
dem IS medium AND slop IS small

THEN 51
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