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ABSTRACT

NON-LINEAR DYNAMICAL SYSTEMS

by Marina Marinas

The purpose of this thesis is to present the main
definitions and results of discrete dynamical systems.
In the first chapter we define the main notions of
dynamical systems in R! and prove the fundamental theorem
due to Sarkovskii. This theorem defines an hierarchy of
periodic points for any continuous map. We also define
the notion of chaotic dynamical systems and give an
example of such a system. The second chapter extends some
of the results of the first chapter into the complex
plane. In particular, we define the notion of the Julia
set, describe explosions on Julia sets and give examples

of dynamical systems in the complex plane.
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Preface

There are three aspects of dynamical systems theory.

Historically, the subject is an outgrowth of the qualitative theory of differ-
ential equations and this latter has applications in the study of physical systems.
More specifically, there are connections with theoretical dynamics and non-
linear mechanics.

Secondly, dynamical systems theory may well be considered as applied
topology, and indeed general analytic and algebraic topology have all played
fundamental roles in the development of the subject.

Finally, it is proposed that dynamical systems theory is an independent
mathematical discipline with its own subject-matter, proof methods, and funda-
mental resulits.

It was Poincare/ who first formulated and sclved problems of dynamics as
problems in topology.

Markov performed the logical next step of defining an essentially topo-
logical concept, containing as special case differential equations This was
called a dynamical system.

There are different types of dynamical systems such as differential
equations and iterated functions. The former give examples of continuous
dynamical systems, while the latter give examples of discrete dynamical
systems.

Dynamical systems have applications in all branches of science (differ-
ence equations, differential equations, mathematical economics, classical

mechanics, physics, biology, to name a few).



There are non-trivial connections between dynamical systems on the
complex plane and fractals. In particular, the Julia sets of many dynamical
systems in C are fractal sets.

The purpose of this thesis is to introduce the main definitions and results
of discrete dynamical systems.

In the first chapter we define the main notions of dynamical systems in R
and prove the fundamental theorem due to Sarkovskii. This theorem defines a
hierarchy of periodic points cf any continuous map. We also define the notion
of chaotic dynamical systems and give an example of such a system.

The second chapter extends some of the results of the first chapter into
the complex plane. In particular, we define the notion of the Julia set
describe explosions on Julia sets and give examples of dynamical systems in

the complex domain.



CHAPTER 1.

DISCRETE DYNAMICAL SYSTEMS AND CHAOS.

In this chapter we shall discuss the main notions of discrete dynamical
systems and shall prove the fundamental resuit known as Sarkovskii's
Theorem.

We shall also give the definition of chaotic behaviour (or, simply chaos)
and we shall present some examples of such behaviour.

To make the presentation self-contained, we will also include some basic

definitions. They can be found in most of the articles on the subject and we do

not give specific references in such instances.
1. Basic Definitions and Results for Dynamical Systems.

Throughout this chapter f denotes a continuous mapping from a topological

space X to itself, where X is usually R?, the real numbers, or S', the unit circle
in the plane.

Definition 1.1 f"(x) = (fofo..... of)(x), n22, neZ

Here "o" denotes the usual composition of functions.

Definition 1.2 A point x,¢ R'is called a fixed point for the mapping f if

f(xo) = X,. The set of all fixed points for f is called the fixed set and will be
denoted by F;



Example 1.1 Let f(x) = px(1-x), p=0. Letus find all the fixed points of this
mapping. To do that, we have to solve the equation

Hx(1 - x) = x
or

X(n- px-1)=0.
The solutions of this equation are x =0 and x = (u-1)/y. Thereforeif p =1,
f(x) has one fixed point x=0, and if p =1, f(x) has two fixed points: Xy=0

and x, = (u-1)/n.

Remark. In some cases, the existence of fixed points can be proved without

explicit calculations. As an example we have the following simple result:

Theorem 1.1 Let f be a continuous function from [0,1] to [0,1]. Thenfhasa
fixed point in [0,1].
Proof: The intuitive idea behind the proof is obvious:

y

->

Fig.1

The diagonal must intersect the graph of the function.



Here is the formal proof:

Let g(x) = f(x) - x; g(x) is a continuous function.
g(0) = f(0)

g(1)=1(1) - 1

If (1) = 1 then 1 is a fixed point of f.

If (0) = O then 0 is a fixed point of f.

Otherwise g(0) > 0 and g(1) < 0. So, by the Intermediate Value Theorem, there
exists a point ¢ ¢ (0,1) such that g(c) =0, i.e. f(c) =c.

#

Definition 1.3 A point x, is called a periodic point of period k for f if there
exists a positive integer k such that (x) = x,.

The smallest such number K (if it exists) is called the prime period of f.

The set of all periodic points of f is called the periodic set and we will denote
itby P;.

A period will always mean the prime period unless otherwise stated.
Of courseif k=1, x, is a fixed point.

In general, it is very difficult to determine all periodic points of a given mapping.

However, in some simple cases, explicit calculations can be carried through.

Example 1.2
a) Let S be the unit circle in the plane.
S' ={x € R?|x=0/%, 0<0<27).

A point on 81 can be parametrized by its angle © .



Let f,(o<) = /(®*2m where u=1/n, ne N. (Note that f, is multiplication by a
fixed primitive n-th root of unity.)
Then fMo) = ei(®+2m) = @i0.6i2% = o g0 that £,7 () = oc forany o.

Hence all points on S are periodic of period n for f.

b) Let f(x) =-x3. Then (x)=(-1)"x3"and f(x) = x if 1) x3" 2 x.

x = 0 is a solution of this equation but f(0) = 0 so that 0 is a fixed point for f(x).
The equation (-1)" x3" -1 = 1 has solutions x = -1 and x=1if nis even and has
no solution if n odd. Hence x=-1 and x = 1 are periodic points of period 2 and

there are no other periodic points of f(x).

c) Let f(x) = w x(1 - x). Then

(x) = ux(1 - X)[1 - p x(1 - X))

2(x) = x if p2x(1 - x)[1 - px(1 -x)] = x

x = 0 is a solution of this equation but again x = 0 is fixeci point of f.

The other solutions are the roots of the equation p2(1-x) - u3x(1-x)2 = 1.

So the periodic points are solutions of a cubic equation and, therefore,
depending on p, f(x) has 1 or 3 periodic points of period 2.

itis clear that in order to determine periodic points of period n > 3, we will have

to solve equations of order 6 or higher, which is impossible in general.

d) Let g(©) = 46. We will show that the periodic points of g are dense in S1.
We have g"(6) = 4"¢ and, therefore, the periodic points of g are the solutions of
the equation 4"6 = 6+ 2krx and 6 = (2kr)/(4"-1). To show that these points are

dense in S! is equivalent to showing that the points k/(4-1) are dense in [0,1].



Foreach n, the fractions k/(4"-1) divide the interval [0,1] into equal parts of
length 1/(4" - 1).

Any point a € [0,1] is in one of these intervals and, therefore, the distance
between a and one of the numbers k/(4"- 1) cannot exceed the length of the
interval, 1/(4"- 1), but lim1/(4"-1) =0 as n goes to infinity.

Therefore the set of points {k/(4"- 1)}, n=1,2,...; k=0,1,...,n-1, is dense in [0,1].

Definition 1.4 A discrete dynamical systemis the set {f"}, n=0, 1, 2,

3,eenee » where f is a continuous map from the topological space X to itself.

Definition 1.5 The orbit of a point X, for the function f(x) is the set of points
{Xo, f(x5), 12 (xghernrd

We can describe the orbit using the dynamica! portralt.

Example 1.3
a) f(x)=-1/2x.

Fig. 2



b) f(x) = 3x.

£ N o~ N

Fig. 3

0) f(x) =x2.

Fig. 4

From the diagrams we can see that these functions do not have periodic points,

except for fixed points.

Another approach to analyzing dynamical systems is to use graphical

analysis.



Example 1.4

a) f(x) =-x, -00 < x <00,

AY
Y=-X Y=X
(Fe, F1x) (F(x), £2(x)
(%,%)
- X
(o, £) (X, £ (x1)
Fig. 5
b) f(x) =x - x2.
- X

Fig.6
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c) f(x)=-x5.

X

/Y

—DX

=

Fig. 7

From this graphical analysis we see that any point is periodic of period two for
f(x) = -x, there are no periodic points for f(x) = x - x2 and there are two periodic
points of period two: —x =-1 and x=1— for f(x) =-x3 but no other

periodic points.

There are also some negative results about the existence of periodic points.

For exampie:

Theorem 1.2 A self-homeomorphism of R! can have no periodic points with

period greater than 2.

Note, A homeomorphism is a continuous, one-to-one, onto mapping from R!

to R! with a continuous inverse.

Proof: Let f be a homeomorphism. Then it is easy to show that f is monotone.



Assume thai { is increasing and that x < f(x). Then
f(x) < 12(x), (x) < B(x), B(x) < #(x),.....
Therefore
x < f(x) < 2(x) < B(x) < 4(x) <.........
i.e. xis not a periodic point.
Assume f{ is increasing and that x > f(x). Then
f(x) > 2(x), 2(x) > £(x), B(x) > #(X).......
Therefore
x > f(x) > 2(x) > B(x) > #4(x) >.........
i.e. x is not a periodic point.
Assume f is decreasing and that x < f(x). Then
f(x; > 2(x), (x) < B(x), B(x) > {4(X) >..........
There are three cases:
10, f2(x) = x. Then x has period 2.
20. f2(x) < x. Then there are two possibilities for f3(x):

a) B(x) < f(x) b) (x) > f(x).

Since f -1 is also decreasing, a) implies f2(x) = x (contradiction).

Then 13(x) > f(x) and continuing we have:
f4(x) < (%) < x < f(x) < £¥(x) < B(x) <.........
i.e. xis not a periodic point.
3% f2(x) > x. Then there are two possibilities for 3(x):
a) £(x) 2(x) b) £(x) < f(x).

Since f -1 is also decreasing, a) implies 2(x) < x (contradiction).

Then f3(x) < f(x) and continuing we have:
x < 2(x) < f4(x) < 1¥(x) < B(x) < f(X)< .........

11
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i.e. xis not a periodic point.
The case when f is decreasing and x > f(x) can be treated similarly.

Thus f cannot have periodic points with period greater than 2.

#

Example 1.5 Homeomorphism of R! with periodic points of period 2:
f(x) = -x;
Then 2(x) = x forany x € R so that any point is periodic with period 2.

See also example 1.4 (c) above.

Definition 1.6 A point Xg is called eventually periodic for f if there exists
m > 0 such that f™(x,) is a periodic point for f and none of the points x,, (),

12(Xg)seeeseene f™1(x,) is periodic.

Example 1.6 Let f(x) = x2. Then f(-1) =1 and f(1) = 1, therefore
2(-1)=1and f*(-1)=1fork>1i.e. f(-1) is fixed point of f(x). Hence x =-1 is
eventually fixed for f.

Definition 1.7 Assume f is differentiable and let X, be a periodic point of
period n for f(x).

If] (") (xg) | =1, %, is called an hyperbolic periodic point.

If] (") (xg) | <1, xq is called an attracting periodic point.

If1 (") (xo) | >1, %, is called a repelling periodic point.
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Example 1.7 Let f(x) = 2(x - x3). The fixed points of f(x) are the roots of the
equation 2(x-x3)=x i.e. x=0 and x= 1/2.

Also f'(x) =2 -4x. Then {(0)=2 and f(1/2) =0 sothat |f'(0)|>1 and
|£'(1/2) | < 1, i.e. x =0 is an hyperbolic repelling fixed point for f and x = 1/2

is an hyperbolic attracting fixed point for f.

Y « y=x/

/ |

Fig. 8

Intuitively, if x, is an attracting periodic point of f, then there is a neighborhood
of x, such that any point in it approaches Xo upon iterations of f. On the other
hand, if x, is a repelling periodic point of f, then there is a neighborhood of Xo

such that any point in it goes away from X, upon iterations of f.
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2. Sarkovskii' s Theorem.
In this section, we will prove two theorems due to Sarkovskii.

Sarkovskii I. If f:R' - R' is continuous and has a periodic point of period
three, then f has periodic points of all other periods.

Proof:

Step 1. Let a be a periodic point of period 3 and let b = f(a) and ¢ = f(b).
Then f(c) =a. Letus assumethat a<b <c. The other cases are similar.

Let I, =[a,b] and I, =[b,c].

Since f is a continuous function, forany u € [f(a), f(b)] there exists o ¢ [a,b]
such that u =f(c«). Hence 1, < f(I,) (since 1, =[f(a), f(b)]).

Since f(b), f(c) € f(l;) and f(b) =c, f(c) =a it follows that [a,c] C f(ly). But I,

I, C[ac]. Then Iy, I, < f(l,).

Step 2.

f(b)-b=c-b>0.

fe)-c=a- c<O.

Let g(x) = {(x) - x. Then g(b) >0 and g(c) < 0. Hence, by the Intermediate
Value Theorem, there exists a point x € [b,c] such that g(x)=0 or f(x) =x. So
f has a fixed point between b and c.

f2(@)-a=1(f(a))-a=1f(b)-a=c-a>0.

f2(b) - b =f(f(b)) -b=1(c) -b=a-b <O.

Let g(x) = 3(x) - x. Then g(a) >0 and g(b) <0. Hence, by the Intermediate
Value Theorem, there exists x ¢ [a,b] suchthat g(x) =0 or f2(x) = x. Hence 2
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has fixed points between a and b. One can show that at least one of these

points has prime period two, i.e. it is a periodic point of period two for f.

Step 3. If | isaclosed interval and 1 C (1) then f has a fixed point in L
Proof: Let I=[a,b]. Since | C (1), there exist points X4, X5 € 1 such that
f(x;) <aand f(x,) > b.
Let g(x) =f(x) - x. Then
a(xy) = f(x,) - x; < f(x,)-a<0
and g(x,) = f(x,) - x, > f(x,) -b > 0.
By the Intermediate Value Theorem these inequalities imply that there exists a

point c between x, and x, suchthat g(c) =0 or f(c)=c; hence c is a fixed

point for f.

Step 4.

We have to show that f also has periodic points of period n> 3.

Let define a nested sequence of intervals Ay, A, A,,........ in 1, as follows:

Let A,=1;. A,C #(A,), sincel,C f(I,). Then there exists A,C A, such that
f(A)) = A,

Since A,C A, and f(A,) = A,, there exists A,C A, such that f(A,) = A,.
Then f2(A,) = f(A,) = A,

Continuing in this way, there exists A, ,C A, such that f(Apo) =Ana
Then f"2(A_ ) = f*3(f(A,.0)) = "3(A, 5) = ......... =12(A,) = A,

So far we have constructed the nested sequence:

b=A;DADA,D.... DA 32A L
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Since f"%(A ) =A, and f(A;) D I, itfollows that f"1(A ) =f(Ay) D 1,. Then
there exists A_,C A, such that f""(An_1) = l, which implies f(A_,) = f(l,).
But 1, C 1(l,), hence I, C fA,,)

Since A, CA,,C 1, itfollowsthat A ,c (A ) or (A ,) covers A,
This implies, using the result of Step 3, that f* has a fixed point in A, say p;

i.e. p€ A, suchthat f(p) =p.

Step 5. We can prove that p has actually prime period n (not less).
P€A,,; hence pe I, and also

P € Ay. hence f(p) e f(A,), or f(p) € (PH

p €Ay hence (p) e 2(A,), or 2(p) €1, etc., until

P €A, hence i"2(p) € f"2(A,), or ™2(p) € I,;

P€ A,y hence f(p) e ™(A ), or i(p) € I,

Therefore ™(p)=p since pel,

Assume f"i(p)=p for somei, 2 <i<n-1. Then f1(p) = f-¥(p), 1 <i-1<n-2,0or
(p) € l;, whichis false. Hence f"-i(p)=p for any i, 1<i<n-1, sothat p
has prime period n.

If 1(p) lies on the boundary of Ip, then f(p) =a or ™1(p) =b. Since (p) =
p, these yield f(a)=p or f(b) = p. But f(a)=b and f(b)=c sothat p=b or
p=c. Hence p has period 3 or n=23. This is a contradiction since on step 4
we assumed n > 3. Therefore f™1(p)is not on the boundary of 1,

#

Consider the following ordering of the natural numbers:
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3>5>7 »9 >11>.... 52:3>2:552-7>......... >22.3522.5
>22.7>5 ... >23:3523.5528.75 ... >23 52252 51.

That is , first list all odd numbers except 1, followed by 2 times odds, 22 times
the odds, 23 times the odds etc. This exhausts all the natural numbers with the
exception of the powers of 2 which are listed last, in decreasing order.

This is Sarkovskii's ordering of the natural numbers.

Sarkovskii Il If f:R' —» R'is continuous and has a periodic point of prime
period k, then f also has a periodic point of period h for any h such that k >
h, where > is Sarkovskii's ordering of the natural numbers.

Proof;
Remark. In the following, the notation I, » 1, is usedif I, C f(l,).

Step 1. If a sequence of intervals is such that I, =1, — ....... =1, -1, then
f has a periodic point of period n in 1.

Proof:

Since I, -1, —»....... -1, =1, we have:

L C 1), I C f(l) s dy € 1(,), 1, © (1),

Hence I, C f(1)c 20 ,)c £ ,) C.....c ™Y iy © (i) € (1,).
Butif 1, C f'(1,) it follows by Step 3 of the previous proof that " has a fixed
pointin I, i.e. f has a periodic point of period n in L.

Step 2. Assume firstthat f has a periodic point x of period n with n odd
such that n > 1. Suppose that f has no periodic points of odd period less

than n.
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if {x, f(x), (x),....... fr-1(x)} is the orbit of x, rearrange its elements in increasing
order and get X,, X,,.....x,. Then x,=fi(x) for some i,0<i<n-1.

Hence f(x,)=f*'(x)<x, (If f*'(x)=x,, then f(x) = x,, i.e. x, has period 1,
which would contradict our assumption).

Choose the largest i for which f(x;) > x;. Since f(x,,) <x,,, it follows that
f(x,,.1) < x. Since f(x;)>x; it follows that f(x) > x; ,. Then

(X, q) SX< X4 S f(x; ).

f(xi) 4

Xiet 4
XL <4

f(xie)

Xi Xi+t
Fig.9

Let I, =[x, x4 ]. Then 1, € () andtherefore 1, - I,.

If f(x,,) =% and f(x)=x,, then £(x)="f(1(x)) =f(x,,) = x.

But x,=f¢(x) forsomek, 0<k<n-1. Then R(f(x)) = K(x) or ( 3(x)) = f*(x).
Hence f2(x) = x. Thisis not possible since x has an odd period n> 1. Then
either f(x;, ;) < x; or f(x;) > x;, ¢, sothat f(l,) contains at least one interval of the
form [x, x;,4], callitl, But L, < f(l;) implies I, — L,

Continuing, we find I,, ..... I suchthat I, C f(1).
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Since n is odd, one can show that there are more x;'s on one side of |, than
on the other, so that some x/s must change sides under the action of f and

some must not. Consequently 1, isin f(l,) or () — I; for some k. We thus
have I; -1, = ... =l —1,. Let kbethe smallest number for which this
happens, i.e. I =1, ....— |, > |, is the shortest path from I, to 1, except,

of course, I,— I, after one iteration. We therefore obtain the diagram:

Fig. 10

It k<n-1, then k+1<n and theloops I, = > .=k =1 or I, - L, -
.=l — I, — I, give a periodic point of period k and k + 1. One of these
numbers is odd. But we assumed that we cannot have a periodic point of odd
period less than n. Hence k=n-1.

Since k is the smallest integer that works, we cannot have - lj for any
j>h+ 1. It follows that the orbit of x must be orderedin R in one of two

possible ways:



20

]’n_./\h@’ In-2

One possible ordering of | i Fig. 11

The other is the mirror image

In_1—-> In 4> In_3—> In_2—> ln_1 .

Therefore we can extend the previous diagram to the following one:

N
AN

In-z

A

\\1/14
S

1

Fig. 12

Sarkovskii's Theorem for the special case of n odd is now immediate. Points
with period larger than n are given by cycles of the form I, — ... =1 = 1,
e S —1,. Points with smaller even perinds are given by cycles of the form
l.1 = 1,o— |, and so forth.

Similar considerations for all other cases complete the proof. For details see

[l
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To show that Sarkovskii Il is best possible, we will produce a map with a point
with period 5 and no point with period 3.

We will define a function f:[1,5] — [1,5] suchthat f(1)=3, (2) =5, 1(3) =4,
f(4) =2, f(5) = 1. Then

(1) = #4(f(1)) = 4(3) = £3((3)) = (4) = 2(1(4)) = £(2) = {(f(2)) = 1(5) = 1,

sothat 1 is a periodic point of period 5.

We take f to be linear between these integers, i.e. the graphof f is

S

4'-.

Fig.13
Then £[1,2] = 12([1,2]) = 12[3,5] = {(f3,5])= ;[1 4] =[2,5].

2[2,3] = 2(12,3]) = [4,5] = (f]4,5]) = f[1,2] = [3,5].

3(4,5] = 3(f[4,5])= f[1 2] = f(f[1,2]) = [3,5] = [1,4].
Hence f has no fixed points in any of these intervals.
Also we have 3[3,4] = f(f[3,4]) = f2[2,4] =f(f[2,4])= f[2,5] = [1,5] so that the
graph of £ intersects the line y=x, i.e.  has at least one fixed point in [3,4].
But since f:[3,4] »[2,4], f:[2,4] »[2,5], f: [2,5] = [1,5] are monotonically
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decreasing, 13 is also monotonically decreasing on [3,4]. Hence the graph of
13 intersects the line y = x only once. Therefore the fixed point of  is unique.
On the other hand, by Theorem 1.1, f has a fixed point. Therefore the fixed

point of £ must be the fixed point of f, not a periodic point of period 3. Hence

there are no periodic pcints of period three for f.

3. Chaos.
Definition 3.1 The maps f:A-—» A and g:B — B are called topologically
conjugate if there exists a homeomorphismh : A — B suchthathof= goh.

The homeomorphism h is called a topological conjugacy.

Remark. Two maps which are topologically conjugate have the same
dynamical behaviour. In patticular, if X, is & periodic point of period k for f, i.e.

f(xo) = X, then h(x,) is a periodic point of period k for g. Indeed
g¥(h(xg)) =hofoh'ohofoho........ ohofoh™(h(xy) =hoto h(h(x,)) =
h o f(x,) = h(x,).

Definition 3.2 f:J — Jis called topologically transitive if for any pair of
opensets U,V in J there exists k > 0 such that (U) "V = @ (i.e. starting

anywhere in R' we can get, upon iteration of f, as close as we want to any

other point).

Definition 3.3 f:J — J has sensitive dependence on initial

conditions if there exists § >0 such that, forany xe¢ J and for any
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neighborhood N of x, there existsy ¢ N and n > 0 such that [f(x) - f(y)] > §

(i.e. there exists points arbitrarily close to x which eventually separate from x by
at least & under iterations of f).

Remark. S' becomes a metric space if we define a = /2, 0 <62 < 2r,
b = €i'®, 0 <6b <2n, and dist(a,b) = |02 - 6b|.

Example 3.1 Let g(o) = 46. Then g2(0) = 420.
The map g is topologically transitive since any arc in S' is expanded by gX (for
some k) to cover all of S1. Also, since the distance between two points is four

times bigger upon iteration of g, g has sensitive dependence on initial

conditions.

Now we will give the main definition of this section.

Definition 3.4 IfVisaset, f: V — Vis called chaotic on V if:
1) f is topologically transitive;
2) f has sensitive dependence on initial conditions:;

3) Periodic points of f are dense in V.

Theorem 3.1 if f and g are topologically conjugate and if f is chaotic then g is
also chaotic.

Proof: Assumef:A — A and g:B— B andleth:A—B bea
homeomorphism such that hof=gon.

a) Let U,V c B. Since his continuous and onto, there exists open sets
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U", V' C A suchthat h(U*) = U, h(V")=V.

Since f is chaotic, it is topologically transitive, i.e. there exists k > o such that
*U "V=0.

Since hof=goh wealso have g=ho foh'. Hence:
gU)=hofoh'ohofohlo...... ohofoh'(U)=hot h(U) = hofkU").
g"U) NV =ho(U") nh(V") = h(tKU") AV*) = @ (the last equality holds since
his1-1)

Therefore g is topologically transitive.

b) Let xe B andlet N be any neighborhood of x.
g"(x)=hofoh'ohofoho...... ohofoh(x)=hofoh(x).

Let x" =h!(x) ¢ A. Then g"(x) = h o "(x").

Letalso N*=h(N). Itis clearthat x* ¢ N*.

Since f is chaotic, it has sensitive dependence on initial conditions. Therefore,
there exists §° >0 such that forthat x*, and for its neighborhood N*, there
exists y'¢ N and n>0 suchthat [i"(x") - f'(y")| > 5.

Let y=h(y"). Then

g(y)=hofoh'ohofoh'o........ ohofoh(y)=hofoh(y) =hof(y).
Since h is a homeomorphism |g"(y) - g"(x)] > & for some & which depends

on §*. Hence g has sensitive dependence on initial conditions.

c) Periodic points of i are densein A, i.e., for any open set U* c A, there
exists
X" € P, x"¢ U". Then #(x") =x" for some k.



25

Let U be anopen setin B. Since his onto, there exists an open set U" < A
such that h(U") = U.

There exists at least one periodic point, say x"in U" forf. Let x = h(x"). Then
xe U.

gkx)=hofohlohofoho....... ohofohl(x)=hotKoh(x) = hof{x") =
h(x") = x.

Therefore x is a periodic point for g.

Then for any open set U C B, there exists x € U suchthat x ¢ Pg, i.e.,

periodic points of g are dense in B.

a), b), ¢) imply that g is chaotic on B.

Example 3.2

F(x) =8x*-8x2+1 is chaotic on the interval [-1 1].
Proof: Let g(6) =46 and h(6) =cos®.

g(®) is chaotic (by Example 1.2d) and by Example 3.1.)

h(©) is a homeomorphism and we have the following diagram:

1 d 1

S S

v

[-1.1]

A 4

[-1.1]



Also  (h o g)(®) = h(g(9)) = h(46) = cos 46

(F o h)(8) = F(h(©)) = F(cos6) =8 cos* 6 - 8 cos20 +1 =

8 [(1+ c0s20)/212 ~ 8[(1+ c0s26)/2] +1 =

2+4C0520 +2c0s%20 - 4 - 4¢0s20 +1=2¢C0s220 -1=
1+C0s 40 -1 = cos 46,

sothat hog=Foh, i.e. F and gare topologically conjugate. Therefore by

Theorem 3.1, F is chaotic.

26
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CHAPTER 2.

EXAMPLES OF DISCRETE DYNAMICAL SYSTEMS IN THE COMPLEX
PLANE.

1. Preliminary Results and Definitions.

Let C denote the usual complex plane.

Definition 1.1 A function f(z) is analytic at z, if
im [1(2) -f(z,)1/(z- z,) exists as z2o2z,.

A function f(z) is analyticon U C C if it is analytic at each point of U.

Definition 1.2 An open set U C C is simply connected if either U = C
or there exists a one-to-one, onto, analytic map f: U — D, where

" D={zeC|lz/ <1}
Remark. All the definitions we gave in Chapter 1 for real-valued maps are

valid for complex maps.

Definition 1.3 The Julia set of a complex analytic map F is the closure of
the set of repelling periodic points of F and is denoted by J(F).

(For the definition of a repelling periodic point, see Definition 1.7 in Chapter 1.)

Definition 1.4 The stable set of F, is the complement of the Julia set and
is denoted by S(F).
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