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ABSTRACT
EFFECTS OF PRE-PROCESSING AND POSTPROCESSING ON THE WATERSHED
TRANSFORM

by Padmavati Tanniru

This work addresses the topic of the Watershed Transform as a tool for image segmentation.
It examines the possibility of extracting the maximum information from an image by
generating various resolutions of the image using various preprocessing techniques, and
then applying the Watershed Transform on the set of images thus obtained. We compare
these results of the Watershed Transform with each other, as well as with the segmentation
achieved through multiscale edge detection, a purely local technique. We also examine the
role of post-processing techniques in improving the results.

The basic idea behind the Watershed Transform in the case of gray scale images is
to create a landscape by assigning heights according to the gray levels (0 - 255 in a
standard gray scale image) associated with its pixels. Such a procedure translates the
> from which the boundaries are almost evident. When the
concept of multiresolution is used in conjunction with it, the Watershed Transform becomes
a powerful technique, because of the fact that at low resolutions the coarse structure of the
image is detected whereas the fine structure is revealed at high resolutions. The Watershed
Transform can pick up structures which are present in a band of resolutions. Performing
a coarse to fine analysis and detecting watersheds at each level enables a consensus to be

formed about the true boundaries in the image.
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Chapter 1

Introduction

The purpose of this thesis is to investigate the use of the Watershed Transform applied to
images at different resolutions as a segmentation tool. For the sake of simplicity, only gray-
scale images will be considered for analysis. The goal of an image analysis is determined
by the expectations one has from the images for which the techniques are to be applied.
For example, an accurate analysis of the MRI scans of a brain become critical when done
for the detection of tumors. Surgeons are interested in determining the free margin [27]
surrounding the tumor so that a complete excision can be made. A detailed study of an
image at different resolutions can aid such an analysis, and applied with the Watershed
Transform may lead to a clearer understanding of the location and extent of the tumor.
This is of the utmost importance when health-related decisions are to be made.

For the purpose of this thesis the images taken up for processing are the following three
images:

1. Zebra Up Close from www.nature-wildlife.com/zeb56.html

2. The Monarch Butterfly from http://www.geocities.com/wyllz/id236.htin



Figure 1.2: The Monarch Butterfly

3. Wood Lily in Ferns from http://www.whisperwood.net/pixnpgs/p/p16.html

The type of analysis adopted by segmentation techniques can be categorized as below:

e Local analysis as seen in edge detectors like the sobel, roberts, prewitt, LOG operator

e Global but still local in strategy as in the Canny operator

e Global analysis as in the Watershed Transform

Edge detection makes use of filters which enables detection of the variations in pixel
properties, and this information is then used to link-up pixels that belong to an edge.
The important property of the Watershed Transform, as we discuss in Chapter 3, is its

nonlocal nature. One implementation of the algorithm requires that at each step the total



Figure 1.3: Wood Lily in Ferns

image is processed. As part of this thesis we study boundary detection using watersheds,
and compare the watersheds obtained from an image by first preprocessing it using different
techniques. Segmentation techniques using filters are the focus of discussion in Chapter
2 wherein their role in edge detection is analyzed. In particular, this chapter contains a
section on the Canny edge detector. The Watershed Transform is discussed in Chapter 3.

Chapter 4 analyzes the effect of preprocessing and postprocessing an image before
and after detecting the watersheds using the Watershed Transform combined with the
morphological techniques. Chapter 5 involves experimentation with non-morphological
techniques and examines the watersheds, thus, obtained. It summarizes the results and
contrasts them with the use of different edge detecting procedures, in particular, the Canny

edge detector.

1.1 Edge Detection

Edges are an integral part of the contours that define the segmentation of an image. They

are associated with sharp changes in the grayscale values which occur in the neighborhood



of an edge. Finite difference methods can be used to construct derivatives which are the

basis of edge detection. Two methods which use this approach are based on:

o the gradient(first derivative)

e the Laplacian(second derivative)

These properties are discussed in Chapter 2. The detection of edges using them is
implemented with the help of certain operators called filters that can execute computations
at the pixel level. This chapter also contains a more general discussion on filters as they
pertain to image segmentation.

1.1.1 Some Special Edge Detection Operators
These are taken up in detail in Chapter 2.

1. Sobel Operator

2. Canny Operator

3. Roberts Operator

4. Laplacian of the Gaussian (LOG) Operator

5. Zero-Crossings Operator

1.2 Watershed Algorithm

The easiest way to define a watershed is to use a geographical analogy. If a grayscale image
is viewed in such a manner that high and low intensity pixels correspond to high and low

4



Figure 1.4: Edges in the Zebra Image Detected using the Canny Edge Detector

ground then the image becomes a 3D landscape. A local minimum in the pixel intensity is
then a dip in the ground surrounded by higher land. This acts as a catchment basin when
water is falling on the landscape. The watersheds are the set of curves that separate the
catchment basins which form as flooding occurs.

We consider two ways of obtaining the watersheds in an image; namely, the rainfalling
analogy, and the immersion/flooding analogy.

The rainfaliing analogy can be best understood by following a raindrop along paths of
steepest decent and detecting the number of catchment basins the point where the raindrop
fell belongs to. Those pixels where a raindrop has more than one path of steepest decent
and hence can flow into more than one basin are the pixels belonging to the watersheds
in the image. In this analogy, one needs to explore only the immediate neighbors of the

pixel hit by the raindrop to locate the next pixel in its path of steepest decent. Hence,

at any level or altitude one needs to compute and preserve information only about the



neighborhood pixels. But what should be the strategy when a raindrop comes across
a plateau? Plateaus generate thick watershed lines in the watershed image. Various
techniques have been developed to thin them.

The immersion analogy can be best understood by piercing holes at the local minima
and then immersing the whole landscape in a lake or a body of water. Since water starts
filling up the catchment basins from these minima, there will be a stage when water from
one catchment basin starts mixing with that from another. As and when this is detected,
dams are built to avoid the waters from different basins meeting. The height of the dams
is continually increased as the process continues until the highest point in the landscape is
reached. In this manner a network of dams in the landscape is obtained which constitute
the watershed curves. In this analogy, one needs to process and preserve the information
about all the pixels at one level before recursively proceeding to the next level. Thus, in the
end, we obtain ordered sets of watershed pixels, such that each set bounds a catchment
basin. Thus, the number of such sets indicates the number of catchment basins in the
landscape, and their boundaries are the required watersheds.

Implementation of the above analogies:

An implementation of either approach takes considerable computer time even on moder-
ately sized images. This has led researchers to try to parallelise them in order to speed
up the process. It is difficult to see how this can be done efficiently with the immersion
approach [1, 50]. The rain falling analogy seems to offer the best chance of an efficient
parallel algorithm [28, 62].

History of the Watershed Transformation:



The Watershed Transformation was introduced as a morphological tool by H. Digabel and
Ch. Lantujoul. Lantujoul and Beucher used it for the segmentation of grayscale images,
and later Luc Vincent and Pierre Soille devised fast algorithms for both sequential and
parallel computation of the watersheds of an image. All of these approaches used the
immersion analogy.

Watersheds have been extensively studied from theoretical and algorithmic points of
view. The Watershed Transform when combined with other morphological tools becomes
an extremely powerful segmentation procedure [50, 2, 49]. The Figure 1.5 shows the
watersheds for the original zebra image found by applying the transform directly on the

image without any preprocessing using Mathlab 7.0 with a 4-connectivity.

Figure 1.5: Immersion Watersheds of the Zebra Image

This software uses the immersion analogy in identifying the watersheds. The water-
sheds in the butterfly image were similarly determined and can be seen in Figure 1.6.
The watersheds in the zebra are closer to the real contours than those in the but-

terfly. This can be because of the presence of oversegmentation in the butterfly image.



Figure 1.6: Immersion Watersheds of the Butterfly Image

Preprocessing the image is a good way of reducing oversegmentation and preserving true

edges. This idea is investigated in Chapter 3.

1.3 Image Multiresolution

An image is a combination of fine and coarse details. The fine details are best viewed at
high resolutions and the coarse details at low resolutions [61]. The multiresolution of an
image consists of a collection of derived images formed from analyzing the image across a
wide range of scales.

An image pyramid is obtained by averaging over pixels or omitting pixels. This idea
was first investigated by Burke [30]. The averaged image has fewer pixels and so is smaller
than the image from which it was obtained. The collection of averaged images can therefore
be arranged so that the apex of the pyramid has the lowest resolution and the base has the

highest resolution approximation. For example, this can be done by performing recursive



subdivisions into quadrants, giving rise to trees of degree 4, called quadtrees whose leaves
represent homogenous blocks of image. If these blocks are visualized as pixels then the
pyramid data structure is obtained. A better way of doing this is to use wavelets which
do not reduce the size of the image.

After performing a multiresolution analysis of an image, the Watershed Transform can
be applied to each of the images in the set so obtained. Details appear and disappear at
different resolutions. An analysis of the images in the set can then allow a more complete
detection of all the features in the image. Deriving the watersheds of the resolved image
set is crucial in this analysis. Because of the time constraint, this would be the motivation

for a future research.

1.4 The Right Approach to Image Analysis

It is very difficult to automate image segmentation as the required segmentation depends
on what the user wants and in almost all instances human intervention is unavoidable.
Knowledge about the interaction of the Watershed Transform, multiresolution, filters and
their limitations is crucial prior to performing an analysis of an image. In order to get the
best possible segmentation results, one needs to find the best ordering to integrate, and
blend these techniques. For example, Laurent Najman, and Michel Schmitt {5] provide a
procedure based on geodesic reconstruction that effectively reduces the oversegmentation
in an image. Chapter 5 investigates the effect on the analysis of changing the order of a

sequence of the techniques.



Research on noise identification and its subsequent processing cannot be considered
complete as a consensus on the best way to reduce noise still has to be arrived at; see for

example [1, 33, 4, 8, 32, 31, 3].

1.5 Summary

This thesis studies the multiresolution of an image and the effect of using the Watershed
Transform on the component images so obtained. A common problem encountered in ap-
plying the Watershed Transform to an image is over-segmentation. Over-segmentation can
be reduced by preprocessing the image with a suitable filter, but can never be completely
removed in this way. The combined watershed and multiresolution approach, coupled
with filtering provides the best chance of minimizing over-segmentation, and improving
the watersheds.

The thesis presents a study of the Watershed Transform by:
o Investigating its theoretical and practical bases

e Comparing it with the Edge Detection procedures

Attempting to improve its existing algorithm

Exploring ways to reduce its sensitivity to noise

Studying the watersheds obtained after the image is treated with a variety of pre-

and post processing techniques
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Chapter 2

Filters

2.1 Introduction

Images are made up of pixels that are identified by their location and attributes like their
gray values. Differences in the intensities of the pixels gives rise to discontinuities in an
image which can correspond to isolated points or edges. On the other hand, there are also
regions in which the pixels have similar intensities. Since the purpose of segmenting an
image is to extract such attributes of interest, one needs techniques that can detect these
two different types of behavior.

Regions of an image in which the pixel intensities vary slowly or rapidly can be detected
by operators called filters. Traditionally filters have been implemented as linear time or
space variant operators, though recently filtering by nonlinear operators has become an
active research area [55]. In this thesis intervals are over Z, [a,b] C Z. For simplicity
let f : 72 — I define an image, where I denotes the range of pixel values (for example

I =[0,255]). Images have compact support, but they can be padded out by defining the
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intensity of pixels outside the support to be zero. Let ¢ : Z2 — T be an image which is

obtained from f by a linear operator L,
g=1Lf.

The operator L is space invariant if a translation of the image t,f(z,y) = f(x —

ai,y —az), a = (ay,a2) € Z2, causes a corresponding translation of g

tag = Ltaf.

Linear operators of this type are defined by their action on the delta impulse function,
a function & : Z? — Z such that §(z,y) = 5, where §,, is the Kronecker delta ( d;, = 1

for = y and 0 elsewhere). We note that §(z — u,y — v) = t(,,)0(7, y) so that

fla,y) = >

p’qezf(pvq)t(p,q)J(mvy)a”dl’f(m7y):21),qu f(p7q)Lt(p,q)5(xvy)‘

Define the impulse response of L to be
hz,y) == Lé(z, y).
Then the translational invariance requires that
)P, y) = Lt )0(2, y)

and so

Lf(z,y) = > fp,Qhlz—py—q) = Y hip,q)f(z —p,y—q).

D€L ez
The convolution of f by the function h : Z? — I is defined by

hx f(z,y) = Y kp,)f(z—py—q) (2.1)

P9EL
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A change of variable in the sum shows that h * f=f « h. Thus, the action of a linear
space-invariant operator L is the same as a, convolution with an impulse response function,
hy, Lf=hxf.

Filter Implementation

It can be seen from the definition (2.1) that a filter is defined by a function h and that
its effect on a pixel involves a weighted sum of the intensities over the whole image. For
a real image, we shall assume that the support is an M x N rectangle, f : B — I, where
B =1{0,M —1] x [0, N — 1] C Z2. For speed, and in order to minimize boundary effects
the function h is often implemented through an associated function called the kernel or
mask of the filter which has small support (3 x 3 matrices are extremely common).

Filtering can be performed in both spatial and the frequency domain. The pixel gray
values at each location belong to the spatial domain. The range of frequencies obtained
via the Fourier Transform of the image comprise the frequency domain of the image. A

discussion on these two methods of filtering is given in the next section.

2.2 Spatial Domain Analysis of an Image
For M x N images a filter defined by a function h(z,y) is given by the convolution

hxfz,y)= Y. h(m,n)f(z—m,y—n)

m,ncB
Kernels with support of small size are often defined in matrix form, and the action
expressed as the scalar product with the same size matrix of pixels centered on a particular
pixel.

13



In general, filter kernels of this type are defined by (2J 4+ 1) x (2J 4 1) matrices
w(p,q), —J <p,q < J C Z. The corresponding filter function h(z,y) is defined through a

centralizing shift operator S, (z,y) = (¢ + J,y + J).
h(m,n) = S w(J — ﬁL, J-n)S

for 0 <m,n < 2J, and 0 otherwise.

Examples of such filters which are usually implemented with small support are the
Sobel, Prewitt, and Roberts filters. Because of their compact support these filters achieve
a considerable improvement in the implementation time compared with a filter which

extends over the whole image (O(mn(2J + 1)?) as opposed to O(m?n?)).

2.3 Frequency Domain Analysis of an Image

The gray levels of an image can also be manipulated by using filters that are defined in
the frequency domain. The image has to be first Fourier transformed before a frequency
domain filter can be applied, and then the transformed image is recovered by applying the
inverse Fourier transform. The Fast Fourier Transform(FFT) can make the application of
such a filter extremely rapid, particularly if the image is padded cut wi

dimensions are powers of 2.
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2.3.1 Image Representation via the Fourier Transform

The Discrete Fourier Transform(DFT) F := F[f] of a function f(z,y) representing an

image of size M x N is given by the following expression:

;—
H

1 M—-1N-— )
Ja _ A217r %+¥V—y
(u,v) = UN > f(z

=0

(4

foru=0,....M—1landv=20,..,N—1.
The function f(z,y) can be obtained via the inverse Fourier Transform of F(u,v),

f = 3§ [F), as given by the following expression:
M-1N-1
S sty
z=0 y=0
forx=0,....M—-1landy=0,.. N —1.
The above two equations are together called the two-dimensional Discrete Fourier

Transform Pair. The variables v and v are the transform or frequency variables, and =

and y are the spatial or image variables.

2.3.2 Features of the Fourier Transform

1. The Fourier spectrum, phase angle, and power spectrum are

|F(u,v)| = vVR2(u, v) + S2(u, v) (2.2)
B S(u, v)
$(u,v) = tan™* (. v) (2.3)
P(u,v) = IF(U’7U)|2 = %2(’&,1}) + (‘}2('“'7'0) (2.4)

where R(u,v) and $(u,v) are the real and imaginary parts of F'(u,v), respectively.
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2. One expression which is of interest in image analysis is the Fourier Transform of

(~1)**Y f(z,y) shown below:

Sl (2, y)(- )™ = F (u M g) |

Thus, by simply multiplying f(z,y) by (=1)*1¥, the origin of F(u,v) shifts to the
frequency coordinates (%’[—, ). This is interpreted as ([ 4], [%J) This point is the
center of the M X N area of the 2D DFT. The area of this frequency domain is called

the frequency rectangle.

The value of the transform at (u,v) = (0,0) is

which is the average of f(z,y).

3. The Fourier Transform is conjugate symmetric for a real f(z,y).

F(u,v) = F*(—u, —v)

This implies that its spectrum is symmetric.

lF(u,’UN - IF(—’LL, “U)'

These properties of conjugate symmetry and centering find application in circularly

symmetric filters in the frequency domain.
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2.3.3 Relationship between Gray Level Values and the Frequency Do-

main

The above relations aid in dealing with measurements in the images during their processing.
Regions of the image 1n which the intensity varies rapidly correspond to high frequencies
in the Fourier transformed image, whereas the low frequencies are generated by regions
in which the intensity varies slowly. It is, thus, the higher frequencies that indicate the

presence of edges or noise in the image.

2.3.4 Filtering in the Frequency Domain

In 2.1 we saw that in the spatial domain a linear filter was equivalent to a convolution
with an impulse function h, that is, h * f, where f is the image (2.1). In the frequency
domain convolution becomes a multiplication if we first rescale the definition of convolu-
tion (otherwise a factor M N is introduced). Therefore, we henceforth use the following

definition for convolution.

1
fah(e,y) = 355D f(mn)h(z —m,y —n)

m,n

e -
AN

S(f * h)(u,v) = MNL\MNL“m ,njh(z —m, y—n)) Zm {5t

ok

v
/.

By applying a change of variable, i.e., p=x —m and g=y —n, the above expression can
be written as

( ulpdm) | !1£91\J]c"),) ‘

S(f * h)(u,v) = (MN Zf(mn th’ o2

m,n
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Rearranging and simplifying further gives the following result:

S(f*h)(w,v) = m‘}]ﬂj Zf(m,n)e""zm(

The convolution in the frequency domain is then given by

S(f * h)(u,v) = [§(f)(w, v)][F(R)(u, v)].

Thus the Fourier transformed image is pointwise multiplied with an appropriate filter de-
fined in the frequency domain or the Fourier transform of a spatial filter. The transformed
image is then recovered by applying the inverse transformation.

To summarize, if F'(u,v) is the Fourier Transform of the image f(z,y), and H(u,v) a

filter in the frequency domain, then the filtered transformed image, G(u,v), is given by

G(u,v) = H(u,v)F(u,v).

The final filtered image, ¢(r, y) is then obtained by taking the inverse Fourier Transform
of G(u,v),

g(x, y) - 3_1[G(u> 1))].

2.3.5 Frequency Filters

A low-pass filter preserves low frequencies while weakening the higher ones by mapping
them to zero. Low frequencies in the Fourier Transform capture the areas with constant
gray levels with a lesser emphasis on the sharp details. Low pass filters in common use
include the Gaussian lowpass, and Butterworth lowpass filters. For high values of a pa-
rameter called the filter order, the Butterworth filter behaves as an ideal filter while for
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corresponding lower values it behaves as the Gaussian filter. An ideal low-pass filter 1s one
that cuts off all high frequency components of the Fourier Transform that are a distance
greater than a specified cut-off distance from the origin while preserving those inside it.
A two-dimensional ideal low-pass filter H(z,y) in the (u,v)—plane is one which has com-
pact support,

H(u,0) = {51 Dlus)spe

where Dy is the cutoff frequency, and D(u, v)::%m.

A high-pass filter preserves high frequencies while removing the lower oncs. High
frequencies in the Fourier Transform capture the areas with a sharp transition in the
gray levels like the edges and those due to noise while de-emphasizing the slowly varying
gray level regions. Examples of a highpass filter are the Butterworth highpass, Gaussian

highpass, and the Laplacian filter. A two-dimensional ideal high-pass filter is defined by

_ J0if D(upw)<D
H(u’ 'U) - {1 if D(u,v)>Dg

where Dy, and D(u,v) have the same description as given above. The filter has been
arbitrarily normalized to 1.

Filters defined in the frequency domain can also be used to define kernels for spatial

filters.

2.4 Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) provides a very efficient way of filtering images and
is one reason why images are often filtered in the frequency domain. A one-dimensional
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Fourier Transform of IV points involves N multiplications N times. Thus, the total time is
proportional to N2. But a careful and a clever arrangement, of these operations can opti-
mize the algorithm to accomplish the same task in the order of N log, N operations. This
optimized version is called the Fast Fourier Transform, FFT, or for the case of an image
the Discrete Fast Fourier Transform, DFFT. The algorithm achieves this performance by
a series of steps which decrease by powers of 2. The DFFT can be used in one of two ways.
First the image is transformed to the frequency domain using the DFFT. For maximal
efficiency it should first be padded out so that its dimensions are powers of 2. Then cither
the transformed filter is convolved with the transformed image or a filter defined in the
frequency domain is convolved with it. The filtered image is then recovered by the inverse

DFFT.

2.5 Image Processing Operations

In this section we shall primarily concentrate on discussing some well known filters for

processing images.

2.5.1 The Gaussian Filter

Gaussian Functions have a bell-shape that is controlled by a parameter, o, and have
the property that their forward and inverse Fourier Transforms are both real Gaussian
Functions. In the frequency domain, the Gaussian filter function of two variables is given
by:

Glu,v) = e 2mia? (u®+v?)
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' (b) M e . .
Figure 2.1: The Zebra Smoothed Using a Gaussian Mask of (a)size 10 x 10 and ¢=50 and
(b)size 20 x 20 and o=100

where o 1s the standard deviation of the Gaussian Curve which measures its spread. The

corresponding filter in the spatial domain is

1 22442
e ot (2.5)

9(@,y) = 5—3

The Gaussian function is a very useful low pass filter in signal and image analysis. It

plays a major role in smoothing an image and the subsequent noise reduction in it.

2.5.2 Normed Gradient Operation

Normed gradient filters enhance certain image features such as edges. They are high-pass
filters which are sensitive to changes in the magnitude and the direction of the intensity
in an image. For a function, f : R® — R?, the gradient of f(z,y) at (z,y) is given by the
two-dimensional vector

Vf(.'L‘, y) = (fz»fy)

where fm———%, etc. The directional derivative of f along a curve

x = (z = z(s),y = y(s))
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if the curve is parameterized by its arc-length is

df dx Ofdx Ofdy

ds V1 ds T onds T ayds

= frcosf + f,sin@.

where §=0(z,y) is the angle between the tangent and the z-axis. The maximum value of

% is obtained when j—e (difs—) =0. This gives

5

d v a—
(£>maz N fg * fyz

where 6 is the angle for the maximum rate of change in f.

—fzsin€ + f,cos0 =0 = 0 = tan™!

(2.6)

(2.7)

Therefore, V f points in the direction of maximum rate of change. The magnitude of

this vector which in the literature is often called the gradient, |V f(z,y)| is used for edge

detection,

Vi) = 52+ 2

Gradient Direction

This term, which we used later in the thesis refers to the angle 8(z, y) which has just been

introduced,

6(z,y) = tan™ ! (—fﬁ\ )

x

Normed Gradient Approzimation by Differencing

There are many different discrete versions of the normed gradient based upon difference

schemes. For example, at the discrete site (z,y) we can represent |V f(z,y)| by using
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(a) (b)
Figure 2.2: Normed Gradient of the (a)Zebra and the (b)Butterfly Images

first-order forward differencing in a 2 x 2 region. In the Euclidean norm it is given by

IVf(@,9)l = VIf(@+ Ly) — f@,9)]? + [,y +1) — f(z,9)]

Various approximations to the square root are also used. For example, the diamond norm

uses only the absolute values
Vi@l =1f(z+1y) - fl@yl+1f(zy+1) - fz,9)]
An approximation based on the diagonal pixels is also used
2Viz )l = f(z,y) — f@+ Ly + DI+ |f(z+ Ly) - flz,y + 1]

Thus, in all approximations the value of the normed gradient depends on the difference
in the gray level between the adjacent pixels. The normed gradient is then expected to
assume large values for prominent edges in an image, small values in regions that are fairly

smooth, and zero in regions with constant gray level.

2.5.3 Laplacian Filter

This is another high-pass filter used in edge detection. A Laplacian is zero at points where
the normed gradient is a maximum or a minimum, and so gradient edges will go undetected
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by it. The Laplacian is

vzf = fmac + fyy-

The discrete version of the Laplacian obtained by central differencing is

fz:b‘ = f(.'c+1,y)+f(:c~1,y)—2f(3:,y)
foy = fmy+ 1)+ f(z,y - 1) — 2f(z,y)

Vif = flz+Ly)+ flz—1,y) + flz,y+ 1) + f(z,y — 1) — 4f(z,y)

The coefficient matrix for V2f defines the following mask

0 10
1 -41
1 11

Edge detection using the Laplace operator
The normed gradient operation works best when the gray-level transition is quite abrupt,
as is in the case of a step function. But as the transition region gets wider, it is more
advantageous to apply the Laplacian. The problem with the Laplacian is that it produces
double edges; it is also sensitive to noise. For these reasons together with its inability to
detect the edge direction, the Laplacian if used alone is not a good edge detector. Zero
crossings provide a way around this.

The detection of the zero-crossings of the Laplacian provides another way of locating

edges. Because of the sensitivity of the Laplacian to noise the image is first smoothed before
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Figure 2.3: The Mexican Hat Wavelet or the LOG Filter

the Laplacian is applied. As discussed in the original paper on zero-crossings [25], the low-
pass filter should be local in the spatial domain. The Gaussian filter g(z,y) introduced
earlier (2.5) has exactly the required properties. The combined action of the Laplacian
and the Gaussian filter leads to the Laplacian of the Gaussian, (LOG) filter. Its derivation

is discussed in the next subsection. The discrete version of this filter is given by

1
27wob

him,n) =

m2 4 n2
202

(m? +n? - 20%) exp (—

The action of the LOG filter depends strongly on the variance o. Larger values of
o increase the smoothing and reduce the number of zero-crossings that can be located.
Pixels which effectively contribute to the smoothing are located within a distance of 3o
from the current pixel

The LOG filter is also referred to as the Mezican hat wavelet. It is a well known
example of a continuous wavelet, see chapter 4. The LOG filter thus provides a natural
way of analyzing an image at different scales controlled by the ¢ parameter.

There are several ways in which the zero-crossings can be detected. A simple way is to

use a threshold of zero so that a binary image is obtained. The results of using the LOG
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Figure 2.4: LOG Edges of the (a)Zebra and the (b)Butterfly Images

as the filter for edge detection can be seen on the zebra and the butterfly, 2.5.3.

2.5.4 Differentiable Filters

In the case of a differentiable filter, the action of the filter and a differential operator on an
image can be combined into a new filter. Suppose that s=s(z,y) is a differentiable filter.
The action of the filter on the image f is given by f * s. Let d, also represent the action

of the derivative operator 9, on f. For the case of a differentiable function f we have

@) = [ [ e iy a)s, )i
v Jsupp
= —// Opf(z—p,y—q)s(p, q)dpdgq
) supp(f)
- _/f(zc;p,y'"‘q)s(pyq)dqip€asupp(f)

+ // f(z—p,y—q)3s(p, ¢)dpdq
supp(f)

Thus if we make the assumption that s vanishes on the boundary of the image supp(f),
then

Opf x5 = f % 0ys.
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We take this to define the action of J; on an image convolved with a differentiable filter

s. In particular this result gives

Vfixs = f*Vs
Vifxs = fx*Vis. _ (2.8)

For the Gaussian filter the operation of Gaussian smoothing followed by the Laplacian is

equivalent to the action of the LOG filter

z2Jr2

(22 +y? — 208 exp” 2. (2.9)

2 ) —
Vig(,y) = 5

2.6 Some Special Filters

Implementations of standard filters are often named after their inventors. Any implemen-
tation has its strong and weak points. Here we discuss the implementations of the normed

gradient filter which are common in use.

2.6.1 Sobel Filter

The Sobel filter uses first and second order differencing to approximate the first order

derivatives,

8fs = flz+1,y+1)+2f(z+1,y)+f(z+1,y—1) (2.10)

—(f(m—l,y+1)+2f(:t:‘~1,y)+f(:c—1,y—1))

R

8fz fle—1y+1)+2f(z,y+1)+ f(z+1,y+1) (2.11)
—(f(:c—l,y—1)+2f(:v,y-l)+f(x+1, y_l))
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The normed gradient is determined using the diamnond norm, but in the implementation

it is 8|V f| which is calculated. This saves a division.

Figure 2.5: Sobel Operations on the Zebra Image: (a) fz, (b) fy, and (c) Sobel Edges

The masks for the derivative operators are

101 1 -2 -1
he =1 _9 0 2 hy=1 09 0 o
K~1o1 1 2 1

Notice that hy is the transpose of h;, but defines —8f,, though this doesn’t matter if the

normed gradient is being calculated. One disadvantage of using the Sobel filter is that it

can exaggerate and thicken edges associated with noise.
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Figure 2.6: Roberts Edges of the (a)Zebra and (b)Butterfly Images

2.6.2 Roberts Filter

This filter for the normed gradient was mentioned in section 2.5.2,

2V =|f(z,y) — fl@+Ly+ D[+ |f(z+1,y) — f(z,y +1)|

This expression follows from the relation
Q(fz‘ + fyz) = (fm - fy)2 -+ (fz + fy)2

and then using the diamond norm for the vector (—(fs + fy), (fz — fy)). The masks hy, ho

for the differences f(z,y) — f(r + 1,y + 1) and f(z + 1,y) — f(z,y + 1) are

1 0 0 -1

where in both cases the lower left corner corresponds to the current pixel. It can be seen
from the masks or equivalently the Robert’s filter that edges at +7 to the z-axis are most
clearly detected. The accompanying figures involving the use of Robert’s filter support
this assertion.

29



2.7 Thresholding

Thresholding is a method of dividing pixel values into different classes, and then assigning
white say to pixels in certain selected classes and black to the remaining pixels. The output
is therefore a binary image.

Thresholding is used to distinguish an object in the image from the background. It
will clearly be most effective when the gray scale of the object is very different from the
background. For example, black writing on white paper. However, sophisticated methods
have been developed to handle situations when there is variation in the gray scale of the
object as well as its background. A recent survey, [26], gives a detailed comparison of the

effectiveness of the different methods.

NN

(©) " E

Figure 2.7: Thresholding Operations on the Zebra Image: (a) Single, (b) Two, and (c)
Multiple Thresholds

In the simplest implementation a single threshold 73 is chosen and pixels with intensi-

30



ties higher than 73} are set to white in the output, whereas pixels of lower intensity are set
to black. The applicability of the method to a given image can be deduced from the his-
togram of intensity values. Figure (2.7) shows some of the possible cases. For case (a) the
object, assumed to have low gray scale values, is clearly delineated from the background
and can be selected by thresholding with the value T7. In figure (b) the object is repre-
sented by the central maximum and again can be isolated by setting pixels with intensities
less than 77, or greater than 7% to white. The third diagram indicates a case where sunple
thresholding will not work, as there is considerable overlap between the gray scales of the
object and the background. In this case an iterative cluster-based threshold method might
be effective. At each stage pixels are divided into two clusters which correspond to the
two maxima of the intensity histogram. The threshold is defined to be the mean T;, of the
two maxima and the pixels are thresholded so that pixels with intensities greater than 7,
are set to white, thus reducing the number of pixels to be thresholded at the next level
The process is terminated when the difference between the locations of the two maxima
|77 — T»| is decided to be sufficiently small.

Thresholding can also be used to modify the output from other filters. For example,

it can be used with an edge detector so that only the finest edges are retained.

u
with an a ¢ that only the n

2.8 The Canny Edge Detector

The edge detectors discussed so far suffer from several problems such as not locating all
edges or conversely detecting edges where none exist. More sophisticated edge detectors

are based on first establishing criteria that the detector is to meet and then mathematically
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Figure 2.8: Thresholded Sobel Edges of the Zebra Image: (a)Threshold = 0.1,
(b)Threshold = 0.2, and (c¢)Threshold = 0.3, where edges stronger than the threshold

value are not retained.

analyzing them to derive the detector.

There are several detectors of this type. The first is due to Canny [21]. Others that
we should mention are due to Shen and Casten [60], and Smith and Brady [28]. In this
thesis we only discuss the Canny detector. One of the reasons for this is because it can be
used to detect edges at different scales and therefore fits in neatly with the approach that
we are using for the Watershed Transformation.

The Canny edge detector consists of several algorithms which locate edge pixels and
then attempt to link them together into edges. First though we discuss Canny’s approach
to detecting the direction of an edge. At an edge pixel Vf is normal to the edge, as
seen in §2.6. Therefore an edge can be detected by considering the line x=xg + AV f|x,,

where xg is a given point in the image. The point x¢ is an edge point if [V f|x is at a
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maximum at x=xg. Note that the edge points are inflection points of f. The angle of the
edge direction is given by tan*l(—;—:). The normed gradient |V f| is sometimes calculated

using the diamond norm |V f|s = |fz| + | fy| instead of the Euclidean norm.

2.8.1 Cannys Criteria
These are:

e Optimum edge pixel detection so that all edges are found and the number of false

edges is minimized
¢ Obtain thin edges by forming them as close as possible to the center of the true edge
e Suppress multiple edge generation when only a single edge is present

Canny converts the criteria into a total error cost function. Variational calculus is
then used to minimize the cost function to define an optimal linear operator which best
meets the criteria. It turns out that the first derivative of the Gaussian is very close to
the optimal operator and this what is used in the detector.

A novel feature of the algorithm is the use of hysteresis thresholding to reduce streaking
in the output which occurs if only a singie threshold is used; for an edge can only vary in
intensity and parts of the edge below the threshold will be lost. Hysteresis is a phenomenon
in which the response of a physical system to an external influence depends not only on

the present magnitude of that influence, but also on the previous history of the system.
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2.8.2 Cannys Algorithm

As usually implemented this involves a multi-stage process which is divided into the fol-

lowing routines.

1. Smooth the Image
The image is smoothed with a Gaussian filter. This reduces the number of false
edges, but thickens the edges and so increases the error in the localization of the

true edge.

2. Compute the Gradient of the Smoothed Image

The derivatives are calculated using forward differences.

3. Form the Normed Gradient Image

This is computed from the gradient using either the Euclidean or the diamond norm.

The edge directions are also calculated.

4. Non-Mazimal Suppression
This step reduces wide edges to thin edges in the gradient image. This is achieved by
the folllowing action; for each edge pixel trace along the edge in the edge direction

and zero any pixel whose normed gradient value is not a maximum.

5. Hysteresis Thresholding
Two thresholds T), and Ty are selected, 71 < T5. All magnitudes below T} are sct
to zero and made non-edges, while those above Ty are made edges. For those pixels

whose magnitudes lie between these two thresholds the possibility of a path from
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them to a pixel having a value above Ty is explored. If such a path is not found then

it is made a non-edge.

2.8.3 Implementation Details

The signal to noise ratio is affected by the value of o. Basically, the larger the width
of the Gaussian the lower the detector’s sensitivity to noise. For sharp edges though o
needs to be fairly small, so there is a trade-off between these two situations. In many
implementations ¢ is not a parameter of the algorithm and the Gaussian is implemented
as a convolution mask with a fixed value of o.

The gradient of the image is often determined using the A, h, masks of the Sobel
operator, §2.6.1. The edge direction is then given by — tan‘l(;i—:). Since the possible edge
directions on an image are multiples of 7, the algorithm selects the value ncarest to the

real value as the edge direction.

2.8.4 Edge Detection at Multiple Scales

In Canny'’s paper [21] the edge detector he describes is considerably more sophisticated
than the one we have presented. If g5 (x,y) denotes the Gaussian with standard deviation
g, then the gradient of the Gaussian should be implemented as in §2.5.4. Thus for the
image f it is given by

Vis(z,y) = (f * Vgo)(z,y).

Then the gradient magnitude in the Euclidean norm is

IV fol = [ (012)? + (8y15)?
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and the direction of the local maxima is given by tan—! gj’%%

The detector is therefore naturally set up to detect edges at different scales. Canny
suggests that the scale should be automatically adjusted by an estimate of the signal-to-
noise ratio as the detector processes the image. this thesis we prefer to treat the scale as a
parameter of the detector. In this way we can compare the output from the edge detector
at different scales with the output from the Watershed Transformation at the same scale.

A further problem that can be investigated for both the scaled outputs of the edge
detector and the Watershed Transformation is how best to combine the outputs to give
the most information about the edges or contours. For example the outputs can be added
to combine the edges at different scales or intersected to give the edges that are common
across a set of scales. Canny introduces a third possibility, that of feature synthesis. In
this approach all the edges are first determined for an image at a fine scale. These edges
are then used to synthesize the output at a coarser scale by convolution with a Gaussian
of larger o. A comparison is then made with the edges which appear in the output of the

detector at this coarser scale. Edges are only added into the original set if they have a

considerably greater response than that which occurs in the synthesized output.

2.8.5 Some Examples

Canny edges can be seen in the Zebra, and the Butterfly. The edges identified by the
canny operator are extremely good in comparison to those identified by the Watershed

Transform, which is discussed in the next chapter.
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Figure 2.9: Canny Edges of the Zebra Image at (a) o = 0.5, and (b) ¢ = 50.5.
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Chapter 3

The Watershed Transformation

3.1 Introduction

The Watershed Transform is a segmentation procedure to obtain the contours in an image.
It is one of the few methods which extracts closed boundaries by operating directly on the
pixels in a grayscale image. There are basically two ways of extracting watersheds, one
which uses the idea of rain falling on a landscape and the other which works on the idea
of immersing a landscape in a lake. Since the two methods work on different sets of
neighborhood pixels it is not surprising that the watersheds obtained from them are not
the same. This chapter discusses these two ideas and their mathematical basis, and also
their implementation.

One major disadvantage of this algorithm is that oversegmentation occurs. This can
be seen in figure 3.1 where the generation of contours due to noise obscures the contours

related to the ferns.
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Figure 3.1: Immersion Watersheds (b) for the Ferns Image (a)

3.1.1 The Topographical Analogy

Every image can be translated into a topography or a landscape where the height of the
hills corresponds to the higher, and the depth of the valleys to the lower pixel intensities.
Thus, if a grayscale image is viewed as if high intensity pixels were high ground and low
intensity pixels were low ground then the image becomes a 3D landscape. A minimum is
then a dip in the ground surrounded by higher land. Under the rainfalling analogy, the
catchment basin of such a minimum is the area where water falling on the landscape would
flow down to this minimum. Under the immersion analogy, catchment basins around each
minima are formed when water coming from the corresponding minimum progressively fills
it up. The watershed of the image is then the set of curves that separate the catchment
basins of the image. The watershed contours can be quite thick and extreme cases are
called plateaus. Special techniques have been developed to thin them.

If a Watershed Transform is applied directly to the image it creates watersheds at all
the pixels with the largest gray value. But for better segmentation results, watersheds

should be created at pixels where the gray value changes the most. Methods like taking
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the normed gradient of an image aid in identifying such pixels. Some other methods like
smoothing the image can help reduce the appearance of false edges due to noise present
in an image. Thus, such preprocessing of an image can reduce the number of spurious

watersheds.

Figure 3.2: 4-connectivity Immersion-based Watershed Transform of the Zebra

3.2 Definitions

It is convenient to group together all the definitions for both methods before we discuss
them in detail. An excellent reference for this method is the review article by [1].

General Graph Properties:

e A graph G=(V, E) consists of a set V of vertices and a set E C V x V of edges. If
the graph is undirected then if (v1,v2) € E then (vy,v) also represents the same
edge. In a directed graph the edge (v1,v;) € E is distinct from the edge (vy, v1) (if it

exists).

e A path p of length [ consists of a sequence of vertices {vy,vs,---,v;} € V such that
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(vi,vit1) € E, i = 1,---,1 — 1. We dcnote this path by p=(v;,---,v;) and write

length(p)=l.

e If v,0 € V then ¢ is reachable from v, written v ~» o, if there exists a path from v
to . A graph G is connected if every pair of vertices in G are path connected or
alternatively every vertex is reachable from any other vertex. A connected component

of G is a maximal connected sub-graph of G.

o A path p=(v1,---,v) is a cycle if v1 = v; and the v;,1 < j <1 —1 are distinct. A

graph without any cycles is acyclic or a forest.
e A tree is a connected acyclic graph.
Properties for the Digital Gray Scale Image:

e A graph G=(V, E) where V C 72 constitutes the support for an image. The vertices
in this case are called pixels. The definition of an edge depends upon the connectivity.
In 4-connectivity the edges associated with a pixel are the edges to the horizontal
and the vertical neighbors. In 8-connectivity the edges to its diagonal neighbors are

also included.

o A digital image is a triple G=(V, E, f), where V C Z2? is the support of the image
with edges defined by 4— or 8— connectivity. The function f : V — Z, assigns a
gray value to each pixel in the image. Often the values for f are scaled into the

standard 8 bit gray scale values 0 — 255. An image which has the two values 0 or 1

is called a binary image.

41



o A level component at level h or plateau of an image is a connected component of
the image for which the pixels v all have the same gray scale value, f(v)=h. The
boundary of a level h component, C, of an image consists of the pixels v € C that
have one or more neighbors ¥ for which f(v) # h. A local minimum at level h of an
image is a level h component C of the image such that if ¥ is any neighboring pixel

of a boundary pixel, f(v) > h.

e A descending path p=(vy,---,v;) is a path such that f(vy) > f(v2) > -+ > f(w)
and f(v;) < f(v1). Let T(} (v) denote the set of all descending paths starting at v. If
C itself is a local minimum then for v € C, Trjc('v):@. An image is lower complete if

every vertex v which is not a minimum has a neighbor ¥ for which f(7) < f(v).

Topological Definitions Specific to Watershed Transform:

Let G=(V, E, f) be a gray scale image.
o The threshold set, of f at level h is
Th={veV:f(v)<h}
e For a sub-image A C G the geodesic distance between pixels a,b € A is the minimal
path length of all paths which connect a and b, and lie entirely in A.

o If B C A, define

dA(aa B) - Igé]g(dA(av b))

Let B C A be partitioned into k connected components B;, i=1,..., k.
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e The geodesic influence zone, of B; within A is defined as

izA(Bi) ={vc A:foralll <j <k j+#ida(v,B;) <dalv,Bj)}.

e The union of the geodesic influence zones 1Z4(B) is the geodesic influence zones of

the connected components of B, given by

.
1Z4(B) = | Jiza(By).

=1
e The skeleton of influence zones SKIZA(B) is the complement of the set IZ4(B)

within A.

SKIZ4(B) = A\ 1Z4(B)

The SKIZ contains all points which are equidistant, w.r.t. the geodesic distance,
to at least two nearest connected components (none for digital grids). For a binary
image f with domain A, SKIZ can be defined by identifying set B with the set of

pixels having the highest gray value, i.e 1.

3.2.1 Definition of the Watershed Transform

The Watersheds are a skeleton by influence zones determined in relation to geodesic dis-
tances. As described in [5] these can be viewed as a generalization of the skeleton of
influence zones (SKI1Z) to gray value images.

Definition: Let f : D; — Z have minima my, k € I for some index set I. The catch-

ment basin B(m;) of a minimum m; is defined as the set of points z € D which are
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topographically closcr to m, than to any other regional minimum m;.
B(m;) = {z € Dlfor all j € T\ ¢: f(m;) 4+ Ty(x,m;) < f(my) + Ty(z,m;)}
The Watershed of f is the set of points which do not belong to any catchment basin.
Wshed(f) = D 0 {|_] B(m:)}*
i=1

Let W be some label, W ¢ I. The watershed transform of f is a mapping A : D —» IUW

such that if

p € B(m;) = Mp) =i (3.1)

p € Wshed(f) = Ap) =W (3.2)

Thus, the watershed transform of f labels all points of D either uniquely for each catchment

basin or as a special symbol W for all points of the watershed of f.

3.2.2 Occurence of Plateaus

A topographic relief can contain discontinuous structures representing thick watersheds,
namely, plateaus. These are regions of constant gray values. Their existence in an image
is a main obstacle when one tries to extend the Watershed definition from the continuous
case to the discrete case. Thus, we need an algorithmic definition which computes the
Watershed transform level by level, where each level constitutes a binary image for which

a SKIZ is computed.
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3.3 Watershed Transform

The Watershed Transform produces a complete division of an image into separate regions,
and generates closed contours. For determining the watersheds one needs to categorize or
label all the pixels as belonging to either the watershed lines, catchment basins and/or

minima. The identification of the pixels can be done in two ways:

o rainfalling/tobogganing method

o immersion/flooding method

The details of these two are discussed in the following sections.

The various stages involved in isolating the watershed pixels can be summarized as:

o [dentifying the watershed pixels depends on the underlying method used for isolating
them from the background. For this one needs a quantity that takes a high value in
the neighborhood of edges and low values for the interior pixels. Methods like the

normed gradient, or teager energy detection [20], can achieve this.

e Preserving an optimum number of pixels which need to be retained in the image to

get an acceptable segmentation.

o Improving accuracy of results by using methods like calculating the geodesic distances

to determine more precisely the location of neighborhood pixels on a watershed.

3.4 The Rainfalling/Tobogganing Method

In this method, the path of a raindrop is traced using the idea of steepest descents, wherein
one is interested in those pixels which are traversed by the raindrop in its descent. This
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raindrop will stop its descent if it reaches a minima or a plateau in the landscape. The
descent continues under gravity and sometimes special points called saddle points are also
encountered in this path. It is this sequence of points which defines the path of steepest
descent that one is interested in extracting. The various steps involved in identifying such

pixels can be enumerated as below:

1. Remouving the weakest edges[10] which involves grouping all pixels having intensities
below a certain threshold into one. This will lead to creation of lakes on the relief
which would then represent the underground water level. This reduces oversegmen-

tation mainly due to noise.

2. Determining the steepest descent for each pixel which involves determining the di-
rection in which a raindrop would flow to if it were to fall on the topographic relief.

The following are the possible cases:

o If a pixel has only one steepest descent neighbor, merge the current pixel and
this neighbor into the same linked list.

o If a pixel has more than one steepest descent neighbor, then make this pixel
belong to the watershed.

e Catchment basins can be created by labelling all the lakes in step 2 and adding

this label to pixel information of those pixels having only one steepest descent

neighbor. This way the pixels can be related to the catchment basins.

Rainfalling/Tobogganing is based on the idea of the drainage analogy [34] wherein
any two points are in the same region or catchment basin if they drain to the same
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mininum point. Since the Watershed Transform works best on the gradient image, we
assume all pixels that need to be processed for the watersheds belong to the gradient
image. To determine the drainage behavior of a pixel in gradient image one needs to
find its downstream path along the steepest descent that ends in a local minimum of the
topography. Thus, all pixels will either belong to a minima or the watershed of the gradient
image.
Advantages of this Method
This method has the following advantages:

¢ It is non-iterative as every pixel is processed only once.

e Its execution time is linear.

e It keeps track of a single parameter that determines a neighboring pixel of strictly
smallest gradient magnitude for every pixel. This process terminates if the path

encounters an already processed pixel or reaches a local minimum.

3.4.1 Mathematical Representation of the Watershed Lines Using the

Rainfalling Analogy

This section outlines the mathematical background for exploring all possible downhill paths
from a pixel and determining the one that corresponds to the steepest descent. This path
is followed until a regional minima is reached. The set of all pixels encountered on this
path belongs to the catchment basin for this minimum. Repeating this process for all the
pixels generates the set of all the catchment basins. The watershed lines are then the

contours that separate the basins, so that a raindrop that falls on a watershed can flow
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to more than one minima. Terms like lower complete, lower slope, downstream, cost of

walking, etc are defined below:

o The lower slope is the maximal slope linking a pixel p to any of its neighbors of lower

altitude is defined as

f(p) ~ f(q)

LS(p) = MAXqE[)UNG(p) d(p q)

e The cost of walking from one position p to a neighboring position ¢ is defined as

LS(p).d(p,q) if f(p) > f(q)

cost(p,q) = LS(q).d(pg) £ f(p) < fa)?

5(LS(p) + LS(q)).d(p, q) if f(p) = f(q)

e A pixel belongs to the downstream of a pixel p if there exists a path 7 of steepest decent

between p and gq.

Definition Using the Local Minima

Let M=my,mo,---,m; be the set of all minima of all local minima of f. The Watershed
Transform is a labeling process that maps every point in D to a label domain W, where
W=1,2,---,k,u, and u is a constant differing fom 1,2 --- k. An algorithmic Watershed

Transform can then be defined as

1. if p=my;, Wshed(p)=t,

2. if downstreampath(p) is undefined, W shed(p)=u,
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3. if p # m;, Wshed(p)=W shed(downstreampath(p)), for a selected downhill path

downstreampath(p).

Given above is a recursive definition of W shed(p). The labeled regions Ly, Lo, - - -, Ly, Ly,
are then generated, where L;=p € D|Wshed(p)=t, i=1,2,- -+, k,u. Wshed(p) defined here
is a labeling function rather than being one that finds the watershed lines which in turn are
obtained by extracting the boundaries of all the labeled regions. The labeled regions L;
are connected for 1=1,2,-- -, k; but the region L, is not necessarily connected. It consists
of the points that do not follow their downhill path to any local minima of f. This occurs
because of the presence of plateaus in f. Thus, L, consists of points that are in a plateau

or whose downhill path ends up in a plateau.

3.4.2 The Idea of Steepest Descents and Watershed Lines

Every non-critical point on the watershed represents a saddle point. Using the rain falling
analogy, the raindrops falling on it have equal probability of flowing to the valleys on either

side.

3.4.3 A Saddle Point

A saddle point is a point at which a function of two variables has partial derivatives equal
to zero but at which the function has neither a maximum nor a minimum value. Such a
point is a stationary point but not an local extremum, and the surface resembles a saddle
that curves up in one direction, and curves down in a different direction. In terms of

contour lines, a saddle point can be recognized by a contour that appears to intersect
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itself. For example, two hills separated by a high pass will show up a saddle point, at the
top of the pass, like a figure-eight contour line [18]. The Watershed pixels behave as saddle

points. Thus, the saddle points are stable for catchment basins.

3.5 The Immersion Method

If we pierce holes at every regional minima and immerse the image surface into water,
then water will start to flood areas adjacent to regional minima. A regional minimum is a
connected plateau from which it is impossible to reach a point of lower gray value level by
an always descending path. As the image surface is immersed, some of the flooded areas
or the catchment basins will tend to merge. When two or more different flooded areas are
touched, infinitely tall dams or watershed lines are constructed between them. When the
water level reaches the highest peak in the landscape, the process is stopped. The resulting
network of dams then defines the watershed of the image. In other words, watershed lines
partition the image into nonintersecting patches, called the catchment basins. Since each
patch contains only one regional minimum the number of patches is equal to the number

of the regional minima in the image.

3.5.1 Mathematical Representation of the Watershed Lines Using Im-

mersion Analogy

The general properties of the graph theory and the digital images are listed in section
3.2.2 lend meaning and support to the immersion-based Watershed Transform. The defi-

nitions pertaining to the geodesic distances are used to formally identify and extract the
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watersheds. The rescarch for these ideas is mostly done from [1], [50], and [2].
The following ideas put together help define a recursive definition for the watersheds
using the immersion method.

The threshold set for g at level v is given by

Sy = {p € Dlg(p) < v}.

The local intensity minima set for f at level v is given by

LIM, = {p € Dlg(p) = v,9(p) < 9(q),Vg € Nn(p)\{p}}.

Let vpin and vy, be the minimum and maximum intensity value of gray scaled f.
Then one can define a recursion with the value of g growing from vp,in t0 Vimes, as shown

below.

IVnLin. = {p 6 Dlg(p) - V‘ITLlTL}(Bg)

I,=LIM,UIZs I, 1),V =Vmin + LVmin+2, -+ Wmagz (3.4)

The watersheds of g are then the complement of I, max as given by

Wshed(g) - D\IVrnaz ‘

The W shed defined here is a set of watershed points unlike the definitions in the

previous section as it is a labeling process mapping all points in DD into a set of labels.
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3.6 Implementation Analysis for Extracting Watersheds

The following are true for the basins and watershed lines:
¢ All points of a given catchment basin have the same unique label

¢ A special label is given to all points of watersheds

3.6.1 The Rainfalling Case

Following are the steps for finding the watersheds using the Rainfalling analogy:
1. Compute the sets of neighborhood pixels for all pixels

2. Then make connected sets for each pixel depending upon the 4 or 8-connectivity

used

3. Assign to the basin if a pixel lies along the path of steepest descent of the pixel

4. Assign to the watershed if the pixel has more than one steepest path of descent

3.6.2 Immersion/Flooding Case

Following are the steps for finding the watersheds using the Immersion/Flooding analogy:
1. Sort the pixels according to their gray values in an increasing order
2. Proceed with integer increments from the lowest gray value and do the following:

(a) identify all minima at the current level



Table 3.1: Matlab Pseudo-Code for Sorting the Pixels for the Rainfalling Watersheds
I = imread(’c:\zebraedges\zebra’,’jpg’);
I = rgb2gray(I);
{m n}= size(I);

Sort the pixel positions int terms of their gray values in ascending order
pix_sort = [-1 -1 -1];
for i = 0:1:255
for x = 1:1:m
for y = 1:1:n
if I(x,y) == 1i
g_val = [i x y];
pix_sort = cat(l,pix_sort,g_val);
end
end

end
dlmwrite(’c:\zebraedges\pix_sort.txt’, pix_sort,’-append’,’delimiter’,

> 7, ’newline’,’pc’);
end

Open the file pix_sort.txt and read the numeric data into a matrix M
M=dlmread(’c:\zebraedges\pix_sort.txt’,’ ’);

Sort the rows in descending order using the first column which represents
the gray value.
M=sort(M, 1, >descend’) ;}
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(b) label all pixels having the current gray value as belonging to the watershed or

the catchment basin of a minima

(c) repeat the above steps until all pixels are processed

3. Find watersheds by taking the set complement of the basins or perform a binary

operation that makes all watershed pixels have intensity 1 and others 0

3.6.3 Sorting Pixels

The pixels in the gray scaled image need to be sorted according to their gray values. To
implement this in the Mathlab environment we scan the pixels in a breadth-first order
and extract the pixels having the same gray value and append them to a matrix of three
columns wherein the first represents the gray values, the second represents the z-coordinate
and the third represents the y-coordinate of the extracted pixel. The code is provided in

the table below.

3.6.4 Minima Detection

Minima in the image are all those points whose neighbohood pixels have equal or greater
gray scale value than the point under consideration. If this pixel is not on the boundary
then it will have 4 or 8 neighbors depending upon the connectivity used. But if it lies
on the boundary then it can have 3 to 5 neighbors depending upon whether it lies on the
corner or in the first or last row (or column). The algorithm should take care of these
conditions. One way to get around this is to perform a padding of the boundary with zeros
and run the algorithm from the row 2 to row last-1, and column 2 to column last-1. As
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Table 3.2: Matlab Pseudo-Code for Sorting the Pixels for Immersion Watersheds
I = imread(’c:\zebraedges\zebra’,’jpg’);
I = rgb2gray(I);
[m nl= size(I);
Sort the pixel positions in terms of their gray values in ascending order

It

pixsort = [];
for i = 0:1:256
for y = 1:1:n
for x = 1:1:m
if I(x,y) == 1
gval = [1 x y];
pixsort = cat{(l,pixsort,gval);
end
end
end
dlmwrite(’c:\zebraedges\pixsort.txt’, pixsort,’-append’,’delimiter’,
? 2 ’newline’,’pc’);
pixsort = [1;
end
Open the file pixsort.txt and read the numeric data into a matrix M

M=dlmread(’c:\zebraedges\pixsort.txt’,’ 7);



and when a minima is detected it is stored in a cell array structure which resizes itself to

accomodate the new minima. The following table gives the details of such an algorithm.

Table 3.3: Psuedo-Code for Regional Minima Detection for a Given Gray Scale Value

pad I with zeroes all around
k=1;
padl = zeros(m,n);
for j=1:1:n

for i=1:1:m

padI(i+1,j+1) = I(i,j);

end

end

Get all the minima and put them in a cell array Min
Extract all pixels with the same gray values and put them in a matrix Q
fr sl=size(Q);
Min=cell(1,256);
for t=1:1:r
x=Q(t,2)+1;
y=Q(t,3)+1; ,
if (padI(x-1,y-1)>padl(x,y))&&(padl(x-1,y)>padIl(x,y))
if (padI(x-1,y+1)>padI(x,y))&&(padl(x,y+1)>padIl(x,y))
if (padI(x+1,y+1)>padIl(x,y))&&(padl(x+1,y)>padl(x,y))
if (padI(x+1l,y-1)>padl(x,y))&&(padl(x,y-1)>padIl(x,y))
Min{1i,k}=[padI(x,y) x yl;
k=k+1;
end
end
end
end
end

3.6.5 Variants of the Watershed Method

Two variants of implementing the Watershed Transformation are discussed in this sec-

tion. The first one uses the Toboggan, and the second one uses the Triangulated Terrain
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simulation.

The Modification of the Toboggan Simulation

The Toboggan simulation can be modified to perform simultancous flooding of the pix-
cls identified as minima. The following is the algorithm for implementing the iimproved
Toboggan Segmentation.

¢ Scan image in row order

o if pixel is not already labelled

— find its lowest gradient neighbor

— slide to a labelled pixel or local minimum

update number of regions corresponding to identified minimas by flooding them

simultaneously

|

find its lowest gradient neighbor

¢ output the labelled regions and determine the watershed lines

It is worth mentioning that this method does not account for plateaus that could occur
in the topography of an image. This requires an separate treatment in the form of some
modification of the algorithm. One way is to smooth/blur these plateaus using a gaussian

filter.

The Triangulated Terrain Simulation

To represent watersheds using the rainfalling analogy, one needs to trace paths of steepest
descent on the landscape. In particular, we are looking for terrain features like the ridges,
valleys, and saddle points; for which information about the edges and their connections
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to one another need to be derived from the pixel values. One such method is deriving the
Triangulated Irregular Network, known as TIN. It is a piecewise-planar approximation to
a terrain where each facet of the approximation is a triangle. This is how [24] describes
representation of the digital terrain. Advantages of such a representation are that it is
a good approximation of the drainage characteristics of the landscape, and water always
follows the path of steepest descent. In other words, every point on the landscape has a
unique path of steepest descent.

For a point p, let the trickle-path(p) be a unique path of steepest descent from point
p on the terrain. The Watershed of a point ¢ is {p|getrickle — path(p)}, which are all the
points whose paths of steepest descent include q.

A TIN edge can be one of the following three physical features in a terrain:

e It is a walley if the normals to the faces incident on the edge both point towards it.

These valleys correspond to the rivers in the terrain.

e 1t is a ridge if the normals to the faces incident on the edges both point away from

it. These ridges correspond to the watershed boundaries.
e It is a pit if it is a local minimum in the elevation of the terrain.

The trickle-paths can be reversed locally on the faces of TIN to behave as paths of
steepest ascent known as trace-ups. A trace-up is stopped when it encounters a ridge or
a saddle-point in the terrain. Sometimes a watershed boundary is not a TIN edge but
lies on a TIN face. To identify such occurrences the behavior of a height profile function
about a point can be studied. Let the height profile function k¢ y(6) : [0,27) — R at a
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point p be a function of the angle 8 that returns the clevation z — R at which the cylinder
(z — pz)? + (y — py)®=€? intersects the terrain at an angle 6 from p. A local maximum of
the h.,(0) refers to a direction where the flow of water splits around p, thereby, implying
the presence of a ridge at p. On the other hand, its local minimum signifies a direction
where the flow of water is such that it collects at p, thereby, implying existence of a valley
at p. Performing an € perturbation of p in the direction of each local maximum of h¢ ,(6)
gives rise to multiple paths of steepest ascent for p. These help identify the family of
ridges, valleys, and saddle points of the terrain or the landscape.

The drainage compelxity on a terrain allows for the following characterizations:

o If the local maxima and minima for h¢ ,(6) of every TIN point occur only at its ridge

and valley edges, then it behaves as a nice terrain.

o If the local maxima and minima for f. ,(#) can occur on TIN faces and the trace-up

paths along incoming ridges end-up in the interior of the ridges, then it behaves as

a normal terrain.

o If h () has no restrictions whatsoever, then the elevations at various points cannot

be related to it, and the terrain then behaves as a nasty terrain.

The above differences in the terrain give rise to different watershed lines as explained in

[24].

3.7 A Comparison

An interesting fact is that the two analogies do not generally give rise to the same water-
sheds, see 4.3. The reason being the watersheds depend on the support of the operation,

i.e. the neighborhood over which the operations are performed. In the case of rainfalling



analogy the neighborhood is the sct of pixels that are along the path of the steepest descent
of a pixel. On the other hand, in the case of flooding/immersion one needs the information
about all pixels that belong to one threshold level prior to the current one. Thus, unless all
these pixels are processed one cannot proceed to the next higher level. Hence, compared
to the immersion analogy the rainfalling analogy has comparatively fewer pixels that need

to be processed.

3.7.1 Comparison of Edge Detection and Watershed Boundary Detec-

tion Procedures

Applying heuristics before choosing the segmentation technique takes one step closer to
getting desired results. Watershed Transform works on the whole image as it processes all
pixels with the same intensity before moving-up one level while edge detection involves a
filter matrix that processes a pixel at a time and then moves to the next.

The Watershed Transform utilizes the pixel intensity values to determine the network
of steepest descent paths as in the case of rainfalling or proceeds from one threshold level
to another in progression as in the case of immersion. In the latter case, the Watershed
Transform can perceive the intervening changes at every threshold level. The edge detec-
tion methods proceed from one pixel to the next in a sequence and the use of the mask
1s on the immediate neighborhood of that pixel. The results of the edge detection can be
only understood when all the pixels are completely processed. In a noiseless image, there
1s no loss of information upon the implementation of the Watershed Transform. But in

practice, the Watershed Transform is applied on an image which is preprocessed, by taking
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say it normed gradient. In cdge detection, the loss of information can easily occur at the
bordering pixels where the mask goes out of bounds because of differing matrix dimensions

and does not completely map the image pixels.

3.8 Problems that Affect Detection of Edges

Watershed Transform is a powerful method in the sense that it produces a complete division
of the image into non-overlapping regions and does not need any kind edge-linking, unlike
other edge detection methods. But it is marred by oversegmentation, sensitivity to noise,
poor detection of significant regions with low contrast boundaries and thin structures

[56, 58, 57].

3.8.1 Noise

A noise image, g(z,y), can be considered as the original image, f(z,y) corrupted by, say

additive white gaussian noise, n(z,y). This can be modeled by the following expression.

g(z,y) = f(z,y) +n(z,y) (3.5)

[3, 56, 57] take a look at the noise probability density models in the spatial and the
frequency domain, and use the statistics like mean, and variance to review methods of
reducing the noise factor in the image.

The space of noise level functions can be defined as the variation of the standard deviation

of noise with respect to image intensity, as given below.

r(I) = /E[In — I]? (3.6)
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where Iy is the observation and I=FE/(Iy).
A noise function is, thus, modeled by the mean noise level function, 7, and the eigenvectors,
75, of the noise space.
m
T=T4Y B (3.7)
i=1

Here the coefficient f; is assumed to have a gaussian distribution, i.e. §; «~ N(0,v;), and
the function 7 positive everywhere.
Random noise in an image can be reduced by filtering with a median filter, SUSAN denoiser
or other smoothing filters. Since smoothing operations tend to thicken this random noise
into false edges, effects of noise can be reduced or eliminated only if these transitions are
captured. For this purpose, some preprocessing like image averaging and image smoothing
could be performed on the image.
Image Averaging
In this case an averaging is performed over a set of different noisy images representing the
same image, and helps reduce the amount of noise in a summation of these images.
Image Smoothing
Smoothing the effects of the noise can be done by using a filter mask that acts on the
immediate neighborhood of each pixel. These cause blurring and thereby, bridge the gaps
in the contours and edges in the image which otherwise were open curves or lines. False

edges can, thus, be blurred out to decrease their contrast with the true edges in an image.
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3.8.2 Oversegmentation

Oversegmentation in an image produces too many regions or contours which obscure the
relevant edges. This can be reduced by keeping fewer minima which can be done by
markers. Another techhique is that of a scale-space approach wherein regions of interest
can be selected by using an appropriate nonlinear or morphological filter, [58]. Various
preprocessing and postprocessing techniques also help reduce oversegmentation as can be

seen in [59].

3.8.3 Significant Areas with Low Contrast Boundaries and Thin Struc-

tures

These can face poor detection if their signal to noise ratio is not too high at the con-
tours. This can pose problems in, say, in finding contours between gray matter and bone.

Reference [58] suggests use of active contour models called SNAKES.

3.9 History of Work

The earliest algorithms were based on operations that were local to each pixel and per-
formed in an iterative manner. Beucher and Lantujoul suggested a method that expanded
influence zones around local minima within their gray scale levels via binary thickenings
until idempotence was achieved. Beucher later showed that a watershed can be calculated
by performing gray scale thinning on the image until the edge reduces to one-pixel width.

These iterative or sequential methods rely on scanning the pixels in a predefined order
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where the new value of each pixel is immediately taken into account in the processing of
the subsequent pixels. Friedlander and Meyer proposed an algorithm based on horizontal
scans.

Beucher also proposed a directed graph to represent a gray scale image. Each pixel
is represented by a node in the graph connected to those neighboring pixels with strictly
higher gray scale value. These directed connections are generated by the geodesic dilations
of the pixels at successive gray levels. Iterative procedures are then used to identify the
nodes which are the divide points, or the watershed pixels, see 4.2. These algorithms
simulate the flooding of the landscape, propagating flood waters from the minima in height

order, and building watershed lines when floods from different catchment regions meet.

3.10 Modifications to the Watershed Transform

Many existing watershed algorithms are improvements to the immersion algorithm, or the
rainfalling algorithm, and sometimes are also a combination of both. The following is
a list of instances where a certain technique brings about a desired modification or an

improvement in the watershed contours.

e Applying Watershed Transform on the gray scaled gradient of the filtered image
e Marker-based minima detection to identify connected sets of pixels of a predeter-
mined region in an image

o Identifying connected sets of pixels by similarity, reconstruction, labelling, regional

maxima and minima, h-domes, etc
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* Using cflicient distance transformns that produce good segmentation

We investigate some of these methods in the next chapter.
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Chapter 4

Improving the Watershed Transformation

4.1 Reducing Oversegmentation

The Watershed Transform, in either of its versions, suffers as we have seen from overseg-
mentation; noise and minor features generate watersheds which obscure the main contours
present in the image. There are three methods which have been used to reduce overseg-
mentation: (i) preprocessing the image, (ii) modifying the watershed algorithm, and (iii)

postprocessing the image.

(a)
Figure 4.1: Watersheds (b) of the Zebra Obtained from the Gaussian Normed Gradient

Image (a) with o = 1. There is still enormous oversegmentation.

We have already considered preprocessing the image with a Gaussian to smooth it,
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thereby removing noise, and the use of the normed gradient filter to exaggerate the presence
of sudden changes in intensity corresponding to boundaries or edges in the image. However
evenl when this is done there can still be considerable oversegmentation as the images in
figure 4.1 illustrate.

In the next two subsections we consider the use of morphological methods to both
preprocess and postprocess the image. The last section outlines some of the ideas which

have been incorporated into the watershed algorithms to reduce oversegmentation.

4.1.1 Morphological Methods

In biology, morphology is the study of the structure of living things. Mathematical mor-
phology applied to images has the same connotation; that is it studies the structure of
the image formed from its boundaries, edges and its components. For example, we could
consider that convexity was an important property of a particular image and isolate the
convex components. The natural language for gray scale morphology is set theory applied
to Z* = 72 x Z and it subsets, since a point of a gray scale image is a point in Z? together
with a pixel value in the 0 — 255 range. Technically mathematical morphology is a collec-
tion of set theoretic operators defined on an infinite lattice. 1t was first investigated by
Matheron [40] and Serra [47, 48].

There are four basic morphological operations on sets in Z2, dilation, erosion, opening
and closing. Let A,B C 72, and let A denote the complement of A. This will usually

be with respect to some subset of Z? since all our images are compactly supported. The
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Figure 4.2: The Binary Zebra Image. In this section we shall use this to demonstrate the
effects of the morphological operators.

translation of A by b = (by,by) € Z? is the set
Ap={m:m=a+b,ac A}
where a + b = (a1 + b1, az + by). The reflection A of A is the set
A={m:m= —-a, ac A}.
The dilation A ® B of A by B, and the erosion A © B, are the sets
A®B={m:B,NA#0} Ae B ={m: B, C A}.

We don’t need parentheses here because E; will denote the reflection of B,,. The re-
lationships can be made more symmetrical by noticing that the definition for dilation is
equivalent to A® B = {m: Bn,NAC A}

A morphological operator applied to an image requires the specification of one or more
structuring elements. A structuring element is usually a regular geometric figure such as
a square or rectangle, the size of which defines a scale for the morphological operation,

cf. §4.1.2. For the dilation and erosion operators just defined, B plays the role of the

68



structuring element for (the image) A. A morphological operator interprets the geometrical
structure of the image in terms of the structuring elements. Figure 4.3 shows the effect of
erosion and dilation on the zebra binary image Figure 4.2 using a single square 3 x 3 pixel

structuring element.

Figure 4.3: The Effect of (a) Erosion and (b) Dilation on the Binary Zebra Image Using
a Square 3 x 3 Pixel Structuring Element. The combined effect of the two operators is
to filter out elements in the original image which do not comply with the scale of the
structuring element.

In terms of the structuring element B and the set A, the opening A o B, and closing

A e B operations are defined by
AoB=(A6cB)®B AeB=(A® B)6B.

The action of both the opening and closing operators is to smooth an image. However,
whereas the opening operator tends to replace a thin section of a contour with a completve
break, the closing operator will thicken any thin sections; it will also join up any small
breaks in a contour. Figure 4.4 contrasts the actions of these two operators.

Let I : Dy — [0,255] C Z denote a gray scale image. Thus I(p), p € Dy is the pixel
value at p. The basic morphological operators can be extended to gray scale images. In

fact as pointed out by Serra [47]-[51] any function g : Z2 — Z? which is increasing, that is
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(a)

Figure 4.4: The Effect of Opening and Closing on the Binary Zebra Image. Image (a)
shows the effect of opening and image (b) the effect of closing. Notice that (b) has fewer
breaks in the contours then either (a) or the original image. Whereas (a) has more breaks
than the original image.

if X CY C Z? then g(X) C g(Y) for all such subsets X, Y, can be extended to gray-scale
images. This is because a gray scale image I has a threshold decomposition. This is the
collection of nested sets

Ty ={p e D;:I(p) > ¢}

where 1 C 7;_;. The extension to gray-scale images is given, for all p € Dy, by

9(I)(p) = max{j € [0,255] : p € g(T3(1))}.

Fach of the operators we have introduced have the required property. For example if we

consider the dilation of I by a gray scale structuring element J, then I @ J is defined by

(I ® J)(p) =max{j € [0,255]: pc (I J)T;(I))}.

In actual implementations the pixel values do not have to be in the range 0 — 255, they
can even be real valued, because of the action of image operators such as the Gaussian
filter. It is easy to rewrite the definition of the gray scale dilation operator and the other

gray scale morphological operators without this assumption:

(I @ J)(r,s) = max{I(r —z,s —y) + J(,y) : (z,y) € Dy, ((r —2),(s —y)) € D}
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([@J)(T’S) = IIlaX{I(T"*I-.’l},S—f—y) - J(w,y) : (:Lu‘/) € Dy, ((7 +w),(6+y)) < D[}

IeJ=({Ual)®J Tel=(UaJ)od

Figures 4.5 and 4.6 demonstrate the action of the gray scale morphological operators

on the zebra image.

(a)

Figure 4.5: The Effect of the Gray Scale Morphoplogical Dilation (a) and Erosion (b)
Operations Applied to the Gray Scale Zebra Image Using a Square 3 x 3 Pixel Structuring
Element.

(a) (b)

Figure 4.6: The Effect of the Gray Scale Morphoplogical Opening (a) and Closing (b)
Operations Applied to the Zebra Image Using a Square 3 x 3 Structuring Element.

Morphological smoothing and gradient operators can be defined which have different
properties from those derived from linear filters such as the Gaussian. Because they are
nonlinear the transition regions in the transforined image usually have mnuch sharper edges.

For a morphological smoothing operator the features omitted from the smoothed image are
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those which cannot be approximated by the structural elements. The residual image, the
difference between the original image and the smoothed image, can be treated to remove
most of the noise and the purified residual can then be recombined with the smoothed
image. We do not investigate the effect of this process in the thesis.

A morphological smoothing operation results from the action of an opening operator
followed by a closing operator defined with respect to a set of structuring elements. For
a single structuring element J the smoothed image S(I) depends upon the scale of the

structuring element,

SUI)=(IoJ)elJ.

The proportion of high and low intensity pixels is reduced by the smoothing operation,

Figure 4.7.

Figure 4.7: The Effect of Gray Scale Morphoplogical Smoothing on the Zebra Image with
(a) a Square 3 x 3 Pixel Structuring Element and (b) a Square 5 x 5 Pixel Structuring
Element.

The morphological gradient G(I) of a gray scale image I with respect to a structuring
element J is defined to be

Gghy=UIaJ)—IoJ).
Notice that the thickness of the edges depends upon the size of the structuring element.
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Figure 4.8: The Effect of the Gray Scale Morphoplogical Gradient Using (a) a Square 3 x 3
Pixel Structuring Element and (b) a Square 5 x 5 Structuring Element.

Figure 4.8 illustrates the morphological gradient for the zebra image at two different scales.
Normed gradient operators such as the Sobel or normed gradient Gaussian operator tend
to introduce noise through quantisation error. That is they do not act naturally on integer
valued pixels but give real values which have to be rounded up or down. The morphological

operators do not introduce this sort of error.

4.1.2 Mutiple Scale Image Analysis

A gray scale image has a natural range of scales which run from the single pixel to the whole
image. Features present in the image can be enhanced or sometimes removed altogether
by a suitable choice of scale. A recent application of this idea uses wavelets to obtain a
resolution of an image into scales associated with a wavelet basis. A variant of the Canny
edge detector has been developed which detects edges at the different resolutions obtained
in this way, [39].

The resolution of an image at different scales does not depend upon a wavelet basis
and there has been considerable work on the scales defined by the standard deviation o

of the linear Gaussian filter. In fact the two concepts can be related through the Gabor
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wavelet, a Gaussian windowed sinusoidal wave, which in one dimension is defined by

2

9(z) = Glz) exp(~- ) expin

where G(z) = o~ /27~1/4 exp(—2?/20?) is the Gaussian function.

The morphological operators have scales determined by the structuring element. The
effect of varying this for the morphological gradient can be seen in Figure 4.8. One possible
refinement of the morphological gradient is to remove lower order contributions by erosion.
For example, if J is a structuring element such that ||J|| < ||J]| in some appropriate norm
then

ghH=(Us)-IeJ)eJ

is a morphological gradient from which the contribution from the structuring element J

has been eroded.

4.1.3 Geodesic Reconstruction

Even with the use of the multiscale morphological gradient the watershed algorithm still

gives considerable oversegmentation. To overcome this a further preprocessing step called

gray scale reconstruction, [52, 53], is applied to the gradient image.
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(d)

Figure 4.9: The Watershed Transformation Applied to the Morphoplogical Gradient on the
Zebra Image. Figure (a), still gives considerable oversegmentation. Figure (b) shows the
result of the watershed transformation after applying gray scale reconstruction. Figures
(c) and (d) are closeup sections of (a) and (b) respectively.

Gray scale reconstruction of an image involves the use of markers which are themselves
(usually disconnected) subsets of the image. For binary images the process identifies the
connected components of an image I which contain one or more pixels of a marker J. Thus

the reconstruction p;(J) of I defined by J is given by

pr(J) = Usnr,zolk

where Iy, I = UgI}, is a connected component of I.

We need an alternative definition which enables the connected components to be cal-
culated from a given marker if this is to be of any use practically. For digital images a
pixel either has four or eight neighbors, if we allow the pixels which are offset diagonally.
Thus we can define one of two natural metrics on a gray scale image depending upon the

connectivity. Let d;(x,y) denote the distance between the pixels z,y € Dy, using either
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of the two topologies. The geodesic dilation of size n is defined to be
(5§”)(J) ={pel:dip,J)<n}.

This can be obtained by iterating the elementary dilation n = 1, n times from which we

deduce that 5§j)(J) C 6§j+1)(J), 7 =0,1,.., where 6&0)(J) =J.

Figure 4.10: The Geodesic Dilation of the Marker J Inside a Connected Set I C R Using
the Euclidean Norm.

The relation between geodesic dilation and reconstruction is clearly seen from Figure
4.10. The reconstruction, that is the set of connected components of image [ with respect

to the marker J, is obtained by iterating elementary dilations until stability is obtained
pr(J) = U218 ().

The gray scale version of this binary reconstruction can be derived through the thresh-
old decomposition which we introduced in §4.1.1. Let I and J be gray scale images with
pixel values in {0, ..., 255}. Define J < I to mean that J(p) < I(p) at every point p € Dy.

Then the set theoretic definition of the gray scale reconstruction py(J) of I by J is given
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for every p € Dy by
pr(J)(p) = max{j € [0,255] : p € pr, (1) (T;(J))}.

The gray scale reconstruction extracts the peaks of the image which are labelled by
the marker. The diagram Figure 4.11 shows how this would work for continuous marker
function. Notice that essentially the extraction process drowns the neighborhood of a

maximum of the marker which is contained in the neighborhood of a maximum of the

image.

(b)

Figure 4.11: Gray Scale Reconstruction Using the Definition in the Text. Figure (b) results
from gray scale reconstruction of the image in Figure (a) by the marker J (the gray filled
contour). Figure (c) illustrates the flooding which occurs at each distinct gray level in the
reconstruction process.

Gray scale reconstruction can also be defined in terms of elementary geodesic dilations
which themselves are related to gray scale dilations. For this we need to introduce the
manemum A, and mazimum V, operators which generate images IAJ and IV J respectively.

They are defined at p € Dy by
IAJ(p) =min{I(p), J(p)} IV J(p)=max{I(p),J(p)}-
The elementary geodesic dilation 6}1)(J ) in the gray-scale case, J < I, is then given by

S =eB) AT
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where B is some gray scale structuring element. Thus the gray scale reconstruction of I

from J is obtained as a limit of elementary gray scale dilations,
p1(J) = Vaz18 ()

where 5§n) is the dilation obtained by iterating 5§1) n times. A dual formulation of gray
=4

scale reconstruction can be given in terms of geodesic erosions [52]. Thus the dual gray

scale reconstruction pj(J) of the image I from the marker J, I < J is given by

pi(J) = Anzre ()

(1)

where the elementary geodesic erosion ¢, ’ is given by
N =UeB)vI
7 = .

A regronal mazimum of a gray scale image is a connected component of pixels which
has a given value A such that all neighboring pixels have a lower value. Thus if we use
I — 1 as the marker then M(I) = I — p;(I — 1) is an image consisting of the regional
maxima. This definition is easily modified to result in an image consisting of the regional
maxima of a given height or pixel value. Another useful idea for image segmentation is the
h-dome which is a connected set of pixels in the image such that the difference between the
maximal and minimal pixels in the set is strictly less than h. Pixels in the neighborhood
of the h-dome have values stricly less than the minimal h-dome value. The h-dome image

Dy (I) of the h-domes is defined by
Dp(I) =1 = pi(I - h).
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4.2 Modifying the Watershed Transformation

Gray scale reconstruction preprocessing can considerably reduce the amount of overseg-
mentation which results from the watershed transformation. In this section though we
consider techniques which have been used to directly z;ttack the oversegmentation prob-
lem. Since the watershed transformation is applied to a gradient image, we have to consider
methods which either (i) amend the gradient image so that local minima only correspond
to the objects of interest in the image, or (ii) climinate the noisy or irrelevant contours so
that only contours of the target objects remain.

The first approach uses markers to locate the objects to be detected and also their
backgrounds, [49, 50], [41]. The method is dependent upon a way of identifying suitable
markers in the image.

The alternative approach aims at flooding neighboring catchment basins according to
some specified rules. The methods that have been developed for this are collectively called

region growing algorithms, [42], [50], [43], [36].

4.2.1 Markers

Once background and foreground markers have been obtained for an image the gradient
image is modified so that pixels belonging to the markers are given the value 0 and all
unmarked catchment areas are flooded. The watershed transformation is then applied to

the modified gradient image.

The main difficulty in this approach is how to define suitable markers for the image.
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If the image has objects which have well defined h-domes, such as light coloured particles
against a dark background, the problem is fairly straightforward since the h-domes can be
extracted and then thresholded to yield the markers. The zebra image is harder to handle
because the stripes are "feathered” along the neck. Therefore, we apply an opening-by-
reconstruction operation followed by a closing-by-reconstruction operation which removes

many of the extreme local variations from the image.

(a)

Figure 4.12: Gray Scale Reconstruction by Opening and Closing. In (a) the eroded zebra
image is used as the marker in the reconstruction. Figure (b) is the gray scale reconstruc-
tion of image (a) using the marker obtained from it by dilation.

Figure 4.12(a) illustrates opening-by-reconstruction applied to the zebra image. The
marker in this case i1s the image resulting from the erosion of the zebra image using a 3 x 3
square pixel structuring element. Figure 4.12(b) is the result of closing-by-reconstruction
applied to 4.12(a). In this case the marker is obtained from dilation applied to (a) using
a 3 x 3 square pixel structuring element.

Now that most of the trivial detail has been eliminated from the image we can try to
locate the regional maxima using the method of subsection 4.1.3. This should locate most
of the stripes of the zebra since it can be seen from Figure 4.12 that most of them contain
regional maxima. Unfortunately, the unstructured background also has a lot of maxima
and so we are unlikely to get a good segmentation this way. Figure 4.13 shows the result
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(a)

Figure 4.13: The Markers for the Zebra Image. Figure (b) shows the markers in (a)
superimposed on the zebra image.

of this process. This figure seems to be the best that we can do. A smaller structuring

element gives too many maxima, whereas larger structuring elements give to few.

(a)

Figure 4.14: The Background Markers for the Zebra Image. Figure (a) is the thresholded
image used to obtain the background markers in (b).

The markers for the background suffer from similar problems. Thresholding the image
should give mainly the background pixels but Figure 4.14(a) shows that the background
cannot be entirely selected using this approach. Figure 4.14(b) shows the crest lines that
are going to be used as the background markers. They are in fact the SKIZ (skeleton by
influence zones) of the binary image in (a). This can be obtained by first computing the
distance transform of (a) and then using the watershed transform to get the crest lines.
The markers arc then incorporated into the gradient image so that they are the regional

minima. The watersheds obtained by this process are displayed in Figure 4.15(a). Figure
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4.15(b) shows the superposition of the watersheds on the zebra image.

Figure 4.15: The Watersheds for the Zebra Image Obtained from Markers. In Figure (b)
the watersheds in (a) are superimposed on the zebra image.

4.2.2 Region Growing

This method is particularly useful if it is very difficult to derive suitable markers from
an image. It also raises the possibility of a technique which can be applied automatically
without the detailed user interaction necessary for the generation of markers. The approach
starts from the gradient image and aims at the removal of the irrelevant contours from

the gradient image watersheds. A minimum £ in the normed gradient image is a set of

pixels contained in some open ball of I which have the same gray scale value within some
given tolerance (remember the normed gradient produces real gray scale values). Each
minimum is contained in a catchment basin By which is bounded by a curve along which

the normed gradient is a maximum. Within the region Ry so defined a common gray scale
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(c)

Figure 4.16: The (a) Minima and (b) Mosaic Image Associated with the Zebra Image.
Figure (c) are the watersheds obtained from the morphological gradient using a 3 x 3
square structuring element. Figure (d) shows the watersheds imposed on the zebra image.

value is assigned to all the pixels. This is chosen so that it is related to the gray values of
the original image. For example, the value could be chosen to be the average gray level of
the original image within the bounded region. A common choice for the gray scale value
in Cy is inf{I(p) : p € £}. If the morphological gradient is used instead then the pixels
belonging to £ have the same gray scale value.

This process is repeated for every minimum in I. The resulting image I(!) is called
the mosaic image. This is an image with a simplified set of gray values, see Figure 4.16.
The process can be iteratively repeated. The mosaic image I(?) for example is obtained
by deriving the normed gradient image of I!) and deriving its mosaic image.

The iterative generation of mosaic images has a graph theoretic interpretation. In the
literature this idea first appears in Rosenfeld’s papers [45, 46]. Recent work involves the
concept of topological watersheds. Essentially, the idea is to retain the connectivity of the
image throughout the process described above. Thus if two pixels of the original image are

separated by a crest, they remain separated by a crest of the same height in the mosaic.

The condition that this should be the case is that the mosaic arises through a topological
thinning, [43], [35], [36].

33



4.3 Rainfalling and Immersion: A Comparison

There are many variants of the the two basic watershed transformation algorithms. Most
of them incorporate a version of region growing as part of their processing. In this section

we discuss two variants of the transformations which were introduced in Chapter 3.

4.3.1 A Modified Immersion Watershed Algorithm

The sorting step divides the domain of the normed gradient image G = G(I), (or the

morphological gradient image) D = Dg 7y into disjoint level sets
Dp={pcD:G(p)=h}.

It is convenient, as usual, to consider that the gray scale values of all images belong to
[0,255] C Z. Starting at level 0 catchment basins are each uniquely labelled at the altitude
at which they first appear. At level h the catchment basins detected to level A — 1 will
therefore all have been assigned labels. The following are the new possible connected

components which can arise in the level h classification.

Type-1 component: A connected level A component which is not connected to any com-

ponent of level less than A.

Type-2 component: A connected level h component which is connected to precisely one

catchment basin of altitude less than h.

Type-3 component: A connected level h component which is connected to more that one
catchment basin of altitude less than h.

84



When flooding raises the level of the water from level b — 1 to level h, we sce that
each of these components has the following interpretation. A type-1 component is a new
minimum at this level and therefore defines a new catchment basin. It must be assigned
a new label. A type-2 component is flooded by the single catchment basin to which it is
connected and so acquires the same label as this basin. Finally, for a component of type-3,
the water rising from the several catchment basins to which it is connected will meet along
watershed curves.

The standard implementation of the immersion watershed algorithm recognises three
classes of pixels. The relation between them and the types of component at level h is also

depicted in Figure 4.17.

class 2 pixels

type -3 component

(a_,) watershed curves (b)

Figure 4.17: The Relation Between the Connected Components of Level h. Figure (a)
illustrates the three different type of component which can occur. Figure (b) shows the
relation between the pixel and component classification.

Class-1 pixel: Let h,,(p) = min{G(q) : dg(q,p) = 1}. Then p € Dj, is in class-1 if

G(p) > hmin(p). They for example lie on the descending edges of plateaus.

Class-2 pixel: A pixel p € Dy, belongs to this class if it is contained in either a type-1 or

type-2 component, but is not of class-1. Class-2 pixels for example lie in the interior



of extended plateaus.
Class-3 pixel: A pixel p € Dy, that belongs to a type-0 component is in this class. A pixel
in class-3 has to be assigned a new label.
A possible ambiguity arises in the Vincent and Soeille algorithm [50], when flooding pixels
in Dy,. This occurs when the treatment of some class-1 pixels is considered. If the lower
neighbors of the pixel have the same label then this pixel is given the same label. However,
it is possible that the lower neighbors have different labels. To avoid introducing a bias
into the segmentation process the authors of [38] introduce a new label ridge which is used
to give the pixel a unique value. The modified algorithm is then order-invariant as the

watersheds do not depend upon the order in which neighboring pixels were processed.

4.3.2 A Modified Rainfalling Algorithm

The rainfalling algorithm can also be modified to take care of ambiguities which arise in
the labelling of class-1 pixels. The pseudocode for the basic rainfalling algorithm, which

is called tobogganing in [38], is given as follows.

Step 1 Simulation of sliding: Record all the steepest descent directions
for all class-1 and class-2 pixels in D.
Step 1.1  Simulate steepest descent sliding for each of the class-1
pixels in D by storing the lowest neighbors in a list. Push
onto a FIFO queue as the seeds for region growing in step 1.2
Step 1.2 Simulate keep-sliding for all class-2 pixels in D) by region

growing from class-1 pixels (using the FIFO queue in Step 1.2).
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Step 2 Label all the class-3 pixels since they are the bottoms
of new catchment basins.

Step 3:  Steepest descent step: Assign a label to the unlabelled pixels
(class-1,-2), by steepest descent (tobogganing) and then

backtracking using a depth first search.

This algorithm too can be made order invariant by introducing the ridge label for the
ambiguous pixels in Step 3. The authors of [38] claim that the two invariant watershed
algorithms for immersion and rainfalling produce the same watersheds. However, we have
noticed a subtle, but distinct difference in the watersheds for the zebra image produced
by the two methods. The introduction of the ridge label which renders the algorithms

invariant also seems to produce more plateaus in the watersheds than the variant versions.

4.4 Summary

The discussion of the Watershed Transformation which has been given in the thesis only
touched on many of the recent developments, such as topological watersheds [36]. There are
also innovations which lie beyond the scope of this thesis, such as watersnakes which derive
the watersheds as the minima of an energy function defined in terms of the topographical
distance function, [44].

The approach using markers to obtain the desired segmentation does not seem to work
very well on images for which the background and foreground of an object is not clearly

delineated. It is possible that the topological watersheds may lead to an effective method
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for handling these cases, but at the moment the region growing algorithms do not handle

this situation very well either.

Figure 4.18: The Segmentation of the Zebra Using the Modified Multiscales Gradient (4.1).
Figure (a) h = 10, and (b) h = 50.

It might appear that deriving markers from the normed or morphological gradient
should lead to an improvement in the generation of markers. However, we were unable to
get any significant improvement this way. An approach which uses a threshold combined
with several morphological scales produced much better results for the zebra image. This

form of the gradient was introduced by Wang, [54]. It is given in terms of the operator,

g(I) =

W =

3
NIes-10J)eJ]
=1

where (J;) is a square (2i+ 1) X (20 + 1) structuring element. Thus it is an average over the
morphological gradients at three different scales with the contribution from a finer scale
eroded. Small local minima are eliminated by dilating with a 2 X 2 structuring element B.

The final form of the operator is
G(I)=6(I)® B+ h. (4.1)

The constant h controls the number of segmentation regions. The larger h the fewer

segmentation regions. Figures 4.18, and Figure 4.19 show some of the results obtained in
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this way.

Figure 4.19: The Segmentation of the Zebra Using the Modified Multiscales Gradient (4.1).
Figure (a) h = 110, and (b) h = 250.
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Chapter 5

Watershed Transform and Non-Morphological Processing

In addition to the methods discussed in chapter 4, there are other ways of analyzing the
watersheds obtained in the Zebra image. One way is to resolve the watershed image
in a wavelet basis and then look at each resolution or level information in the whole
band/spectrum of the images in the basis. The theoretical basis of such a proposition is
presented in the beginning of this chapter. But because of the time constraint we plan to
experiment with it later. One other way can be to have different preprocessed treatments of
the Zebra image with a smoothing operator and then apply the watershed transform on the
images, thus, obtained. We tried this by using a Gaussian and a Laplacian operator with
varying values of sigma or the standard deviation. The results of this experiment have been
documented and analyzed in this chapter. Postprocessing treatments of the watersheds
also reveal interesting features in the Zebra image. For example, the Canny operator can
be applied on the Watershed Transform of the Zebra. This helps to visualize the link
between the closed contours of the watersheds with the preservation of the true edges.

One is forced to think of such a relation because, eventhough, Watershed Transform has
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a firm theoretical basis its implementation is marred with problems. One reason for such
a school of thought is that the results obtained from the rainfalling method are different
from those obtained by the immersion method. It is for this reason that one is tempted to
prefer the Canny operator against the Watershed Transform. The experimentation with
various pre- and postprocessing techniques is performed to shed more light on how the

watersheds behave with respect to a variety of factors or operators.

5.1 Multiresolution

Pixel is the smallest element that the display or print hardware and software can ma-
nipulate to create letters, numbers, or graphics. Resolution determines the amount of
information that appears on the screen, measured in pixels. A low resolution of, say,
640 x 480 makes items ou screen appear large, although the screen area is small; while
a high resolution of, say, 1024 x 768 makes overall screen area large, although individual
iterns appear small. Multiresolution can then be thought of as representation and analysis
of signals and images at more than one resolution. Performing a multiresolution analysis
(MRA) helps identify features at a resolution that might go undetected at other levels or

scales of resolution. [15, 13] provide a detailed treatment of this concept.

5.1.1 Multiresolution and Image Compression

MRA requires the use of a scaling function to create a series of approximations of a function
or image, each differing by a factor of 2 from its nearest neighboring approximations. To
create a sequence or a link between these neighboring approximations additional functions
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are needed that allow storage or encoding of the difference in information between adja-
cent approximations. These additional functions can be fourier series approximation, or
wavelets. Wavelets are popular because both frequency and time scales can be associated
with it and images can be compressed by mapping them with wavelets of varying frequency
and limited duration. This stage called the image compression, therefore, contains all the
information regarding the image. In contrast, the fourier series use sinusoids for approx-
imations, and only the information pertaining to the frequency can be transmitted well,

while that regarding the time is lost [13].

5.1.2 Multiresolution and Watershed Transform

A practical problem in realizing the goals of Watershed Transform is that of oversegmenta-
tion due to noise. When a boundary detection procedure, like the Watershed Transforin, is
applied on an image such an oversegmentation results in the appearance of unwanted edges
in the watersheds. Applying Watershed Transform at different scales and then retrieving
the one which has contours closest to the original image can help minimize oversegmenta-
tion and maximize the probability of getting optimal results. One is looking for the result
whose intersection set with the original image has the maximum number of elements.
This is the motivation for using the multiresolution analysis in close conjuction with the
Watershed Transform.

The inherent properties of an image are its contrast, brightuess, sharpness, and the
color resolution. To detect boundaries in a high resolution image one can use either

edge detection or the watershed transform. But to resolve a low resolution image for
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its boundaries watershed transform provides appreciable results when applied at high

resolutions.

5.1.3 The Mathematical Foundation

The concept of multiresolution analysis is based on sequences V;,, of subspaces which ’live’
on a uniform structure generated by shift-invariance principles and dyadic dilation. These
auxiliary spaces are spans of scaling functions of levels less than or equal to n such that
a discretization can be solved efficiently, say, by preconditioned iterative methods, with
the precondition inherited from the generating system, or frame, consisting of scaling
functions.

The following definitions help characterize and theorize the concept of Multiresolution
Analysis. These follow from [32], [33], [35].

Definition: An Orthonormal Wavelet is a function 1 € 1.2(R) such that the doubly
indexed set {27/%4)(27t — k)}; xcz is an orthonormal basis of L*(R).

Definition: A Multiresolution analysis (M RA) is an increasing sequence of subspaces

{V,.} C L2(R) defined for n € Z with
LVaacVec Ve ...
together with a function ¢ € L2(R) such that
1L UpZ o Vais dense in Lo(R), Npe oo Va={0}
2. feV,ifand only if f(27") € V}

3. {¢(z — k) }kcz is an orthonormal basis of Vj
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¢ is called the scaling function of the M RA. Vj is uniquely defined by ¢ through (3), and
V.. is uniquely determined by (2). Also, ¢ need not be unique and a given family {V,}

may have several different choices of ¢.

5.2 Multiscale Analysis

The core of image processing and analysis techniques utilizes the image edge information
stored in its gradient. By finding a local measure for the contrast of an image at different
scales, it is less likely that the existing or the inherent noise will be missed. Thus, applying
multiscale techniques to images helps describe and, thereby, extract the actual image
edges. The use of wavelet transform to achieve compression, noise-reduction, enhancement,

classification, and segmentation of gray scale images can be seen in {13, 17].

5.2.1 Edge Representation

When an image is read-in, the first thing to be done is to break-up the related information
about the pixels and store it in a certain format. This constitutes image decomposition.
The method chosen for image decomposition plays a crucial role in providing pixel level
information which helps describe the edge pixels.

Let I(z,y) be an image with components I,,(z,y),n=1,..., N. Thus, at a given point
the value of I is an N-dimensional vector. The gradient of I is given by the following

differential {31].
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Its squared norm can be found as below

oI oI \?
dN? = { “2dz + =-d
(af) (3x SRy y)
oIr\* ., 9IdI oI oI aIN?*
= (=) — Zdedy + —~ =—dzd —1| 5.1
<8m> (dz) +axay*“azayly+<ay> (dy) (51)
dz
dI)? = [ aIN2 aI al E) 2
(dl) () do+ 28Lay Zoldu+ (8) dy
dy
(ﬂ)2 o1 31 dx
dx 8z dy
= | dx dy (5.2)
2
al a1 al
dz Oy (%) dy
Its squared norm is given by
' \
dx [ 9212 ggg_; dx
(dI)* =
dy TN | dy
T
2
dx S (%) Nonte || de
- (5.3)
2
dy > 9t 5 (%) dy

It is this quadratic form that is called the first fundamental form. In [15], Scheunders
proposes that the multimodal edge information is reflected by the eigenvectors of the 2 x 2
matrix in the first fundamental form. These eigenvectors denote the maximal and the
minimal change. The eigenvalues of the above equation describe the rates of change in a
multimodel image. For a gray level image (N=1), the largest eigenvalue is the squared
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gradient magnitude itself as given below, while the other eigenvalue is sero.
2
A= VIl

The corresponding eigenvector lies in the direction of the maximal gradient. Thus, the
underlying idea is that if Ay £ Ag, then the eigenvectors can be uniquely oriented in simply
connected regions. If A} 3> Ao, then the gradients of all bands are more or less in the same

direction; while if Ay &= A9 then there is no preferred direction.

5.2.2 The Dyadic Wavelet Transform

The non-orthogonal discrete wavelet frames introduced by Mallet are useful in describ-
ing the wavelet transform. Let 6(z,y) be a 2 — D smoothing function. Suppose 9 is

differentiable, then we can define

06(x
1/)1(1"7 y) = _E().E’ yl
and
a90(z, 1
Wa,y) = 200
Y

The Wavelet Transform of a gray level image I(z,y) is then given by
Dy(z,y) =1 * ¢5(z,y)

and
Di(z,y) = I+ ¢ (z,y)
where * denotes the convolution operator and

o) = 50 (1Y)

S 8
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and
Wiy = 59 (51)
denote the dilations of the functions ¢, and s = 27, j = 1,...,d is the scale parameter.
This d is the depth of the dyadic wavelet transform. D%j and ng contain the horizontal and
the vertical details of I at scale j. Substituting the expressions in the Wavelet Transform
and simplifying gives
Déj . % (I % 855) '
=2 = 20V (I % 64) (5.4)
DL, 2 (I 6y)
Thus, the wavelet transform of a gray level image has the gradient components of the

image, smoothed by the dilated smoothing function 6,;.

5.3 Watershed Transform and Images

The following are the results of applying the Watershed Transform on the images of zebra,
butterfly,and the fern. Watershed Transform was directly applied on the images without

any preprocessing and the following results were obtained.
5.3.1 Experimentation
The following is the algorithm used for the purpose of experimenting with the Zebra Image.

1. Convert the color Zebra image to gray scaled Zebra image

2. Apply Gaussian smoothing using a range of values for standard deviation (o)
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(a) for each ¢ find the 4-connected watersheds and update its image sequence
(b) for each o find the 8-connected watersheds and update its image sequence

(¢) for each o find the Canny edges and update its image sequence

3. Apply Laplacian smoothing using a range of values for standard deviation
(a) for each o find the 4-connected watersheds and update its image sequence
(b) for each o find the 8-connected watersheds and update its image sequence

4. find intersection of the images in each image sequence

5.3.2 The Matlab Psuedo-Code

The following is the Matlab code used for generating image sequences scaled by the stan-
dard deviation. Intersection of cach sequence of image was performed within itself to
identify minimal feature detection. These features were identified at each scale. This aids
in understanding the edges in the scaled Zebra image.

A similar code was used to find the intersections of all the image sequences written out

to their cell matrices.

5.3.3 Watershed Transform on Zebra Without Any Preprocessing

The results of the Watershed Transform on the gray scaled images of the Zebra, the
butterfly, and the ferns can be seen in Figure 5.1. It is obvious to the naked eye that the

butterfly and fern are oversegmented.
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Table 5.1: Matlab Psuedocode for Experimenting with the Zebra Image
1. Read an Image from a File
I = imread(’c:\zebraedges\zebra’,’jpg’);
global I_gray;
Convert the image into a grayscale image:
I_gray = rgb2gray(I);
[m nl= size(I_gray);

2. Perform Gaussian Smoothing on the image for a range of values
The filter used is a rotationally symmetric Gaussian lowpass
filter of size h which is a 3X3 matrix and standard deviation sigma.
sig = 0.1; j=1;

I_Gauss = cell(1,5);

1_4WSG = cell(1,5);

I_8WSG = cell(1,5);

I_CANNY = cell(1,5);

I_Canny_Intersect = ones(m,n);

I_4WG = ones{(m,n);

I_4WG1 = ones(m,n);

for i = 1:1:5
if (sig <= 300)

hi = fspecial(’gaussian’, [7 7], sig);

I_gauss = imfilter(I_gray, hl, ’replicate’, ’conv’);

I_Gauss{1,i} = I_gauss;

I_4ws = watershed(I_gauss);

I_4WSG{1,i} = I_4ws;

[p ql= size(I_4ws);

I_8ws = watershed(I_gauss, 8);

I_8WSG{1,i} = I_8ws;

I_canny = edge(I_gauss,’canny’);

I_CANNY{1,i} = I_canny;

for a =1:1:m

for b = 1:1:n
if I_Canny_Intersect(a,b) == I_canny(a,b)

I_Canny_Intersect{a,b) = I_canny(a,b);

else I_Canny_Intersect(a,b) = 0;
end

end

end
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figure, imshow(I_gauss)
figure, imshow(I_canny)
figure, imshow(I_4ws)
figure, imshow(I_8ws)
figure, imshow(I_Canny_Intersect)
I_canny_final = edge(I_Canny_Intersect, ’canny’);
figure, imshow(I_canny_final)
sig = sig + (1.5)7j;
else output(’Sigma is more than 300’)
end
end

3. Take the Laplacian of the image and apply the Watershed Transform

j = 0.05;

I_Laplacian = cell(1,10);

I_4WSL = cell(1,10);

I_8WSL = cell(1,10);

I_ws4 = ones(m,n);

for i 1:1:10

if j<=1.0
h3 = fspecial(’laplacian’, j);
I_laplacian = imfilter(I_gray, h3, ’replicate’, ’conv’);
I_4wsL = watershed(I_laplacian);
I_8wsL = watershed(I_laplacian, 8);
I_Laplacian{1l,i} = I_laplacian;
I_4WsL{1,i} = I_4wsL;
I_8WSL{1,i} = I_8wsL;
j =3+ 0.05;
figure,imshow(I_laplacian)
figure,imshow(I_4wsL)
figure,imshow(I_8wsL)
end
end
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4. This code helps find Intersection of Gaussian-Smoothed Images.
[m nl= size(I_gray);
I_IntersectG = ones(m,n);
for j = 1:1:m
for k = 1:1:n
if I_Gauss{1,1}(j,k) == I_Gauss{1,2}(j,k)
if I_Gauss{1,2}(j,k) == I_Gauss{1,3}(j,k)
if I_Gauss{1,3}(j,k) == I_Gauss{1,4}(j,k)
if I_Gauss{1,4}(j,k) == I_Gauss{1,5}(j,k)
I_IntersectG(j,k) = O;
else I_IntersectG(j,k) = 1;
end
end
end
end
end
end
figure,imshow(I_IntersectG)

5. This code helps find Intersection of 4-Watersheds in Gaussian-Smoothed
Images.
Rescale all grayvalues to the range: 0-255
T_4WSG1 = cell(1,5);
for i = 1:1:56
I_WSG1 = I_4WSG{t,i};
val = 255./(max(I_WSG1(:))-min(I_WSG1(:)));
for x=1:1:337
for y=1:1:503
I_WSG1(x,y)=I_WSG1i(x,y).*val;
end
end
I_4WSG1{1,i}=I1_WSG1;
end

I_IntersectGWS4= zeros(337,503);
for k = 1:1:503
for j = 1:1:337
if I_4WSG1{1,1}(j,k) == I_4WSG1{1,2}(j,k)
if I_4WsG1{1,2}(j,k) == I_4WSG1{1,3}(j,k)
if T_4WSG1{1,3}(j,k) == I_4WwSGi{1,4}(j.k)
if I_4WSG1{1,4}(j,k) == I_4WSG1{1,5}(j,k)
I_IntersectGWS4(j,k) = 1;
end
end
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end
end
end
end
figure,imshow(I_IntersectGWS4)

6. This code helps find Intersection of 8-Watersheds in Gaussian-Smoothed
Images.
Rescale all grayvalues to the range: 0-255
I_8WSG1l = cell(l,5);
for i = 1:1:5
I_WSG1 = I_8WSG{1,i};
val = 255./(max(I_WSG1(:))-min(I_WSG1(:)));
for x=1:1:337
for y=1:1:503
I_WSG1(x,y)=I_WSG1(x,y).*val;
end
end
I_8WSG1{1,i}=I_WSG1;
end

I_IntersectGWS8= zeros(337,503);
for k = 1:1:503
for j = 1:1:337
if I_8WSG1{1,1}(j,k) == I_8WSG1{1,2}(j,k)
if I_8WSG1{1,2}(j,k) == I_8WSG1{1,3}(j,k)
if I_8WSG1{1,3}(j,k) == I_8WSG1{1,4}(j,k)
if 1_8WSG1{1,4}(j,k) == I_8WSG1{1,5}(j,k)
I_IntersectGWS8(j,k) = 1;
end
end
end
end
end
end
figure,imshow(I_IntersectGWS8)
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7. This code finds the intersection of Laplacian-smoothed images
[m n]l= size(I_gray);
I_IntersectlL = ones(m,n);
for j=1:1:m
for k= 1:1:n
if I_Laplacian{1,1}(j,k) == I_Laplacian{l,2}(j,k)
if I_Laplacian{1,2}(j,k) == I_Laplacian{1,3}(j,k)
if I_Laplacian{1,3}(j,k) == I_Laplacian{1,4}(j,k)
if I_Laplacian{1,4}(j,k) == I_Laplacian{1,5}(j,k)
I_IntersectL(j,k) = 0;
else I_IntersectL(j,k) = 1;
end
end
end
end
end
end
figure,imshow(I_IntersectL)

8. This code finds Intersection of 4-Watersheds in Laplacian-Smoothed
Images.
Rescale all grayvalues to the range: 0-255
I_4WSLi = cell(1,10);
for i = 1:1:10
I_WSL1 = I_4WSL{1,i};
val = 255./(max(I_WSL1(:))-min(I_WSL1(:)));
for x=1:1:337
for y=1:1:503
I_WSL1(x,y)=I_WSL1(x,y) .*val;
end
end
I_4WSL1{1,i}=I_WSL1;
end

I_IntersectLWS4= zeros(337,503);
for k = 1:1:503
for j = 1:1:337
if T_4WSL1{1,1}(j,k) == I_4WsSL1{1,2}(j,k)
if I_4WSL1{1,2}(j,k) == I_4WsL1{1,3}(j,k)
if T_4WSL1{1,3}(j,k) == I_4WSL1{1,4}(j.k)
if I_4wWsL1{1,4}(j,k) == I_4WsL1{1,5}(j,k)
if I_4WSL1{1,5}(j,k) == I_4WSL1{1,6}(j,k)
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if Y_4wsL1{1,6}(j,k) == I_4WSL1{1,7}(j,k)
if I_4WSL1{1,7}(j.k) == I_4WSL1{1,8}(j,k)

if I_4WSL1{1,8}(j,k) == I_4WSL1{1,9}(j,k)

if T_4WSL1{1,9}(j,k) == I_4WSL1{1,10}(j.k)
I_IntersectLWS4(j,k) = 1;
end
end
end

end

end

end
end
end
end
end
end
figure,imshow(I_IntersectLWS4)

9. This code finds Intersection of 8-Watersheds in Laplacian-Smoothed
Images.
Rescale all grayvalues to the range: 0-255
I_8WSL1 = cell(1,10);
for i = 1:1:10
I_WSL1 = I_8WSL{1,i};
val = 255./(max(I_WSL1(:))-min(I_WSL1(:)));
for x=1:1:337
for y=1:1:503
I _WSL1(x,y)=I_WSL1(x,y).*val;
end
end
I_8WSL1{1,i}=I_WSL1,;
end

I_IntersectLWS8= zeros(337,503);
for k = 1:1:503
for j = 1:1:337
if T_8WSL1{1,1}(j,k) == I_8WSL1{1,2}(j,k)
if I_8WSL1{1,2}(j,k) == I_8WSL1{1,3}(j,k)
if I_8WSL1{1,3}(j,k) == I_8WSL1{1,4}(j,.k)
if I_8WSL1{1,4}(j,k) == I_8WSL1{1,5}(j,k)
if I_8WSL1{1,5}(j,k) == I_8WSL1{1,6}(j,k)
if I_8WSL1{1,6}(j,k) == I_8WSL1{1,7}(j,k)
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if I_8WSL1{1,7}(j,k) == I_8WSL1{1,8}(j,k)
if I_8WSL1{1,8}(j,k) == I_8WSL1{1,9}(j,k)
if I_8WSL1{1,9}(j,k) == I_8WSL1{1,10}(j,k)
I_IntersectLWS8(j,k) = 1;

end
end
end
end
end
end
end
end
end
end
end
figure,imshow(I_IntersectLWS8)

(¢)

Figure 5.1: Watershed Transform Without any Pre-processing on (a)the Zebra, (b)the
Butterfly, and (c)the Ferns
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5.3.4 Watershed Transform on Zebra after Convolving with a Gaussian

Filter

Following results were obtained after convolving the butterfly with a Gaussian filter of
width [7 7] and varying sigma values of 0.1, 1.6, 2.35, 3.475, and 5.1625. The results can

be seen in Figure 5.2.

Figure 5.2: The Zebra after Gaussian Smoothing with (a)o=0.1, (b)o=1.6, (c)o=2.35,
(d)o=3.475, and (e)o=5.1625
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The results of applying the Watershed Transfomation on the above gaussian simoothed
Zebra images can be seen in Figure 5.3.

The loss of edges is evident with increase in the value of o.

o
N !,‘
%ﬁﬁi’{ﬁn

Figure 5.3: Watershed Transform Using 4-connectivity on the Zebra after Gaussian
Smoothing with (a)o=0.1, (b)o=1.6, (¢)0=2.35, (d)0=3.475, and (e)0=>5.1625
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5.3.5 Watershed Transform on Zebra after Preprocesing with a Lapla-

cian Filter

In this third experimentation the images were convolved with a laplacian filter of size 0.05,

0.2, 0.3, 0.4, and 0.5 value. The results obtained can be seen in Figure 5.4. The results of

(a)

(¢)

Figure 5.4: Laplacian Operator Applied on the Zebra Image with Size: (a)0.05, (b)0.2,
()0.3, (d) 0.4, and (e) 0.5

applying the Watershed Transform on the Laplacian treated Zebra images can be seen in
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Figure 5.5. One can see improvement in the edges related to the Zebra with increase of

the size of a laplacian operator. For example, see the Zebra hooves.

Figure 5.5: Watershed Transform Using 4-connectivity on the Zebra After Treating it with
a Laplacian of Size (a)0.05, (b)0.2, (c)0.3, (d) 0.4, and (e) 0.5
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5.3.6 Canny Edge Detector Applied on the Zebra Image after Gaussian

Smoothing

Canny edges in the Zebra image can be seen in Figure 5.5. It is evident that by incrcasing
the sigma values of the Gaussian filter from 0.1, 1.6, 2.35, 3.475, to 5.1625 again leads
to a loss of edges. The edge-based linking method is a very powerful technique. One is

tempted to prefer it over other edge detecting procedures.

Figure 5.6: Canny Edge Detector on the Zebra After Gaussian Smoothing with (a)o=0.1,
(b)o=1.6, (c)o0=2.35, (d)0=3.475, and (e)oc=5.1625
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5.4 The Consensus Image

The Zebra image is processcd using the watershed and the various edge detection pro-
cedures in Image Processing Toolbox of Mathlab 7.0.1. The edge detection procedures

applied to the images are those described in Chapter 2.

5.4.1 Intersection Operator

Operations of union and intersection of a set of images allows one to explore features

common to the whole set of images. Recognition of patterns using fuzzy sets is seen in[60].

5.4.2 Intersection of the Zebra Images

Using Matlab, the gaussian smoothing and the laplacian operator were applied on the
Zebra image and an array of images was generated. These were stored in a cell array
structure so that they can be accessed easily. Then the Watershed Transform was applied
to these images which were again stored in a separate cell array. These were successively
accessed to determine the intersection of all images in a given cell array. The result can

be seen in Figure 5.7.

5.4.3 Intersection of the Canny Image Set of the Zebra

The intersection of the Canny edges obtained in Figure 5.5 can be seen in Figure 5.8.
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(a)

Figure 5.7: Intersection of 4-connected Watershed Transformed Zebra Images Preprocessed
with (a) the Gaussian, and (b) the Laplacian Operator

Figure 5.8: Intersection of Canny Edges in the Zebra Preprocessed with the Gaussian

Filter
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5.9 Summary

The Watershed Transform applied on a sequence of Gaussian-Smoothed images shows
how features appear and disappear at different scales which pertain to differing values of
variance used to generate them. The same can be seen when Laplacian operator was used
in place of Gaussian. The above treatments were repeated by using Canny operator in
place of the Watershed Transform. The results show that the Canny operator captures
the edges in the Zebra more effectively, when compared to the Watershed Transform.
Watershed Transform is, theoretically, a very effective technique and is excellent in
capturing just about all the edges in an image. But when it comes to relating the edges to
the desired features, it fails to some extent. The various preprocessing, and postprocessing
techniques were tried out in an attempt to understand where and what exact treatment
can help improve the watersheds. An intersection of the watershed images from the set of
gaussian- and laplacian-treated Zebra image goes on to prove that two procedures do not

ald in comparing the edges of the Zebra as a whole.

113



Chapter 6

Conclusion

This thesis takes a look at the various techniques that aflect the results of the Watershed
Transform on the Zebra image. The key operators studied and experimented with are the
Morphological, the Gaussian, and the Laplacian operators.

Chapter 4 provides an insight as to the effect of the morphological operators on the
image and hence aids in improvizing the Watershed Algorithm itself. This also helps in
better ordering the techniques or the operators that one would need in order to study or
extract the features or objects of interest.

Chapter 5 takes a look at the gaussian and the laplacian smoothing of the Zebra image
and how the watersheds are affected. One can see that in these image sequences the details
appear and disappear with the varying degrees of smoothness. In particular, small features
are lost at lower levels of smoothing while large features are lost at higher levels. This
implies that the degree of smoothing can be linked to the size of a feature or an object in
an image. 5o, by looking at the whole spectrum of imnages in an immage sequence oue can

identify the image/s which are more informative, and hence the level of the scaled-space
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used to replace the original image.

The Watershed Transform is applied to the preprocessed Zebra image. A very careful
extraction of the Zebra edges is shown in Chapter 4 which proves that the process is less
automatic and requires user intervention for a particular feature extraction. Chapter 5
attempts to automate the process but in doing so one is caught at the level or levels into
which the feature is contained. This again warrants manual intervention for a feature
study.

All the above suggest that even though the Watershed Transform is efficient in detecting
closed boundaries, user-intervention is inevitable to make these contours more meaningful.
One major reason for this is the problem of oversegmentation in the watershed results
which we try to minimize by experimenting with different operators.

The use of wavelets and a scale-space to represent an image [61] and then study the
watersheds therein is gaining popularity. Because of the time constraint this needs to be

pursued in a future research.

115



References

[

(9]

(10]

(11]

[12]

J.B.T.M. Roerdink, and A. Meijster, The Watershed Transform: Definitions, Algo-
rithms, and Parallelization Strategies, in Fundamentae Informaticae 41(2000) 187-228,
10S Press.

S. Buecher, and F. Meyer, The Morphological Approach to Segmentation: The Wa-
tershed Transformation, In Mathematical Morphology in Image Processing, E.R.
Dougherty, ED., Marcel Dekker, New York, 1993, ch. 12, pp. 433-481.

Rafael C. Gonzalez, and Richards E. Woods, Digital Image Processing, Second Edi-
tion, Prentice Hall, Upper Saddle River, New Jersey 07458.

Laurent Najman, and Michel Schmitt, Watershed of a Continvous Function, in Signal
Processing 38 (1994) 99-112.

Laurent Najman, and Michel Schmitt, Geodesic Saliency of Watershed Contours and
Hierarchical Segmentation, in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 18, no. 12, December 1996, pp. 1163-1173.

Jaesang Park, and James M. Keller, Snakes on the Watershed, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 23, no. 10, October 2001.

Fernand Meyer, Topographic Distance and Watershed Lines, in Signal Processing, Vol.
38, 1994, pp. 113-125.

Francis Friedlander, Fernand Meyer, A Sequential Algorithm for Detecting Watersheds
on a Gray Level Image, in ACTA Sterol 1987; 6/I1I: 663-668, PROC ICS VII CAEN
1987, original scientific paper.

Stanislav L. Stoev, and Wolfgang StraBer, Eztracting Regions of Interest Applying a
Local Watershed Transformation, in PROC IEEE Visualization 2000, 8-13 Oct 2000,
Salt Lake City.

P. Smet, and R.L. Pires, Implementation and Analysis of an Optimized Rainfalling
Watershed Algorithm, Internal Report TELIN/IPI (TWO7V), University of Ghent,
available at http://telin.rug.ac.be/ipi/watershed/.

D. Vleeschauwer, P. Smet, F. Cheikh, R. Hamila, M. Gabbouj, Optimal Performance
of the Watershed Segmentation of an Image Enhanced by Teager Energy Driven Dif-
fusion, internal report TELIN/IPI, University of Ghent, Belgium.

P. Scheunders, Multiscale Fundamental Forms: o Multimode Image Wavelet Represen-

tation, Vision lab, Department of physics, University of Antwerp,Groenenborgerlaan
171, 2020 Antwerp, Belgium, scheun@ruca.ua.ac.be.

116



[13]
(14]
[15)

[16]

Richard M. Beam, and Robert F. Warming, Muléiresolution Analysis and Super Com-

pact Multiwavelets. .

S. Mallat, and S. Zhong, Characterization of Signals from Multiscale Edges,
IEEE, Trans. Pattern Anal. Machine Intell., 14:710-732, 1992.

P. Scheunders, and J. Sijbers, Multiscale Watershed Segmentation of Multivalued Im-
ages, 2002 IEEE, 1051-4651/02 17 ~(c) .

Mark A. Pinksy, Introduction to Fourier Analysis and Wavelets, The Brooks/Cole
Series in Advanced Mathematics, Paul J. Sally, Jr., Editor.

Robi Polikar, The Wavelet Tutorial, www.users.rowan.edu.

Dorin Comaniciu, Image Segmentation using Clustering with Saddle Point Detection,
www.caip.rutgers.edu/ comanici/Papers/ImageSegmentationClustering.pdf.

Bill Green, Canny Edge Detection Tutorial,
www.pages.drexel.edu\ ~weg22/cana_tut.html.

Tonette R. M. King, Effictent and Effective Methods for Object Segmentation in Video
Images.

J. Canny, A Computational Approach to Edge Detection, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp 679-698, Nov 1986.

Tai Sing Lee, Canny Edge, CMU 15-385 Computer Vision, Spring 2002.

Michael McAllister, Jack Snoeyink, FEztracting Consistent Watersheds from Digital
River and Elevation Data, Department of Computer Science, University of Columbia.

Michael McAllister, A Watershed Algorithm for Triangulated Terrains, University of
British Columbia.

D. Mann and E. Hildreth, Theory of Edge Detection, Proc. Roy. Soc. Lond. B, 207,187-
217 (1980).

M. Sezgin, and B. Sankur, Survey Over Image Thresholding Techniques and Quanti-
tative Performance Evaluation, J. Electronic Imaging, 13, (2004), 146-165.

C. Kunos, L. Latson, B. Overmoyer, P. Silverman, R. Shenk, T. Kinsella, J. Lyons,
Breast Conservation Surgery Achieving Greater or FEqual 2mm Tumor-free Margins
Results in Decreased Local-Regional Recurrence Rates, J. Breast, 12, (2006) 28-36.

S.M. Smith, and J.M. Brady, SUSAN - A New Approach to Low Level Image Process-
ing, Int, Journal of Computer Vision, 23,(1997), 45-78.

J. Shen, and S. Castan, An Optional Linear Operator for Step Edge Detection, Com-
puter Vision, Graphics and Image Processing: Graphical Models and Understanding,
54,(1092), 112-133.

Charles R. Giardina, and Edward R. Dougherty, Morphological Methods in Image and
Signal Processing, Prentice Hall.

117



131]

M. Razaz, D.M.P. Hagyard, Morphological Scgrnentation of Multidimensional Images,
School of Information Systems, University of East Anglia, Norwich, England.

A XK. Jain, Image Processing.

C. Riddel, P. Brigger, R.E. Carson, and S.L. Bacharach, The Watershed Algorithm:
A Method to Segment Noisy PET Transmission Images, In IEEE Transactions on

~Nuclear Science, vol.46, no. 3, June 1999, pp. 713-719.

E.N. Mortensen, and W.A. Barret, Toboggan-based Intelligent Scissors with a Four-
parameter Edge Model in Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, 1999, pp.452-458.

M. Couprie, L. Najman & G. Bertrand, Quasi-linear Algorithms for the Topological
Watershed, J. Math. Imaging and Vision, 22 231-249 (2005).

J. Cousty, G. Bertrand, M. Couprie, L. Najman, Fusion Graphs: Merging Properties
and Watersheds, preprint (2006).

D. Gabor, Theory of Communication, J. IEEE, 93 429-457a(1946).

Y. Lin, Y. Tsai, & Z. Shih, Comparison between Immersion-based and Toboggan-based
Watershed Image Segmentation, IEEE Trans. Image Processing, 15 632-640 (2006).

S. Mallat, 4 Wavelet Tour of Signal Processing, Academic Press, London (1998).
G. Matheron, Random Sets and Integral Geometry, Wiley, New York (1950).

F. Meyer, & S. Beucher, Morphological Segmentation, J. Vis. Comm and Im. Rep. 1
21-46 (1990).

O. Monga, An Optimal Region Growing Algorithm for Image Segmentation, Int. J.
Patt. Recog. Artificial Intell. 3 (1987).

L. Najman, M. Couprie, G. Bertrand, Watersheds, Mosaics and the Emergence Par-
adigm, Discrete Appl. Math. 147 301-324 (2005).

H.T. Nguyen, M. Worring, & van den Boomgaard, R., Watersnakes: Energy-driven
Watershed Segmentation, Preprint Intelligent Sensory Inf. Systs., Univ. Amsterdam,
Netherlands, (2001).

A. Rosenfeld, Connectivity in Digital Pictures, J. Assn. for Computer Machinery, 17
146-160 (1970).

A. Rosenfeld, On Connectivity Properties for Grayscale Pictures, Pattern Recognition,
16, 47-50 (1983).

J. Serra, Image Analysis and Mathematical Morphology, Academic Press London,
1982.

J. Serra, Introduction to Mathematical Morphology, Comp. Vis. Graph. Image Process.
35 283-305 (1986).

L. Vincent, and Beucher, The Morphological Approach to Segmentation : An Intro-
duction, Technical Report CMM, School of Mines, Paris (1989).

118



[50]

L. Vincent, and P. Soille, Watersheds in Digital Spaces: An Efficient Algorithm based
on Immersion Simulations, IEEE Trans. Patt. Anal. and Mach. Intell. 13 583-598
(1991).

J. Serra, & L. Vincent, An Querview of Morphological Filtering, Circuits, systems and
signal proc., 11 47-108 (1992).

Luc Vincent, Morphological Grayscale Reconstruction: Definition, Efficient Algorithm
and Application in Image Analysis, Proc. IEEE Conf. on Comp. Vision and Pattern
Recog. Champaign 1L, 633-635 (1992).

Luc Vincent, Morphological Grayscale Reconstruction in Image Analysis: applications
and efficient algorithms, IEEE Trans. Im. Proc., 2 176-201 (1993).

D. Wang, Unsupervised Video Segmentation based on Watershed and Temporal Track-
ing, IEEE Trans. Circuits and systs. for video tech. 8, 539-546 (1998).

S. Marshall, and E.R. Dougherty, New Chal-
lenges m Non-Linear Signal and Image Processing,
http://www.eurasip.org/content/Eusipco/2004/defevent /papers/cr1135.pdf.

K. Rank, M. Lendl, R. Unbehauen, Estimation of Image Noise Variance, IEE Proc.-
Vis. Image Signal Process., Vol. 146, No. 2, April 1999, pp.80-84.

C. Liu, W.T. Freeman, R. Szeliski, S.B. Kang, Noise Estimation from a Single Image,
to appear at IEEE Conference on Computer Vision and Pattern Recognition, 2006.

V. Grau, A.U.J. Mewes, M. Alcaniz, Improved Watershed Transform for Medical Im-
age Segmentation Using Prior Information, IEEE Transactions on Medical Imaging,
Vol. 23, No. 4, April 2004, pp.447-458.

W. Bieniecki, Quersegmentation Avoidance in Watershed-Based Algorithms for Color
Images, TCSET2004, February 24-28, 2004, Lviv-Slavsko, Ukraine, pp 169-172.

B. Shukat, Labels Evaluation for the Fuzzy Patterns Recognition, 0-7803-3225-3-6/96,
1996 IEEE.

Peter Majer, A Statistical Approach to Feature Detection and Scale Selection in Im-
ages, Dissertation, Gottingen, Mai 2000.

A. Moga, Parallel Watershed Algorithms for Image Segmentation, PhD Thesis, Tam-
pere University of Technology, Tampere, Finland, 1997.

119



	Effects of pre-processing and postprocessing on the watershed transform
	Recommended Citation

	tmp.1290447007.pdf.oOesq

