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ABSTRACT

ADDING A CLUB SUBSET OF w, WITHOUT COLLAPSING EITHER w; OR w,

by Ivan Zaigralin

The goal is to provide a characterization of sets which have club subsets in cardinal
preserving generic extensions. Several results are to be presented and compared, the
major cases being w, and w, preserving extensions, as well as different approaches to

forcing. Where possible, a constructible forcing will be described.
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1. INTRODUCTION

Here we will bring together and relate several results concerning the characteriza-

tion of sets which have club subsets in some w; and w, preserving extension. These

results are:

ey,

()

(3)

4)

(5

If there exists a disjoint club sequence on A € (w, N cof w;), then A does not
have a club subset in any w, and w, preserving outer model.

HAC w,is statioﬁary, then A has a club subset in an w, preserving outer model
with no new w-sequences of ordinals. If the CH holds in the inner model, then
w, is preserved in the outer model.

If A C w, is stationary, then A has a club subset in an w; an w, preserving outer
model (even if CH is false in the inner model). New w-sequences of ordinals
are added.

If A € « is fat stationary, then under suitable cardinal arithmetic hypotheses,
there exists an outer model in which A has a club subset and all cardinals are
preserved.

If w, is the L-successor of w; and D € w, is very stationary, with a witness in
L, then there exists a constructible forcing that adds a club subset to w, and

preserves all cardinals.

The two major cases we will have to deal with will be w, and w, case. As for the first

one, our results will imply that the following statements are equivalent:

(1) AC w, has a club subset in an w,-preserving outer model.

(2) A C w, has a club subset in a set forcing extension.

(3) AC w, is stationary.

The first statement is not first-order, but the other two are,



The w, case is different. The result due to Friedman (Theorem 6.1) is based on

the following result.

Definition 1.1. Say that A € w, is satiable if A has a club subset in some w,; and w,

preserving outer model. -
Theorem 1.2 (Anticharacterization).

(1) Let L., be the minimum model of ZFC, that is, let L,,;, be standard transitive

universe satisfying ZFC +V = L+ “there are no standard models of ZFC”. Then

{S € Lmin l

SC wé’""” is satiable with respect to outer models of Lin} & L i
(2) If V is sufficiently non-minimal, then

{Sev |

S C w, is satiable with respect to outer models of V} & V.

(3) Given any countable standard transitive model V of ZFC, there exists a definably

class generic outer model V' of V such that

{sev’ |

ScC wg' is satiable with respect to outer models of V'} & V'.

Definably class generic here means that there exists a V-definable class forcing prop-
erty P and a filter G on P meeting every dense class definable over V and such that
V' = V[G]. Sufficiently non-minimal means that there exists a V-inaccessible cardi-
nal x and a ¥,-elementary j : Hyp(V,) — Hyp(V) with critical point x and such that
j(V,.) = V. Hyp(X) is the smallest admissible set with X as an element. The theorem

appears in the work by M.C. Stanley [8].



This theorem implies that for models of ZFC, there cannot be a uniform, parameter
free first-order equivalent to the second-order property “A € w, has a club subset in
some w; and w, preserving outer model.” Our motivation, then, is to say as much
as we can about the satiable subsets of w,, even though a first-order characterization

relative to ZFC is impossible.



2. FORCING CONDITIONS AND GENERIC SETS

Here we will define the notion of a generic set and discuss how these can be
added to transitive models to obtain generic extensions. Let us start by giving some

definitions.
Definition 2.1. A set X is transitive whenever
VxeXVyex(y eX)

Definition 2.2. A set P together with a binary relation < is partially ordered (or a poset)

if the order relation < is antisymmetric, reflexive, and transitive.

Let 91 be an arbitrary transitive model of ZFC, which we will call the ground model,
and consider a non-empty poset (B, <) € M. We will call P a notion of forcing and its
elements—the forcing conditions. We will say that p is stronger than q iff p < q. We
say that p and g are compatible whenever there exists r such that r < p and r < g,
incompatible otherwise. A subset W of P is incompatible when its elements are pairwise

incompatible. We say that a subset D of P is dense if Vp € P 3d € D(d < p).

Moreover, a subset F of P is a filter on P if the following conditions are satisfied:

) F#£@
(2) p<SqApEF —qgEF
(3) p,qeF - 3IreF(r<pAr<gq)

A subset G of P is generic over 9 if

(1) Gisafilteron P
(2) fDisdenseinPand De M, then GND # &

A subset D of P is dense below p if for every p’ < p there is ¢ € D such that ¢ < p’. A
subset U of Pisopen if p € UAq < p — q € U. Finally, a subset C of P is predense if



every p € P is compatible with some q € C. A subset W of P is an antichain in P if it is

predense in P and if any two distinct p,q € W are incompatible.

Example 2.3. This example, due to Jech [1], will make it clear how adding a set leads
to collapsing of w;. Let 9 be the ground model. We want to add a set G to 91 to
enlarge 2 in such a way fhat there ekists a mapping in the extension 9M[G] of w onto
w‘f‘. (When such a mapping exists, we say that «w; has “collapsed”.) Suppose that a
mapping exists with the required property, call it f. For each n < w the initial segment
f | nis afinite sequence (f(0), f(1),...,f(n—1)), and it lies in 9. Let P be the set of
all finite sequences (a,, ..., a,) of countable ordinals. The set P will be our notion of

forcing, and its elements—the forcing conditions.

Now consider two elements of P, p and q. If p C g, then, in a way, q gives us
more information about f, and so we are justified in saying that q is stronger than p.

By convention, we write it as'g < p. That is,
gq<p & pcyq €8]

We can see that this < relation induces a partial ordering on P. Note also that both P

and (P, <) are in M1,

Next, consider G = {f | n|n € w}. G C P, and we can recover f from G. Namely,
f =G, and therefore G cannot be a set in 9, on pain of having a surjective map
from w to w, in M. In order for | |G to be a surjective map from w to w}", G must

have the following properties:

(1) If p,q € G, then p and q are compatible, i.e. p(k) = q(k) for all k € dompn
domg.
(2) Vnew Ip e G (nedomp)

(3) Va€ w Ip € G (a €ranp)



We now forget about f and let the set of conditions G be generic over 9. Since G

is a filter, f = J G must be a function. We can also see that for all n € w the set
D,={p€P|nedomp} @
is dense in P. Similarly, for all a € w" the set
E,={peP|acranp} (3)

is dense in P. Therefore GND, # & for all n and GNE, # @ for all @, and so dom f = w
while ran f = w}". We can conclude that every transitive model 97 extending 9t and

containing G satisfies that 7" is a countable ordinal.

To generalize the previous example, we can prove a lemma, also appearing in
Jech’s work [1], which gives us a simple way of collapsing an arbitrary cardinal.
Definition 2.4. If x is a regular cardinal, we will write A< to denote sup{A* | a < x}

Lemma 2.5. Let x be a regular cardinal and let A > x be an arbitrary cardinal. There
exists a notion of forcing (P, <) such that it collapses A onto k, that is, A has cardinality

k in the generic extension. Moreover,

(1) every cardinal a < « in the ground model 9t remains a cardinal in 9[G], and

(2) if A<¥ = A, then every cardinal a > A remains a cardinal in the extension.

Proof. Let P be the set of all functions p such that

(1) domp <€ x and |dom p| < k,

(2) ranp € 2,

and let p < q iff p D g, as before. Let G be a generic filter on P and let f = [ JG. Asin
the example above, f is a function, and it maps x onto A. This is true because for all

a<wxandall § <Athesets D, = {p|a €domp} and E; = {p | § € ranp} are dense.



In order to show (1) and (2) we observe that (P, <) is a-closed for every a < «,
and therefore all cardinals < x are preserved; and if A<* = A, then [P| = A" and it

follows that all cardinals above A are preserved. O



3. FORCING WITH FINITE CONDITIONS: w; CASE

There are two theorems in this section. Theorem (3.4) adds a club subset to
a stationary subset of w; using countable conditions. The proof is the precursor to
theorems (4.3) and (4.4), which generalize it. This theorem is due to Baumgartner,
Harrington, and Kleinberg [3] and independently to Jensen. The second theorem in

this section, adding a club subset with finite conditions, is due to Baumgartner.

We start out by laying down some groundwork for discussing the preservation of

w1,

Definition 3.1. The set D is said to be predense below p if every condition below p is

compatible with an element of D.

Lemma 3.2. Suppose that for every p and D;, i < w, where each D; is predense below
D, there are g < p and countable d; € D;, i < w, where d, is predense below g for each

i < w. Then w, is preserved.

Proof. Assume that there is some p which forces o to be a surjective map from w to

w,. Then we can consider
D; = {q | there exists a < w, such that g forces o (i) = a} @

D, is dense, and hence predense. Let d; € D; and ¢ < p be such that d; is countable

and predense below p. Let
Bi=sup{a|Ired; (rlFo(i)=a)}

Then f3; < w,. Set B = sup,.,0B;- Then f < w, and g IF (i) < B, for all i < w.
It follows that there is ¢ < p and a countable § such that q forces o(i) < 8 for each

I < w, that is, q forces that o is bounded, which is a contradiction. O

Now consider a theorem which appears in Baumgartner [3].



Definition 3.3. A set § C %, (X) is stationary if for each club C € &£, (X) the inter-

section S N C is nonempty.

Theorem 3.4. Let X be a subset of w,. Then the following conditions are equivalent:

(1) There exists an outer model which preserves w, and X has a club subset in that
model.

(2) X is stationary.

Proof. (1) implies (2) because any two club sets have a non-empty intersection. Con-
versely, consider the forcing P with its conditions being closed, countable subsets of X,
ordered by end-extension. Then P adds a club subset to X. We must show that cw, is
preserved. To that end, suppose that (D; |i < w) is a sequence of sets, each D; pre-
dense below p. Choose a continuous elementary chain (M, | j < w,), where each M; is
a countable elementary submodel of Hy, 6 being sufficiently large and regular, so that
X, p, and (D; | i < w) belong to M, and M; € My, for each j. Since C = {M; N w, |
J < w,}is club, we can choose j in such a way that a = M; N w, € X. Moreover, since
each D; N M; is predense below p on P N M;, we can choose p = py = p; Z p; 2 .

so that p;.; € M; and it extends some r; € D; for each i < w, while at the same time
sup (U; p;) = a. Then q = |, p; U {a} is a condition which extends p, and for each i,
d; = D; N M; is predense below q. That gives us the statement of lemma (3.2), which

implies that w, is preserved. |

At that point, Baumgartner asked a question: if X is a constructible, stationary
subset of w;, then is there a constructible forcing P which preserves w; and adds a
club subset to X? The following theorem, due to Baumgartner, answers this question.

(The proof also appears in Friedman’s paper [6].)

Theorem 3.5. Let X be a stationary subset of w,. Then there exists a forcing P which

adds a club subset to X, such that P preserves w, and P belongs to L[X].



Proof. We can add a club subset to X with finite conditions, using the technique de-
scribed by Uri Abraham [5]. A condition is a finite set p of disjoint closed intervals in
w,, whose left endpoints belong to X. Thus we allow the one-point intervals [a, a],

a € X. As we did before, we say that a condition q extends p iff ¢ 2 p.

For a generic G, we say that Cj; is the set of all left endpoints of intervals in | JG.
C; must be an unbounded subset of X. Each countable ordinal either is a member of
some interval in G or fails to be a limit point in X. It follows that C; is closed in X. It

remains to show that w, is preserved.

So suppose that p is a condition and D;, i < w are predense below p. Choose a
continuous elementary chain (M; | j < w,) of countable elementary submodels of Hy,
0 being large and regular, so that X, p, and (D; | i < w) all belong to M, and M; € M;,,
for all j. Since C = {M;Nw; | j < w;} is club, we can choose j in such a way that
a=M;Nw; is in X. Let q be the condition p U {[a, a]}. If r extends qand ro =71 | a
then every extension s, of ry in P N M; ié compatible with r, since [a, a] € q. It follows
that d; = D; N M; is predense below q for every i, because if r < g then we can choose
s < 1y such that it extends a condition in d;. Now, since s, is compatible with r, r must

be compatible with some element of d;. Hence w, is preserved. O

1¢



4. FORCING CLUB SETS

In this section we will consider some positive results due to Abraham and Shelah
[5]. Specifically, we will see that given an arbitrary uncountable cardinal x and a
stationary S € k, we may be able to find a generic extension which adds a club subset to
S without collapsing any cardinals < k. The sufficient condition for such an extension
to be found is that S has to be fat. Moreover, the proofs of the following two theorems
only work if GCH is assumed; for if 2% > R,, then our forcing posets will cause X,
to collapse. The following theorem, due to Abraham, establishes the first interesting

result.

Definition 4.1. A stationary set S € « is fat if for every club C C x, S N C contains

closed subsets with arbitrarily large order types less than «.

Definition 4.2. A cardinal « is said to be strongly inaccessible if it is an uncountable,
regular strong limit cardinal. We say that « is a strong limit cardinal if it cannot be

obtained through the power-set operation, i.e., for all A < «, 2* < «.

Theorem 4.3. Let k be either a strongly inaccessible cardinal or the successor of a regular

cardinal y such that y = u~*, and let S C « be fat. Then there is a poset P such that

(1) Forcing with P adds a club C € S.
(2) Forcing with P preserves all cardinals < k.
(3) Cardinality of P is 2<%, and hence if 2% = k, then all cardinals are preserved in

the extension.

Proof. For a given fat S € x we define P = {p | p € S is a closed and bounded set of

ordinals}. P is partially ordered by end-extensions, namely,

psp < p=p n(sup(p)+1)

11



The cardinality of P is 2=, and if G is a V-generic filter over P then C = J{p | p € G}
is a club subset of S. It remains to show that our forcing does not cause any new sets
with cardinality < «x to appear in V[G]. We must prove that, given a regular cardinal
7 < k and a sequence D = (D; | i € 7) of dense open subsets of P, it holds that (), D;

is dense in P.

Fix p and choose A so that H(A), which is the collection of all sets with hereditary
cardinality < A, contains P. Let M = (H(A),€). Define a sequence (M, | a < k) of

elementary substructures of M as follows:

(1) P, p, D € M,, and some fixed well-ordering of |P| are in M,. In other words,
M, contains the universe of P,

() T+1€M,.

(3) M, is of cardinality < x, and if a < § then M, C M, and for limit 6, M; =
Up<s My

(4) The intersection of the universe of M, with «, ¢, = M, N« is an ordinal and

(cq | @ < ) is a continuous increasing sequence, cofinal in .

To define M,, we recall that it was assumed that S<F < « for all B < . Hence for

B < a < x, M, contains each subset of § of cardinality < |3].

Observe that E = {a | a =c,} is a club subset of x. Since S is fat, S N E contains
a closed subset of order-type 7 + 1, call it A. Let a = supA. It follows that AN& € M,
for each & < a. We can construct in M, and increasing sequence in P, (p; |i < 1), of
length 7, such that p;,; € D; " M,. We begin with p = p,. If p; € PN M, is defined
then p;,, is the first member of D, such that the ordinal interval (sup p;,supp;,,) has a

non-empty intersection with A. For a limit § < 7 we let

ps = Upi U (sup (U;<spi))

i<d

12



Only a proper initial segment of A is used in the definition of ps, and hence ps € M,;

and since A C S is closed, p; € S. Finally,

p.=Jnuiate( D,

i<T i<t

shows that [),_, D; is dense in P. O

i<t

Difficulties will arise if we try to adapt the proof of Theorem (4.3) to the case
where « = u*, u singular. E.g., consider a fat set S € X7, If we follow the proof of
the theorem above and define structures M, of cardinality X , then we cannot conclude
that M, are closed under countable unions of p € P, since Ni° > X,. We encounter
the same problem in the case when 7= = « for some 7 < k. There is, however, an
interesting result for k = u*, where u is a singular strong limit. The following theorem,

also due to Abraham [5], provides an example for x = R,

Theorem 4.4. Suppose that R, is strong limit and § C X7 is fat. Then there is a forcing
poset P of cardinality 2%+ which adds a club subset to S without collapsing any cardinals
S
Proof. Let S be fat, S C R, Without loss of generality, assume that SNX, = @. As
we did in the proof of Theorem (4.3), define P to be the set of all bounded closed
subsets of S. As before, we must prove that no new sets of size < X, are added after
forcing with P. It suffices to show that for all n < w the intersection of X,, many dense
open subsets in P is densev. Fix a sequence of dense open sets (D; | i <X, ), as well as a

condition p € P. We will find an extension of p in [ },.x D;- Let F(x, y) be a function

i<R,

such that for X, < a < X we have

K:B—F(a,p), f<a

is a bijection, K(a) = X,,. Next, pick a sequence (M, | ¢ <X7) of structures of cardi-

nality X, just like in Theorem (4.3), but require also that F € M, and X, C M,. Let

13



¢, = M, NX} and let C = {a | a =¢,} (C is club). Suppose that 2%~ = A < X,; then
we can use the fact that S is fat to obtain a closed B € SN C of order-type A*. Define
a function h : [B]* — w in the following way: for all a, b € B, a < b, let h(a, b) = k iff
k is the least integer such that F(b,a) € R;. Using the partition relation (described in
detail by Williams [9]),

(25) = ()2

find A C B of order-type R, which is homogeneous for some color k. Let & = supA.
Now, construct an increasing sequence (p; | i <X, ), just like in the proof of Theorem
(4.3). Since every ordinal which is a limit in A is a member of S, ps; € P for limit
6 < X,. To make sure that p; € M,, we will show that every bounded subset X C A
isin M,. Pick b € A, b > x for all x € X. Then F(b,x) < ¥, for all x € X. The set
{F(b,x) | x €X, x < b} is a subset of ¥, and so it must be also in M,,. It follows that

X € M,. The proof can now be completed just like that of Theorem (4.3). O

Remark 4.5. In respect to a forcing which preserves the cardinals and adds a club subset
to a fat S € x, not much can be said if the GCH is not assumed. Baumgartner [3]

provides a positive answer for k = X, but for k = X, the question is still unanswered.

14



5. DISJOINT CLUB SEQUENCES AND

FAT STATIONARY SETS

In this section we will explore a more refined result due to Friedman and Krueger
[2], which is related to the existence of disjoint club sequences. First, we need more
definitions. For a set X which contains w;, &, (X) will denote the collection of count-

able subsets of X.

Definition 5.1. A subset C is of #,, (X) is cofinal if, given any x € #,, (X} there exists

z € C such that x C 2.

Definition 5.2. A set C € %, (X) is club if it is closed under unions of countable

increasing sequences and is cofinal in &, (X).

Definition 5.3. If «x is a regular cardinal let cofx (and cof(< ) respectively) denote

the class of ordinals with cofinality x (and cofinality less than x respectively).

If x is a successor of a regular uncountable cardinal y, this is equivalent to the
statement that for every club C € x, SN C contains a closed subset with order type

w+ 1. In particular, if A € x* N cof u is stationary then AU cof(< u) is fat.

Definition 5.4. If V is a transitive model of ZFC, we will say that W is an outer model
of V if W is a transitive model of ZFC such that V € W and W has the same ordinals
as V. Moreover, (W, V) E ZFC, i.e. W satisfies instances of replacement and separation

that are formulated in a language with a predicate symbol in the inner model V.

Definition 5.5. Let T be a cofinal subset of &, (w;). We say that T is thin if for all

B < w, the set {an 3| a € T} has size less than w,.

In particular, if CH holds, then &, (w,) itself is thin.

15



Definition 5.6 (Martin’s Maximum). MM is the statement that whenever P is a forc-
ing poset which preserves stationary posets of w;, then for any collection D of dense

subsets of P with |D| < w,, there is a filter G c P which intersects each dense set in D.

We now introduce a combinatorial property of w, which implies that there does
not exist a thin stationary subset of &£, (w,). This property follows from Martin’s
Maximum and is equiconsistent with Mahlo cardinal. The property will imply that
there exists a fat stationafy subset of w, which cannot acquire a club subset by any
forcing poset which preserves w; and w,. To be sure, we will not give a proof of the
consistency of the existence of a disjoint club sequence; rather, we are going to show
that if there exists a disjoint club sequence on A € w, N cof w,, then A does not have a

club subset in any w; or w,-preserving outer model.

Definition 5.7. A disjoint club sequence on w, is a sequence (C, | a € A) such that A is
a stationary subset of w, N cof(w,), each C, is a club subset of Z,, (a), and C, N Cy is

empty for all @ < § in A.

Definition 5.8. A subset S € &#,, (w,) is local club if there is a club set C € w, such

that for all uncountable a € C,5n#, (a) contains a club subset in Z,, (a).

Note that local club sets are also stationary. To see that, let K be be a club set in
F ., (w,); then there exists a club K’ € w, such that if « € K’ has cofinality w;, then
KnZ, (a)is club in £Z, (a). Now suppose that § & Z,, (w,) is local club. Let C be
club in w, with the property that S N.Z,, (@) is club, for all & € C. Let a € CNK’ have
cofinality w;. Then
(§nZ, (a)n(KNZF, () # D,

since both of these sets are club in £, (a).

Lemma 5.9. Suppose that § & Z,, (w,) is local club. Then S is local club in any outer

model W with the same w; and w,.

16



Proof. We let C be local club subset of w,, i.e. for every uncountable a € C, S ﬂﬁ‘wl(a)
contains a club subset in 3’0)1(“)- Then C is also club in W. For each uncountable
a € C we fix a bijective map g, : w; — a. Then {g,“i | i < w;} is a club subset of
ﬂwl(a). If we intersect that set with S, we get a club subset of SN Z.,,(a), namely,
{al | i < w,;} which is increasing and continuous. This latter set remains a club subset

of #, (a)inW. O

Lemma 5.10. Suppose there is a disjoint club sequence (C, | a €A) on w,. Let W be
an outer model with the same w; and w, in which A is still stationary. Then there is a

disjoint club sequence (D, |a €A) in W,

Proof. By the proof of lemima (5.9), each C, contains a club set D, in W. Since w, is

preserved, each « in A still has cof a = w;. O

Theorem 5.11. Suppose that (C, | a € A) is a disjoint club sequence on w,. Then AUcof w

does not contain a club subset.

Proof. For contradiction, suppose that AU cof w does indeed contain a club subset.
Without loss of generality we can assume that 2“* = w, (otherwise we can work in a
generic extension W by COLL (w,,2%1); in W the set AN cof w contains a club subset

and by lemma (5.10) there is a disjoint club sequence (D, | a € A)).

Before we go on, we need some basic facts concerning the regressive functions.
IfC € £, (X)is club then there exists a function F : X<“ — X such that every a €
£, (X) which is closed under F isin C. If F : X<¢ — Z,,(X) is afunctionand Y S X,
we say that Y is closed under F for all y € Y=¢, where F(y) € Y. A partial function

H:#Z, (X)— X is regressive if for all « € domH we have H(a) € a.

Now, since 2“1 = w,, H(w,) has the size w,. Let h be a bijective map: h : H(w,) —

wj, and let A denote the structure (H(w,),€,h). Define B to be a set of all a €
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w,Ncof(w,) such that there exists an increasing and continuous sequence (N; | i < wy)

of countable elementary substructures of 2 such that

(1) N;eN,, forall i < w,, and

(2) theset {N;Nw, [ i < w,}is club in £, (a).

We will now show that B is stationary in w,. Let C € w, be an arbitrary club set,
and let B be the expansion of & by the function a — min(C \ a). Define by induction
an increasing and continuous sequence (N; | i < w;) of elementary substructures of 9B
such that N; € Ny, for all i < w;. Let N = (J{N; | i < w;}. Then w; € N and so
N Nw, is an ordinal. If we let a = NN w,, then a € C and {N;Nw, | i < w,} is club
in #, (a). Itis clear that {N; N w, | i < w;} is closed. To see that it is unbounded, let
x ={&, | n < w} be an element of Z,, (). In general x ¢ N. However, for each n there
exists i, < wy such that §, € N; . If i =sup,,.,, i,, then x € N;. So {N;Nw, [ i < w,} is

club and hence a € BN C.

Since AUcof w contains a club subset, ANB must be stationary. For each a € ANB we
fix a sequence (N7 | i < wy), just as described in the definition of B above. It follows
that {NfNw, | i <wi}NC, is club in &, (a), and so there must exist a club set
¢ € wy such that {N*Nw, | i €c,} is club and is a subset of C,. Let i, = min(c,) and

letd, =c, \ {i,}.

Define S = {N|a €ANBAi €d,}. If N €S then there is a unique pair a €EANB
and i € d, such that N = N. To see that, assume that N = N® = N].ﬁ . It follows that
NNwy € C,NCy, and so a = §, which implies that i = j. Note that if N7 € S, then
NZ € Nf. So the function H : § — H(w,) defined by H(N*) = N? is well-defined and

regressive.

We will prove that S is stationary in &, (H(w,)). Let F : H(w,)™* — H(w,) be a

function. Recall that h is a bijection between H(w,) and w, and define G : w;* — w,
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by letting
G(ag,...,a,) =h(F(h Y ay),....,h (a,))) (5)

Let E be a club subset of a in w, close under G. Fix a in ENANB. It follows that there
exists i € d,, such that N N w, is closed under G. We claim that N7 is closed under F.

Given ay,...,a, € N/, the ordinals h(ay),...,h(a,) are in N® N w,. Define y by letting
Y= G(h(aO)J"':h(an)) = h(F(aO: "'7an)) (6)

We can see that y € N* N w,, and therefore h™'(y) = F(ay,...,a,) € N

Since S is stationary and H : S — H(w,) is regressive, there exists a stationary
set $* C S and a fixed N such that for all N € §* we have H(N®) = N. The set §*
is stationary, and hence its size must be w,. It implies that there are distinct a and 8
such that for some i € d, and j € dg both N and Njﬁ are the members of S*. Then

N=N i‘;‘ = Nf; , and hence N N w, is in C, N Cg, which is a contradiction. d

Lemma 5.12. Let (C, | a € A) be a disjoint club sequence and let W be an outer model

of V with the same w; and w,. Then in W, AU cof w does not contain a club subset.

Proof. If A remains stationary in W, then by lemma (5.10) there is a disjoint club
sequence (D, | a €A) in W. By Theorem (5.11) AN cofw does not contain a club

subset in W. , O

Since it is our goal to characterize the cases when we can (or cannot) add a club

subset without it resulting in a collapse, it makes sense to restate this result as follows:

Corollary 5.13. If (C, | a €A) is a disjoint club sequence in the inner model V of W,
and An cof w contains a club subset in W, then any forcing of V which yields W will

collapse either w; or w,.
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6. FORCING WITH FINITE CONDITIONS: w, CASE

Unfortunately, there is no analogous result for w,. The following theorem is a

direct consequence of the theorem due to Friedman [4].

Theorem 6.1. Suppose that OF exists. Then the set

XCwt | XeLland

X contains a club subset in an inner model where w, = colz“}
is not constructible, and has L-degree 0.

E.g., there are some X which belong to the set above but have no club subset in

any set-generic extension of L which preserves w,.

There is, however, a sufficient condition (also due to Friedman [6]) for a subset of

w, to contain a club subset in an extension which is cardinal-preserving.

Definition 6.2. X C w, is very stationary if for all a in some stationary X € X Ncof w,,

X N a contains a club subset of a.

With a variant of ¢ at w, in L we can construct disjoint very stationary subsets
of w, in L. In general, ¢,(Q), where « is a cardinal and Q € «x is stationary, is the

statement that there exists a sequence (A, | a € Q) such that

(1) A, € a for each a €Q.

(2) ForeachAC k. theset {a € Q|ANna =A,} is stationary in «.

The sufficient condition we have mentioned above is this:

Theorem 6.3. If X C w, is very stationary then there is a set-forcing extension which

preserves both w, and w,, and X contains a club subset in that extension.
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Proof. The proof is analogous to that of Theorem 3.4. We force with closed subsets of X
of order type less than w,, ordered by end-extension. We can use the fact that X is very
stationary to show that if p is a condition and D;, i < w,, are predense below p then
there exists g < p which extends an element of D; for e;ach i (see the proof above for
details). It fdlloWs that no new wl-éeQUences are added by the forcing, which implies

the preservation of w; and w,. O

The most interesting question, however, is this: in the case of w,, can we find a
forcing similar to that of Baumgartner, which would add a club set with finite condi-

tions? The following theorem will provide an answer.

Definition 6.4. D, witnesses that D C w, is very stationary if D, € D Ncofw, is sta-

tionary and D N a contains a club subset of a for each a € D,

Theorem 6.5. Suppose that w, is the L-successor to w,, that D € w, is constructible,
and that there exists a constructible witness that D is very stationary. Then there is a

constructible forcing P which preserves cofinalities and adds a club subset of D.

Proof. Let D, € L witness that D is very stationary. We will assume that successor
elements of D all have cofinality w, by replacing D with (DNLimD)U{a+ w | a € D}.
This suffices because the set of limit points of a club set contained in this set is a club

set contained in D.

Our condition will be a pair (4, S), where

(1) Ais a finite set of disjoint closed intervals, their left endpoints being elements
of D, and their left endpoints of cof w, being elements of D,. Let L denote the
set of all left endpoints of intervals in A.

(2) S is a finite set of countable, constructible X; elementary submodels x of some
Lg, 3 limit, § < w,, such that

(a) x N ais unbounded in a € x whenever cofa = w.
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(b) sup(x Na) € D whenever a € (x N Dy); w,.
(c) For a,B €D, if a < 3 are adjacent, a € x, 8 < sup(x N Ord), then f € x.

(3) Given any interval I = {a, 3] € A and any x € S we have;

() If INx # @ then Ilex.
b) fINx =@ and a < sup(x N Ord) then a, € L, where q, is the least
ordinal > a in x.

(4) Let F be the set of all elements of L of cofinality w,, together with w,. For nice
x, we say that the F-height of x is the least element of F which is greater than
sup(x N Ord). As for our condition p, the following conditions must be met:

(@ IfxeSandaeFthenxNL,€S.

(b) If x,y €S have the same F-height, thenx =y, x €y, or y € x.

From now on we will write (A,,5,) and F, to designate the sets having to do with
a condition p. We say that g extends p iff A, 2 A, and S, 2 S,. Friedman breaks down

the proof into three claims.

Claim 6.5.1. Fixp € P.

(1) For any club C € w, there is a € C, cofa = w,, such that p € L, and p*,
obtained by adding [a, a] to A, is a condition extending p.
(2) Let a and p* be defined as above. If ¢* < p* then there is ¢ < p in L, such that

every extension of q in L, is compatible with g*.

Claim 6.5.2. Fix p € P.

(1) For any club C € Z,, (w,) there is a constructible x € C such that p € x and
p*, defined by adding x N L, to S, for all a € F, is a condition extending p.
(2) With ¢* and p* defined as above, if ¢* < p* then there exists q € x which

extends p, and every extension of q in x is compatible with g*.
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Claim 6.5.1 implies that w, is preserved, while claim 6.5.2 implies that w, is
preserved. Since the size of P is w,, all cofinalities are preserved. To complete the

proof, we also need

Claim 6.5.3. Let G be P-generic and define

Ce={y | 7visaleft endpoint

of some interval in U{A, | p € G}}

Then Cj; is a club subset of D.

Proof of claim 6.5.1.

Step 1. Choose a in the intersection of C and D, such that p € L,. We must show
that the properties (1) through (4) are satisfied. p* satisfies (1) since a is greater than
the right endpoint of any interval in A,. Property (2) is the same for P* as it is for p.
Property (3a) is also the same for p*, since a is not a member of any element of S,.
Ditto for (3b), since a > supx for all x € S,. Finally, property (4) is satisfied because

a¢xforallx €S,

Step 2. Let q* extend p* and define q as follows:

A, is ApnlLg,

S, is SpnL,

Step 2a. First of all, we will show that q is a condition. It suffices to verify proper-

ties (3b) and (4).

For property (3b), assume that I Nx is empty and the left endpoint § of I = [f3, 1]
is <supx, where I €A NL, and x € S N L,. Since " is a condition, f, is the left
endpoint of some interval J in S;.. But since [a,a] € A.., the right endpoint of J is

<a,and hence J €S, NL, = S§,.
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For property (4), observe that F; = F,» N a, together with w,. If x €S, and § € F,
then x N Ly € Sy, and therefore also in S, = S N L, because x N Lg € L,. This gives
us (4a). Now, if x,y € S, have the same F,-height then they also have the same F.-
height, since x, y € L,. Moreover, ¢" is a condition, and x, y € S-, which gives us (4b),

and we can conclude that g is a condition.

Since q* extends p*, it also extends p. But p € L,, and so q is a condition which

extends p.

Step 2b. To complete the proof of this claim, we must also show that for any
extension r of g, r € L, there exists a common extension t of r and q*. Define t as

follows:

A = A UAg,

S, = S.US,

It suffices to show that t is a condition, for in that case it will be clear that it extends
both r and ¢*. To finish the proof, we will verify that properties (1) through (4) hold

for t.

For property (1), we observe that r is a condition extending q, each interval in A,
has its right endpoint < @, and each interval I € A, \ A, has its left endpoint > a. It

follows that the intervals in A, are disjoint.

Property (2) is evident; seeing (2c) uses the fact that D is unbounded in a, since

a € D,.

For property (3), we fix I € A, \A, and x € S,. It follows that sup(xNOrd) < a and
the left endpoint of I is > a. That is, property (3) is vacuously true. So fix I € A, and
x €5.\S,. ThenxNL, €S, CS,, implying that property (3) holds for I and x N L,.
Since I N x # & implies that I N x N L, # @, property (3a) holds for I and x. And so
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does (3b). Really, if I N x = @ and the left endpoint § of I is < sup(x N Ord) then I is

disjoint from x N L, and one of the following cases applies:

1) If B < sup(x N a), then B, = B,., and therefore (3b) follows, since r is a
condition. :
(ii) If B, = a, then (3b) follows because [a,a] € A..

(i) If B, = a,, then we get (3b) because q* is a condition.

The remaining cases, where I €A, and x € §,, or I € A, \ A, and x € §,\ S,, follow

immediately from r and q” being conditions.

For property (4a), it suffices to show thatif x €S, and § € F, then xNLg €§,.
Ifx €8, then either  €F. orf 2 a. If B €F thenxNLs €S, S S, since r is
a condition. If, on the other hand, 8 > a, then x N Lg=x€S§, &S, Onthe other
hand, if x € S then either § € F. or § € F,. If § € F. then (4a) follows since ¢" is a

condition. If B € F, thenxNLg=(xNL,)NLg €S, CS,.

For property (4b), we must prove that if x,y € S, have the same F,-height, then
xX€y, yex,orx =y. If x €S, then F,-height of x is at most a, implying that
y €S,. Hence x and y have the same F,-height and (4b) follows since r is a condition.
If x € 55\ S, then the F,-height of x is > @, and hence y € S.. It follows that x and y

have the same F «-height, and (4b) follows since ¢* is a condition.
This concludes the proof of claim 6.5.1.

The proof of the claim 6.5.2 follows the basic pattern of that of claim 6.5.1, but is
somewhat more involved. We omit it here, but an interested reader may examine it in

full in Friedman’s paper [6].

Proof of the claim 6.5.3.

Here we must show that C; is club. It is clearly unbounded, so it remains to show

that it is also closed.
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Let p be a condition. For contradiction, assume that
plk(a€limC; and a ¢ Cg)

We assume that for all y € S, a, is either a left endpoint of some interval in A, or it
is forced by p that a, ¢ C;. For all ¢ < p, a ¢ I for all intervals I € A, because in that

case q forces either that a € C;, or that a is not the limit of elements of Cj;.

Suppose that y € S,,, a > sup(y N a), and a < sup(y N Ord). Then a, has to be a

left endpoint of some I €A, or else p forces that a is not a limit point of Cs.

Consider 3, the least element of F, which is > a, and let
S={ye€S$,|a<sup(ynOrd) < B}

It follows that the elements of § form an €-chain.

Case 1. y Na is cofinal in a, for some y € S. Assume that y N a is cofinal in a
for some y € S, and let y, be the &-least element with that property. If a, is a left
endpoint of some interval I € A,, then a € D, as is required by the condition (2b) in
the beginning of the proof. We will see that it is possible to extend p to force either that
a € Cg; or that a is not a limit point of C,. Before we do that, observe that DNy, Na
is cofinal in a, since there are cofinally many y < a which are forced by extensions of
p into Cg, and for all such y ¢ y,, v,, € Dy & D. It follows from the property (2¢) for

Yo that DN y,Nnancofw is also cofinal in a.

Subcase 1.1. a, is not the left endpoint of some interval in A,. If a, is not the
left endpoint of any interval in A,, then we fix y € DN y,NaNcofw such that y > &
for all 5, right endpoints of each interval in A, such that its left endpoint is less than
a and at the same time larger than sup(y N a) for all y € S, with sup(y Na) < a. We
will show that a condition results when the interval I = [y,a, ] is added to p. This

condition will then force that a ¢ lim C;; in contradiction to our initial hypothesis. By
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our choice of 7, I is disjoint from each interval in A, with its left endpoint < a. And
since we assumed that a,, is not the left endpoint of an interval in A,, and so neither
is any ordinal between a and a,,, I is also disjoint from each interval in A, with its left
endpoint > a. By our choice of v, I also has an empty intersection with all y € S, such

that sup(y N ) < a. Moreover, I is disjoint from every y € S, with

sup(y Nna) <a <sup(y N fB),

since for such y we can write a, > a, , because a, is the left endpoint of some interval
in A, while a, is not. Every other y € S, contains y,, and hence also I as its element.
If y €S, is disjoint from I with y < sup(y N Ord), then y, = a,, is a left endpoint of

some interval in A,

Subcase 1.2. a, is the left endpoint of some interval inA,. If a, is the left endpoint
of some interval in A,, then we set I = [a,a]. We will show that a condition results if
we add I to p which will force that a € Cg, in contradiction to our initial hypothesi's.
Clearly, I is disjoint from each interval in A,, since « is not in any such interval. If I
intersects y € S,, then I € y. If I is disjoint from y € S, and a < sup(y N Ord), then
a, Z a, , on pain of having y N Lg €S, y, € y N Lg, and hence a = sup(y, Na,, ) €y,
- which is against our hypothesis. So again, a, must be the left endpoint of some interval

in A, or else a, cannot be such.

Case 2. y Na is not cofinal in a, for all y € S. For this last case, choose I = [y, a],

Yy €DNancofw just as we did before, i.e.

(1) v > & for all §, right endpoints of each interval in A, such that its left endpoint
is < a, and

(2) y>sup(yna)forall y €S, with sup(y na) < a

We will show that a condition results when we add I to p. By our choice of y, I is

disjoint from all intervals in A,,. [ is also disjoint from each y € S, since sup(yna) <y
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by our choice of y and the hypothesis for this case. (If a € y, then @ = y, and hence
p forces that a is not a limit of elements of Cg, since a is not the left endpoint of any
interval in A, for each ¢ < p.) If y € S, and y < sup(y N Ord), then a,, yet again, is

the left endpoint of some interval in A,.

The proof of this claim also concludes the proof of the theorem. O
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