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ABSTRACT 

RECOMBINANT MOJASTINS AND THEIR AFFECT ON THE INDUCTION OF 

APOPTOSIS IN HUVEC 

by Victoria Lynn Tran 

The mojastin disintegrin, isolated from Crotalus scutulatus scutulatus snake 

venom, has been shown to inhibit platelet aggregation. However, the use of disintegrins 

has also been suggested for the treatment of metastasis. Disintegrins bind to specific 

integrin receptors, via the Arg-Gly-Asp motif (RGD-loop ), to induce cell migration, 

proliferation, and apoptosis. The specificity of the disintegrin to a particular integrin has 

been attributed to C-terminal amino acids immediately following the RGD tripeptide. 

Thus mutating one or two amino acids in this region of mojastin (RGDWN) may cause 

mojastin to bind to apoptosis affecting integrins. In this study four recombinant proteins 

(RGDDM, RGDMP, RGDWP, and RGDNN) were produced and tested for their ability 

to induce apoptosis. The results showed that the mojastin wild-type and four mutant 

fusion proteins did not induce apoptosis in HUVEC cells. This data suggests that other 

portions of the disintegrin molecule are important for integrin recognition. 



ACKNOWLEDGEMENT 

Thank you to Dr. Julio Soto for your guidance and support throughout this 

project. Thank you to my labmates and fellow graduate students who persevered side by 

side with me and whose kind words and gentle support helped me to push forward 

through the long hours and late nights. Thank you to Dr. Robert Fowler, Dr. Brandon 

White, Dr. Ruth Kibler, Tim Andriese, and the technical staff for your input and 

assistance. 

Thank you to my late husband, Joseph Kavanagh, for your encouragement and 

support of my goals. Thank you to my brother, Liem Tran, for showing me, that in the 

end, your unconditional love was indeed enough and for opening up your home to me. 

Thank you to my sister-in-law, Kim-Uyen Le, for your generosity and kindness, without 

you this journey would have taken much longer to complete. Thank you to my mom, 

dad, mother, and father in-law for their continued support. Finally, thank you to all the 

Trans, Kavanaghs, Biscans, soon to be Yerkes, and my dear friend Janelle Clark for your 

love. To all of you I dedicate this thesis, with my love in return and my deepest 

gratitude. 

v 



TABLE OF CONTENTS 

LIST OF FIGURES viii 

1. INTRODUCTION 1 

1.1 The emerging role of apoptosis in treating metastatic cells 1 

1.2 The interaction of cell surface receptors and signaling systems they affect 1 

1.2 RGD-loop and disintegrin specificity 2 

1.3 The specific aims of this study were 6 

2. REVIEW OF LITERATURE 7 

2.1 Apoptosis: the art of cellular death 7 

2.2 Integrin signaling and consequences of extracellular matrix 

detachment 10 

2.3 Detection of apoptosis 11 

3. MATERIALS AND METHODS 12 

3.1 Transformation of Escherichia coli 12 

3.2 Fusion protein expression 12 

3.3 Lysis and purification of GST-MOJ 13 

3.4 Molecular weight determination of GST-MOJ using SDS-PAGE 13 

3.5 Culturing HUVEC cells 13 

3.6 Apoptosis detection 14 

3.7 Hoechst 33258 staining 14 

4. RESULTS 15 

VI 



4.1 Optimization of culturing conditions for fusion protein expression 15 

4.2 Detection of purified GST-MOJ fusion protein using SDS-PAGE 15 

4.3 Optimization of Annexin V-FITC detection of apoptosis using FACSCalibur.. 18 

4.4 Apoptosis detection in HUVEC cells after exposure toe GST-MOJ fusion 

proteins 21 

4.5 Hoechst 33258 staining of HUVEC cells exposed to GST-MOJ fusion 

proteins 25 

5. DISCUSSION 27 

5.1 Disintegrins as a cancer therapeutic 27 

5.2 Protein modeling: predicting the apoptosis inducing structure of disintegrins... 27 

5.3 Wild-type and mutant recombinant fusion proteins: Inability to induce 

apoptosis 30 

REFERENCES 34 

APPENDIX 38 

IRB approval letter 38 

vn 



LIST OF FIGURES 

Figure 1. Partial sequences of the altered elegantin 4 

Figure 2. The single letter amino acid sequences of mojastin 1 and 2, and 

recombinant mojastin 5 

Figure 3. Comparative expression of GST-MOJ in BL-21 and NEB-DH5a strains 

of E. coli 16 

Figure 4. Purification of GST-MOJ visualized by SDS-PAGE 17 

Figure 5. Purified GST-MOJ proteins detected by SDS-PAGE 19 

Figure 6. Effective concentration of camptothecin 20 

Figure 7. Exposure to echistatin did not illicit an apoptotic response in HUVEC 

cells 22 

Figure 8. Determination of GST affect on apoptosis signaling in HUVEC 23 

Figure 9. The apoptotic affect of 5 uM wild-type and mutant mojastin 

recombinant fusion proteins were tested on HUVEC cells 24 

Figure 10. Nuclear condensation visualized in apoptotic cells 26 

Figure 11. Surface models for mojastin and mutant sequences 29 

Vll l 



1. Introduction 

1.1 The Emerging Role ofApoptosis in Treating Metastatic Cells 

One of the characteristics of cancer is metastasis, the ability of a cell to break free 

from the surrounding extracellular matrix, migrate, and invade other organs. The most 

effective cancer therapeutic is targeted at killing these invasive cells rather than inducing 

cell senescence (Meng et al., 2006). Successful cancer therapeutics cause neoplastic cells 

to undergo apoptosis, ultimately preventing both proliferation and migration of cancer 

cells. Apoptosis is an essential part of cell development. In order for humans to develop 

fingers and toes or to form new synapses in the brain, requires the removal of extraneous 

cells. Apoptosis is also a way to remove cells that threaten the structural organization 

which allows multicellular organisms to thrive (Kerr et al., 1972). 

1.2 The Interaction of Cell Surface Receptors and Signaling Systems They Affect 

In a homeostatic environment cells, within a multicellular organism have 

extracellular and intracellular signals that convey cell boundaries and are the basis for the 

formation of tissues. Cells interact with the extracellular matrix (ECM) through the 

binding of ECM adhesion molecules and cell surface receptors, one of which is a family 

of receptors known as integrins. Integrins are transmembrane receptors composed of a 

combination of different alpha and beta subunits. Depending upon the combination of 

the alpha and beta subunit, an integrin bound to insoluble proteins (fribonectin and 

vitronectin), soluble proteins (disintegrins), or neighboring cells, transfers a signal that 
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induces the cell to migrate, proliferate, or undergo apoptosis. Recent cancer research has 

capitalized on the role of integrins in the signaling of apoptosis and focused on finding 

antagonist molecules that will induce this signal (Aguzzi et al., 2004). 

Among these molecules are disintegrins, a low molecular weight, snake venom 

proteins that are released as part of a larger protein, matrix metolloprotease, known as 

snake venom metalloprotease (SVMP), or after proteolytic cleavage as a monomer or 

dimer (Ramos et al., 2008). Disintegrins are non-enzymatic molecules, with a cysteine 

rich portion, and a tripeptide (arginine/glycine/aspartic acid) called the RGD-loop. In its 

tertiary arrangement the cysteine rich portion forms disulfide bonds creating a hairpin 

loop, exposing the RGD tripeptide in the loop region (McLane et al., 2004). The RGD-

loop when bound to an integrin provides potency of signal and the amino acids 

immediately flanking the RGD tripeptide, in the N-terminal and C-terminal regions, 

provide specificity and affinity for a particular integrin (Kini, 1998; Rahman et al., 1998). 

Other tripeptide binding motifs include KGD, MVD, MLD, VGD, ECD, and MDG (Lu et 

al., 2006). 

1.3 RGD-Loop and Disintegrin Specificity 

The binding specificity and affinity of integrins has been attributed to the amino 

acids flanking the RGD-loop of disintegrins (Kini and Evans, 1995a; Kini and Evans, 

1995b; Rahman et al., 1998). In experiments where Kini and Evans (1995) replaced two 

amino acids, one in the N-terminal and one in the C-terminal region adjacent to the RGD-

loop of the peptide IARGDMNA, with a Pro residue, converting it to IPRGDMP, they 

2 



found that the antiplatelet activity increased by up to 13-fold. Rahman et al. (1998) 

found that by replacing the N-terminal and C-terminal amino acids flanking the RGD-

loop of elagantin, changing the 50th amino acid from Ala to Pro, and the 54th amino acid 

from Met to Asn, they were able to affect inhibitory potency of elagantin (Figure 1). To 

this end, the mojastin disintegrin was mutated at the 54th and 55th amino acids (the two 

amino acids immediately C-terminal to the RGD tripeptide) to mimic those of echistatin 

(RGDDM) and rhodostomin (RGDMP). In vivo studies have shown the induction of 

apoptotic activity of endothelial cells after exposure to accutin, agkisrin-s, echistatin, and 

rhodostomin (Brassard et al., 1999; Ren et al., 2006; Wu et al., 2003; Yeh et al., 1998). 

These disintegrins bind to avP3 and asPi integrin receptors phosphorylating FAK and 

inducing caspase-3 activation of apoptosis (Alimenti et al., 2004; Wierzbicka-Patynowski 

et al., 1999). Studies using recombinant disintegrins are aimed at increasing their binding 

specificity to integrins and also to improve their bioavailability (Eble and Haier, 2006). 

Mojastin, a disintegrin found in the Crotalus scutulatus scutulatus venom, has 70 

amino acids with a molecular weight of 7 kDa. Mojastin was previously shown to inhibit 

platelet aggregation in whole human blood at IC50 of 13.8 nM. However, mojastin was 

ineffective at inhibiting T24 cells, which exhibits the receptors avp3 and as Pi (Sanchez et 

al., 2006). The 0^3 and a$\ integrin receptors, have been linked to apoptosis, and bind 

both echistastin and rohodostomin. In order to alter mojastin's specificity the amino 

acids at the 54th and 55th amino acid were changed (Figure 2). 
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2. 

3. 

4. 

Elegantin 

Eg AM 

EgPN 

EgPM 

^50^-51G52D53N54P55 

A R G D M P 

P R G D N P 

P R G D M P 

Figure 1. Partial sequences of the altered elegantin. The substitutions, Asnso to Pro and 

Asn54 to Met, created in elegantin. 
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In this study we used mutant mojastin constructs provided by the Soto lab, to express 

recombinant fusion proteins and test their ability to induce apoptosis. 

1.4 The specific aims of this study were to: 

1. Express and purify recombinant GST-MO J wild-type and mutants. 

2. Determine whether changing the 54th and 55th amino acid residues, Qmmediately 

C-terminal to the RGD tripeptide, induced apoptosis in HUVEC cells. 
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2. Review of Literature 

2.1 Apoptosis: the Art of Cellular Death 

2.1.1 Historical Perspective 

The morphology of cellular death was first observed by Carl Vogt in 1842 (Peter 

et al., 1997). However, the term apoptosis, a Greek description for falling off or 

dropping off, was introduced into literature in 1972 by Kerr et al. Apoptosis is 

characterized by cell shrinkage, detachment from surrounding cells, nuclear 

condensation, DNA fragmentation, membrane blebbing, and the formation of apoptotic 

bodies. These apoptotic bodies are eventually phagocytized by surrounding cells and 

macrophages or escape the cell lumen where they undergo necrosis (Wyllie, 1992). 

Apoptosis is critical for the development and structural organization of multicellular 

organisms. This observation is best exemplified in the embryonic development of 

Caenorhabditis elegans. 

2.1.2 A Simple Model of the Apoptosis Signaling Cascade 

In the development of hermaphroditic C. elegans, 131 of the 1090 cells had a 

predetermined time of death indicating that cell disposal was the result of genetic control 

(Peter et al., 1997). In C. elegans, ced-3 and ced-4 are proapoptotic genes and ced-9 

negatively regulates apoptosis. CED-3 is a cysteine protease and initiates apoptosis, 

when cleaved by CED-4. CED-9 binds to CED-4, which is in turn bound to the CED-3 

zymogen, to form a complex that represses the proteolytic activity of CED-4. Binding of 
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CED-9 with EGL-1 displaces CED-4, releasing CED-4, and enabling it to activate the 

CED-3 zymogen, thus initiating apoptosis (Borner, 2003; Hengartner and Bryant, 2000; 

Kaufmann and Hengartner, 2001; Peter et al., 1997; Wyllie, 1997). The caspases, Apaf-

1, and Bcl-2 are mammalian homologues of CED-3, 4, and 9, respectively. However, the 

apoptotic signaling mechanism in mammals differs from those of C. elegans. 

2.1.3 Starting from the Top: Extrinsic and Intrinsic Signaling 

Although the mammalian signaling cascade for apoptosis is much more 

complicated, the homologues of CED-3,4, and 9, in mammals, still share the same 

general roles. Similar to CED-3, caspases are the initiators and effectors of apoptosis. 

Apaf-1, like CED-4, forms a complex that acts on the caspases. The members of the 

BCL-2 family of proteins, which are homologous to CED-9, regulate the apoptosis 

machinery. Initiator caspases-8 and 9 are activated by different signaling mechanisms 

but share commonalities in their downstream cascade and converge upon activation of 

caspase-3 and 7. 

The signals that activate initiator caspases may be extrinsic or intrinsic. The 

extrinsic pathway starts with ligand binding, then clustering of death receptors (DR) 

belonging to the superfamily of tumor necrosis factor receptor (Kaufmann and 

Hengartner, 2001; Vermeulen et al., 2005). Members of this family include Fas, Tumor 

Necrosis Factor (TNF)-receptor-l, and other DRs, including DR-3, 4, 5 and 6. A 

common example of extrinsic signaling involves binding of the Fas receptor with Fas 

ligand. This causes trimerization of the Fas receptor leading to the recruitment of the 
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Fas-associated death domain protein (FADD) and procaspase-8 or 10, forming the death 

inducing signal complex (DISC). FADD is an adaptor molecule that has a death domain 

(DD), that binds to Fas and a death effector domain (DED) which in turn binds to the 

DED domain portion of procaspase-8. Due to its proximity to one another, procaspase-8 

undergoes autoproteolysis (Hengartner, 2000) forming caspase-8 which then activates 

procaspase-3 and 7. Caspase-3 and 7 are responsible for the morphological changes that 

are characteristic of apoptosis. 

DNA damage, oxidative stress, starvation, or chemotherapeutics (Borner, 2003) 

cause the releases cytochrome-c from the mitochondria into the cytoplasm, initiating the 

intrinsic pathway. Cytochrome-c binding in the presence of ATP causes a 

conformational change to the apoptotic protease activating factor-1 (Apaf-1), increasing 

its affinity for procaspase-9. Binding of the caspase recruitment domain (CARD) portion 

of Apaf-1 to the CARD of procaspase-9, results in the formation of a complex called the 

apoptosome. Activated caspase-9, within the apoptosome, can then act on caspase-3 and 

7 leading toward apoptosis. 

2.1.4 Bcl-2 Family: Regulating Apoptosis 

As mentioned above, the Bcl-2 family of proteins in mammals is homologous to 

CED-9 of C. elegans. Proteins in the Bcl-2 family share one or more of four common 

Bcl-2 homology domains (BH1-BH4) and can be grouped according to their ability to 

either promote apoptosis or cell survival. Antiapoptotic Bcl-2 members include Bcl-2, 

Bcl-B, Bcl-Xi, Bcl-W, Bfl-l/Al, and Mcl-1, while proapoptotic Bcl-2 family members 
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can be further divided into the Bax-family (Bax, Bak, and Bok/Mtd) and the BH3 only 

family (Bid, Bad, Bmf, Hrk/DP5, Noxa, and Puma) (Vermeulen et al., 2005). Though the 

exact mechanism of regulation by the Bcl-2 family members is still under debate, the role 

of Bcl-2 as a regulator of apoptosis is clear. 

Under homeostatic conditions Bax exists in the cytosol, and Bak in the 

mitochondria in their monomeric form. However, under stimuli such as DNA damage, 

starvation, or cell detachment, BH3-only member proteins are upregulated causing the 

tranfers of the death signal to the mitochondria. Bax and Bak are sequestered to the outer 

mitochondrial membrane where they homodimerize. It is unclear whether Bax/Bak, form 

membrane channels or whether they facilitate the opening of voltage gated channels, but 

their presence causes the permeabilization of the outer mitochondrial membrane. This 

results in the release of cytochrome-c into the cytoplasm (Borner, 2003; Chowdhury et 

al., 2006; Vermeulen et al., 2005) and the onset of the intrinsic signaling pathway of 

apoptosis. Antiapoptotic Bcl-2 family members such as Bcl-2 and Bcl-X] are believed to 

regulate proapoptotic signals by maintaining outer mitochondria membrane integrity, 

though the mechanism has yet to be determined. 

2.2 Integrin Signaling and the Consequences of Extracellular Matrix Detachment 

In tissues, cells attach themselves to the extracellular matrix through receptor 

binding of integrins with cell adhesion molecules. The specific binding of integrins 

(avP3, and a5pi) leads to clustering of similar integrins on the cell membrane surface. 

This clustering recruits focal adhesion molecules such as talin, viniculin, Src, and FAK 
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(Matter and Ruoslahti, 2001). FAK, focal adhesion kinase, causes phosphorylation of 

phoshotidyl-inositol-1, 3, 4-diphosphate (PIP2) to form phoshotidyl-inositol-1, 3, 4, 5-

triphosphate (PIP3) to act on PKB/Akt molecules which inhibit the activity of 

proapoptotic Bcl-2 family members such as Bad, Bim, and Bax, thus suppressing 

apoptosis. In the absence of this inhibition by PKB/Akt, due to detachment from the 

substratum or antagonistic binding of integrin receptors, the proapoptotic molecules 

translocate to the outer mitochondrial membrane, initiating the intrinsic apoptosis 

signaling pathway (Barja-Fidalgo et al., 2005; Bouchard et al., 2008; Grossmann, 2002). 

2.3 Detection of Apoptosis 

Annexin V binds with high affinity and specificity to phosphotidyl serine a 

membrane phospholipid. In viable cells phophotidyl serine faces the cytosol. During the 

early stages of apoptosis phosphotidyl serine flips and is exposed to the extracellular 

matrix (Vermes and Haanen, 1994). However the integrity of the membrane is 

maintained, differentiating these apoptotic cells from necrotic cells, which loose 

membrane integrity and exhibit membrane leakage. Using Annexin V attached to 

fluorescein isothiocyannate (FITC), a green fluorescence molecule, and a counter stain 

propidium iodide, a red fluorescence molecule, the number of apoptotic cells in a 

population may be quantified. 
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3. Methods 

3.1 Transformation of Escherichia coli 

PGEX-KG vectors containing the mutated mojastin constructs, developed by 

researchers in the Soto lab, were added to 100 ul of E.coli BL21-GOLD (Strategene) or 

NEB-DH5a (New England BioSciences) competent cells and the transformation was 

carried out according to the manufacturer's instructions. The cells were left to incubate 

for 30 min on ice, while SOC medium (Stratagene), was preheated in a 42°C waterbath. 

The transformation reaction was heat-pulsed at 42°C for 20 s and incubated on ice. After 

2 min, 900 ul of warmed SOC medium was added to the reaction. The transformation 

reaction was then placed on a shaker and left to incubate at 37°C, 250 rpm for 1 h. 

Finally 20 ul of the tranformant was streaked on Lauria-Bertani agar (Fisher) with 

ampicillin plates and left to incubate at 37°C overnight. 

3.2 Fusion Protein Expression 

Eight colonies were cultured in 200 ml of 2x Yeast-Tryptophan (QBiogene) or 

Lauria-Bertani (LB) broth in the presence or absence of 10 ug/ml ampicillin. The culture 

was grown to an OD600 of 0.6-0.8 with vigorous agitation, 225 rpm, at 37°C. GST-MOJ 

was induced by adding 1 mM of isopropyl P-D-thioglalactoside (Amersham Biosciences) 

and left to incubate for an additional 2 h. The culture was then transferred to four 50 ml 

centrifuge tubes and centrifuged at 700x G for 10 min to obtain the pellet. The 

supernatant was discarded and the pellet was suspended in lx PBS (Gibco). 
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3.3 Lysis and Purification of GST-MO J 

Cells were lysed using a sonicator, 20 bursts followed by 20 s on ice. The 

supernatant was retained after centrifugation for 10 min at 700x G and applied to a 1 ml 

GSTrap column (GE Biosciences) at 0.2-1 ml/min. The column was washed 5 ml with 

lx PBS and eluted with 5 ml of reduced glutathione. Protein concentrations were 

determined using the Bradford assay. 

3.4 Molecular Weight Determination of GST-MO J using SDS-PAGE Gels 

Proteins samples were mixed with lx Laemmli Sample Buffer (BioRad) and 

boiled at 95°C for 5 min. The samples were cooled at room temperature and 40 ul was 

added to a NuPAGE 4-12 %, Bis-Tris gel (Invitrogen). The gel ran at 120 mA for 40 min 

in MES Buffer (Invitrogen). The gel was then stained with Coomassie Brilliant Blue 

(Sigma). 

3.5 Culturing HUVEC Cells 

HUVEC were a product of Lonza (C2517A) and cultured in 25 cm2 flasks with 

endothelial cell basal medium (EMB-2 Basal Medium, CC3156) supplemented with: 

BBE, 2 ml; hEGF, 0.5 ml; Hydrocortisone, 0.5 ml; FBS, 10 ml; GA-1000, 0.5 ml. They 

were incubated at 37°C with 5% CO2. The cells were subcultured once they reached 80% 

confluency. The process involved aspirating used media, washing with 5 ml of PBS, and 

detaching using 0.05% tryspin EDTA (Invitrogen). The action of trypsin was neutralized 
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with the complete culture media containing 2% bovine serum albumin. Cells were then 

split 1:2 and transferred to new 25 cm2 flasks. 

3.6 Apoptosis Detection 

HUVEC cells were cultured to 80% confluency in a 75 cm tissue culture flask 

(Fisher). Once the cells were confluent they were detached from the flask surface using 

0.05% trypsin EDTA. Trypsin was neutralized with complete culture media. The cells 

seeded in 25 cm2 flasks (Fisher) and left to attach for 4 h. The cells were then treated 

with 2.5, 5, 10, or 15 uM camptothecin; 10, 20, 50 or 100 uM echistatin; 1 or 10 uM 

GST; or 5 uM wild-type and mutant mojastin recombinant fusion proteins. The cells 

were observed and harvested after 18-20 h, with trypsin in the same manner as above. 

The cells were spun down and washed two times with cold PBS. Then they were 

resuspended in 1 ml of lx PBS. Afterward, 100 ul was removed and exposed to 5 ul each 

of Annexin V-FITC and Propidium Iodide (BD Biosciences). The reaction was left at 

room temperature for 15 min and analyzed using the FACSCalibur after 400 ul of lx 

binding buffer was added. Statistical analysis of the percent apoptotic cell population, 

using paired t-tests, was performed using InStat (GraphPad). 

3.7 Hoechst 33258 Staining 

HUVEC cells were cultured and collected as above and seeded 2.5 x 105 cells per 

slide well chamber (Nalgene). The cells were then fixed in 3% paraformaldehyde, then 

set in 100% cold methanol and stained with 10 ug/ml of Hoechst 33258 (Invitrogen). 
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4. Results 

4.1 Optimization of Culturing Conditions for Fusion Protein Expression 

The GST fusion protein expression in the E. coli NEB-DH5a strain was compared 

to those of the BL21 strain (Figure 3). At the same time the NEB-DH5a strain was 

cultured in either 2x Yeast Tryptophan or Lauria-Bertani broth. They were also cultured 

with ampicillin or without. After induction with IPTG, BL21 cells, grown in 2x YT broth 

with ampicillin (2x YTA), showed a significant increase in GST fusion protein 

expression (lane 4), whereas the NEB-DH5a cells in the same medium condition did not 

(lane 12). Moreover NEB-DH5a cells did not show an increase in GST fusion protein 

expression under any of the media conditions, 2x YT versus LB broth, and in the 

presence or absence of ampicillin. The expression of GST fusion proteins using the 

BL21 strain of E. coli in 2x YTA media, as seen from these results, was chosen for the 

continuation of this study. 

4.2 Detection of Purified GST-MOJ Fusion Protein Using SDS-PAGE 

After optimization of culture conditions, the GST-MOJ fusion proteins were 

expressed and purified using 1ml GSTrap affinity columns. SDS-PAGE was used to 

verify the purification of the GST fusion proteins from cell lysate. It was also determined 

that expression system E. coli was adequate for the production of GST-MOJ 

recombinants (Figure 4). As seen in lane 4, the pGEX-KG vector, without the mojastin 
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1 2 3 4 5 6 7 8 9 10 11 12 

Figure 3. Comparative expression of GST-MOJ by BL21 and NEB-DH5a 
strains of E. coli. Different culture conditions were also tested. The strains 
were cultured in either 2x Yeast Tryptophan (YT) or Lauria-Bertani (LB) 
broth with or without the addition of ampicillin (A). Samples in lanes 4, 6, 8, 
10, and 12 were induced with IPTG. Lanes 2, 5, 7, 9 and 11 were uninduced 
samples. Lane 1 contained the molecular weight standard (Biorad). Lane 2 
& 4 were lysate samples from the BL21 strain, grown in 2x YTA broth. Lane 
5 & 6 were lysate samples from the NEB-DH5a strain, grown in LB broth. 
Lane 7&8 were lysate samples from the NEB-DH5a strain, grown in LBA 
broth. Lane 9&10 were lysate samples from the NEB-DH5a strains, grown 
in 2x YT. Lane 11&12 were lysate samples from the NEB-DH5a strain, 
grown in 2x YTA. BL21 cells grown in 2x YTA showed a significant 
increase in GST-MOJ production (yellow oval). 
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Figure 4. Purification of GST-MOJ visualized by SDS-PAGE. 
Lane 1: MW; Lane 2: GST un-induced; Lane 3: GST whole 
lysate; Lane 4: GST purified; Lane 5: GST-MOJWN whole 
lysate; Lane 6: GST-MOJWN purified. 
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insert, produced a band at 29kDa, the predicted size of the GST protein, whereas pGEX-

KG with the mojastin insert produced a band at the predicted size of 34 kDa (lane 6). 

Once it was established that the GST-MOJ fusion proteins were produced using 

this approach, the GST-MOJWP, NN, DM, and MP fusions proteins (Figure 5) were 

expressed and purified (lanes 4, 6, and 8 in panel A; lane 3 in panel B). Some of the 

samples also included GST by itself (blue arrow heads). This is the result of randomly 

selecting eight E. coli colonies, after transformation of BL21 cells, for culture. Cell 

lysates were also included in lanes 3,5, and 7 of panel A and lane 2 of panel B. 

4.3 Optimization of Annexin V-FITC Detection of Apoptosis using FACSCalibur 

The ability to detect apoptosis, in an Annexin-V-FITC assay, was determined 

using camptothecin, a known inducer of apoptosis in HUVEC cells (Simak et al., 2002). 

This drug was added to HUVEC cells at 5, 10, and 15 uM concentrations and the cells 

were left to incubate for 24 h (Figure 6). Apoptosis was detected in the HUVEC cells 

exposed to camptothecin (panel B, C, and D in the lower right quadrant), however not in 

a dose dependent manner 5 uM (12.15%); 10 uM (17.21%); and 15 uM (14.53%). Also 

there was an abundance of late stage apoptotic and necrotic cells in the upper right 

quadrant and very few live cells in the lower left quadrant. This indicates that the dose 

range may be too high or that the incubation time was too long. For the succeeding 

experiments, 2.5 uM of camptothecin were used, as a positive control for apoptosis, 

allowing the visualization of the viable population of cells as well as apoptotic and 

necrotic cells. The commercially available disintegrin, echistatin, shown to induce 
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Figure 6. To determine the appropriate does for the positive control, 
HUVEC cells were exposed to 5, 10, and 15 uM of camptothecin. At 5 
uM camptothecin 12.15% of the total population of gated cells were in 
early stage apoptosis (lower right quadrant, panel B), most of the cells 
(86.56%) were in late stage apoptosis or necrosis, and only 1.19% were 
viable. Most the cells were in the upper right quadrant for doses 10 uM 
(77.42%) and 15 uM (83.29%) as well (panel C and D), indicating that the 
dose at 5 uM was either too high or the incubation time was too long. For 
the positive control either exposure to 2 or 2.5 uM of camptothecin for 24 
h should be used in order to obtain a larger population of viable cells 
(lower left quadrant). In the upper right quadrant of panel B there are two 
populations. The top population are necrotic cells (blue circle), while the 
bottom population are late stage apoptotic cells (yellow circle). 
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apoptosis in Pi cells (Alimenti et al., 2004), was also tested as a positive control for 

apoptosis (Figure 7). Unfortunately, the apoptotic responses to echistatin at 

concentrations: 10 uM (2.00%), 20 uM (1.72%), 50 uM (2.98%), and 100 uM (2.88%); 

were similar to those of untreated HUVEC cells. Echistatin was chosen to be the other 

positive control, because it has been shown to induce apoptosis in endothelial cells and it 

was commercially available. Unfortunately, the echistatin purchased from Sigma showed 

no apoptotic activity. The manufacturers of echistatin were not forthcoming about the 

methods of echistatin production and Sigma, the distributing company, did not have any 

activity data on the disintegrin. 

HUVEC cells were exposed to GST, as a negative control for apoptosis (Figure 

8). There was no increase in apoptotic activity at concentrations luM (1.24%) and 10 

uM(1.59%). 

4.4 Apoptosis Detection in HUVEC Cells after Exposure to GST-MO J Fusion Proteins 

The mojastin disintegrin (RGDWN) has been shown to inhibit ADP-induced 

platelet aggregation at IC50 13.8 nM (Sanchez et al., 2006). In this study wild-type 

recombinant fusion protein (GST-MOJWN) did not induce apoptosis at 5 uM (1.29 ± 

0.3%) figure 9. The results show that 5 uM GST-MOJWP (1.01 ± 0.2%, p > 0.05) and 5 

uM GST-MOJNN (1.58 ± 0.6%, p > 0.05) did not induce apoptosis in HUVEC cells. The 

same inactivity was observed for 5 uM GST-MOJDM (1.54 ± 0.1%, p > 0.05) and 5 uM 

GST-MOJMP (1.43 ± 0.3%, p > 0.05). 
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Figure 7. Exposure to echistatin did not illicit an apoptotic response 
in HUVEC cells. Varying concentrations of echistatin (panels C thru 
D) were added to flasks with HUVEC cells and incubated for 24 h at 
37°C. Annexin V-FITC and PI staining showed that the population 
of apoptotic cells (lower right quadrant) for echistatin induced cells 
were the same as those of untreated HUVEC cells (panel A). Mean 
while in exposure to the positive control (camptothecin) showed that 
7.07% of the gated population of HUVEC cells were apoptotic (panel 
B). 
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Figure 8. GST was tested at 1, 10 and 15 uM, for its 
affect on the viability of HUVEC cells. There was no 
change in the early stage apoptotic population (lower 
right quadrant; panels C, D, and E). However the late 
stage apoptotic and necrotic cell population did increase 
in a dose dependent manner; 5.77% at 1 uM (panel C) 
and 9.72% at 10 uM (panel D). 
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Figure 9. The apoptotic affect of 5 uM wild-type and mutant mojastin 
recombinant fusion proteins were tested on HUVEC cells. At 5 uM 
the percent of early stage apoptotic cells for each of the mutants and 
the wild-type were the similar as the untreated cells (1.41% ± 0.3). 
Statistical analysis using a paired t-test showed that the means were 
not significantly different for the wild-type and mutant mojastin 
recombinant fusion proteins as compared with the untreated sample (P 
> 0.05). This data reflects measurements taken from three different 
experiments. The bars represent ± SD. 

24 



Paired t-tests used to compare untreated samples and each of the other samples confirmed 

that the difference between the apoptotic cell population of wild-type and mutant 

mojastin recombinant fusion proteins and the untreated cells was not significant. 

However, when the apoptotic population of untreated cells was compared to those of 

camptothecin, there was a significant difference (p < 0.001) 

4.5 Hoechst 33258 Staining ofHUVEC Cells Exposed to GST-MO J Fusion Proteins 

Staining of the HUVEC cells after incubation with 2.5 uM Camptothecin, 5 uM 

GST-OJWN and GST-MOJNN verified the results above (Figure 10). Cells exposed to 

camptothecin exhibited nuclear condensation when stained with Hoechst 33258 (white 

arrows). Cells exposed to either GST-MOJWN and GST-MOJNN did not show any 

morphological changes that could be attributed to apoptosis. 
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Figure 10. Apoptosis as characterized by nuclear condensed 
fragments were visualized using 10 ug/ml Hoechst 33258. HUVEC 
cells exposed to 5 uM GST-MOJWN and GST-MOJNN did not show 
an increase in nuclear condensation as compared with cells exposed 
to 2.5uM camptothecin (white arrows). 
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5. Conclusion 

5.1 Disintegrins as a Cancer Therapeutic 

Integrin binding of adhesion molecules in the extracellular matrix has been shown 

to induce signaling pathways that on the one hand result in cell migration and 

proliferation, while also suppressing signaling pathways that cause cells to undergo self 

destruction (Barja-Fidalgo et al., 2005; Zhang et al., 1995). Dysfunction in these 

signaling pathways causes tumor progression and metastasis. Thus it has been the aim of 

some cancer therapies to target ingterins and induce cell death in order to prevent the 

proliferation and migration of neoplastic cells. Disintegrins are natural antagonists of 

integrin binding with cell matrix proteins. Their binding of integrins causes cell 

detachment from the cell matrix, releasing the cell from antiapoptotic control and 

resulting in a special form of cell death called anoikis (Barja-Fidalgo et al., 2005; 

Morozevich et al., 2006). Recombinant proteins have been produced to test the binding 

affinity and specificity of disintegrins to integrins receptors (Chang et al., 2001). 

5.2 Protein Modeling: Predicting the Apoptosis Inducing Structure of Disintegrins 

Researchers in the Soto lab used site directed mutagenesis to change the 54l 

and/or 55th amino acid of the mojastin disintegrin to create ten mutants. In order to 

predict the activity of these mutants, three dimensional models were constructed using 

homology modeling. In this model a high resolution x-ray structure of trimestatin (Fujii 

et al., 2003) was used as a template for the disintegrin protein, due to the lack of 
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structural information available for mojastin. Trimestatin was chosen because it shared 

the highest sequence similarity to mojastin (81.7%), compared with any other medium 

length disintegrin. The mojastin sequence was aligned using trimestatin as the template 

by the program MODELLER. This produced five possible three dimensional models for 

mojastin. These models were analyzed using PROCHECK, a program that generates 

Ramachandran plots depicting the best stereochemistry for each of the models. The 

models chosen had 91% of their residues in favorable regions. This confirmed the 

reliability and stereochemical accuracy of the models produced. CHIMERA was then 

used to create a surface model which provided the best indicator of overall structure 

visually. 

Using the three-dimensional structures created in this way researchers in the Soto 

lab were able to pick four mutants, from the ten, which were most likely to affect the 

induction of apoptosis. Two of the mutants contained the same 54th and 55th amino acids 

as echistatin (RGDDM) and rhodostomin (RGDMP). Echistatin (10 ug/ml) elicited an 

apoptotic response when exposed to GD25 cells (Alimenti et al., 2004) and 4 ug/ml of 

rhodostomin induced apoptosis in HUVEC cells (Wu et al., 2003). Two others mutants 

(NN and WP) were chosen for their structural similarity in the C-terminal region to MP 

because the models showed that changes in the 54th and 55th amino acids affect a 

conformational change in the C-terminal domain of disintegrins. Thus these four mutants 

along with wild-type mojastin (Figure 11) were chosen to be expressed as GST fusion 

proteins and assayed for their ability to induce apoptosis. 
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Figure 11. Surface models for mojastin and mutant sequences. 
Mojastin (WN); the two mutants with sequence similarity to 
rhodostomin (DM) and echistatin (MP); and the two mutants 
structurally similar to echistatin (NN and WP) are presented. 
Here the RGD-loop is shown in red and the C-terminus is 
shown in green. These models were created using 
MODELLER and visualized using CHIMERA. Each model 
was analyzed using PROCHECK to determine the most 
probable stereochemistry. 
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5.3 Wild-Type and Mutant Recombinant Fusion Proteins: Inability to Induce Apoptosis 

Although, mojastin 1 and 2 inhibit platelet aggregation, the recombinant mojastin 

did not induce apoptosis in HUVEC cells, which is not surprising since mojastin did not 

inhibit T24 cells from binding fibronectin (Sanchez et al., 2006), the adhesion molecule 

bound by integrin receptors a$\ (Berman et al., 2003). However, it is surprising that 

GST-MOJDM and GST-MOJMP did not induce apoptosis in HUVEC cells. There are 

three possible explanations for my findings. Either the fusion proteins produced in this 

study were misfolded, apoptosis induced cell death due to exposure to disintegrins may 

be cell specific, or the RGD-loop recognition sequence produced was insufficient for avP3 

and (X5P1 integrin signaling of apoptosis. 

Researchers have found that disintegrins produced E. coli have biological activity. 

Recombinant elegantin (Rahman et al., 1998) and rhodostomin (Chang et al., 1993), 

expressed by E. coli as glutathione-S-transferase fusion proteins, retained their structural 

morphology and biological activity. GST-Elegantin had the same inhibitory potency 

(IC50 0.3 uM) as the purified toxin in ADP-induced platelet aggregation of platelet rich 

plasma (Rahman et al., 1998). Change et al. (1993) tested binding of human hepatoma 

cells to culture plates coated with GST-Rhodostomin (GST-RHO) or with GST by itself, 

and found that binding of human hepatoma cells to GST-RHO coated plates was 10 to 20 

fold over those culture plates without. Two synthetic peptides were created to test 

whether the binding of human hepatoma cells was specific to the RGD-loop of GST-

RHO. The first was GRGDSP, which retained the RGD sequence and the second was 

GRGESP with an Asp amino acid substituted with a Glu amino acid. Increasing amounts 
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of GRGDSP decreased the binding of human hepatoma cells to GST-RHO. However 

increasing amounts of GRGESP did not affect binding of human hepatoma cells, 

indicating that the cells were specifically binding to GST-RHO. The biological 

functionality of recombinant rhodostomin in these assays led Change et al. (1993) to 

conclude that the rhodostomin molecule bound to GST was properly folded. GST-MOJ 

and GST-MOJNN exhibited binding activity in adhesion assays performed using TD24 

cells, while GST-MOJ, GST-MOJNN, and GST-MOJDM displayed binding activity in 

adhesion studies using skin melanoma cells (E. Sanchez, personal communication, March 

6, 2008). This evidence shows that the wild-type and mutant mojastin recombinant 

fusion proteins were most likely folded properly. 

Conforti et al. (1990) inserted the isolated vitronectin receptor (av|33) into different 

types of liposomes in order to test binding affinity of avP3 receptor to vitronectin The 

different types of liposomes were phosphotydilcholine (PC), PC + 

phosphotidylethanolamine (PE), and PC + PE + phosphotidylserine (PS) + 

phosphotidylinositol (PI) + cholesterol (chol). The results of this study showed that av(33 

was able to recognize vitronectin more readily and bound to vitronectin with greater 

affinity as the liposome structure became more complex. Also avP3 receptors were able 

to bind other proteins such as von Willebrand factor and fibronectin. This suggests that 

integrins on different cells types may behave differently depending upon the cell 

membrane environment. This explanation may apply to GST-MOJDM. However, 

rhodostomin has been shown to induce apoptosis in HUVEC cells (Wu et al., 2003). 
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Thus some other factor must be influencing the lack in apoptotic activity of GST-

MOJMP. 

Since inhibition studies with kristin and dendroaspin, two disintegrins with the 

same sequence (PRGDMP), showed that they bound with equal avidity to am,P3, it was 

surprising that the mutants GST-MOJDM and GST-MOJMP with C-terminal residues 

adjacent to the RGD-loop similar to echistatin (RGDDM) and rhodostomin (RGDMP) 

did not induce apoptosis (Rahman et al., 1995). Kristin and dendroaspin also competed 

with each other for the same receptor binding site on ocm^ integrins (Rahman et al., 

1995), suggesting that the target for the two disintegrins is the same. Exploration of the 

N-terminal residues adjacent to the RGD-loop may produce a mojastin mutant 

recombinant fusion protein that can induce apoptosis in endothelial cells. 

Studies done with recombinant echistatin point out the C-terminal domain of the 

disintegrin to be a contributing factor in a5Pi binding (Wierzbicka-Patynowski et al., 

1999). In their study Wierzbicka-Paynowski et al. (1999) examined at conformation 

changes in the integrin model due to ligand binding using antibodies, called anti-ligand-

induced binding site (LIBS) antibodies, to the new binding site. They substituted the C-

terminal sequence of eristostatin (WNG) with those of echistatin (HKGPAT) and found 

that inhibitory potency of the hybrid increase was over 4-fold greater than that of the 

wild-type. This suggests that C-terminal region of the mojastin should be considered 

when producing mutant mojastin recombinants to affect apoptosis. 

The amino acids N-terminal to the RGD-loop are PARGDDM for echistatin and 

IPRGDMP for rhodostomin. Binding studies done with elegantin showed that 
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replacement of the Pro residue, N-terminal to the RGD-loop, with Ala produced peptides 

that bound with greater avidity to (X5P1, emphasizing that not only does the C-terminal 

residues flanking the RGD-loop, contribute to the binding specificity of integrins, but the 

residues N-terminal residues to the RGD-loop contribute as well (Rahman et al., 1995). 

In this mutant mojastin recombinant fusion proteins were used to study the ability 

of the 54th and 55th amino acids, C-terminal to the RGD-loop, to induce apoptosis 

signaling in HUVEC cells, containing the avP3 and a5p\ integrins. Wild-type and mutant 

mojastin recombinant fusion proteins were expressed with a molecular weight of 34 

kDA. Though these recombinant fusion proteins did not affect apoptosis signaling in 

HUVEC cells, this inactivity from exposure to the recombinant fusion proteins may be 

the result of a partial recognition sequence. The recombinant fusion proteins produced 

here only contained sequence similarity of the 54th and 55th amino acid C-terminal, to the 

RGD-loop. However, the amino acids N-terminal to the RGD-loop and the C-terminal 

region outside of the RGD-loop have also been shown to affect inhibition of platelet 

aggregation. Thus the mutant mojastin recombinant fusion proteins with the correct 

amino acids C-terminal to the RGD-loop may not be sufficient to induce apoptosis in 

HUVEC cells. 
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