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ABSTRACT 

DEGENERATIVE AND COMPENSATORY FEATURES IN THE STRIATUM OF 

MPTP-TREATED MICE 

By Reza Ehsanian 

This study focuses on the time course of damage and compensatory ultrastractural 

changes associated with Parkinson's disease, as induced by a 35 mg/kg dose of 1-methyl-

4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) in C57BL/6 mice. The results suggested 

continued deterioration of the striatum up to 7 days post-injection of the MPTP, with 

notable recovery at 21 days post-injection. Dark terminals (DTs) were observed at 3, 7, 

and 21 days post-injection, with the highest frequencies occurring at 7 days post-

injection. The morphology of DTs indicates that they may contribute to the recovery of 

the animal. At 21 days post-injection, a point when behavioral and neurochemical 

recovery is expected to be nearly complete, there was a dramatic increase in healthy 

axons. The increase in axonal frequency at 21 days is indirect structural evidence for 

dopaminergic neuronal sprouting or some other regenerative process that would likely 

allow the mouse brain to compensate for previously eliminated neurons. 
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INTRODUCTION 

History 

Although, the most famed description of Parkinson's disease (PD) is attributed to 

James Parkinson, who described the disease in 1817, it was recognized long before then. 

Ancient Egyptians (1350-1200 BC) suggested the occurrence of parkinsonism in old age 

(Forno, 1996), while later observations of the disease were also documented by Leonardo 

da Vinci sometime between 1489 and 1506 (Calne et al., 1989). Charcot's lectures and 

observations give detailed descriptions of the manifestations of the disease (Charcot, 

1877). These early observations undoubtedly led to the work by the British physician 

Parkinson, who gave a nearly complete description of the disease he termed "paralysis 

agitans" (shaking palsy) (Parkinson, 1955), now called PD. 

Disease Frequency 

PD is the most common cause of parkinsonism, a term that refers to a syndrome of 

muscle rigidity, tremor, bradykinesia, and akinesia. PD is one of the most commonly 

encountered neurological disorders in clinical practice (MacDonald et al., 2000). From 

birth, the lifetime risk of developing PD is about 2% for men and 1.3% for women, while 

that for parkinsonism is slightly higher (4.4% for men and 3.7% for women); for both, the 

risk factor increases with age (Elbaz et al., 2002). The annual incidence of PD ranges 
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from 110 to 330 per 100,000 individuals over 50 years of age (Bower et al., 1999). For 

individuals over 65, the prevalence of PD has been estimated at 1800 per 100,000 

individuals. The incidence in those 85 to 89 years old increases 4.3 times to 2600 per 

100,000 over that in individuals 65 to 69 years old, in whom incidence is 600 per 100,000 

(de Rijk et al., 2000). When these statistics are considered in light of our increasing life 

spans, the need is amplified for basic scientific research investigating the degenerative 

and compensatory mechanisms involved in PD in hopes of finding potential targets for 

therapy. 

Clinical-Pathological Description 

PD is clinically defined as a distinctive progressive disorder characterized by 

asymmetric onset of the cardinal motor signs of resting tremor, rigidity, bradykinesia, and 

postural instability. A number of other clinical findings, such as masked face and 

festinating gait, occur less consistently (Calne, 1992; Forno, 1996; Gibb & Lees, 1988; 

Hughes, 1992; Larsen, 1994; Ward & Gibb, 1990). Nonmotor clinical features include 

dementia (Brown et al., 1984; Cummings et al., 1988; Mortimer et al., 1985; Rajput et al., 

1992), depression (Mayeux, 1992; Tandberg et al., 1996), hallucinations (Celesia et al., 

1972), and autonomic dysfunction (Quinn, 1989; Tanner et a l , 1992) as well as 

abnormalities in olfactory and visual perception (Langston, 2006). These signs of PD are 

accompanied by progressive neuropsychological impairment (Dubois & Pillon, 1997; 

Langston, 2006) that includes abnormal emotion processing (Benke et al., 1998; Blonder 
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et al., 1989; Borod ct al., 1990, Brekenstein et al , 2001; Langston, 2006; Pell, 1996). 

The average duration of illness is nine years (Hely et al., 1999). Patients with late onset 

PD and/or those whose disease is accompanied by dementia have short survival periods. 

Patients with tremor-dominant disease have a longer survival period than those with the 

akinetic form (Jellinger et al., 2002). 

The pathology responsible for the clinical conditions is accompanied by a reduction in 

dopamine levels in the striatum (Hornykiewicz, 2008; Kish et al., 1988; Langston et al., 

1992; Tetrad & Langston, 1989) and severe degeneration of dopaminergic neurons in the 

substantia nigra pars compacta (Forno, 1969; Langston et al., 1992; Tetrad & Langston, 

1989). The cardinal symptoms are observed once the striatal dopamine levels decrease 

by 60-80% (Bernheimer et al., 1973; Hornykiewicz and Kish, 1987). The fact that 

patients show few symptoms despite extreme dopamine reduction (< 60% of normal) 

suggests the existence of compensatory mechanisms in the remaining dopaminergic 

neurons (Bezard and Gross, 1998; Hornykiewicz, 1993, 2008). Therefore, it is clear that 

an understanding of the mechanisms of compensation in an accurate animal model that 

mimics this loss of dopaminergic neurons will lead to a better understanding of the 

progression of the disease. Cell losses also extend into extranigral sites, such as the locus 

coeraleus, the cholinergic nucleus basalis of Meynert, and frequently in the dorsal motor 

nucleus of the vagus (Forno, 1996; Forno et al., 1986; Markham & Diamond, 1993). 

Although these sites may play a role in the development of symptoms, our focus 

remained on the site most directly implicated in the development of PD, the striatum. 
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Lewy Bodies 

Formation of Lewy bodies and Lewy neurites within the substantia nigra is considered 

a pathological marker for the clinical condition in humans (Jellinger, 1987; Lewy, 1912; 

Lowe et al., 1997). Lewy bodies are also observed within the dot sal motor nucleus of the 

vagus, hypothalamus, cholinergic nucleus basalis of Meynert (Lewy, 1912, 1923; Obrrm 

& Ikuta, 1976). locus coeruleus, Edinger-Westphal nucleus in the midbrain, raphe nuclei, 

cerebral cortex (Fomo, 1996; Hughes et al., 1993), olfactory bulb (Reyes et al., 1992), 

cranial nerve motor nuclei, and central and peripheral divisions of the autonomic ganglia 

(Jager & Bethlem, 1960; Iwanaga et al , 1999; Wakabayahi & Takahashi, 1997). 

In 1997, a mutation was identified in the a-synuclein gene in families with autosomal 

dominant PD (Polymeropoulos et al , 1997). This form of PD (familial PD) is a variant 

of age-related, apparently nonhereditary (sporadic) PD that attacks people as early as in 

their 30s and has a strong hereditary component. This discovery, along with an earlier 

confirmation of the presence of Lewy bodies accompanying neural degeneration in 

individuals with familial PD (Golbe et al., 1990), led to pathohistological and molecular 

pathological identification of PD. Abnormal filaments in Lewy bodies are recognized by 

antibodies against a-synuclein in both familial and sporadic PD (Arima et al., 1998; Baba 

et al., 1998; Irizarry et al., 1998; Spillantini et al., 1997; Taeka et al., 1998; Wakabayahi 

et al., 1997; Wakabayashi et al., 1998). While Lewy bodies are considered to be reliable 

markers of neurodegeneration, they may not be present in the substantia nigra of all PD 

sufferers (Forno, 1996). In addition, the status of Lewy bodies as markers for 
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presymptomatic PD has been brought into question by reports documenting the presence 

of Lewy bodies in postmortem specimens from asymptomatic individuals (Gibb., 1988; 

Gibb, 1993; Forno, 1996). Therefore, although Lewy bodies do not occur in the mouse 

model of PD, the importance of the model cannot be disregarded due to the absence of 

Lewy bodies. 

MPTP-Mouse Model 

The MPTP model (Langston, 1995) has been one of the most accurate models of 

human idiopathic PD and has contributed to the understanding of the course and cause of 

PD. MPTP is a neurotoxin accidentally developed in humans (Forno, 1996) that targets 

the dopaminergic neurons within the nigrostriatal tract and produces an array of clinical 

and pathological features that nearly duplicates that of idiopathic PD. 

MPTP induces parkinsonian symptoms in various animals, including the strain of 

mice used in this study (Langston et al., 1984,1992; Lewin, 1986; Tetrud & Langston, 

1989). Of the different studies implementing the mouse model (Edwards, 1993; Irwin el 

al., 1992; Riachi & Harik, 1Y988; Sundstrom et al., 1988), older mice (>8 weeks) of the 

strain C57BL/6 appear to be the most responsive to the initial neurotoxic effects of the 

MPTP. The mouse brain is purged of MPTP in a shorter period of time than in the brain 

of the primate (Edwards, 1993; Riachi & Harik, 1988). This reduction in neurotoxic 

insult may allow for increases in synaptic output (Cochiolo et al., 2000) and regrowth of 

injured nerve fibers (Ricaurte et al., 1986; Sundstrom et al , 1987) to restore dopamine 
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production to near normal levels (Hallman et al,, 1985; Reinhard et al., 1988b; Ricaurte et 

al., 1986; Sundstrom et al., 1990) and allow for the behavioral recovery observed in mice 

(Hallman et al., 1984; Willis and Donnan, 1987). This clearing may also explain the fact 

that mice in general are more highly resistant to MPTP than are primates, requiring 

higher doses for comparable effects (Edwards, 1993). Due to the mouse's robust nature 

and ability to recover from MPTP-induced parkinsonism, the mouse model is one of 

particular interest in the study of compensatory pathways arising after MPTP treatment. 

As in human PD, the MPTP-treated mouse has been shown to suffer substantial 

depletion of striatal dopamine (Irwin, Langston, & DeLanney, 1987; Irwin et al., 1992; 

Reinhard et al., 1988b). Several laboratories have reported severe lesions of the 

substantia nigra in mice, with cell deaths comparable in number to those in primates 

(Cochiolo et al , 2000; Heikkila et al., 1984a; Sundstrom et al., 1987,1988,1990). In the 

most critical aspects of true parkinsonism, the neurochemical and neuropathological 

syndrome induced in the C57BL/6 strain of older mice by MPTP corresponds to that 

arising from human PD. Therefore, the MPTP-treated C57BL/6 mouse older than 12 

weeks serves as an adequate model to study the degenerative and compensatory effects of 

MPTP-induced neurodegeneration. 

Site and Mmode of MPTP Action 

The site and mode of action of MPTP have been heavily investigated. Evidence 

indicates that MPTP enters the glial cells in the striatum or the substantia nigra, where it 
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is cleaved by the monoamine oxidase-B isozyme to form MPP+ (l-methyl-4-

phenylpyridinium), the neurotoxic metabolite (Chiba et al., 1985; Giovanni et al., 1991; 

Javitch & Snyder, 1985; Ransom et al., 1987; Riachi & Harik, 1988). Striatal MPP+is 

then taken up through the dopamine transporter of dopaminergic neurons and routed in a 

retrograde fashion to the cell bodies (Chiba et al., 1985; Markham & Diamond, 1993). 

There is little doubt that MPP+ is imported into mitochondria where it binds to NADH 

dehydrogenase in complex I of the oxidative electron transport chain (Mizumo et al., 

1989; Parker et al., 1989; Ramsay & Singer, 1986; Ramsay et al., 1991) inhibiting 

mitochondrial respiration (Ramsay et al., 1986, 1987). Oxidative stress is also increased 

through the production of toxic free radicals (Adams et al., 1986; Corsini et al., 1985; 

Cleeter et al., 1992; Hasegawa et al., 1990; Johannessen et al., 1986; Perry et al., 1985; 

Rossetti et a l , 1988; Sinha et al., 1986). 

Compensatory Increase in Dopamine Output in Response to Nigrostriatal Lesioning 

Since the early postmortem analyses of dopaminergic neurons and dopamine levels in 

PD, a causal relation has been proposed between the extended preclinical phase of the 

disease and the elevated ratio of dopamine metabolites to dopamine. Dopaminergic 

metabolites, such as homo vanillic acid (Bernheimer and Hornykiewicz, 1965; 

Hornykiewicz, 1993) and dihydroxyphenylacetic acid (Zigmond and Strieker, 1977; 

Zigmond et al., 1984), increase in striatal extracts in relation to dopamine in the context 

of lowered cell numbers, reflecting an increase in dopamine production in the surviving 
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dopaminergic neurons and implying an increase in DA release (Hornykiewicz, 1966, 

1993; Zigmond et al., 1990, 1993). Several studies have indeed shown an increase in 

dopamine production by the spared dopaminergic neurons (Alter et al., 1987; Hefti et al.., 

1980; Onn et al., 1986; Uretsky and Iversen, 1970; Zigmond et al., 1984). Of particular 

note is an increase in the ratio of tyrosine hydroxylase activity to dopamine levels as well 

as an increase in dopamine synthesis in spared dopaminergic neurons (Acheson and 

Zigmond, 1981; Agid et al., 1973; Altar et al., 1987; Bloom et al., 1969; Onn et al , 1986; 

Uretsky and Iversen, 1971; Wolf et al., 1989; Zigmond et al., 1984). The increased 

dopamine production and release in diminished cell numbers led to the conclusion that a 

major compensatory mechanism involves increased dopamine output by existing 

terminals (Zigmond et al., 1984) and/or by newly created terminals of surviving cells 

(Cochiolo et al, 2000). To our knowledge, our initial study (Cochiolo et al, 2000) was the 

first to present ultrastructural evidence of increased synaptic output in spared neurons as 

a compensatory mechanism to increase dopamine levels in response to the neurotoxin, 

MPTP. This compensatory mechanism, by itself or in combination with other 

mechanisms, is effective in maintaining survival of the individual until dopaminergic 

neuronal death exceeds a critical threshold: 70-80% of striatal nerve terminals and 50-

60% of substantia nigra pars compacta pericaryons (Bernheimer et al., 1973; Riederer 

and Wuketich, 1976). 
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Aims of the Time-Course Study of MPTP-Treated C57BL/6 Mice 

The overall focus of the present time-course study was on the MPTP-induced 

ultrastructural damage and compensatory mechanisms that allow the C57 mouse to 

recover from the array of PD-like changes that occur in response to MPTP. It is likely 

that analogous compensatory mechanisms during the preclinical phase of human PD 

delay the appearance of the cardinal symptoms until a threshold is reached whereby these 

mechanisms are no longer effective. Hence, a better understanding of the mechanisms 

involved in mouse recovery may lead to the development of new detection and 

therapeutic approaches to stave off the debilitating symptoms of PD. 

Our laboratory (Cochiolo et al., 2000) previously produced evidence for a structural 

and functional repatterning of dopaminergic neurons that allowed them to compensate for 

the loss of neighboring cells to effect long-term survival of the individual Observations 

3,7, and 21 days following MPTP administration were made in the present investigation 

to search for the presence of dark terminals to determine whether they are indicative of 

degeneration or of recovery. Our results lend support to the notion that dopaminergic 

neurons spared from destruction compensate for the loss of other dopaminergic neurons 

by increasing signaling functionality through increased vesicle production in terminals 

and the production of new terminals. Indirect evidence was also accumulated that 

indicated regenerative events either via sprouting from or division of existing cells or the 

entrance of new dopaminergic neurons into the striatum. 
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MATERIALS AND METHODS 

Middle-aged (6-8-month-old) male C57BL/6 mice, obtained from Simonsen Labs 

(Gilroy, California), were housed one per Plexiglas cage with free access to food and 

water in a colony room maintained at 23 ± 1° C. Control mice were injected with 0.85% 

saline Mice were given a single subcutaneous injection of a 35 mg/kg dose of the 

hydrochloride salt of MPTP. MPTP-treated mice were sacrificed 3 (5 mice), 7 (5 mice), 

or 21 (2 mice) days post-injection. All animals were anesthetized subcutaneously with 

Phenobarbital and perfused via the left atrium with heparin (10 units/ml 0.85% saline) 

and then 2.5% (w/v) paraformaldehyde and 3% (w/v) glutaraldehyde in 0.05 M sodium 

cacodylate buffer, pH 7.4. The brains were immediately removed from their skulls and 

striatal tissues dissected out and diced. These tissue fragments were bathed in the 

primary fixative for 5 days and postfixed in 2% (w/v) osmium tetroxide and 1.25% 

potassium ferrocyanide in sodium cacodylate buffer, pH 7.4, for 2 hours. They were 

prestained en bloc with 2% aqueous (w/v) uranyl acetate, dehydrated in a graded series of 

ethyl alcohol, and infiltrated with and embedded in Epon 812 resin. The blocks were thin 

sectioned (100-120 nm) on a Leica Ultracut UCT ultramicrotome. Sections were post-

stained with 2% uranyl acetate and Reynold's lead citrate and viewed on a Leo 912AB 

transmission electron microscope. 

To distinguish between the effects of MPTP and preparation artifacts, fixation quality 

was assessed in each region by observation of mitochondrial intactness and maintenance 

of periplasmic space volume. When any two of these features were absent, the brain 
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tissues from which the section was taken were discarded and the section was excluded 

from the study. 

RESULTS 

Degenerative Changes 

Severe deterioration of myelin sheaths was observed at each stage of the time course 

(Fig. 1 A-C,E, 2A-C, 3A-D). Gaps were detected between the plasma membrane and 

myelin sheath due to cytoplasmic shrinkage, the plasma membrane receding from the 

sheath, and the sheath pulling away from the axon (Fig. 1 A,C, 2A, 3 A). Separation of the 

laminae of the myelin sheath (Fig. 1 A,E, 2A-C, 3 A) was accompanied by electron-dense 

particles (Fig. 3D,E) that appeared to be myelin breakdown products. In axons that were 

clearly undergoing degeneration, these particles were also present in areas where 

unraveling had not yet occurred (Fig. 3D). Demyelination, observable at early stages as 

interruptions in the myelin sheath, exposed the plasma membrane to the neuropil (Fig 1 A, 

3A-D). Presumptive microglial processes were seen in close proximity to degenerating 

axons (Fig. 1 A). 

11 



• d , ^ v .- »•> - : • • -a.- ' . ' - •• \ \ * ^ 

: . ; . ^ : 

" « . ; f ' . . • • : " . '- : - ; : ' : * 

?3^?i^ i ! ! I S 

F/g. 7. 3 days post-MPTP. 

A. Myelin sheath pulling away from 
axonal plasma membrane (*) and 
separation of laminae of myelin 
(white arrow). A microglial process 
occurs at the black arrow. B. 
Compression and tangling of 
cytoskeletal elements within an axon 
displaying slight myelin damage at 
arrows. C. Severe cytoplasmic 
shrinkage (*) and myelin breaks. D. 
Low density astrocytic processes 
(Ap) surrounding an interneuron (N) 
that displays cytoplasmic 
condensation and vacuolation. E. 
Damaged axons (Ax) showing 
unraveling of myelin adjacent to a 
degenerating interneuron (N). F. An 
interneuron (N) demonstrating 
nuclear (*) and cytoplasmic 
condensation, vacuolation (V), and 
peripheral blebbing (unlabeled 
arrow). The surrounding neuropil 
shows disruption and clearing. G. 
Axonal ghost (arrow) and more 
extensive region of clearing. Scale 
bar = 0.2 um in A and B; 2 urn in C; 
and 5 um in D-G. 

12 



MPTP-induced displacement and clumping of neurofilaments and microtubules 

occurred in conjunction with myelin unraveling (Fig. 2C) as well as in axons with 

apparently intact myelin, at least as revealed in the plane of section of the figure (Fig. 

IB). Mitochondrial swelling was common (Fig. IE, 2C) but was more frequent at 7 days 

post-MPTP injection than at 21 days. 

Electron-translucent areas occurred at all stages of the time course, maximally at 7 

days (Fig.lG) and generally much less so at 21 days (Fig. 3A-C), as deduced through 

consistent scans (not all shown) of large numbers of axonal and synaptic fields. Most of 

Fig. 2. 7 Jays post-MPTP. 

A. Extensive cytoplasmic clearing in the neuropil (*)• 
with damaged axons throughout. Enlarged space (SI) 
contains remnants of cytoplasm and is surrounded by 
myelin, indicating an early stage of cellular clearing. 
The space at S2 is similar but has been subjected to a 
greater degree of demyelination so that only a faint 
boundary of the original degenerating neuron is 
visible. B. Degenerative neurons with dark 
inclusions (large arrows) and large lysosomes with 
dense cores (small arrows). C. Impaired axons (Ax) 
displaying disruption of cytoskeletal elements 
(surrounding *), myelin unraveling (black arrow), and 
dense particles at the sites of unraveling (white 
arrow). Mitochondrial damage is also observed (M). 
D. A cell with morphology clearly identifying it as a 
degenerating interneuron (N) with condensed 
chromatin and small vacuoles. Cleared regions 
around the neuron are prevalent. E. Higher 
magnification view of the axonal segment contiguous 
with the axonal hillock of the interneuron in the 
previous figure. The configuration of the cytoskeletal 
elements clearly indicate that the cell is a neuron. 
Cleared regions surround the axon (*). F.-H. 
Examples of apoptotic appearing interneurons. Scale 
bar = 5 um in A; 2 um in B; 1 um in C; 10 urn in D-
E, 1 um in F, and 5 um in G-H. 
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Fig. 3. 21 days post-MPTP. 

A. Clearing in the neuropil at advanced stage of cellular elimination, where myelin is no longer visible 
around the space (S3); the original cell shape has still been maintained producing a cellular ghost. Also 
present are breaks in the myelin sheath (arrows) and disorganization and disappearance of axonal contents 
(arrowhead). B. Breaks in and unraveling of the myelin sheath and disruption of the cytoskeleton in 
region of cytoplasmic vacuolation. C. Damaged axons displaying all forms of degeneration. 
Accumulation of electron-dense deposits and membranous structures in the axon (inset). D. Electron-
dense particles (arrow) in nearly completely reabsorbed cell. Nearby is a degenerative axon (Ax) showing 
myelin interruption, cytoplasmic shrinkage, and cytoskeletal disruption (arrowhead). E. Higher 
magnification view of an area in Fig. 3D revealing congealment of the myelin sheath and subsequent 
granulation. Scale bar = 5 p.m in A; 0.5um in B; 5 urn in C; 1 um in C inset; 0.5 um in D-E. 
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these areas were clearly the result of progressive neuronal degeneration, as various stages 

of formation of cellular "ghosts" were evident (Fig. 1G, 2A,E, 3A,C,D). For example, in 

Fig. 2 A, the cell at SI displays obvious protoplasmic and myelin degradation, but the 

myelin is still visible enough to make out the cell outline. The cell at S2 of Fig 2 A 

progressed further, deteriorating nearly to the point of complete cellular clearing. The 

cell at S3 in Fig. 3 A vanished entirely, but the maintenance of the shape of the cleared 

region indicates the former presence of a cell. Some of these ghosts still contain 

remnants of myelin (Fig. 3D), in the form of the electron-dense particles mentioned 

above, lending support to our designation of the spaces as cellular in origin. Some 

electron-transparent regions, however, appear to be occupied by astrocytes, whose 

processes have intruded into regions vacated by cellular clearing (Fig ID). Our methods 

of assessing the degree of degeneration within the large striatal expanse may be prone to 

undersampling, but our observations are consistent with those of other studies employing 

immunohistochemical and biochemical methods. 

Extremely dense cell bodies of questionable identity occurred in highest number at 7 

days and declined in frequency by 21 days. Through observations of alternative planes of 

section, we were able to capture images of unmistakable neuronal morphology in cells of 

a similar nature (Fig. 2D). These cells bore axonal processes and thus were concluded to 

be interneurons undergoing degeneration. Degenerative processes included various 

stages of chromatin condensation in (Fig. IF, 2D, 2F-H) and vesiculation of (Fig. 2F-H) 

their large nuclei. The cytoplasm was in a condensed state containing distended and 

dense lysosomes (Fig. 2B) and swollen and distorted mitochondria with disrupted cristae 
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and cleared matrices both within the cell body (Fig. 2B) and the axon (Fig. 4A,B). 

Axonal cytoskeletal displacement was also evident (Fig. 4A,B)-

Cytoplasmic deterioration progressed to an even more highly condensed condition 

lacking any recognizable organelles and with especially dense blotches (Fig. 2B). 

Vacuolation was extensive on the periphery of the cells (Fig. 2F-H). Astrocytic 

processes (Fig. ID) and areas of clearing occurred both interior (Fig. 2D-E) and exterior 

to these cells. 

Dark Axon Terminals and Interneurons 

Axon terminals of dopaminergic neurons were darkened as a result of their high 

density of synaptic vesicles (Fig. 5-10). They were positioned extensively en passant. 

Darkened en passant boutons were most abundant in our sections in the spared fibers of 
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the 7-day samples (Fig. 5-8, 10), but they were still present in the 21-day samples (Fig. 

Fis. 5. Dark terminals at ? 
days post-MPTP. 

A. Low magnification view of 
dark terminals (arrows). B. 
Higher magnification view of 
two of the dark terminals 
(arrows) in Fig. 5A, in which 
dense vesicles are visible. The 
labeled mitochondrion (M) has 
maintained its integrity and 
appears to be part of the same 
cell as the lowermost dark 
bouton, which is synapsing on 
the dendrite at D. Scale bar = 5 
urn in A; 0.5 urn in B. 

9A,B). Multiple (mostly paired) and perforated synaptic densities occurred in the dark 

terminals (Fig. 8A,B). We made an effort to visualize the axons that the dark boutons 

flanked to determine whether these boutons were associated with healthy or damaged 
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axons. The extreme curvature of axons in the vicinity of these boutons made their 

detection challenging. Several were identified and revealed to have dark boutons 

associated with intact axons lacking any of the morphological features that characterized 

injured axons (Figs. 6A,B). A convincing example is shown in Fig. 6A where a 

transverse section through a parent axon includes a dark terminal. It is clear that the axon 

is healthy, lacking any shrinkage, autolysis, or microtubule and neurofilament 

disarrangement or tangling. 

Fie. 6. Dark terminals at 7 days post-MPTP. 

A. Dark en passant bouton with arrow 
pointing to synaptic vesicles within an axon 
(Ax) containing an undamaged 
mitochondrion (M). The region of extreme 

| electron density is a face view of the pre
synaptic density. B. Two populations of 
vesicles (V) forming electron-dense regions 
within probable separate dark terminals of a 
single healthy axon (Ax) bearing an 
undisrupted cytoskeleton and mitochondria 
(M). Scale bar = 0.5 u.m. 

As we observed previously, parallel arrays of microtubules appeared to traverse the 

neuropil (Fig. 7 A). Because confining cell membranes could rarely be seen, these 

microtubules seemed to be located external to cells. In agreement with our previous 

study, some of these arrays were seen in association with en passant boutons, confirming 

that they were located in axons (Fig. 6A). Unrecognized previously, however, some of 
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these arrays were clearly in interneuronal dendrites synapsed on by dark terminals (Fig. 

5B, 7B). 

Fig. 7. Dark terminals synapsing on healthy 
interneuron at 7 days post-MPTP. 

A. Cytoskeletal elements seemingly running 
through region with unidentifiable cellular 
boundaries. This structure resembles the 
dendrites of healthy interneurons as well as the 
axons from which dark terminals branch. B. 
Healthy interneuron (N) with abundant 
endoplasmic reticulum (ER) arranged both in 
parallel array and in a more disorganized 
fashion. Healthy mitochondria (M) are located 
throughout. Dark terminals (DT) are synapsing 
proximal to the cell body onto a primary 
dendritic process (D). The dark terminals were 
identified by viewing them at higher 
magnification. The neuropil surrounding this 
healthy neuron shows no clearing or damage 

1 Scale bar = 0.5 um in A; 5 um in B. 

We observed many cases of the darkened en passant terminals synapsing on dendrites 

of healthy (spared) interneurons (Fig. 7B). Spared interneurons were relatively large with 

abundant parallel and randomly arranged rough endoplasmic reticulum (Fig. 7B,10). The 

cells also contained healthy mitochondria (Fig. 7B,10). Hence, it is reasonable to assume 

that the majority of dendrites on which dark terminals synapsed but whose cell bodies 

were not visible in section also belonged to healthy interneurons. 
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Fis. 8. Dark terminals synapsing on 
dendrites at 7 days post-MPTP. 

A. Dark terminal (DT) with densely 
packed vesicles. The terminal is 
synapsing (S) on a dendrite (D) with 
darkly staining post-synaptic density. 
M, mitochondrion. B. Dark terminal 
with a perforated synapse (S) 
composed of deeply staining post- and 

• j l pre-synaptic densities. Scale bar = 0.5 
\im. 

21-Day Axonal Fields 

There was a dramatic increase in fields of healthy axons at the 21-day stage (Fig. 11). 

Evident was a jigsaw puzzle pattern of abutted axons with minimal extracellular space. 

The myelin sheath of the axons appeared to be tightly wound, although with slight 

disruptions attributable to imperfect fixation. Fields of more narrow, unmyelinated axons 

were also most abundant in the 21-day samples. 
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Fig, 9. Dark terminals svnapsing on dendrites at 21 days post-MPTP 

A. Dark terminal (DT) with densely packed vesicles synapsing (S) on the 
dendrite at D. M, mitochondrion. B. Dark en passant terminals with densely 
packed vesicles (V) an d healthy mitochondrion (M). The synapse (S) of the 
uppermost terminal is clearly perforated. Scale bar = 1 ^m. 
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Fig. 10. Dark terminals svnapsing on interneuron at 7 days post-MPTP. 

Healthy interneuronal cell body (N) with ER and mitochondria (M) throughout the cell. 
A high number of dark terminals (DT) are synapsing (S) onto dendrites (D) in close 
proximity to the cell body of the interneuron. Insets are of higher magnification views of 
portions of the montaged image on the right. Scale bar = 2 urn in large image and 1 um 
in insets. 
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Fig. 11 Axon fields at 21 days post-MPTP. 

A-E. Fields of healthy axons with minimal clearing. Relative 
to other stages, there is an increase in the number of small 
diameter fibers. Scale bar =10 \im. 
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DISCUSSION 

Damage Induced by MPTP 

Axonal degeneration was evident at all stages of the time course in the form of myelin 

separation, demyelination, localized cytoplasmic shrinkage, mitochondrial disruption, or 

microtubule and neurofilament disturbance. The MPTP-induced striatal degeneration 

observed in response to MPTP insult was comparable to that reported in other 

ultrastructural studies (Forno et al., 1994; Lewandowska et al., 1999; Rapisardi et al., 

1990). The changes observed 3 days post-MPTP injection were similar to those at the 1-

day post-injection stage observed in our earlier study (Cochiolo et al., 2000). By 7 days, 

more extensive degeneration occurred, including a greater frequency of mitochondrial 

damage, of axonal ghosts, and of degenerative interneurons. Our findings at the 7-day 

stage correlate with the progressive disappearance of TH-positive fibers in the striatum, 

which Sundstrom et al. (1987, 1988) found to reach maximal levels 7 days after 

treatment. Although areas of damage and clearing can be located at 21-days post-

injection, the striatal ultrastructure appears to be much healthier than that observed at 3 

and 7 days. 

Our finding of maximum mitochondrial degeneration at 7 days is in accord with 

studies in which mitochondrial dysfunction, particularly of complex I of the electron 

transport chain, has been implicated to contribute to the pathological progression of PD 

(Shults, 2004). MPTP has been shown to accumulate within the mitochondria as MPP+ 
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(Ramsay et al., 1986), which, through its interaction with complex I, causes a reduction 

in mouse striatal and midbrain ATP levels (Chan et al., 1991). This reduction in 

conjunction with the increased generation of reactive oxygen species (Cleeter et al., 1992; 

Hasegawa et al., 1990; Rossetti et al., 1988) most likely results in the ultrastructural 

aberrations that befall mitochondria and the rest of the cell. The existence in the same 

thin section of both unaltered mitochondria in healthy cells and comprised mitochondria 

in damaged cells indicated that the damage observed was not a fixation artifact. 

Dark Terminals 

In our previous study, we concluded that the abundant and densely vesiculated 

boutons, called dark degenerative boutons by others (Linder, 1987,1995), were 

associated with large, healthy axons and, therefore, were unlikely to be degenerative 

(Cochiolo et al., 2000). The association of the terminals with healthy axons and the 

increased number and packing of vesicles 1 day post-MPTP injection led us to deduce 

that these surviving terminals increased their dopaminergic output to compensate for the 

overall loss of neurons. It could be argued that these darkened vesiculated terminals were 

an initial step in a degenerative process leading to darkened boutons lacking vesicles, as 

reported by Linder et al. (1987, 1995). However, the "condensed" terminals at the 1-day 

post-injection stage reported by Adams et al. (1989) contained dense and packed vesicles, 

similar to our findings at that stage (Cochiolo et al, 2000). Similarly, darkened 

vesiculated terminals persisted until 21 days in our present time course, failing to reveal 
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any vesicle elimination. Throughout the time course, these terminals were associated 

with healthy axons and synapsed on healthy dendrites, supporting the conclusion that 

they are not degenerative. We saw not a single case in which dark terminals synapsed on 

unhealthy neurons. Instead they appeared to be part of a compensatory increase in 

signaling efficacy responsible for the initial recovery of the mouse from MPTP toxicity. 

If the dark terminals were indicators of neuronal degeneration, one would expect the 

time course to reveal an increase in dark terminals associated with degenerative axons 

Instead, we found in this and our previous study (Cochiolo et al., 2000) that the axons in 

continuity with the dark terminals were undamaged. Moreover, one would also expect 

rapid elimination of dark terminals as cells died and were cleared away. The persistence 

of dark terminals in the midst of striatal degeneration and clearing argues against the 

degeneration alternative. Cells clearly had died leaving substantial spaces, presumably as 

a result of reabsorption of cellular contents by microglia, while dark terminals remained 

intact. We, therefore, continue to maintain that the darkening processes are agents of 

recovery rather than of degeneration. 

Early and Late Compensatory Mechanisms 

We hypothesized that neurons spared from MPTP-induced death increased dopamine 

levels high enough to maintain signaling. Within the first 2-3 days post-injection, mice 

exhibit clear behavioral deficits; thereafter, the deficits diminish and the animals regain 

normal behavior (Hallman et al, 1985; Reinhard et al., 1988; Ricaurte et al, 1986; 
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Sundstrom et at., t990). Ultrastructural abnormalities, however, persisted in our mice for 

three weeks, while evidence of sprouting or regeneration was not observed until this 

point. This distinction suggests that both acute and longer term compensatory 

mechanisms are involved in the recovery process. 

There is strong evidence that after neurotoxin lesioning of the mouse substantia nigra 

pars compacta (SNc), dopaminergic neurons from the SNc or other regions of the brain 

sprout to reinnervate the dorsal striatum (Anglade et at., 1996; Blanchard et at., 1995, 

1996; Finkelstein et at., 2000; Ho and Blum, 1998; Ingham et at., 1996, 1998; Kerns et 

at., 1992; Leonard et at., 1993; Mitsumoto et al., 1998; Parish et al., 2001; Pickel et at., 

1992; Thomas et at., 1994; Wong et al., 1997). In approximately 4 months, most of the 

dopaminergic terminals in the striatum were found to be newly formed (Finkelstein et al., 

2000; Stanic et at., 2003) and to bear features, including amassing synaptic vesicles, that 

signified a greater ability to produce, store, and release dopamine in comparison to the 

predeath capacity of the terminals that did not survive lesioning (Stanic et at., 2003). 

Regeneration became apparent in the striatum by the identification of hypertrophic 

dopamine transporter-immunoreactive terminals about 30 days after lesioning (Stanic et 

al., 2002,2003), and it continued for up to 7 months (Blanchard et al., 1996). Because 

C57 mice recover behaviorally within seven days (Donnan et al., 1987; Tillerson and 

Miller, 2003; Willis and Donnan, 1987) and increase striatal dopamine levels 

significantly within the first 30 days (Hallman et al., 1985; Reinhard et al., 1988; Ricaurte 

et al., 1986; Sundstrom et al., 1990), some other mechanism must exist to allow survival 

following the loss of dopaminergic neurons before the reinnervation period. Likely 
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candidates, as reported here, are the formation of new en passant terminals and the 

elevation in dopamine production by existing terminals, as indicated by heightened 

synaptic vesicle density. 

Nigrostriatal synaptic terminals most commonly form contacts with dendritic spines 

and shafts (Anglade et al., 1996; Descarries et al , 1996; Freund et al., 1984; Groves et 

al., 1994; Hanley and Bolam, 1997; Ingham et al., 1998; Zahm, 1992). Of the new 

contacts made following lesioning, the majority are proximal to the cell body (Ingham et 

al., 1996, 1998). The dark terminals in our investigation also synapsed proximal to 

interneuronal cell bodies. More proximal synapses are thought to have a more substantial 

impact in target neurons than distal synapses (Pickel et al., 1992). Hence, not only are 

the dark terminals apparently increasing dopamine release, their proximal location 

enhances the efficiency of signaling. 

It is our conclusion that the dark vesiculated terminals contribute to mouse recovery 

from MPTP by increasing the efficacy of dopamine signal transmission in the spared 

neurons. Increased functional capacity of the synapse due to an increase in synaptic 

vesicles in boutons has been observed in other studies (Lnenicka et al., 1991; Pierce and 

Lewin, 1994; Sasaki and Iwata, 1996). Other researchers have found that spared 

dopaminergic neurons of the SNc did not increase their firing rate or pattern of firing 

(Hollerman and Grace, 1990; Pucak and Grace 1991). Hence, the increase in dopamine 

production by spared cells is due to an increase in the net amount of dopamine released in 

response to each action potential (Stachowiak et al., 1987; Synder et al. 1990). Evidence 

for a functional significance of increased dopamine output comes from studies 
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elucidating the ability of dopaminergic neurons to inhibit cholinergic interneurons after 

insult to the dopaminergic pathway (Grewaal et al., 1974; Guyenet et al., 1975; 

MacKenzie et a l , 1989). 

Our ultrastructural results as well as the immunocytochemistry results of others 

(Jackson-Lewis et al., 1995) support the role of increased synaptic output in surviving 

neurons as an early compensatory response. At 7 days post-injection, when recovery in 

animal behavior has been reported (Rozas et al., 1998) in spite of significant depletion of 

dopamine (70-90%) (Rozas et al., 1998; Sundstrom et al., 1988), we observed an increase 

in the frequency of dark terminals. This set of results is consistent with our hypothesis 

that the increased frequency of dark terminals aids the animal in its recovery despite 

significant ultrastructural deterioration. 

Our results indicating a lack of sprouting at 7 days correlate with studies reporting 

sprouting to occur between 14 days (Ho and Blum. 1998) and 210 days post-injection 

(Bezard et al., 2000), making it unlikely for sprouting to play a role in the acute phase of 

recovery. At the 7-day post-injection point, when sprouting was absent and the 

degenerative effects of MPTP were most apparent in this and other studies (Sundstrom et 

al., 1988), dark terminals were most frequent and associated with healthy axons. From 

these results, it is logical to infer that the dark terminals act to stabilize the intact circuitry 

until sprouting can occur. The notion that dark terminals are agents of the compensatory 

response that allows the animal to survive the MPTP challenge until sprouting can occur 

is further supported by studies reporting no change in TH-positive cell bodies in the SNc 
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and statistically significant changes in TH-positive fiber densities, and thus the number of 

axons in the striatum, only at 24 days post-injection (Mitsumoto et al., 1998). 

It is likely that the increase in synaptic output guides the synaptic remodeling that later 

occurs (Meredith et a l , 2000; Meshul and Allen 2000; Meshul and Tan 1994; Stantic et 

al., 2003). A marked decrease in the volume of cleared regions, which occurred at the 

21-day stage, is most readily explained by sprouting and/or regeneration. Sprouting and 

regeneration are likely to play a prominent role in longer term compensation, whereas the 

increase in dopamine output per cell by spared (or newly formed) boutons plays a role in 

early stage compensatory responses. This model of recovery is based on the decline of 

dark terminal frequency at 21 days accompanied by a conspicuous increase in healthy 

fields of axons as well as by the well documented increase in overall tissue dopamine 

levels at this time (Hallman et al., 1985; Reinhard et al., 1988; Ricaurte et al., 1986; 

Sundstrom et al., 1990). 
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