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ABSTRACT 

USING GIS TO DEPICT RESOURCE RISK FROM PROBABLE CANNABIS 

CULTIVATION SITES 

by Cammie d'Entremont Partelow 

Water diversion, fertilizer pollution, and the destruction of natural and cultural 

resources are among the impacts of illicit marijuana cultivation on public lands. 

Yosemite National Park and Sequoia/Kings Canyon National Park are challenged with 

mitigating this activity. Two habitat suitability model approaches, multiple logistic 

regression and weighted overlay, were compared in an effort to identify a best predictive 

model for marijuana grow site locations. The models analyze resource attributes and 

human activity. Resource criteria include attributes that are essential for plant growth 

such as slope, aspect, soil depth, and canopy. Human factors are site selection criteria 

that are unrelated to plant growth and include proximity to water and proximity to roads. 

This thesis presents an overview of the methods, data, results, lessons learned, sample 

output, and next steps. GIS modeling and analysis of this type is a valuable and efficient 

means to support resource protection and law enforcement on public lands. 
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1. Introduction 

1.1 Background 

The Organic Act of 1916 charges the National Park Service to "conserve the 

scenery and the natural and historic objects and the wild life therein ... for the enjoyment 

of future generations" in "national parks, monuments, and reservations." With the 

increasing incidence of illegal marijuana cultivation on public land, this task is more 

difficult and more dangerous than ever. All public land agencies in the Western U.S., 

including national parks, are battling illegal Cannabis sativa (marijuana) growth within 

their boundaries. According to the Domestic Cannabis Cultivation Assessment produced 

by the National Drug Intelligence Center (2007), the number of plants eradicated from 

national forest lands in California nearly doubled from 2004 to 2006. Mexican drug 

trafficking organizations (DTO) are choosing to use public lands to grow marijuana 

rather than crossing tightened borders, and park rangers must modify their tactics to 

successfully protect resources against this threat (Coile, 2005; Whitehouse, 2005). 

Mexican nationals are hired by the DTOs to live in the area to tend and protect the plants. 

The damage caused by living in the area includes poaching of wildlife, excessive 

garbage, and human waste (U.S. Department of Justice, National Drug Intelligence 

Center, 2007). A recent cultivation site yielded "over 1,000 pounds of garbage" 

(Shilling, 2008). The understory is cut to make room for camps and marijuana plants, 

which allows non-native, invasive plants to take hold (Whitehouse, 2005). The use of 

park land to grow marijuana not only presents a risk to natural and cultural resources but 
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also to the lives of park staff and visitors. Hikers are threatened by armed DTO guards, 

native plant habitats are destroyed, and ecosystems are polluted (Coile, 2005; 

Whitehouse, 2005; S. Shackelton, personal communication, June 26, 2007). 

Identifying and then proactively monitoring sites at risk of impact from marijuana 

growers may facilitate the protection of resources before they are disturbed or harmed. 

Knowing the locations of and risks to resources allows park managers to better protect 

them (van Manen, Young, Thatcher, Cass, & Ulrey, 2005). Locating areas with planted 

marijuana (known as grow or cultivation sites) in national parks is a task for law 

enforcement experts who draw on experience to guide them. A geographic information 

system (GIS) which records information about spatial locations is an excellent means to 

capture and analyze such data. Anecdotal knowledge of various projects by individual 

park or forest divisions abounds, but a search for comprehensive information was mostly 

fruitless. Investigation into various local projects revealed that often the individual who 

created the model had changed jobs, the model was not being used, or time constraints 

did not permit further development or updates. Local agencies lack resources to facilitate 

continued development and adequate documentation. Research revealed abstracts for 

several modeling projects performed by various organizations, but again full articles or 

more in depth model information was difficult to locate. Three research projects 

conducted between the early 90s to the present were discovered. 

An expert system is briefly discussed in the 1994 ACSM/ASPRS Annual 

Convention & Exposition conference proceedings. This system used expert knowledge 

to identify the factors which were slope, aspect, proximity to transportation network, 
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proximity to water, distance from population centers, and forest cover (Fung & Welch, 

1994). A location is selected by the user and the system indicates if the location is a 

possible cultivation site or not. Fung and Welch (1994) state "On the basis of the 

attribute information and the knowledge about Cannabis cultivation coded in the 

knowledge-base, the decision-support system determines the likelihood the selected 

location will be used as a growth site" but an algorithm is not explained. According to 

the evaluation, the results were promising with 83% of actual sites in predicted areas. 

Additional documentation was not found and attempted contact with the authors was not 

successful; therefore the continued use or current state of the system is unknown. 

The Canadian Police Research Center (CPRC) researched a process that 

incorporated spatial analysis and image analysis in 2000 (Howell, 2002). The spatial 

analysis was a composite layer that was generated using the following predefined 

parameters: within 50 meters from a water source, within 500 meters from road access, 

within a cutblock or wetland area, under 1200 m elevation, south facing, and on 

government land (Howell, 2002). The composite layer was queried to select likely 

cultivation sites. The results were evaluated as good but only one site was verified and 

actual accuracy is not mentioned. In the conclusions to the study, the author expresses 

confidence in employing a GIS for exposing grow sites even with the limitations of the 

study (Howell, 2002). If this project was developed further is unknown. 

The National Guard Bureau created a Decision Support System in conjunction 

with the Center for Higher Learning at the Stennis Space Center in Mississippi and 

Georgia Tech Resource Institute in Atlanta, with the same intention as this research: 
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prediction and planning. A 2004 reference to the system listed authors and developers 

who were supportive of this research and provided information. According to Jim 

Matthews (2007), one of the developers, the system is an Artificial Neural Network 

(ANN) that was trained with historical data and used variables including roads, streams, 

land cover, topography, rainfall, and first and last frost. A map that showed each point's 

similarity to known marijuana sites was generated for the study area. The ANN began 

with a univariate analysis of 100 parameters which was paired down to 20-25 (J. 

Matthews, personal communication, October 19, 2007). One downside to an ANN is that 

the decision process is internal. How the system arrives at an answer is hidden from the 

user. This system was not used in 2006 but was used by MS Bureau of Narcotics & MS 

National Guard previously and an attempt to use the system nationally was hampered by 

environmental differences and the varying levels of technology (J. Matthews, personal 

communication, October 16, 2007). A cluster analysis revealed that grow sites in the 

Central Valley had different qualities from grow sites in the rougher terrain of California. 

Similar analysis was performed for other states as well. Development and research was 

continuing on the project at the time of communication with Mr. Matthews. 

These three projects illustrate that experts and scientists have attempted to use 

GIS as a tool to locate outdoor cultivation sites. GIS was successful in recognizing 

potential areas but concise, published documentation is lacking. Also highlighted is the 

lack of continued use or continued research and publication. Individual agencies 

probably tried GIS model projects which are likewise unpublished. Modeling areas of 

risk by incorporating spatial information and known factors of influence for site selection 
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in a GIS will provide law enforcement an advantage in safeguarding resources by 

allowing more targeted surveillance. 

1.2 Objective 

The objective of this study is twofold. The first goal is to develop a scientifically 

based, defendable approach to model areas most likely at risk for illegal marijuana 

growing on federal land in the Sierra Nevada mountain range in California (Sierra 

Nevada). The second objective is to highlight areas of conflict between probable 

cultivation sites and known natural and cultural resource locations. 

This research developed and compared two models using known data points: a 

multiple logistic regression model and a weighted overlay model. In the past, overlay 

models based solely on expert knowledge were used to show areas at risk. Two logistic 

regression models were developed based on different sample sizes and compared to 

identify which sample size would best represent the phenomena. The model approaches 

were selected for comparison based on a review of literature, current practice, and the 

data types used for the models. All models utilized publicly available data in conjunction 

with the coordinates for previous cultivation sites. Previous grow locations are 

monitored for additional activity and consequently the data are considered sensitive and 

not available for public use. The model approach which best represents areas most likely 

at risk for marijuana cultivation on federal land in the Sierra Nevada was used to 

visualize the risk to natural and cultural resources. Resource locations are maintained by 

the National Park Service (NPS) and were added as layers to the risk plots to show areas 

of concurrence. 
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2. Data and Methods 

2.1 Study Area 

The study area consists of two plots. A rectangular area surrounding and including 

Yosemite National Park (Yosemite) defined by the following UTM meter coordinates: 

309731 4231097; 235067 414925. The second study area surrounds and includes 

Sequoia/Kings Canyon National Park (Sequoia) and is demarcated by the following UTM 

meter coordinates: 292579 3993847; 425929 4143277 (Figure 2.1). 

§h 

L~~_J Study Area 

[ 3 ^ ] National Park Boundary 

Figure 2.1: The study area is in the Sierra Nevada in California and includes 
Yosemite National Park and Sequoia/Kings Canyon National Park 

Both parks have a diversity of threatened resources, a history of illegal Cannabis 

growing activity, are within relative proximity to each other, and have an experienced 

ranger staff committed to eliminating this activity. Although both parks in this study are 
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in the Sierra Nevada range, the differences between them could prove too great to 

facilitate accurate, flexible model building by employing the data from only one. 

Yosemite is more north in the Sierra Nevada and Sequoia has higher elevations. 

Marijuana seizures increased from 10,000 marijuana plants eradicated from Yosemite in 

2004 to nearly 21,000 in 2008. The problem is burgeoning in the Yosemite area and the 

data consists of only eighteen records. Sequoia has contended with this problem since 

the 1980s and has a larger database of marijuana cultivation locations. 

2.2 Model Methods 

A habitat model based on a discriminant analysis was used in Shenandoah 

National Park to successfully predict resource sites for endangered species at risk of 

poaching (van Manen et al, 2005). A discriminant analysis is a statistical model that 

groups events into two or more categories based on linear correlations between variables. 

In this type of model, data should be normally distributed. Normal distribution is a 

symmetrical probability distribution based on mean and variance (spread). Logistic 

regression analysis is a similar type of statistical analysis also applied to habitat modeling 

(Bonn & Schroder, 2001; Guisan & Zimmermann, 2000; Pearce & Ferrier, 2000). 

Logistic regression analyzes the independent or predictor variables to determine their 

correlation to the dependent variable (Hosmer & Lemeshow, 2000). This research is 

better suited to a logistic regression method considering the data utilized is a combination 

of qualitative and quantitative data and the outcome is a dichotomous result of presence 

or absence (Carroll, Zielinski, & Noss, 1999; Pereira & Itami, 1991). Logistic or binary 

regression yields the probability that an event will occur based on the values of known 
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variables but it does not assume a normal distribution as discriminant analysis. Although 

statistical models are used frequently for predictive or descriptive modeling, land 

management agency law enforcement officers and rangers have historically utilized only 

overlay models to display areas at risk for cultivation. 

As is often the case in habitat models, overlay models are based on expert 

knowledge to identify areas (Johnson & Gillingham, 2004). Habitat Suitability Models 

are used to identify plant and animal habitats (Gross, Kneeland, Reed, & Reich, 2002; 

Guisan & Zimmermann, 2000; Ortigosa, De Leo, & Gatto, 2000). Models are based on 

key factors or variables which relate to the species being modeled, and are selected 

through an understanding of the requirements for species success and the ability of the 

variable to be used in the model (U. S. Fish and Wildlife [USFW], 1981). Variables that 

signify potential marijuana cultivation sites were identified for inclusion in all models. A 

combination of expert knowledge and commonly used environmental variables was used 

to determine the parameters for the two models (Clevenger, Wierzchowski, Chruszcz, & 

Gunsun, 2002). Some of the uncertainty introduced by varying expert opinions (Johnson 

& Gillingham, 2004) may be reduced by using this combination. The experts for this 

study are the law enforcement rangers, investigators, and officers that locate and 

eradicate Cannabis grow sites. Variables were characterized into two groups: 

environmental and human. 

Common plant or environmental requirement variables were selected based on 

literature reviews. The variables are elevation, slope, aspect, soil depth, water, vegetation 

and canopy cover (Gross et al, 2002; Guisan and Zimmerman, 2000; USFW, 1981; van 
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Manen et al, 2005). These factors affect plant viability. Although law enforcement 

experts stated that aspect was not a relevant variable based on recent cultivation activity, 

an analysis of the aspect of known grow sites in Sequoia revealed that a majority of 

known sites facing north did exist in 2006 but did not otherwise indicate a pattern of 

change. With the exceptions of 2002 and 2006, south and west directions were most 

prominent. As a result of this analysis, the variable was included in the development of 

the model. The variables remaining to be defined were selected to represent factors 

driven by human influence. 

Social factors, variables not associated with plant biological needs but relevant to 

site selection, were recommended by law enforcement rangers who monitor sites for 

indications of activity. Proximity to water, trails and roads are important variables 

dominated by human choices. The knowledge of human impact which resides with the 

experts can guide the selection of objective data that might otherwise be overlooked. For 

example, proximity to roads is a consideration for the delivery of supplies (food, 

fertilizer, etc.) to the individuals that live at the grow site. Accordingly, a variable that 

represents a site's distance from a road is necessary. Other examples are environmental 

factors adapted to fit the needs of the marijuana growers including the redirection of 

water sources through tubing and the thinning of native plants. The individuals who 

grow marijuana at these locations are motivated by a goal to harvest the crop and avoid 

detection. They alter their behavior for unknown reasons. Eventually, a parameter that 

represents the mitigation activity of law enforcement rangers may need to be included. 

For now, each model considers the variables as defined above. 
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The logistic regression model employed the statistical package SPSS to perform 

the regression analysis on data derived from the cultivation and non-cultivation sites. 

The analysis generated a constant and a coefficient (B coefficient) to represent the 

contribution of each variable to variations in the dependent variable which is location in 

this calculation. Canopy, land cover, and aspect are nominal data and were grouped into 

categories. Canopy and land cover were categorized in groups as defined by the data 

source (see appendix) with six and five categories respectively. Aspect data were 

grouped into nine categories: the four cardinal and four inter-cardinal directions, and flat. 

Dummy variables representing each group above and B coefficients for those variables 

were created in the analysis (Pereira & Itami, 1991). This increased the variables and B 

coefficients in the equation to 23 plus a constant. The B coefficients were used in 

algorithms that assigned a value of presence/absence to the study areas and to categorize 

test points as cultivation site or non-cultivation site 

The algorithm sums the products of variable values multiplied by the coefficient. 

This results in a value based on the following equation: 

z = Bo + B1X1+ B 2 x 2 + B3X3... B22X22 + B23X23 

where Bo is the constant, Bn is the coefficient, and x„ is the variable value. To obtain the 

likelihood estimation or probability, the z value is transformed using exp(z)/(l+exp(z)). 

The resulting value represents the probability that an area is or is not a cultivation site on 

a scale of zero to one with values closer to one less likely to be a grow site. Each 

transformed result is interpreted into a presence/absence result of cultivation site/non-

cultivation site using the SPSS default classification cut-off of 0.5. All values equal to 
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and less than 0.5 are potential grow locations. This cut-off appeared to provide good 

results for the models but the value can be changed. 

The algorithm was applied to raster files to generate a plot of areas most likely to 

be cultivated using ESRI ArcGIS 9.2 (ArcGIS) Spatial Analyst Tools. Raster files are 

grids of pixels or cells each with a value and the values can be used in equations. For this 

analysis, a raster file with values for each variable was needed. The first step was to 

create raster files for the proximity and categorical variables. The Path Distance function 

in ArcGIS was used to generate raster files for each distance measure: proximity to water, 

trails, and roads. Path Distance considered elevation as part of the measure but an 

impedance value was not entered. The cell values represent the distance of the cell from 

the feature (stream, trail, or road). Next, the appropriate area was extracted for each 

dummy variable for canopy, land cover, and aspect using the Extract by Attribute 

function and saved as a new raster. 

One issue encountered during the extraction process was that the extraction will 

only function on raster files with integer values. The aspect file cell type is a float which 

allows for decimals and higher precision. The conversion from float to integer using 

ArcMap conversion truncated rather than rounded the values. Therefore, values of 22.99 

were saved as integer values of 22. About one half of a degree of precision was lost at 

each end of each range during the extraction step to create the dummy variables thereby 

compounding the error. In the final raster, it would be realistic to expect that cells at the 

beginning and end of each range were misclassified. To correct this problem, the floating 

point values were rounded and converted to integer using raster calculator prior to 
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extraction. The following equation, based on an ESRI online technical article, was 

applied to the aspect raster dataset: 

YoseAspectRnd = INT(CON([YOSEASPECT] > 0,CON(ABS([YOSEASPECT] 

- INTflTOSEASPECT])) >= 0.5, CEIL([YOSEASPECT]), 

FLOOR([YOSEASPECT])), CON(ABS([YOSEASPECT] -

INT([YOSEASPECT])) >= 0.5, FLOOR([YOSEASPECT]), 

CEIL([YOSEASPECT])))) 

The resultant raster file was in integer format and values could then be extracted into the 

correct dummy variable category. 

Each dummy variable raster was reclassified to one for each cell with a value and 

zero for cells with no data. The raster files were multiplied by B coefficient and 

combined into one raster whose cell values represented the B values for each dummy 

variable. Recombination of dummy variables was performed using the mosaic function. 

The multiplication of each raster, the summation of all layers, and the log score 

calculation was performed in ArcGIS with the raster calculator. This process generated a 

final raster that visualized the probability of cultivation locations. The regression model 

deemed best by evaluation techniques discussed later in this text was plotted for Sequoia 

as described above and compared to the overlay model. 

The overlay model was constructed using the minimum and maximum cell values 

of the sample points which were calculated in Microsoft Excel (Excel). The overlay 

model used only presence data to determine the risk area thus, to increase efficacy, all 

Sequoia actual cultivation sites were utilized. This process was used in an attempt to 
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reduce expert bias and use actual site data to develop the model. Primary work region 

affects the figures that are presented by experts. The values were calculated for each 

variable and a range was established using the minimum and maximum values (Table 

2.1). The evaluation of presence only data is an important difference from the logistic 

regression model which evaluates both presence and absence data to determine the B 

coefficients. 

Table 2.1 - Minimum and maximum values for 
variables based on the known cultivation sites 

Road Proximity 
Trail Proximity 
Stream Proximity 
Canopy Cover 
Land Cover 
Soil Depth 
Elevation 
Slope 
Aspect 

Min 
95.650 
39.481 

1.906 
0.000 

41.000 
43.000 

686.177 
3.815 

15.474 

Max 
2876.340 
5838.820 
806.212 

96.000 
52.000 

117.000 
1817.527 
108.983 
359.742 

Each raster file was reclassified based on the range and cells with values between 

the minimum and maximum number receiving a value of one to represent risk and the 

remaining cells were given a value of zero to represent no risk. The raster files created 

for distance were reclassified for the proximity variables. A weighted overlay with equal 

weight was performed to create the area of anticipated risk. All zero values were 

assigned to no data in the scale and values of one were assigned a one. 
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2.3 Model Evaluation 

The validation of models is a debated subject (Rykiel, 1996). Rykiel (1996) 

suggests defining the purpose and context of models prior to validation attempts. Guisan 

and Zimmerman (2000) advocate adopting the term "evaluated" in lieu of "validated." 

Another consideration when evaluating ecological presence/absence models is that an 

area in which the species is not observed does not mean the habitat is not suitable only 

currently unused. With these thoughts in mind, the models were evaluated to see if the 

predictive ability would be greater than chance (greater than 50%). SPSS provides 

several measures with the results to evaluate the process while the overlay method had 

only one. 

Some of the several SPSS outputs for assessment or evaluation of a regression 

model are the Model Summary, the Omnibus Test of Model Coefficients, the Hosmer and 

Lemeshow test, and the classification tables. Applying the resultant ft coefficients to the 

test points and creating a classification table to compare the actual to the predicted 

observations is another means of evaluation (Pearce & Ferrier, 2000). The final 

evaluation technique consists of plotting the area and comparing where the known sites 

are to the area indicated as likely locations (Pereira & Itami, 1991). Consideration of the 

results inclusively is important because caveats exist for many of the tests. The SPSS 

evaluation outputs and application of the B coefficients were used as a means to select 

which sample size generated the best regression model and which would be plotted and 

compared to the overlay model. Overlay models are evaluated based solely on the results 

of plotting. 
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To measure the effectiveness of plotting, the area deemed likely for cultivation 

sites was converted to polygons. The select function in ArcMap was used to select all 

points that were contained by the polygons. A second measure of proximity was 

performed using the same tool. The distance from the polygon was measured for points 

that were not contained by the polygons. The second measure was included as further 

understanding of the model results. 

2.4 Data 

The methods described above require data for training and for testing. Training is 

the process by which the model is developed. Known locations of grows and associated 

points were provided by Yosemite and Sequoia as point data. Known grow locations are 

the presence data and associated points - points associated with the grow location but 

which are not cultivation sites such as camps, dumps, or water lines - are considered 

absence data. The Yosemite data included 18 records, 12 known grow sites and 6 target 

sites. Target sites, areas where experts anticipate cultivation sites to be developed, were 

considered as non-cultivation sites for the test. The Sequoia dataset was accompanied by 

a caveat that coordinate data prior to 2000 was potentially faulty and had 17 records 

without coordinates recorded. Selecting all points with coordinates and a date after 

12/31/1999 resulted in a subset of 131 records, 84 of which were known cultivation 

locations. The remaining records represent other points associated with the growing 

process but which are not cultivation sites such as camps, dumps, or water lines. The 

total dataset consisted of 96 known marijuana locations and 53 associated points. 
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To increase the total sample size and supplement the non-cultivation site 

subcategory, eighty random points were selected using the randbetween function in Excel 

and added to the dataset as non-cultivation sites: 60 from Sequoia/Kings Canyon study 

area and 20 from the Yosemite study area. These pseudo-absence points pose a potential 

risk because they are not confirmed as actual absence locations or they are closely 

associated with an actual cultivation location. 

Two training datasets were randomly selected from the Sequoia points again 

utilizing the randbetween function in Excel. The first sample had 115 sample points (50 

cultivation and 65 non-cultivation locations) and the second had 159 sample points (72 

cultivation and 84 non-cultivation sites). The last dataset represents 75% of the total 

grow sites. This percentage representation of presence data was suggested by Pereira and 

Itami (1991) and van Manen et al. (2005). The number of non-cultivations sites is greater 

than the number of cultivation sites in both sample sets (van Manen et al., 2005). The 

remaining Sequoia points and all Yosemite data were reserved as test points. 

The National Elevation Dataset 1 Arc Second (DEM) raster, National Land Cover 

Dataset 2001 - Land Cover, and National Land Cover Dataset 2001 - Canopy were 

downloaded from the National Map Seamless Data Server in ArcGrid format. The DEM, 

land cover, and canopy are raster files with a spatial resolution of 30 meters. Slope and 

aspect are derived from the DEM. The road and trail data are vector files and were 

downloaded from the National Park Service (NPS) Data Store. Stream data for Sequoia 

was downloaded from the NPS Data Store and for Yosemite is a combination of vector 

files received from Yosemite's GIS Office and the National Map Seamless Data Server. 
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The National Map Seamless Data Server file provided information for the eastern and 

southeastern portion of the study area for which the GIS Office did not provide stream 

information. All raster files were converted to a cell size or spatial resolution of 30 

meters. 

The Soil Survey Spatial and Tabular Data (SSURGO 2.2) soil dataset available 

for Yosemite is unavailable for Sequoia. State Soil Geographic (STATSGO) is a lower 

resolution dataset but is available for both parks. STATSGO provides a range for depth-

to-bedrock data. The CONUS-Soil dataset was developed by the Center for 

Environmental Informatics at The Pennsylvania State University 

(http://www.soilinfo.psu.edu/) for modeling. The dataset uses STATSGO and provides a 

mean depth-to-bedrock value (Miller, 1998) but is only valid to a depth of 152 cm (60 

in). Values of 152 could represent a greater depth. The data was downloaded from 

CONUS-Soil and used for both study areas to maintain consistency. 

North American Datum 1983 (NAD 83) UTM zone 11 is the standard projection 

for Yosemite and Sequoia. Files were reprojected as necessary and the North American 

Datum Conversion (NADCON) transformation was used files originally projected with 

North American Datum 1927 (NAD 27). Known grow site locations were received in 

degrees decimal minutes in a NAD 83 projection for Yosemite and in UTM zone 11 

meters from Sequoia. Yosemite points were converted to UTM meters. 

2.5 Model Discussion and Results 

Statistical tests require the selection of a critical value or, restated, the level at 

which it is acceptable to be wrong. For all test, the critical value was set at 0.05. This 
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means that the results are expected to be correct 95% of the time. Statistics with 

significance levels equal to or smaller than 0.05 are considered statistically significant 

(SPSS Topics Logistic Regression). 

An assessment of the results from SPSS revealed that the model based 115 point 

sample performed well as a model. The omnibus test of model coefficients is a measure 

of the significance of the addition or subtraction of a variable or variables. The 

significance denotes the probability of obtaining the chi-square value without the 

independent variables (SPSS Topics Logistic Regression). The significance value was 

less than 0.05 indicating that the addition of the variable was statistically significant 

(Table 2.2). 

Table 2.2 - SPSS 115 point model Omnibus 
Test of Model Coefficients 

Step 
1 

Step 
Block 
Model 

Chi-
square 
91.442 
91.442 
91.442 

df 
23 
23 
23 

Sig. 
.000 
.000 
.000 

R2 represents the variation explained by the model in linear regression (Menard, 

2002). A true R cannot be computed for Logistic regression therefore pseudo R values 

are calculated using the -2 Log likelihood. A pseudo R2 value closer to 1 indicates that 

more of the variation is explained by the model. As indicated by Table 2.3, the 

Nagelkerke R Square indicates that 74% of the variation is explained by the model. 
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Table 2.3 

Step 
1 

- SPSS Model Summary 

-2 Log likelihood 
66.020a 

Cox & Snell 

R Square 
.548 

Nagelkerke R 

Square 
.736 

a- Estimation terminated at iteration number 20 because maximum 
iterations has been reached. Final solution cannot be found. 

One note of caution Menard expresses is that if the sample size is too small a 

substantively significant R2 may still be caused by random variation. The sample size 

used in this study is small thus this measure was considered in conjunction with other 

results for model evaluation. 

The next measure is the Hosmer and Lemeshow test, a goodness-of-fit test of the 

null hypothesis that the model does not adequately fit the data. According to Garson 

(2008) this measure is "more robust than the traditional chi-square test, particularly if 

continuous covariates are in the model or sample size is small." The cases are divided 

into deciles by predicted probabilities and a chi-square statistic is computed from 

observed and expected frequencies to obtain the measure for this test (Menard, 2002). In 

this test and contrary to other chi-square evaluations, an insignificant chi-square (greater 

than 0.05) means the model is a good fit. The chi-square and degrees of freedom value 

are similar for this model suggesting that the null hypothesis is true but the significance 

was greater than 0.05 demonstrating that the model is a good fit (Table 2.4). 

Table 2.4 - SPSS Hosmer and Lemeshow 
test results for the 115 point sample 
logistic regression analysis 

Step 
1 

Chi-square 
9.528 

df 
8 

Sig. 
.300 

19 



Reviewing the SPSS results for the 159 point model shows that the addition of the 

variables was a significant change (Table 2.7) and that the model has about 68% of the 

variation explained (Table 2.8). 

Table 2.7 - SPSS 159 point model Omnibus Test of Model Coefficients 

Stepl Step 

Block 

Model 

Chi-square 
112.154 

112.154 

112.154 

df 
23 

23 

23 

Sig. 
.000 

.000 

.000 

Table 2.8 - SPSS 159 Point Model Summary from SPSS 

Step 
1 

-2 Log likelihood 
106.8503 

Cox & Snell 
R Square 

.506 

Nagelkerke R 
Square 

.677 

a- Estimation terminated at iteration number 20 because maximum 
iterations has been reached. Final solution cannot be found. 

In the Hosmer and Lemeshow test for the 159 point model, the chi-square and degrees of 

freedom were not similar signifying that the hypothesis is valid and the significance was 

quite high (Table 2.9) indicating that the model is a good fit. 

Table 2.9 - SPSS Hosmer and Lemeshow test 
results for the 159 point sample logistic 
regression analysis 

Step 
1 

Chi-square 
2.459 

Df 
8 

Sig. 
.964 

The classification table showed an overall correct percentage slightly lower than the 115 

point model but still acceptable at 84.3% (Table 2.10) and the percentage correct for 

cultivated sites was slightly higher. This was also an increase over the baseline results of 

54.7% (Table 2.11). 
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Classification tables reflect the predictive abilities of the model. SPSS runs a 

preliminary regression without any variables as a baseline before processing the variables 

for the logistic regression (Table 2.5). This table shows the percentage correct if all 

points were predicted to be non-cultivated sites: 56.5% or slightly better than chance. 

Consideration should be given to the difference between the two classification tables as 

well as the overall percentage of correct predictions (Garson, 2008). The 115 point 

model had a high percentage correct, overall 86.1%, in the classification table from SPSS 

(Table 2.6) and was overall much better than the constant only model. 

Table 2.5 - SPSS generated baseline Classification for the 115 point sample 
without variables 

Observed 
Cultivated 
Non-cultivated 
Overall Percentage 

Predicted 
Cultivated 

0 
0 

Non-cultivated 
50 
65 

Percentage Correct 
0 

100.0 
56.5 

Table 2.6 - SPSS generated classification table for the 115 point sample logistic 
regression analysis 

Observed 
Cultivated 
Non-cultivated 
Overall Percentage 

Predicted 
Cultivated 

44 
10 

Non-cultivated 
6 
55 

Percentage Correct 
88.0 
84.6 
86.1 

Three of the four evaluation statistics for this model suggested that the model fit 

the data. The only statistic that reflected poorly on the model was the Chi-square value 

of the Hosmer and Lemeshow test. This logistic regression model is adequate 

considering all of the measures from the SPSS regression output. 
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Table 2.10 - SPSS Classification table for the 159 point sample logistic regression 
analysis 

Observed 
Cultivated 
Non-cultivated 
Overall Percentage 

Predicted 
Cultivated 

66 
19 

Non-cultivated 
6 
68 

Percentage Correct 
91.7 
78.2 
84.3 

Table 2.11 - SPSS Baseline classification table for the 159 point sample without 
variables 

Observed 
Cultivated 
Non-cultivated 
Overall Percentage 

Predicted 
Cultivated 

0 
0 

Non-cultivated 
72 
87 

Percentage Correct 
0 

100.0 
54.7 

All four evaluation statistics for the 159 point model indicated that the model was 

a good fit for the data. This logistic regression model is adequate considering all of the 

measures from the SPSS regression output. The next evaluation method does not occur 

in SPSS. 

A manual application of the B coefficients to the test points to verify if the 

regression coefficients can accurately categorize points is performed using Excel. The 

algorithm explained in the Model Methods section was applied using the values for each 

variable and the 13 coefficients. A classification table was constructed to compare the 

predicted and observed values. This process produced an overall percentage correct 

classification lower than the classification table for the training set. In both cases, the 

results are significantly better than chance (50%). 70% of actual cultivation locations 

were correctly classified when the B coefficients derived from the 115 point model were 
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applied. The calculation incorrectly categorized 10 previous grow sites and 18 non-

cultivation sites (Table 2.12). 

Table 2.12 - Classification table for the 115 point regression test 
points analysis 

Observed 

Cultivated 
Non-cultivated 
Total 

Predicted 
Cultivated 

23 
18 
41 

Non-cultivated 
10 
55 
65 

% Correct 
70% 
75% 
74% 

The results from the 159 point algorithm calculation were lower overall but better in 

cultivation site discrimination than the 115 point equation. The number of correctly 

classified non-cultivation sites was the same with both equations but resulted in a lower 

percentage (64%) correct for the 159 point equation. 100% of previous grow location 

test points were classified as cultivated (Table 2.13). 

Table 2.13 - Classification table for the 159 point regression test 
point analysis 

Observed 

Cultivated 
Non-cultivated 
Total 

Predicted 
Cultivated 

12 
18 
30 

Non-cultivated 
0 
32 
32 

% Correct 
100% 
64% 
71% 

When applied to the Yosemite test points, the results were again slightly lower at 

72% and 71% overall but the pattern of correct classifications remained the same (Table 

2.14 & Table 2.15). In both cases, a higher correctness of presence classifications, 

known as sensitivity, existed while correct absence classification was lower (Pearce & 

Ferrier, 2000). The 159 point model correctly classified ten, or 83%, of the known grow 

site locations while the 115 point sample had nine, or 75%, correct. The small number of 
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test points causes the percentage correct to be vastly different for small changes in 

number. 

Table 2.14 - Contingency table of Yosemite test points using the 115 sample 
point coefficients 

Observed 

Cultivated 
Non-cultivated 
Total 

Predicted 
Cultivated 

9 
8 
17 

Non-cultivated 
3 
18 
21 

Total 
12 
26 
38 

% Correct 
75% 
69% 
72% 

Table 2.15 - Contingency table of Yosemite test points using the 159 point 
coefficients 

Observed 

Cultivated 
Non-cultivated 
Total 

Predicted 
Cultivated 

10 
9 
19 

Non-cultivated 
2 
17 
19 

Total 
12 
26 
38 

% Correct 
83% 
65% 
71% 

Fielding and Bell (1997) and Pearce et al (2000) state that the accuracy 

measurement, or total percent correct, may be misleading. In both classification tables, 

the non-cultivation sites had a higher percentage of misclassifications. Further 

investigation revealed that the majority of misclassified non-cultivation sites were points 

associated with grow sites. 14 points or 78% of the misclassified non-cultivation sites in 

the 115 point sample and 17 points or 94% of the 159 point sample were near a known 

cultivation site. The target points in the Yosemite data represent 67% of the 

misclassification in the 159 point non-cultivation category. Errors which include areas in 

a presence result but are not observed, also known as Errors of Commission, on spatially 

correlated cells are known to be problematic (Fielding, 1997). This error is acceptable 

because points so closely related to a known cultivation location could be potential grow 
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sites. As mentioned previously, discerning errors can be difficult because an area as yet 

unused may be used in the future. 

The totality of evaluation statistics suggested that the two regression models were 

not extremely different but that the 159 point model was more sensitive and slightly more 

able to discriminate between cultivation and non-cultivation sites (Pearce, 2000). The 

115 point model was set aside in favor of the model that used the 159 sample points. The 

final regression model evaluation was to apply the regression coefficients to the study 

area raster files to visualize the area likely to have grow sites. 

When plotted in ArcMap, the anticipated cultivation area is in the southwest 

region of the study area. This area coincides with the locations of known grow sites and 

the area indicated by experts. The actual sites were displayed as points and overlaid on 

the plot (Figure 2.2). Four of the 84 training points are not contained within the area 

indicated as likely grow sites. All of the four plots are within 30 meters of an anticipated 

area and are adjacent to a point that is contained in the anticipated area. Plotting yielded 

a higher percentage correct than the applying the B coefficients to the training or test 

points with 95% of known cultivation sites within the predicted area. 
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Figure 2.2: Sequoia study area weighted overlay model 
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The Weighted Overlay model based on all 84 actual cultivation points had 36 

points fall outside of the area indicated as most likely. 57% of the known locations are in 

the area forecasted as likely growing locations. Only 14 points are greater than 100 

meters away from a predicted presence cell. Even considering the proximity, the 

weighed overlay model remains less accurate than the logistic regression model. 

A visual comparison of the two Sequoia plots (Figure 2.3) revealed that the 

overlay anticipates less total area for cultivation sites and the large predicted areas are 

disconnected from each other. The same general regions were highlighted by the 

regression and overlay models. Both models have anticipated sections that are small, one 

or two pixels, and predicted areas have small omitted portions. The overlay plot 

appeared to have fewer gaps with smoother edges. The logistic regression plot had areas 

that spread together and covered more of the region but the edges appear pixilated. The 

overlay plot did not highlight the canyons, a geographic feature that experts suggest is 

important, as well as the logistic regression plot. The overlay model is simpler in its 

development but it is less accurate. 

When the results for the regression model were plotted and known sites overlaid 

for the Yosemite study area, the plot encompassed 14 of the 18 points (Figure 2.4). This 

result was better than the test point evaluation with 78% of the points falling in the 

predicted area. Two actual cultivation and two target sites were not contained in the plot 

area. All four points were within 30 meters of the area identified to have likely 

cultivation sites. 
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Figure 2.3: Close up of Sequoia overlay and logistic regression areas of risk overlaid for 
comparison 
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2.6 Further Discussion 

The data for this study was collected in February of 2008. In August 2008, one of 

the NPS investigators stated that one target site was eliminated as a suspect location and 

another was identified for surveillance. The coordinates of the removed site did not 

match any coordinates previously supplied. Both locations were identified as target sites 

in May and neither was part of the analysis data. When plotted, the new sites raised 

questions and a subsequent conversation revealed two key points that need addressing. 

Each will be discussed separately. 

One new target was plotted and appeared in water. This point was approximately 

170 ft from an area categorized as a likely cultivation area. This site is across the water 

from an eradicated site. Both sites were known to be cultivated by a local individual, not 

a Mexican DTO. These points do not correspond to the apparent DTO prerequisites for 

site selection. Local growers do not have the same modus operandi. The cultivation sites 

tend to be smaller, unguarded, and in some cases including this one, far from roads. A 

second analysis using only known DTO grows may more accurately reflect the expected 

location of larger size sites while the current model shows all possibilities. Both models 

could be used to locate grow sites. Data from additional sources will be required because 

Yosemite and Sequoia do not have enough representative points. Only six of the Sequoia 

sites are labeled as DTO managed. It is possible that points are incorrectly coded in the 

database. 

Errors or inconsistencies in data recording were the second concern. The 

coordinates for another target site which was adjacent to a probable area were identified 
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as possibly inaccurate. The point was selected using a map and a general idea of the 

location versus a global positioning system device (GPS) at the actual location. Although 

GPS units can be incorrect up to 20 feet, the coordinates garnered would be more 

accurate than the current technique which provides coordinates that are somewhat 

arbitrary. The investigator stated that the target may actually be in the area indicated by 

the model. This issue highlights the need for a GIS specialist. The NPS Pacific West 

Region would benefit from a dedicated GIS manager who could collect, maintain, 

analyze and report on regional data, and fulfill need for improvement and maintenance of 

models in hopes of continued and shared use as was mentioned in the introduction. 

Better collection and standardized data formats in a central repository would improve the 

data analysis. Individual parks have GIS personnel with varying skill levels and 

numerous responsibilities. A regional level person dedicated to working with 

investigators and rangers to eliminate cultivation sites would develop expertise that 

would benefit all parks in the region. Separate parks would not need to impose additional 

tasks on their GIS staff but could leverage the global skills and knowledge as is currently 

the practice with investigators. Such an individual could liaise with other agencies facing 

this same issue. Many national parks, including Yosemite, are surrounded by national 

forest or state or county public lands. Each of these agencies is faced with eradicating 

cultivation sites. Data from other agencies could be incorporated to improve the model 

and, again, benefit all. 
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2.7 Issues 

The lack of a variable that represents the influence of human presence was most 

evident in the Yosemite plot. Yosemite Valley is highlighted as a likely area for 

cultivation. Although the environment is suitable for growing marijuana, the high level 

of human activity makes it less likely to be selected as a cultivation site. With that said, 

at least one small cultivation site was anecdotally noted in Yosemite Valley; so a variable 

that would represent level of activity was not investigated. A surrogate measure to 

characterize locations where population or development inversely influences location 

selection should be explored for possible inclusion in the equation. 

Overall size of the probable growing area may be a factor in location selection. 

Grow site size is not currently measured but DTO growers are planting in locations which 

allow for large crops. In some cases, multiple cultivation sites are planted in proximity to 

each other. An estimate of preferred area could be determined based on an average of the 

number of plants eradicated and an estimated per plant area requirement. For example, if 

each plant requires 3 to 6 square meters growing space and the average number of plants 

eradicated per site is 1,000, then a minimum size could be 3,000 square meters. 

Locations below the minimum size could be eliminated from the risk area. This variable 

would eliminate some of the smaller disconnected sections from the predicted area. 
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3. Areas of Conflict 

3.1 Identifying Conflict 

A key goal for this process was to identify areas of potential conflict to resources. 

Resources that require protection are rare plants, cultural sites, and wildlife. Some 

species, such as the mountain yellow-legged frog, are in decline or threatened. Others, 

such as the Yosemite Orchid, are known to exist only in this region. Cultural sites, such 

as Native American or cavalry use sites, have historical value that is irreplaceable. To 

reach the goal of detecting risks to resources, rare plant locations, archeological sites, and 

some wildlife habitat locations were overlaid on the selected regression model. Yosemite 

maintains GIS layers representing natural and cultural resource locations. 

The rare plant layer consists of over 100 species and includes ten plants that are 

listed as species of concern or rare by the federal or state government including the 

Yosemite Wooly Sunflower and the Yosemite Onion. The Mountain Lady Slipper, 

several sedges, and some sunflower species are considered rare in Yosemite but not in the 

federal or state protection lists. 

Cultural resource sites are located all over. The Yosemite Valley Historic District 

is on the national register of historic places and includes many national historic 

landmarks such as the Awahnee Hotel. The archeological layer has sites such as caves 

with petroglyphs, Native American living areas, U.S. Calvary camps, gold mine locations 

and national historic landmarks. 

Unfortunately, not all wildlife layers were provided for this research because 

some wildlife information is considered too sensitive to be released. Locations of 
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Spotted and Great Gray Owl nests, Flying Squirrel and Yosemite Toad habitat are 

included in the wildlife layer. Eventually a complete wildlife layer that includes ranges 

should be included to show the potential risk to all wildlife especially considering that 

growers are known to poach. Adding these layers to the likely risk plot showed several 

potential coincident areas and highlighted the risk to resources (Figure 3.1). 
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Figure 3.1: Yosemite area of conflict 
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Many resource locations overlap with the anticipated risk area. In fact, some 

resource locations may already be compromised. A close review of the plotting reveals 

three eradicated sites, two pictured below in Figure 3.2, in close proximity to 

archeological sites and rare plant habitat and one target site that coincides with a wildlife 

location. 

Figure 3.2: Zoom of area of conflict highlighting two eradicated cultivation 
sites in proximity to resource locations 
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3.2 Discussion and Conclusions 

A comparison of the models indicates that a model based on logistic regression 

analysis is more effective than a weighted overlay model at identifying areas most likely 

at risk for marijuana cultivation on federal land in the Sierra Nevada of California. 

Knowing that presence/absence models are difficult, if not impossible, to validate, the 

regression model has four evaluation methods that provide an ability to stand up to 

scrutiny while the overlay model has only one. Although the overlay model is easier to 

generate and can be completed completely in ArcGIS, the regression method is more 

scientifically defendable. Of the two regression models, the 159 point model is more 

sensitive with 100% of known grow sites in the test sample correctly classified. 

Therefore, the method that provides the best model for the purpose of this study is the 

logistic regression model that utilized 75% of available presence data and absence data to 

generate the B coefficients. 

The risk to protected resources is high. The plotting of the probable area for 

marijuana cultivation and resource locations underscores the risk. Illegal marijuana 

cultivation is a threat that must be addressed before resources are permanently damaged. 

Modeling likely cultivation sites using a GIS is a good way to visualize the potential risk 

to resources. This can guide resource managers and law enforcement rangers in their 

protection efforts as well as help illustrate the problem to policy makers. Using this 

process to manage areas of conflict may help reduce the habitat destruction and pollution 

that occurs as a result of marijuana cultivation activities by making an area less appealing 

to DTOs. 
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3.3 Next Steps 

Ideas for future research beyond this project are plentiful. As an initial step, the 

items mentioned in the issues sections should be addressed. Establishing a variable to 

represent the influence of human activity and eliminating areas that are too small to be 

used for cultivation will create a more precise model. Incorporating the 2008 grow 

location data points and cultivation status updates will provide additional data to improve 

the model. This step should include both plotting the 2008 grow location points on the 

likely area plot, and recalculating the logistic regression equation using a new subset of 

75% of the data. Incorporating data from neighboring agencies would enhance the 

model, and exploring regression models using only DTO grows, as discussed in section 

2.6, may help better distinguish areas. Continuing analysis of variables and new data will 

improve the predictive accuracy of the tool. 

Experimenting with impedance values in the path distance measure may improve 

the distance variable. Slope, vegetation type, canopy, and combinations of variables are 

possible candidates from the current variable set to represent impedance. The steepness 

of a slope or the thickness of the understory, which increase the difficulty in reaching a 

location, may affect site selection. 

A conflict area that should be explored is the pollution of resources such as water 

and soil. Water and soil are both polluted by fertilizer and pesticides, which are not 

removed with plant eradication. These resources are not included in the current conflict 

identification nor are the implications of such tainted resources. A method to define, 
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measure, and model the total area affected by cultivation sites should be determined to 

assess the total resource impact. 

Finally, creating a tool that can be run in ArcMap by a lay user is important to 

facilitate use by rangers. This is especially important as long as individual parks are 

expected to manage this process. To be successful, the tool must not require a significant 

amount of time and energy to learn but should provide accurate visualization which will 

allow rangers to focus on preventing the establishment of cultivation sites. The projects 

that have not continued illustrate the need for a tool that can be used by a person that is 

not a GIS expert. By utilizing Python scripts, a tool that prompts users for the necessary 

data and does not require users to have a thorough understanding of ArcMap can be 

developed and initiated. 
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Land Cover 

Appendix: Categorical Variables Key 

Code 
11 
12 
21 
22 
23 
24 
31 
32 
41 
42 
43 
51 
52 
71 
72 
73 
74 
SI 
82 
90 
91 
92 
93 
94 
95 
96 

97 
98 
99 

Canopy 

Description 
Open Water 
Perennial lee Snow 
Developed. Open Space 
Developed. Low Inlcnsilv 
Developed, Medium Intensilv 
Developed. High liilensitv 
Barren Land (Rock'Sand'Clav) 
I 'nconsolidaled Shore* 
Deciduous Forest 
Evergreen Forest 
Mixed Forest 
Dwarf Scruh 
Shrub/Scrub 
Grassland.'Herbaceous 
Sedge/I lerbaceous 
Lichens 
Moss 
Pasture 1 lav 
Cultivated Crops 
Wood> Wetlands 
Palustrine Forested Wetland* 
Paluslrine Scrub Shrub Wetland* 
Lstuarine Forested Wetland* 
Lstuarine Scrub Shrub Wetland* 
Emergent Herbaceous Wetlands 
Palustrine Emergent Wetland 
(Persistent)* 
Estuarinc Emergent Wetland* 
Paluslrine Aquatic Bed* 
Estuarinc Aquatic Bed* 

Code Description 
0 0 - 20% 
1 2 1 - 40% 
2 4 1 - 60% 
3 () 1 - 80% 
4 81-100% 

Class 
Code 
1 
1 
2 
-> 
T 

1 

.1 

.1 

4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 

6 
6 
6 

A 

Class Name 
Water 
Water 
Developed 
Developed 
Developed 
Developed 
Barren 
Barren 
Vegetated; Natural Forested Upland 
Vegetated: Natural Forested I 'pland 
Vegetated; Natural Forested Upland 
Vegetated: Natural Shrubland 
Vegetated; Natural Shrubland 
Herbaceous Upland Natural Scminalural Veg 

Herbaceous Upland Natural/Seminatural Veg 
Herbaceous Upland Natural Seminatural Veg 

Herbaceous Upland Natural/Seminatural Veg 
Herbaceous Planted Cultivated 
Herbaceous Planted/Cultivated 
Wetlands 
Wetlands 
Wetlands 
Wetlands 
Wetlands 
Wetlands 
Wetlands 

Wetlands 
Wetlands 
Wetlands 

Aspect D e g r e e Direction Group 
337.5 - 22.5 
22.5 - 67.5 

67.5 - 112.5 
112.5- 157.5 
157.5 - 202.5 
202.5 - 247.5 
247.5 - 292.5 
292.5 - 337.5 

-1 

N 
NL 
E 

si: 
s 

SW 
W 

NW 

Flat 
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