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ABSTRACT 

DETECTING MUTATIONS RELATED TO ANTIBIOTIC RESISTANCE IN 

PSEUDOMONAS AERUGINOSA 

by Neda Nemat-Gorgani 

Excessive use of broad-spectrum antibiotics in hospitals has led to the emergence 

of highly resistant strains of Pseudomonas aeruginosa. To reduce the selection pressure 

for resistance, it is important to determine the antibiotic-susceptibility pattern of bacteria 

so that hospital patients can be treated with more narrow-spectrum and target-specific 

antibiotics. This study describes the development of a technique for detecting point 

muations in the fluoroquinolone resistance-determining region of the gyrA and parC 

genes as well as the efflux regulatory genes mexR, mexZ, and mexOZ that are associated 

with fluoroquinolone and aminoglycoside resistance. The assay is based on a short 

DNA-sequencing method using multiplex-fast polymerase chain reaction (PCR) and 

Pyrosequencing™ for amplification and sequencing of the selected genes. Fifty-nine 

clinical isolates of P. aeruginosa were examined for mutations in the above-mentioned 

genes. Mutations related to antibiotic resistance were detected in codons 83 and 87 of 

gyrA and codon 126 of the mexR regulatory gene. Results of this study suggest 

Pyrosequencing™ as a substitute for traditional methods, as it provides a rapid and 

reliable technique for determining the antibiotic-resistance pattern of a given bacterial 

strain in < 1 h. 
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PREFACE 

This thesis is organized in three chapters. Chapter I presents a general 

introduction on Pseudomonas aeruginosa and its resistance to antibiotics and the aim of 

the research study. Chapter II describes the mechanisms of antibiotic resistance in P. 

aeruginosa. Chapter III includes the details of the study, prepared as a manuscript 

entitled "Detection of point mutations associated with antibiotic resistance in 

Pseudomonas aeruginosa" (submitted to the Journal of Microbiological Methods). 

The last part of the thesis is composed of appendixes, which provides additional 

details about the data collected. 
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CHAPTER I 

INTRODUCTION 

Pseudomonas aeruginosa is a notorious opportunistic pathogen and is isolated 

mostly from patients with urinary tract infections, wound infections, and severe burns. P. 

aeruginosa infection is also known to be a serious problem in patients hospitalized with 

cystic fibrosis, cancer, and burns. Half of these infections are fatal. P. aeruginosa has 

been considered a nosocomial pathogenic bacterium in a number of studies. What makes 

P. aeruginosa infections problematic is the bacterium's resistance to antibiotics and 

disinfectants (Lambert, 2002). Antibiotic and disinfectant resistance have been attributed 

to 1) intrinsic resistance to a wide variety of antimicrobial agents due to low membrane 

permeability, 2) genetic capacity to express a wide range of resistance mechanisms, 3) 

acquisition of resistance to antibiotics through chromosomal mutations, and 4) 

acquisition of resistance genes from other organisms via plasmids, bacteriophages, and/or 

transposons (Lambert, 2002). 

P. aeruginosa is an extremely adaptive organism. It can grow on a wide range of 

substrates and quickly responds to environmental alterations (Lambert, 2002). It has a 

large genome (6.26 Mbp encoding 5,567 genes) compared to other common human 

opportunistic pathogens such as Escherichia coli K12 (4.64 Mbp), Haemophilus influenzae 

(1.83 Mbp encoding 1,714 genes), and Staphylococcus aureus N315 (2.81 Mbp encoding 

2,594 genes) (Lambert, 2002). P. aeruginosa consequently possesses substantial 

additional genetic capacity compared to other bacteria. This capacity may confer its 
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extremely adaptive nature, including the capacity to develop resistance when antibiotics 

are employed extensively (Lambert, 2002). 

Mechanisms of resistance to antibiotics in P. aeruginosa are either based on non-

mutational intrinsic resistance or mutational acquired resistance. Fluoroquinolones and 

aminoglycosides are two important classes of antibiotics used in the treatment of 

Pseudomonas infections. Pseudomonas readily develops resistance to these agents, 

reducing the antibiotic effectiveness. 

In this study, we developed a DNA-based technique to determine the antibiotic-

resistance pattern of P. aeruginosa in a shorter period of time compared with traditional 

methods such as disk diffusion or agar dilution. We used multiplex polymerase chain 

reaction (PCR) and Sanger sequencing to find key mutations in the gyrA, mexR, parC, 

mexZ, and mexOZ genes of P. aeruginosa isolates exhibiting resistance to 

fluoroquinolones and aminoglycosides. Furthermore, Pyrosequencing™ was used as the 

ultimate method to detect specific point mutations in the above-mentioned genes. 
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CHAPTER II 

MECHANISMS OF ANTIBIOTIC RESISTANCE IN PSEUDOMONAS AERUGINOSA 

This section reviews the resistance of P. aeruginosa to antibiotics and 

antimicrobial agents based on non-mutational intrinsic resistance and mutational acquired 

resistance. 

1. Non-mutational intrinsic resistance 

P. aeruginosa has natural resistance to many antimicrobial agents. This is 

primarily due to active efflux systems that are present in all wild-type strains, its 

membrane permeability properties, and plasmid and chromosomal pMactamase genes 

(Aires et al., 1999, Giwercman et al., 1990, Lambert, 2002, Livermore, 2002). 

The most well-known efflux system that leads to intrinsic antibiotic resistance is 

the MexAB-oprM system. Efflux pumps are active transporters that are localized in the 

cytoplasmic membrane of all bacterial strains and reduce the antibiotic levels at the site 

of activity in the cell. Antibiotics are the most clinically important substrates of efflux 

systems. The MexAB-oprM efflux system is expressed constitutively in wild-type strains 

of P. aeruginosa and confers resistance to a broad range of drugs including quinolones, 

chloramphenicol, P-lactam, P-lactam inhibitors, trimetoprime, sulfamethoxasole, 

tetracycline, and novobiocin (Aires et al., 1999). 
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2. Mutational acquired resistance 

P. aeruginosa acquires resistance to antibiotics through chromosomal mutations. 

These mutations include 1) mutations in the regulatory genes for the drug efflux pump 

systems, 2) mutations in the target genes encoding DNA gyrase (gyrA) and 

topoisomerase IV (parC), 3) mutations causing cell wall impermeability due to loss of 

OprD, a porin that forms narrow transmembrane channels, 4) mutations causing 

alterations in penicillin-binding proteins, and 5) impulsive mutations in the regulatory 

genes for the bacteria's P-lactamase resulting in derepression of P-lactamase. 

2.1. Derepression of P-lactamase 

Chromosomally encoded p-lactamase is increasingly proven as a cause of 

resistance to novel p-lactam antibiotics (Giwercman et al., 1990). All strains of P. 

aeruginosa express a chromosomal AmpC P-lactamase. In the absence of P-lactam 

antibiotics, this enzyme is expressed at a very low basal level but can increase to much 

higher levels in the presence of the antibiotic. However, this stimulation is a transient 

response to p-lactam antibiotics. Strains displaying constant AmpC derepression produce 

higher amounts of p-lactamase, possibly due to the over expression resulting from 

spontaneous mutations in regulatory genes (Livermore, 2002). Antibiotics such as 

imipenem, benzylpenicillin, and cefoxilin are strong inducers, whereas newer P-lactam 

antibiotics such as piperacillin are weak inducers under in vitro conditions (Giwercman et 

al., 1990). 
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Three genes related to peptidoglycan recycling are implicated in ampC 

stimulation. These genes include ampD (encodes a cytosolic JV-acetyl-anhydromuramyl-

Z-alanine amidase and specifically hydrolyzes 1,6-anhydromuropeptide), ampR (encodes 

a transcriptional regulator of the LysR family), and ampG (functions as a permease for 

1,6-anhydromuropeptide, the signal molecule for stimulation of ampC expression, and 

encodes a transmembrane protein) (Langaee et al., 2000). Inactivation of AmpD results 

in cytoplasmic buildup of 1,6-anhydromuropeptide and finally constitutive over 

expression of AmpC (Langaee et al., 2000). In P. aeruginosa, three phenotypes of 

distorted AmpC expression have been related to p-lactam resistance, and two out of three 

have been related to mutations in the ampD gene (Langaee et al., 2000). AmpR and 

AmpD regulators also control the inducible expression of the ampC gene (Langaee et al., 

2000). 

Plasmid-encoded P-lactamases active against cephalosporins and penicillins may 

provide a mechanism for P-lactam resistance (Giwercman et al., 1990, Lambert, 2002). 

For newer stable P-lactam antibiotics, the rapid appearance of P-lactam resistance during 

drug therapy and frequent therapeutic failures related to the expansion of multiple 

resistances to P-lactam antibiotics are now common (Giwercman et al., 1990). 

2.2. Multidrug efflux pumps 

The combination of numerous resistance genes was first thought to be the 

exclusive cause of multiple antibiotic resistances in bacteria, each encoding resistance to 
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a separate drug. More recently, resistant phenotypes have been found to be due to the 

activity of drug efflux pumps (Nikaido, 1998). Several of these efflux pumps reveal 

broad ranges of specificity covering nearly all chemotherapeutic agents, inhibitors, 

detergents, and antibiotics (the exemption possibly being highly hydrophilic complexes). 

These efflux pumps work efficiently through their synergetic interaction with the outer 

membrane barrier in some Gram-negative bacteria, including P. aeruginosa (Nikaido, 

1998). 

Three protein components make up the multidrug efflux system: an outer 

membrane porin, an energy dependent pump positioned in the cytoplasmic membrane, 

and a linker protein which couples these two membrane components. This tripartite 

arrangement removes toxic molecules such as antibiotics that find their way into the 

cytoplasmic membrane, the periplasm, or the cytoplasm (Lambert, 2002). 

In P. aeruginosa four different efflux systems have been observed: MexAB-

oprM, MexXY-oprM, MexCD-oprJ, and MexEF-oprN. The pump proteins MexB and 

MexY are positioned in the cytoplasmic membrane, whereas MexA and MexX which are 

so called "membrane fusion" proteins are anchored in the inner membrane, but extend to 

the periplasm. Two of these pumps, MexXY-oprM and MexAB-oprM supply the 

intrinsic resistance of wild-type strains to antibiotics. MexXY-oprM is responsible for 

extrusion of aminoglycosides, whereas MexAB-oprM extrudes pMactams, quinolones, 

and a large range of disinfectants (Lambert, 2002). The genes for these systems exist in 

all strains of P. aeruginosa, but are not expressed in high amounts (Lambert, 2002). 
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MexAB-oprM may lead to elevated antibiotic resistance in clinical strains when it is 

expressed in high levels as a result of mutations that take place in the mexR regulatory 

gene of the bacteria (Aires et al., 1999). The two other efflux pump systems, MexCD-

oprJ and MexEF-oprN are not constitutively formed in the wild-type strains of P. 

aeruginosa. These efflux pumps are homologous to MexAB-oprM, and are more 

substrate-restricted than MexAB-oprM. They are capable of accommodating complexes 

as structurally diverse as trimethoprime, chloramphenicol, and quinolones. NficB and 

mexT (nficC) are regulatory genes for MexCD-oprJ and MexEF-oprN, respectively. 

Mutations that take place in these genes are also associated with higher levels of 

antibiotic resistance (Aires et al., 1999). 

MexY, homologous to AcrD in Escherichia coli, is related to a membrane fusion 

protein MexX and serves as a drug proton anti-porter. Elevated levels of expression of 

MexXY efflux system has been observed in few aminoglycoside resistant types of P. 

aeruginosa, and has been illustrated as a major source of aminoglycoside resistance in 

isolates collected from the lungs of CF patients (Islam et al., 2004). It has been suggested 

that MexXY efflux pump system shares the OprM channel with MexAB, since it does not 

have a gene for an outer membrane protein that should be located downstream of mexY. 

The expression of MexXY is under negative regulation by another protein called MexZ. 

This protein is encoded by a gene that is located 263 bp upstream of mexXand is 

transcribed divergently. MexZ is thought to have a DNA-binding domain at its N-

terminal that contains a helix-turn-helix motif. In wild-type P. aeruginosa isolates 

deletion of MexXY increases their susceptibility to antibiotics such as erythromycin, 
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tetracycline, and gentamycin. MexXY-oprM is also inducible by gentamycin and 

tetracyclin antibiotics and has the ability to pump out fluoroquinolones, macrolides, and 

carbapenems (Islam et al., 2004). 

2.5. Mutational impermeability 

In P. aeruginosa the outer membrane limits the rate of penetration of small 

hydrophilic molecules and at the same time excludes larger molecules. The outer 

membrane also serves as an important barrier to the penetration of antibiotics. P-lactams 

and quinolones are small hydrophilic molecules which can only pass the outer membrane 

through the aqueous channels supplied by porin proteins. Several different porins are 

formed in P. aeruginosa. OprF is one of the major porins that is present in all strains of 

P. aeruginosa. Although mutant strains lacking the OprF porin have been documented, 

lack of this porin has not been reported to have a significant effect on antibiotic resistance 

of the organism to any drugs, most probably because such strains have limited capability 

to take up hydrophilic compounds (Lambert, 2002). 

Resistance to imipenem and reduced susceptibility to meropenem is reported to be 

associated with loss of OprD porin. OprD is a porin which shapes narrow 

transmembrane channels and is only utilized by carbapenems but not other P-lactams. 

OprD is co-regulated with Mex-EF-oprN. Therefore, the njxC (mexT) mutants that are 

selected by antibiotics such as fluoroquinolones (but not carbapenems) have up-regulated 

MexEF-oprN and lower OprD levels. These mutants subsequently have abridged 
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susceptibility to meropenem and resistance to both imipenem and fluoroquinolones 

(Livermore, 2002). 

2.4. Alterations in penicillin-binding proteins 

In P. aeruginosa alterations in penicillin-binding proteins are also related to P-

lactam resistance. The efflux pump system adds only weakly to P-lactam resistance 

(caused by PBP mutations) most likely because the increased antibiotic buildup predicted 

in the deletion copies is still inadequate to overcome the lowered affinity of the PBP for 

p-lactams (Masuda et al., 2000). 

2.5. DNA gyrase and topoisomerase TV mutations 

The DNA gyrase is a holoenzyme which is a tetramer consisting of A and B 

subunits. These subunits are products of gyrA and gyrB, respectively (Kureishi et al., 

1994). The DNA gyrase enzyme is a type II DNA topoisomerase responsible for 

introducing negative superhelical coils into covalently attached DNA in a process that is 

ATP-dependent (Kureishi et al., 1994). It also functions in DNA decatenation, 

replication, and transcription regulation of some promoters that are supercoil sensitive 

(Kureishi et al., 1994). The A subunits are in charge of DNA reunion and breakage, and 

the B subunits are dedicated to ATP hydrolysis (Kureishi et al., 1994). DNA gyrase has 

been proven to be a suitable target for antibiotics (Kureishi et al., 1994). Quinolones 

such as ciprofloxacin and nalidixic acid inhibit the action of the A subunits while 
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antibiotics such as coumermycin Al and novobiocin are known to inhibit the action of B 

subunits (Kureishi et al., 1994). The glyeocinnamoylspermidine agent cinodine and 

microcin (an antibiotic peptide) have also been reported to inhibit the function of the 

DNA gyrase enzyme (Kureishi et al., 1994). 

In most countries fluoroquinolones are the only accessible antibiotics for oral 

treatment of infections caused by P. aeruginosa (Jalal et al., 2000). However, it easily 

becomes resistant to these antibiotics, rigorously constraining their effectiveness. 

Mutations in the target genes that encode DNA gyrase (gyrA) and topoisomerase IV 

(parC) are the main mechanisms of resistance to fluoroquinolones (Jalal et al., 2000). 

Mutational studies have shown that parC mutations in codon 80 (Ser—• Leu), and codon 

84 (Glu—>Lys) have been associated with higher fluoroquinolone resistance (Nakano et 

al., 1997). GyrA mutations in codon 83 (Thr—>Ile) and codon 87 (Asp—»Asn or 

Asp—»Tyr) are associated with elevated fluoroquinolone resistance (Yonezawa et al., 

1995). Multiple mutations in both parC and gyrA genes in codons 80, 83, 84, and 87 are 

linked to much more elevated resistance in P. aeruginosa (Mouneimne et al., 1999, 

Nakano etal., 1997.) 

A recent study on fluoroquinolone resistant P. aeruginosa (MI032) clinical 

isolates have shown that gyrA mutations with an additional mutation in the mexR 

regulatory gene leads to accelerated resistance. This signifies that antibiotic resistance 

associated with DNA gyrase in general corresponds to efflux and gyrA mutations (Jalal et 

al., 2000, Nakajima et al., 2002). 
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2.6. P. aeruginosa biofilms and resistance 

Creation of an alginate barrier is another resistance mechanism in P. aeroginosa. 

P. aeruginosa grows in microcolonies enclosed in an alginate barrier composed of 

various polysaccharides (Lambert, 2002). This kind of growth typifies biofilm (Lambert, 

2002). Notable resistance to antibiotics is common to all biofilms (Lambert, 2002). 

Although documented for many years, the complete biological events in bioflim 

formation and antibiotic resistance are not well understood. Physical segregation of the 

antibiotic and high bacterial concentration are factors that participate in the resistance of 

bacteria in biofilm (Lambert, 2002). In general, reactions to physiological alterations 

may arise in cells in the biofilm in which defensive mechanisms are provoked and key 

metabolic pathways are shut down. It is apparent that cells in the biofilm can alter their 

properties according to surrounding cells by sensing their presence (quorum sensing) 

(Lambert, 2002). The biofilm consists of a heterogeneous population of cells, including 

slow and fast growing cells. Some cells are resistant through production of efflux pumps 

and inactivating enzymes, whereas others are not (Lambert, 2002). Therefore, the 

general resistance relies on the interaction of the entire population, and therapies need to 

be aimed against a community that is multicellular (Lambert, 2002). 

2.7. Propositions for therapy 

Efflux and restricted permeability are essential properties of the organism and are 

crucial in developing resistant phenotypes to antibiotics as diverse as quinolones, p-
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lactams, and aminoglycosides. In other words, innate resistance results from the action of 

efflux systems and restricted permeability of the cell wall, and may be enhanced by 

elevated expression of special efflux pump systems (Lambert, 2002). 

In CF patients, the incidence of more specific mechanisms which engage alteration 

and inactivation in target molecules reflects the selective pressure due to reliance of these 

patients to these drugs. For example, expression of chromosomal (3-lactamase can be 

increased by spontaneous mutations in the chromosomal genes. These mutants are 

chosen under the stress of antibiotic treatment especially when monotherapy is used. 

Increased recognition of the role of efflux pumps in causing natural resistance to 

antibiotics has resulted in the search for efflux pump inhibitors which could serve as 

therapeutic adjuncts. Correspondingly, understanding of the multifaceted interaction in 

biofilm populations may ultimately lead to developing novel therapeutic approaches. 

However, P. aeruginosa has always adapted to antibiotic therapy. The threatening size of 

its genome and the present lack of information of the role of many of its genes will 

continue to be an important issue in developing novel therapies (Lambert, 2002). 
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ABSTRACT 

Excessive use of broad-spectrum antibiotics in hospitals has led to the emergence of 

highly resistant strains of Pseudomonas aeruginosa. To reduce the selection pressure for 

resistance, it is important to determine the antibiotic-susceptibility pattern of bacteria so 

that hospital patients can be treated with more narrow-spectrum and target-specific 

antibiotics. This study describes the development of a technique for detecting point 

muations in the fluoroquinolone resistance-determining region of the gyrA and par-C 

genes as well as the efflux regulatory genes mexR, mexZ, and mexOZ that are associated 

with fluoroquinolone and aminoglycoside resistance. The assay is based on a short 

DNA-sequencing method using multiplex-fast polymerase chain reaction (PCR) and 

Pyrosequencing™ for amplification and sequencing of the selected genes. Fifty-nine 

clinical isolates of P. aeruginosa were examined for mutations in the above-mentioned 

genes. Mutations related to antibiotic resistance were detected in codons 83 and 87 of 

gyrA and codon 126 of the mexR regulatory gene. Results of this study suggest 

Pyrosequencing™ as a substitute for traditional methods, as it provides a rapid and 

reliable technique for determining the antibiotic-resistance pattern of a given bacterial 

strain in < 1 h. 
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1. Introduction 

The emergence of drug-resistant bacteria occurs frequently in the Intensive Care 

Unit (ICU) involving both Gram-negative and Gram-positive organisms. This is a 

problem for critical care physicians because there are now several pathogens that can 

only be effectively treated with a limited number of antimicrobial agents, e.g. 

methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecium, and Gram-

negative bacteria producing extended-spectrum P-lactamases (Kollef and Micek, 2005). 

Multidrug-resistant (MDR) bacterial infections are associated with increased 

mortality, length of hospital stay, and cost of care (Geissler et al., 2003). For example, in 

a study from a large tertiary-care teaching hospital in Boston, MA, the median length of 

stay and hospital charges were significantly greater for patients with MRSA compared 

with those with methicillin-sensitive S. aureus. 

Successful treatment of patients admitted to the ICU with nosocomial or 

community-acquired infections depends on adequate initial antibiotic use. A common 

strategy is to begin with broad-spectrum antibiotic therapy, and later to de-escalate 

antibiotic therapy based upon culture and sensitivity data. Initial broad-spectrum therapy 

is necessary until culture data are available to guide focused antibiotic administration. 

However, broad-spectrum antibiotics are a leading cause of the emergence of drug-

resistant bacteria (Nseir et al., 2005). 

Several strategies have been investigated as a means of reducing the emergence of 

MDR bacteria in the ICU. One such strategy is to employ only narrow-spectrum 
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antibiotics directed at pathogens identified using rapid bedside detection devices. This 

strategy requires technology capable of detecting pathogens within minutes of sample 

collection, pathogen identification and analysis of antibiotic resistance patterns, and 

detection of organisms that may reside in the intracellular compartment. 

One of the more common nosocomial pathogens is Pseudomonas aeruginosa 

(Sherertz and Sarubbi, 1983). Excessive use of broad-spectrum antibiotics has led to the 

emergence of highly resistant strains of P. aeruginosa that are a major threat to patients 

in the ICU. Adequate treatment of P. aeruginosa infections with modern antibiotics is 

difficult due to the intrinsic ability of the bacterium to adapt rapidly to new environments 

and acquire resistance to common therapies (Lambert, 2002, Livermore, 2002). 

Fluoroquinolones and aminoglycosides are two important classes of antibiotics 

used in the treatment of Pseudomonas infections. Fluoroquinolones are members of the 

quinolone family that act as bactericidal agents by inhibiting bacterial DNA gyrase and 

topoisomerase IV, thereby inhibiting DNA transcription and replication. DNA gyrase is 

typically the target in Gram-negative organisms, whereas topoisomerase IV is the target 

in Gram-positive organisms. Aminoglycosides are a separate class of antibiotics that 

bring about their bactericidal action by binding to the bacterial 30S ribosomal subunit, 

inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site, causing 

misreading of the mRNA and thus rendering the bacterium unable to synthesize proteins 

vital to its growth. Pseudomonas readily develops resistance to these agents, 

consequently reducing their utility. The main mechanisms of resistance are mutations in 
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the genes that encode DNA gyrase (gyrA) and topoisomerase IV (parC). Other 

mechanisms include mutations in the regulatory genes of the multidrug efflux pumps, 

mexAB-oprM and mexXY-oprAf (Jalal et al., 2000). The MexAB-oprM efflux system 

contributes to the natural resistance of bacteria to a wide range of antibiotics including 

fluoroquinolones, P -lactams, and P-lactamase inhibitors, whereas MexXY-oprM 

contributes to aminoglycoside resistance. High expression of MexAB-oprM and 

MexXY-oprM may confer high levels of resistance to clinical strains as a result of 

mutations occurring mainly in their regulatory genes mexR and mexZ (Aires et al., 1999, 

Islam et al., 2004). Another region related to aminoglycoside resistance is mexOZ, which 

is an intergenic region between the mexZ and mexX genes of P. aeruginosa (Islam et al., 

2004). 

In this study, we attempted to design a DNA-based technique for rapid 

determination of the antibiotic-resistance pattern of P. aeruginosa compared with 

traditional methods such as disk diffusion or agar dilution. Multiplex polymerase chain 

reaction (PCR) and Sanger sequencing were used to find key mutations in the gyrA, 

mexR, parC, mexZ, and mexOZ genes of P. aeruginosa isolates exhibiting resistance to 

fluoroquinolones and aminoglycosides, and Pyrosequencing™ was used as the ultimate 

sequencing method to detect specific point mutations in these genes. 
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2. Materials and methods 

2.1. Clinical isolates of P. aeruginosa 

Fifty-nine previously identified clinical isolates of P. aeruginosa were obtained 

from the Microbiology Laboratory at Stanford Hospital (Stanford, CA) to evaluate 

mutations involved in antibiotic resistance. These isolates were previously tested by the 

Kirby-Baur method for their susceptibility to fluoroquinolones and aminoglycosides. 

Samples were accordingly assigned to one of three groups, i.e. resistant, intermediate or 

susceptible to either fluoroquinolones or aminoglycosides. Fluoroquinolones and 

aminoglycosides used in the antibiotic susceptibility tests were ciprofioxacin/levofloxacin 

and tobramycin, respectively. Of the 59 clinical isolates, 12 were resistant, 6 were 

intermediate, and 41 were susceptible to ciprofloxacin, levofloxacin or both (Table 1), 

and 43 were susceptible, 4 were intermediate and 12 were resistant to tobramycin. 

2.2. DNA extraction and multiplex PCR 

DNA was extracted from the 59 clinical isolates of P. aeruginosa using the 

Qiagen Kit (Qiagen, Valencia, CA) according to the manufacturer's instructions and was 

used as the DNA template for multiplex/multiplex-fast PCR. Primers gyrA-1 (5'-

GTGTGCTTTATGCCATGAG-3') and gyrA-2 (5*-GGTTTCCTTTTCCAGGTC-3') were 

used to amplify 287 bp of the fluoroquinolone resistance-determining region of the gyrA 

gene. Primers parC-1 (5'-CATCGTCTACGCCATGAG-3') and parC-2 (5'-

AGCAGCACCTCGGAATAG-3') were used to amplify 267 bp of the fluoroquinolone 
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resistance-determining region ofparC. For the mexR regulatory gene, mexR-1 (51-

CTGGATCAACCACATTTACA -3') and mexR-2 (5'-

CTTCGAAAAGAATGTTCTTAAA-3') primers were used to amplify the whole 503-bp 

region of the gene. Primers for amplification of gyrA, parC, and mexR were designed 

with Primer 3 software (http://fokker.wi.mit.edu/primer3/input.htm), using known 

sequences available in GenBank with accession numbers L29417, AB003428, and 

U23763, respectively. The regulatory genes mexZ and mexOZ were amplified using 

primers from published data (Islam et al., 2004). All primers were synthesized by 

Integrated DNA Technologies (Coralville, IA). 

PCR amplification was performed in a 50 ul mixture containing IX Thermo-

Start™ Buffer (ABgene, Rockford, IL), 2.5 mM MgCk, 0.2 mM mix of deoxynucleotide 

triphosphates (Sigma-Aldrich, St Louis, MO), 10 pmole of each primer, 1U of Thermo-

Start DNA polymerase (ABgene), and 150 ng of the DNA template. Amplification of the 

target regions was performed in 35 cycles consisting of initial heat activation at 95 °C for 

15 min, denaturation at 95°C for 45 s, annealing at 51°C for 45 s, and elongation at 71°C 

for 1 min, with a final elongation at 71 °C for 7 min. The PCR products obtained from 

this step were used for Sanger sequencing. 

2.3. Sanger sequencing 

Dideoxy sequencing was performed using BigDye™ Terminator Chemistry v. 3.1 

(Applied Biosystems, Foster City, CA) according to the manufacturer's instructions, as 
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described previously (Gharizadeh et al., 2006). Forward and reverse primers for gyrA, 

parC, mexR, mexZ, and mexOZ (Section 2.2) were used as sequencing primers using the 

ABI 3730 Bioanalyzer (Applied Biosystems). 

2.4. Multiplex-fast PCR 

Two fluoroquinolone-resistant isolates with mutations both on gyrA and mexR 

were chosen for multiplex-fast PCR. The primers used for amplification of gyrA and 

mexR with the Veriti™ 96-Well Fast Thermal Cycler (Applied Biosystems) were 

identical to those used in the traditional PCR (see Section 2.2). Forward gyrA and 

reverse mexR primers were biotin-labelled for single-strand separation. Amplification of 

the selected regions was performed in a 20 ul mixture with 2.5 mM MgCk, 0.2 mM mix 

of deoxynucleotide triphosphates (Sigma-Aldrich), 10 pmole of each primer, 1U of 

AmpliTaq Gold (Applied Biosystems), and 150 ng of the DNA template. Multiplex-fast 

PCR was performed in 25 cycles as follows: initial heat activation at 95°C for 10 min, 

denaturation at 95°C for 1 s, annealing at 46°C for 15 s, elongation at 72°C for 15 s, and 

final elongation at 72°C for 30 s. PCR products obtained from this step were used for 

Pyrosequencing™. 

2.5. Sample preparation for Pyrosequencing™ 

Sample preparation for Pyrosequencing™ was performed according to the 

manufacturer's instructions and as described previously (Gharizadeh et al., 2005). 
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Single-stranded DNA amplicons were prepared semi-automatically, using a Vacuum Prep 

Tool and Vacuum Prep Worktable (Biotage, Uppsala, Sweeden). A 10 ul aliquot of 

biotinylated PCR products was immobilized onto 3 ul streptavidin-coated Sepharose™ 

High Performance Beads (Amersham Biosciences, Piscataway, NJ) by incubating at 

42°C and agitation at 1400 rpm for at least 15 min in Eppendorf Thermomixer R 

(Eppendorf AG, Hamburg, Germany). Double-stranded DNA immobilized on Sepharose 

beads was washed with 70% ethanol and denatured with 0.2 M NaOH. Unbound single-

stranded DNA was washed with 0.1 M TE buffer [0.1 M Tris HC1 (pH 7.6) containing 1 

mM ethylene diamine tetra-acetic acid (EDTA)]. All the steps were performed according 

to the manufacturer's instructions for the Vacuum Prep Station. The beads carrying 

single-stranded DNA amplicons were suspended in 12 ul of annealing buffer [20 mM 

Tris-acetate (pH 7.6), 2 mM Mg-acetate] containing 0.3 pmole sequencing primers. The 

single-stranded DNA was annealed to the sequencing primer at 92°C for 2 min followed 

by incubation for 5 min at room temperature. 

2.6. Pyrosequencing™ 

Pyrosequencing™ (Biotage) was performed according to the manufacturer's 

instructions as described previously (Gharizadeh et al., 2005). Single-stranded PCR 

products were sequenced using a PSQ™ HS 96A System (Biotage). Sequencing was 

preformed according to the manufacturer's instructions in a total volume of 12 ul using 

PSQ™ 96 Gold Kit (Biotage). 
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2.7. Cloning 

PCR amplicons of gyrA were cloned using the TOPO TA Cloning ® Kit 

(Invitrogen, Carlsbad, CA) according to the manufacturer's instructions. Cloned 

bacterial cells were cultured on LB medium (containing 10 g Bacto tryptone, 5 g Bacto 

yeast extract and 10 g NaCl in 1 L of ddHiO) and incubated at 37°C. Isolated single 

colonies from overnight cultures were suspended in 10 ul of water and incubated at 95 °C 

for 10 min. Fragments harboring the gyrA regions were then amplified, using 10 pmol of 

forward biotinylated gyrA primer, 10 pmol of reverse vector primer, and 10 ul of the cell 

lysate containing the DNA template. Amplification of the cloned fragments was 

performed using the same conditions as in Section 2.2. 

3. Results 

Fifty-nine clinical isolates of P. aeruginosa were examined for the occurrence of 

mutations related to antibiotic resistance. Fragments of gyrA, parQ mexR, mexZ, and 

mexOZ genes were amplified using multiplex PCR, and the efficacy of the amplification 

was determined by gel electrophoresis. All fragments amplified adequately (data not 

shown). The PCR samples were then analyzed for detection of point mutations in the 

fluoroquinolone resistance-determining regions of gyrA and parC as well as the efflux 

pump regulatory genes mexR, mexZ, and mexOZ, using the Sanger sequencing method. 

To identify point mutations, sequences from clinical isolates were compared with that of 

wild-type P. aeruginosa PAOl. Results from the molecular analysis were compared with 
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the antibiotic-susceptibility profile of bacterial isolates to assess the correlation between 

mutations and resistance (Table 1). 

Table 1 

Correlation between fluoroquinolone (ciprofloxacin/levofloxacin) susceptibility of 59 P. 

aeruginosa clinical isolates and mutations in gyrA and mexR genes. 

Mutations in gyrA (codon) 

Asp->Asn(87) 

T h r ^ I l e ( 8 3 ) 

Asp->Tyr(87) 

Mutations in mexR 
(codon) 

Val - • Qu (126) 

Mutations in parC 

None 

Mutations in mexZ and 
mexOZ 

Highly variable 

The results showed that among the 12 fluoroquinolone-resistant isolates, 4 had a 

single mutation in gyrA, 4 had mutations both in gyrA and mexR and 4 had no mutations 

in the sequence areas examined (Table 1). Mutations in mexZ and mexOZ genes were 

highly variable within isolates, making it difficult to correlate a specific mutation with 

aminoglycoside resistance. Therefore, mexZ and mexOZ genes were not further 

evaluated using Pyrosequencing™. 

Common mutations in fluoroquinolone-resistant strains occurred in codons 83 and 

87 of the gyrA gene (Fig. 1). The nucleic acid alterations that occurred in these codons 

changed the amino acid profile from Thr to He and Asp to Asn (or Asp to Tyr), 

respectively, consistent with previous reports (Jalal et al., 2000, Nakano et al., 1997, 

Yonezawa et al., 1995). No mutations were found inparC. A novel mutation related to 
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fluoroquinolone resistance occurred in codon 126 of the mexR regulatory gene, changing 

amino acid Val to Glu was detected (Fig. 2; Table 2). 

Table 2 

Mutations in gyrA, mexR, parC, mexZ, and mexOZ genes leading to amino acid 

alterations. 

Fluoroquinolone susceptibility 

(no. of isolates) 

Resistant (12) 
Intermediate (6) 
Suscpetible(41) 

Mutations in gyrA 

only 

4 
1 
1 

Mutations in mexR 
only 

0 
1 
12 

Mutations in both 
gyrA and mexR 

4 
1 
1 

No mutations in 
gyrA or mexR 

4 
3 
27 

To confirm the mutations related to fluoroquinolone resistance by 

Pyrosequencing™, the PCR products amplified from all isolates were sequenced again 

using a pre-programmed nucleotide dispensation, sequencing a 20-bp region starting 1 

base upstream of the mutation site detected by the Sanger sequencing method. This pre

programmed sequencing was much more rapid and took only 20 min. Nucleotide 

patterns of each isolate were compared with those of the wild-type P. aeruginosa PA01 

for parts of the gyrA and mexR genes encoding amino acids 83, 87 and 126, respectively. 

Absent or added sequence signal peaks were designated as mutations (Figs. 1 and 2). All 

mutations detected by Sanger sequencing were confirmed by the Pyrosequencing™ 

method. 
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Fig. 1. Pyrograms of the 20-bp sequence (amino acids 83-87) of the gyrA gene of P. 

aeruginosa obtained by the pre-programmed DNA-sequencing method: 

(a) the wild-type sequence of gyrA with no alterations; (b) nucleotide C —> A alteration in 

codon 83; and (c) nucleotide G —• A alteration in codon 87. Arrows show the location 

of point mutations in the signal peaks. 

One isolate showed two peaks in a single nucleotide position that was expected to 

be an absent peak or a peak representing either one of the existing nucleotides (A or C). 

Because bacteria are haploid (one set of each gene), we suspected that this sample was a 

mixed sample rather than a single isolate. Therefore, the sample was cloned using a TA 
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Cloning Kit. The cloned fragments were amplified and further analyzed by 

Pyrosequencing™. Pyrosequencing™ was performed using a five-cycle ACGT 

nucleotide order dispensation. From the Pyrosequencing™ results, one-half of the 

colonies showed no mutations and were considered as wild-type and one-half showed a 

mutation. This confirmed that the sample had been a mixture, i.e. was contaminated by a 

wild-type or a mutant of P. aeruginosa. Fig. 3 shows the sequencing results before and 

after isolation of the sample by cloning. 

(a) 

1 
—-~~r-— M W — f - H -L=f™=, 

! 
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5 10 15 
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1 

HJ ,_ 
1 L== U— W—r- f " =?sj LJ=M 

C G T A C G T A C G T A C G T A 

Fig. 2. Pyrograms of the 20-bp sequence of the mexR regulatory gene of P. aeruginosa 

(amino acids 126-128) obtained by the pre-programmed DNA-sequencing method: (a) 

the wild-type sequence of mexR with no alterations; and (b) nucleotide T —• A alteration 

in codon 126. Arrows show the location of point mutations in the signal peaks. 
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For amplification using multiplex-fast PCR, two fluoroquinolone-resistant isolates 

with mutations both on gyrA and mexR were chosen and sequenced by 

Pyrosequencing™. The results from the signal peaks were identical to the signal peaks 

obtained by sequencing the amplicons from the multiplex PCR (data not shown). 

Multiplex-fast PCR together with Pyrosequencing™ took < 1 h for detection of gyrA and 

mexR mutations. 

(a) 
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(c) 
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I 
. nit in . M L 

A C G T A C G T A C G T A C G T A C G T A C 

,...1 j . r.J ] • i j . .A...U i l t JL.JL.J 1-jL. H 
A C G T A C G T A C G T A C G T A C G T A C 

Fig. 3. Pyrograms of the DNA sequence of gyrA for an isolate of P. aeruginosa, (a) 

Sequencing data before cloning and isolation. The two arrows indicate the presence of 

both A and C nucleotides in the sequence. The gyrA gene was cloned into a plasmid 
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vector, amplified by polymerase chain reaction (PCR) and sequenced by 

Pyrosequencing™ using a five- cycle ACGT dispensation, (b and c) pyrograms after 

isolation of the mixed DNA sample; ca. 50% of the cloned vectors harbored DNA from 

wild-type (c) and 50 % harbored DNA from a mutant of P. aeruginosa (b) (C —• A 

alteration). 

4. Discussion 

Fluoroquinolone and aminoglycoside resistance can lead to treatment failure in P. 

aeruginosa infections (Aires et al., 1999, Jalal et al., 2000). Known mutations 

responsible for resistance are found in the genes expressing DNA gyrase, and 

topoisomerase IV and in genes that regulate the expression of efflux pumps. These 

mutations interfere with binding of these antibiotics to the target sites of the DNA gyrase 

and topoisomerase IV, or lead to hyperextrusion of the drug by the bacterial efflux 

pumps. Because traditional microbiological culturing is time-consuming, empirical 

treatment is often started 18-24 h prior to definitive identification of the pathogen and 48-

h prior to knowledge of its susceptibility profile. To eradicate drug-resistant strains of P. 

aeruginosa, it is crucial to design a molecular technique to identify resistance rapidly so 

that these infections may be treated appropriately. 

Rapid and reliable methods are needed for the detection of resistant organisms, 

most of which can be identified through a limited number of mutations. Multiplex-fast 

PCR together with Pyrosequencing™ provides the advantage of requiring lower sample 

volumes, significantly reducing the cost of performing sequencing reactions. Multiplex-

fast PCR and DNA sequencing by Pyrosequencing™ using a pre-programmed 
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sequencing approach, as outlined here, takes < 1 h, compared to other amplification and 

sequencing methods that take up to 5 hours. 

Notably, all the mutations detected by the Sanger sequencing method were 

confirmed by the more efficient Pyrosequencing™ method. For gyrA, the main 

mutations found to be related to fluoroquinolone resistance were on codons 83 and 87, as 

previously reported (Jalal et al., 2000, Jalal and Wretlind, 1998, Nakano et al., 1997, 

Yonezawa et al., 1995). We discovered a mutation in codon 126 of the mexR regulatory 

gene, changing amino acid Val to Glu, which correlated with fluoroquinolone resistance. 

Almost all the clinical isolates in this study that had a single mutation in mexR were 

susceptible and did not show any drug resistance, indicating that a mexR mutation alone 

may not change the susceptibility of the bacterium but causes resistance when it co-

occurs with a mutation on the gyrA gene. The mutations found on gyrA and mexR were 

also found in susceptible isolates, and not all resistant isolates had mutations on these 

genes (Table 1). Our results show that detection of gyrA and mexR mutations does not 

always imply resistance to fluoroquinolones, but that acquiring these mutations increases 

the likelihood of resistance. These discrepancies suggest the existence of other additional 

molecular mechanisms for fluoroquinolone resistance. 

Pyrosequencing™ was also able to distinguish a mixed sample from other clinical 

isolates. The pyrogram shows the presence of both A and C nucleotides at a single spot 

location in part of the gyrA gene. This could only be explained by assuming that this 
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sample was mixed since bacteria are haploid. Pyrosequencing™ results after cloning the 

gyrA fragment confirmed this hypothesis. 

In conclusion, point mutations in clinical isolates associated with antibiotic 

resistance are rapidly and reliably detected by DNA-sequencing using Pyrosequencing™ 

and multiplex-fast PCR. With this novel approach, clinical isolates could be analyzed 

quickly at lower cost. The panel of mutations screened can be readily expanded to cover 

other known resistance determinants in P. aeruginosa, and to detect mutations involved 

in a variety of antibiotic resistance scenarios. Rapid and simple detection of resistance 

determinants at the genetic level could guide the choice of more appropriate antibiotics, 

and enable effective employment of narrow-spectrum antibiotics. Ultimately, more 

accurate diagnosis and treatment could lower the incidence of resistance, and improve 

outcomes for patients with severe bacterial infections. 
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GENERAL CONCLUSIONS 

Opportunistic P. aeruginosa infection is a major problem in medical care. The 

growing threat from resistant strains calls for development of accurate diagnostic 

methods and effective treatment strategies. Recent studies have focused on molecular 

mechanisms of antibiotic resistance and genetic parameters involved in development, 

acquisition, and spread of resistance genes. Reports have demonstrated several molecular 

mechanisms of antibiotic resistance. Understanding the distribution and combinations of 

genetic resistance mechanisms will contribute to identify potential targets for new 

antibiotics, and developing better diagnostic tools and treatment strategies to meet the 

challenges of P. aeruginosa infection. 

In this study, a new molecular approach using DNA-sequencing methods 

(Pyrosequencing™ and multiplex-fast PCR), clinical isolates of P. aeruginosa were 

analyzed quickly for point mutations leading to resistance to current antibiotics. The 

method described in this study, can be readily expanded to cover a variety of known 

resistance determinants in P. aeruginosa. This technique could also be used as a general 

approach for mutation detection in other microbial resistance studies. Rapid and simple 

determination of resistance determinants at the genetic level could guide the choice of 

more appropriate antibiotics, and enable the development of narrower spectrum 

antibiotics. Ultimately, more accurate diagnosis and treatment could lower the incidence 

of resistance, and improve outcomes for patients with severe bacterial infections. 
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In this study, we designed a molecular technique for rapid, easy, and cost-

effective diagnosis of antibiotic resistance in clinical isolates of P. aeruginosa that can 

have application in epidemiological studies, and developing and implementing strategies 

for infectious diseases. Further investigation on larger numbers of isolates collected from 

different medical centers will be required. These isolates should include resistant as well 

as susceptible strains with their relevant susceptibility profiles which could not be 

validated in this preliminary study. Epidemiological data indicating the patient's status 

and the type of infectious diseases not included in this study will be helpful in 

interpreting the results. 
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APPENDIXES 

APPENDIX A. SUMMARY OF DNA-SEQUENCING RESULTS 

Table 1A. GryA,parC, mexR mutations, and fluoroquinolone susceptibility of P. 
aeruginosa clinical isolates. 

Sample ID 

M583111 
M586966 
M587161 
M586030 
W607182 
M586970 
M581880 

M586981 

F598875 
T613503-1 
T613503-2 

T613898-2 

T614089-2 
F597588-1 
F597588-3 
F596760-3 
F596760-2 

T614204-2 

T614052-1 

T612031-1 

T612031-2 
T613324-3 
T613324-2 
T614084-1 
T614084-2 
H605658-1 
M595294-2 

gyrA Mutations 

none 
none 
none 
none 
none 
none 
none 

none 

none 
none 
none 

none 

none 
none 
none 
none 
none 

none 

none 

none 

none 
none 
none 
none 
none 

(87) Asp->Asn 
none 

parC Mutations 

none 
none 
none 
none 
none 
none 
none 

none 

none 
none 
none 

none 

none 
none 
none 
none 
none 

none 

none 

none 

none 
none 
none 
none 
none 
none 
none 

mexR Mutations 

none 
(126) Val-»Glu 
(126) Val-^Glu 

none 
none 
none 
none 

(79) Asn-^Ser 
(126) Val-^Glu 

none 
none 
none 

(132)Val-*Ala 

(126) Val-^Ghi 
none 
none 

(126) Val-^Glu 
none 

none 

none 

none 

none 
(126) Val-^Glu 

none 
none 
none 
none 

(126) Val-^Ghi 

fluoroquinolone 
Susceptibility 

susceptible 
susceptible 
susceptible 
susceptible 
susceptible 
susceptible 
susceptible 

susceptible 

susceptible 
susceptible 
susceptible 
susceptible 

susceptible 
susceptible 
susceptible 
susceptible 
susceptible 
susceptible 

susceptible 

susceptible 

susceptible 
susceptible 
susceptible 
susceptible 
intermediate 
susceptible 
susceptible 
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W618073 

F615319 
F618171 
X360656 

M628794 

H640 
W643857 
F644797 

H638643-3 

F35726-2 

H638643-2 

H638636 
F624989 

M674446-2 
M674446-1 
H682001-5 
F676239-6 
F676239-5 
M665266-1 
F660729-2 
H663398 

T682138-4 
M665266-2 
F660729-1 

(87) Asp->Tyr 

none 
none 
none 

none 

none 
none 
none 

(87) Asp->Tyr 

none 

(87) Asp->Tyr 

none 
none 
none 
none 

(83) Thr-»Ife 
none 
none 

(83) Thr-^Ile 
none 

(83) Thr-»Ife 
(83) Thr^Ile 
(83) Thr-*Ile 

none 

none 

none 
none 
none 

none 

none 
none 
none 
none 

none 

none 

none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 

(132)Val->A]a 
(126) Val-^Gki 

none 
none 

(126) Val-^Gki 

none 

none 
(126) Val-^Ghi 
(126) Val-*Glu 

none 

(126) Val-^Glu 

none 

none 
(126)Val-»Glu 

none 
none 

(126) Val-^Glu 
none 
none 

(126) Val-»Glu 
none 
none 

(126) Val-^Ghi 
(126)Val-+Glu 

none 

susceptible 

susceptible 
susceptible 
susceptible 
susceptible 

susceptible 
susceptible 

intermidiate (levofloxacin) 
intermidiate (levofloxacin) 

susceptible 

resistant 

intermidiate (levofloxacin) 
susceptible 
resistant 
resistant 

intermediate 
intermediate 
susceptible 
resistant 

susceptible 
resistant 
resktant 
resistant 

susceptible 
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Table IB. MexZ and mexOZ mutations, and tobramycin susceptibility of P. aeruginosa 
clinical isolates. 

Sample ID 

M583111 

M586966 

M587161 
M586030 
W607182 
M586970 
M581880 
M586981 

F598875 
T613503-1 
T613503-2 
T613898-2 

T614089-2 

F597588-1 
F597588-3 
F596760-3 
F596760-2 
T614204-2 

T614052-1 
T612031-1 
T612031-2 
T613324-3 
T613324-2 
T614084-1 
T614084-2 
H605658-1 
M595294-2 
M647759 

W670409-2 

mexZ Mutations 

no amplification 
(138)Leu->-Arg 
(186) Asn—+ser 
no amplification 

none 
none 
none 
none 

no amplification 

none 
Insertion (frame shift) 

(95) Glu-^Stop 

none 
(138)Leu—Arg 
(186) Asn—•ser 
(58) Val->Ala 

Deletion (frame shift) 
Deletion (frame shift) 

none 
none 

Deletion (frame shift) 
(131)Lys—Arg 
(131)Lys->Stop 
(131)Lys^Stop 

Deletion (frame shift) 
none 

Deletion (frame shift) 
(191)Met->Arg 
(163)Leu->Pro 

none 
(46) Gry-»Cys 

Deletion (frame shift) 

mexOZ Mutations 

295, 459 bps 

295,459 bps 

244bp 
244 bp 

Insertion (frame shift) 
244, 358 bps 

244 bp 
199,229,268,415 

244bp 
244 bp 
244 bp 

244, 302 bps 

295,459 bps 

244 bp 
244 bp 

244, 274 bps 
244, 274 bps 

none 
244 bp 

none 
none 

244 bp 
244 bp 
244 bp 
244 bp 
244 bp 
244 bp 

244,201 bps 
244 bp 

Tobramycin Susceptibility 

susceptible 

susceptible 

susceptible 
susceptible 
susceptible 
susceptible 
susceptible 
susceptible 

susceptible 
susceptible 
susceptible 

susceptible 

susceptible 
susceptible 
susceptible 
susceptible 
susceptible 

susceptible 
susceptible 
susceptible 
susceptible 
susceptible 
susceptible 

intermediate 
susceptible 
susceptible 

resistant 
susceptible 
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W670409-3 
F660729 

H663398-3 
T660514 
F624989 
H649427 

W618073 
F615319 
F618171 

X360656 

M628794 

H640927 

W643857 
F644797 

H638643-3 
F35726-2 

H638643-2 
H638636 
F624989 

M674446-2 
M674446-1 

H682001-5 

F676239-6 
F676239-5 
M665266-1 
F660729-2 
H663398 

T682138-4 
M665266-2 
F660729-1 

Deletion (Same shift) 
Deletion (frame shift) 

none 
none 

Deletion (frame shift) 
none 

no amplification 

none 
none 

(138)Leu->Arg 
(186)Asn->Ser 

none 
Deletion and insertions 

(frame shift) 
Deletion (frame shift) 

none 

no alignment 
none 

(144)Ak->Val 
none 

Deletion (frame shift) 
none 
none 

(138)Leu—Arg 
(186) Asn-*Ser 
(62) Met-+Lys 
(62)Met-+Lys 
(138) Leu-*Arg 
(209)Asp->Gry 

none 
no alignment 
no alignment 

none 

244 bp 
no amplification 

244 bp 
244 bp 

295,459 bps 
244, 324 bps 

244 bp 
244 bp 

none 

295,459 bps 

244,453 bps 

none 

244, 358 bps 
244 bp 

244,277 bps 
244,489 bps 

244 bp 
244 bp 

295,459 bps 
244 bp 
244 bp 

295, 335,459 bps 

244,489 bps 
244,489 bps 
295,459 bps 

no amplification 
244 bp 

295,459 bps 
295,459 bps 
no ampHication 

susceptible 
resistant 
resisant 
resistant 

susceptible 
intermediate 

susceptible 
susceptible 
susceptible 

susceptible 

susceptible 

susceptible 

susceptible 
intermediate 

susceptible 
susceptible 
susceptible 
susceptible 
susceptible 

resistant 
resistant 

resistant 

resistant 
resistant 

intermediate 
susceptible 

resistant 
resisant 
resistant 

susceptible 
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APPENDIX B. AGAROSE GEL ELECTROPHORESIS RESULTS 

Low range 
ladder mexOZ 

Low range 
ladder mexZ 

P. aeruginosa mexOZ (382 bp) and mexZ (594bp) 
PCR product 

Figure 1A and IB. Agarose gel electrophoresis (1.5%) results of P. aeruginosa PCR 
products using mexOZ and mexZ primers. 
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Low range 
ladder gyrA parC mexR 

P. aeruginosa gyrA (287bp), parC (267bp), 
and mexR (503bp) PCR product 

Figure 2. Agarose gel electrophoresis (1.5%) result of P. aeruginosa PCR products 
using gyrA, parC, and mexR primers. 
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