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ABSTRACT 

INTERANNUAL DIFFERENCES IN THE ESTUARINE GHOST SHRIMP, 
NEOTRYPAEA CALIFORNIENSIS 

By 

Michael Buncic 

The dispersal of invertebrate marine larvae can be expected to be wide ranging and 

show little population structure.  Neotrypaea californiensis, the burrowing ghost shrimp, 

is found throughout the waters and coastal estuaries of the northwestern United States.  

Three hundred and four larval samples were used to study population diversity and 

structural difference occurring over the course of spawning periods from June to 

September in successive years (2005 and 2006).  Data and genetic analysis from 

nucleotide sequencing of a section of the mitochondrial Cytochrome C oxidase subunit I 

(COI) gene suggest that ocean-borne larvae off the coast of Oregon and Washington show 

little barrier to dispersal or gene flow in the open ocean.  There was evidence of significant 

temporal differences in the genetic composition in the oceanic larval populations.  Larvae 

from 2005 and 2006 formed samples that were genetically distinguishable from one 

another.  Larvae collected in 2006 inside the Yaquina Bay estuary showed significant 

genetic distance from larvae in the offshore pool.  
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INTRODUCTION 

  
The mud shrimp Neotrypaea californiensis (Family thalassinidae) is a burrowing 

shrimp found along the Pacific Coast within estuary mudflats from Alaska to Baja 

California.  The burrows often reach a depth of 50 cm and have multiple openings to the 

surface.  Mating and reproduction are not well understood.  From April to August larvae 

are released into tidal flow and leave the estuary to enter the offshore ocean currents.  Five 

larval stages develop over a period of six to eight weeks.  Larvae then return to estuaries 

during flood tides ranging from August to October (Dumbauld et al. 1996). Larvae that 

eventually develop into adult shrimp have a lifespan that may range from four or five years 

to possibly longer. 

The ghost shrimp is capable of populating estuary mud flats at high density.  This 

has significant effect on the ecosystem within the area which they burrow (Dumbauld et al. 

1996; Feldman et al. 1997). The community is influenced by the high amount of sediment 

which the burrowing produces.  Species which are intolerant of such conditions will suffer.  

Dungeness crabs, Cancer magister, may be threatened in part by Neotrypaea 

callforniensis and another thalassinid shrimp, Upogebia pugettensis (Feldman et al. 1997).  

Shellfish aquaculture within the coastal areas of Oregon undergoes pressure due to the 

burrowing and sediment effect on oyster population.  Survival of oysters is diminished by 

sinking of larvae within burrows and sediment of the ghost shrimp.  An active mitigation 

effort has been employed, both by using pesticide and by placing oyster shell over the mud 

flat regions to alter substrate selection (Feldman et al. 1997). 
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The purpose of this study is to examine temporal variation in the genetic make-up 

of Neotrypaea californiensis larvae dispersed off the Oregon and Washington coastlines.  

Additionally, I examine the influence of oceanic barriers on gene flow and genetic distance 

in order to test my hypothesis that variance in ocean currents results in year-to-year 

variation in the genetic make-up of the larvae.  The inclusion of a sample set of estuary 

larvae of the same season is intended to compare differences with the ocean-bound larvae 

and possibly infer a relationship as to any resulting recruitment. 

The term “phylogeography” was first used as a description of geographically 

structured intraspecific genealogies (Avise et al. 1987; Dawson 2001).  A previous 

associated study, conducted as a master’s thesis at San Jose State University (Kozuka 

2008), has examined the phylogeography of N. californiensis larvae within the open ocean 

off the Oregon coast.  Little evidence was found to support any reduction in gene flow or 

significant genetic distance between offshore sampling sites ranging up and down the 

coast. 

The planktonic larvae of many invertebrate species undergo wide-ranging 

dispersal, even across transoceanic distances.  This observation was the subject of several 

foundational papers in the field (Scheltema 1971, 1988).  Molecular investigation of these 

dispersal patterns led to an understanding that limited genetic distance can exist even 

across great geographical distance, including along coastlines (Diaz-Ferguson et al. 2009; 

Palumbi 1994).  Larvae released from estuaries can undergo ocean travel durations which 

vary from weeks to months.  Various factors may limit this dispersal and produce genetic 
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breaks not foreseen (Barber et al. 2002; Dawson 2001; Pernet et al. 2008; Sotka et al. 

2004).  

Increasing the duration of time that larvae spend in ocean travel has been 

correlated to increased dispersal distance (Shanks et al. 2003) and gene flow (Dawson 

2001; Hedgecock 1986).  Dawson (2001) described a relationship in which higher 

planktonic duration can limit phylogeographic structure.  Dawson (2001) also highlights 

the fact that fecundity and habitat isolation have a direct effect on the structure of the 

populations.  High fecundity tends to reduce the phylogeographic structure.  Populations 

isolated by oceanographic barriers tend to have high structure, while ocean-traveling 

populations tend to have low structure.  Retention of larvae near an estuary can be 

beneficial, as this insures that some portion of the population returns to the region of 

origin.  This may lead to a reduction in gene flow with nearby populations and increased 

genetic distance (Bilton et al. 2002). 

Accordingly, it is expected that long-range dispersal of larvae results in strong 

gene flow and limited differentiation in the genetic composition of populations occurring 

along a coastline.  The occurrence of genetic breaks within a taxonomic species range is in 

fact used as evidence of dispersal barriers, which are very often dictated by current 

patterns (Dawson 2001; Hedgecock 1986; Palumbi 1994).  Strong genetic breaks in 

population structure may occur over even small geographic distances (Barber et al. 2002; 

Marino et al. 2010). 

Coastal oceanography and larval behavior have been shown to alter the dispersal 

and retention of planktonic larvae (Dawson 2001; Hedgecock 1986; Palumbi 1994; Pernet 
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et al. 2008).  During flood and ebb tidal cycles, larvae may alter their positions within the 

water column based on the direction of the current (Cronin & Forward 1986; Marta-

Almeida et al. 2006; Olmi 1994; Yannicelli et al. 2006).  During flood tides larvae may 

swim to the upper portion of the column to maintain distances near the continental shelf.  

During seaward flow, larvae can descend the water column to avoid moving far offshore.  

Predators also affect water column placement and thus retention, as some larvae may rise 

within the column during periods when predators are not present (Bollens & Frost 1989).  

The topography off the Pacific coast of the western United States has been shown 

to have a specific effect on both the dispersal of larvae and eventual population structure 

(Dawson 2001; Pernet et al. 2008; Sotka et al. 2004).  The California Current is expected 

to be the primary means of transport of larvae along the coast of the western United 

States.  During the summer the general direction of flow within the current is southward 

along the coast, averaging 10 cm/s.  The width of the current may reach 1000 km with 

depths as great as 500 m.  During the winter and localized events, flow reverses to a 

northerly direction.  A significant nutrient-rich upwelling current is present near the 

eastern edge of the flow in the summer months (Gan & Allen 2005; Hickey 1979; Sotka et 

al. 2004).  Local upwelling events and costal topology can vary the current flow on local 

scales (Botsford 2001) which results in local variation in larval recruitment and retention 

(Yannicelli et al. 2006). 

Sotka et al. (2004) used surface drifters to demonstrate that the movement of 

waters off the Oregon coast may lead to dispersal patterns both northward and southward 

from their original release point.  However it was shown that there is little resulting 
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exchange of Oregon waters with the waters beyond the northern reaches of California.  A 

number of studies have also demonstrated a reduction in gene flow, resulting in a genetic 

break between the regions lying to the north and south of Point Conception CA (Dawson 

2001; Pernet et al. 2008).  

A variety of molecular markers may be employed to examine phylogeographic 

structure.  The mitochondrial gene, Cytochrome C oxidase subunit I (COI), has been 

previously utilized as a maker within a wide range of studies examining population 

structure (Barber et al. 2002; Dawson 2001; Marino et al. 2010; Palumbi 1994; Pernet et 

al. 2008).  Cytochrome C oxidase is a conserved gene, coding for the production of an 

enzyme involved in cellular respiration.  Mutation rates of the COI gene are sufficient to 

detect nucleotide differences amongst individuals (Palumbi & Lessios 2004).  This study 

employs a genetic analysis of COI gene nucleotide variations in collections of Neotrypaea 

californiensis larvae from the Oregon and Washington coast in 2005 and 2006 to examine 

temporal variation in the dispersing gene pool. 

  

MATERIALS AND METHODS 

Samples 

  Oceanic larval samples were harvested from June 2006 through September 2006 

(Table 1) along both the Washington and Oregon coasts at hydrographic lines based on 

latitude ranging from La Push, Washington, to as far south as Cape Perpetua, Oregon.  

The lines employed within this study are off of Grays Harbor, Washington (GH); Willapa 

Bay, Washington (WB); the Columbia River (CR);  Cape Meares, Oregon (CM); Cascade 
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Head, Oregon (CH); and Newport, Oregon (Newport Hydrographic, NH) (Figure 1).  

Sampling took place at a distance between 1 and 15 miles offshore along these latitudinal 

lines.  Plankton tows of the upper 20-30 m of the water column were made using a 330 

µm mesh bongo net system.  Samples were preserved in 95% ethanol.  Specimens were 

sorted for N. californiensis larvae which were measured and staged, and then placed in 

vials with 95% ethanol.  

 Additional samples were collected from within the Yaquina Bay (YB) estuary in 

Oregon, in July of 2006.  Daily sampling of 100 to 120 m3 of water from the main tidal 

channel was done using a centrifugal plankton pump positioned off a dock at the Hatfield 

Marine Science Center.  Zooplanktons were captured using a 350 µm mesh plankton net, 

sorted and preserved. 

 Differentiation of the data set for a particular sampling year (2005, 2006) was 

made by addition of a suffix (05, 06) to the location (GH06, WB06, CR06, CM06, CH06, 

NH06, and YB06) (Table 1).  Sampling efforts were supported by the Bonneville Power 

Authority, and the National Oceanic and Atmospheric Administration Fisheries Service as 

part of the Ocean Survival of Salmonids project.  

  Results of this analysis are compared to two associated studies (Doan unpublished 

data, Kozuka 2008).  Kozuka’s samples were collected along ocean lines in June, August 

and September of 2005 at the lines CR, CH, CM and NH (CR05, CH05, CM05, NH05), 

along with an additional line furthest to the south (Heceta Head, Oregon, HH or HH05) 

(Table 1).  Michael Doan analyzed N. californiensis adult shrimp from within Yaquina 

Bay for the 2005 year (YB05). 
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Table 1. Sample collection dates and location. 

 

Location Position 
Date of 

collection Number sequenced ID 

Grays Harbor 46.91N, 124.30W  9/23/2006 5 GH06 

Willapa Bay 46.68N, 124.30W  6/26/2006 4 WB06 

Willapa Bay  9/24/2006 2 WB06 

Columbia River 46.21N, 124.25W  6/19/2005 18 CR05 

Columbia River  8/30/2005 59 CR05 

Columbia River  6/24/2006 39 CR06 

Columbia River  9/25/2006 7 CR06 

Cape Meares 45.50N, 124.12W  6/20/2005 4 CM05 

Cape Meares  8/31/2005 16 CM05 

Cape Meares  6/26/2006 11 CM06 

Cape Meares  9/26/2006 5 CM06 

Cascade Head 45.05N, 124.20W  6/21/2005 60 CH05 

Cascade Head  6/27/2006 6 CH06 

Cascade Head  9/26/2006 3 CH06 

Newport  44.62N, 124.25W  8/29/2005 10 NH05 

Newport   6/28/2006 15 NH06 

Newport   9/28/2006 3 NH06 

Yaquina Bay 44.62N, 124.04W  7/14/2006 6 YB06 

Yaquina Bay  7/19/2006 2 YB06 

Yaquina Bay  7/26/2006 11 YB06 

Yaquina Bay  7/27/2006 8 YB06 

Heceta Head 44.13N, 124.20W  8/21/2005 5 HH05 

Heceta Head  8/28/2005 5 HH05 

    Total: 304   
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Figure 1. Map of sampling locations.  Rectangles-locations at which planktonic larvae were collected 
in 2005.  Stars-locations at which planktonic larvae were collected in 2006.  
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DNA extraction 

DNA extraction from larvae followed methodology previously used within the Parr 

Laboratory (Kozuka 2008). Each larva was added to a mixture of 300 µl lysis buffer 

(0.5% SDS, 100 mM NaCl, 100 mM Tris [pH 8.0], 25 mM EDTA) and 100 µg of 

proteinase K (Fisher Scientific) to each sample.  Samples were incubated at 65 °C for 0.5-

2 hours until the tissue was fully digested.  Incubation then continued for an additional 15 

minutes at 37 °C upon the addition of 8 µg RNase (Fisher Scientific).  Precipitation of 

proteins was performed with 7.5M ammonium acetate and the isolation of DNA with 

100% isopropanol.  At this point 10 µg of glycogen (Gentra Systems) was added to 

facilitate pelleting of DNA during centrifugation.  The DNA was washed with 70% 

ethanol, air dried, then resuspended in 30 µl of TE buffer (10 mM Tris [pH 8.0] and 1 mM 

EDTA).  Rehydration continued overnight. Samples were stored at 4 °C prior to PCR.       

 

DNA amplification 

A series of reamplification polymerase chain reaction (PCR) applications were 

used to amplify regions of COI, as used previously (Kozuka 2008).  All PCR primers were 

designed using Primer3 v.0.3.0 software (Rozen & Skaletsky 2000).  In order to amplify a 

900-bp region of COI, PCR reaction was performed at a 25 µl reaction volume containing 

a buffered solution of 50mM KCl, 10 mM Tris [pH 8.3], 0.2 mM dNTPs (Fisher), 0.2 µM  

of the forward primer (SCOIFB 5’ TGGGGCAATTACAATGTT 3’)  and 0.2 µM reverse 

primer (SCOIRB 5’ ATCAGCAGGAGGATAAGGAT 3’)  with 0.4 mg/ml bovine serum 
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albumin (BSA), 4 mM MgCl2, 1 unit Taq DNA polymerase (AllStar Scientific), and 10 ng 

larval DNA from extraction of tissue samples.  A negative control was formulated by 

using sterile water in lieu of DNA.  The PCR reactions took place in a Personal Thermal 

Mastercycler (Eppendorf) under the following parameters: initial denaturation for 5 

minutes at 94 °C followed by 35 cycles of 30 seconds at 94 °C for denaturation, and then 

45 seconds at 53-58 °C for primer annealing, and 1 minute at 72 °C for DNA strand 

extension.  This was followed by a final extension step for 10 minutes at 72 °C.  The 

nature of the amplicons was verified on a 2% agarose gel pre-stained with 1% ethidium 

bromide alongside an appropriate molecular size marker.  The gel was run at 120-130 V 

for 45-60 minutes and visualized under ultraviolet light on a Bio-Rad Gel Doc unit.    

A subsequent PCR reaction was performed as a nested PCR amplifying a 700-bp 

region within the 900-bp region amplified in the first reaction.  Reaction volume totaled 25 

µl, containing 0.2 mM dNTPs, 0.2 µM forward primer (SCOIFmore 5’ 

TTTTGATCCAGCAGGAGGAG 3’), 0.2 µM reverse primer (SCOIRmore 5’ 

GACCCTATAGAAGAAACCACATTTC 3’), 2 mM MgCl2, and 0.5 unit Taq DNA 

polymerase.  The amplicon resulting from the first PCR was diluted 10 to 1000-fold with 

water, and 1 µl of this dilution was used as the template.  The concentration of DNA was 

estimated visually from the gel by comparison to the DNA marker run on the same gel.  

The thermal cycler parameters employed for this PCR were: 5 minutes at 94 °C followed 

by 30 cycles of 30 seconds at 94 °C, 30 seconds at 58-62 °C, and 1 minute at 72 °C 

followed by 72 °C for 10 minutes.   
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Subsequently a 591-bp region nested within the 700-bp region of the first nested 

PCR was amplified.  It was generally necessary to follow these three steps to produce 

discrete fragment bands in sufficient quantity for sequencing.  Thermal cycler conditions 

were repeated as in previous nesting PCR reactions with the exception of forward primer 

(SCOIFnew 5’ CCTGGGTTTGGTATAATTTCTCA 3’) and reverse primer (SCOIRnew 

5’ ATCGGGGTAATCTGAATATCG 3’). Dilution of the amplicon was necessary to 

prevent nonspecific product from being synthesized during the reaction.  

 

DNA sequencing  

Samples that contained discrete fragment bands following gel electrophoresis were 

selected for sequencing.  Excess dNTP’s, primers, and single-stranded amplicons were 

removed by adding 2 µl ExoSAP-IT (USB) to bring to a total of 15 µl volume.  

Incubations for 30 minutes at 37 °C and 15 minutes at 80 °C were performed to ensure 

enzyme deactivation.  The forward primer used for sequencing, COIFnew, was diluted to 

5 µM.  Samples were processed for sequencing at Geneway Research (Hayward, CA).  

Chromatogram sequences were obtained by use of an ABI Prism 3700 DNA Analyzer and 

automated sequencer (Applied Biosystems) using BigDye™ terminator methodology.   

 

Data analysis  

Chromatograms of a 548-bp region of the DNA were edited and aligned using the 

ClustalW multiple alignment algorithm in BioEdit software v7.0.9.0 (Hall 1999).  After 
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manual editing to remove primer sequences, a 516-bp region was selected for comparison 

and use in all analyses. 

The software package Mega 4.0 (Tamura et al. 2007) was employed to determine 

the amino acid sequence with comparison to a table of invertebrate mitochondrial DNA 

genetic code. A search was performed against the National Center for Biotechnology 

Information (NCBI) Basic Local Alignment Search Tool (BLAST) Protein database in 

order to identify similar sequences, and confirm the amplification of the targeted gene. 

 Nucleotide and haplotype diversity and measures of pairwise nucleotide distance 

were calculated using DnaSP 5.0 software (Librado & Rozas 2009).  DnaSP 5.0 was also 

used to determine haplotype frequency and distribution. 

 Tests of population neutrality were conducted with Arlequin v3.11 software 

(Excoffier et al. 2005).  Fu’s FS statistic (Fu 1997) indicates whether the level of diversity 

of a given sample (in terms of number of haplotypes present) is consistent with the number 

seen in a sample of equivalent genetic diversity that undergoes random mutation according 

to the Infinite Sites model.  Tajima’s D statistic was employed looking at segregating 

nucleotide sites in comparison to random mutation (Tajima 1989).  The combination of 

the two tests examines whether the populations are selectively neutral and in equilibrium 

or under some selective pressure or demographic change.  It is not entirely possible to 

disentangle possible demographic influences from those of selection on statistics. 

 Analysis of Molecular Variance (AMOVA) (Excoffier et al. 2005) is a measure 

employed to examine the genetic structure of a population utilizing an analysis of variance.  
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AMOVA was calculated on various collections with standard AMOVA methods and 

haplotypic format using Arlequin 3.11 software.  

 Fixation Index (FST) values, as assessed by AMOVA, of the overall and 

subpopulations were calculated with Arlequin software v3.11, with 1000 permutations, 

employing pairwise difference and calculating a distance matrix.  FST examines the extent 

of genetic distance between subpopulations in comparison to the population as a whole 

(Bohonak 1999; Wright 1965).  FST utilizes gene frequency and the number of mutations 

between haplotypes to estimate the pairwise divergence of haplotypes based on a distance 

matrix (Slatkin & Hudson 1991).  FST values range from 0 indicating an individual 

population, to 1 indicating distinct populations.  FST values were considered significant at 

p-values of less than 0.05 and highly significant at p-values of less than 0.001.   

 Relatedness was visualized using Unweighted Pair Group Method with Arithmetic 

mean (UPGMA) clustering method in Mega 4.0 (Tamura et al. 2007).  FST distance values 

were used in the UPGMA tree construction among populations of larvae within the 2-year 

data set.  UPGMA grouping assumes broadly that the rate of nucleotide or amino acid 

substitution is the same for all lineages.  Branch lengths of the UPGMA dendrogram were 

calculated as half the distance between paired populations.  It is not used in a phylogenetic 

sense strictly, as it does not infer common ancestral populations to extant population 

nodes.  However, it is a useful dendrogram for grouping similar populations based on 

haplotype frequencies.    
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RESULTS 

The combined 2005 and 2006 dataset exhibited haplotype (h) and nucleotide 

diversity (π) of (h = 0.978, π = 0.043) (Table 2).  Haplotype and nucleotide diversity were 

given within both the 2005 (h = 0.952, π = 0.040), and the 2006 (h = 0.984, π = 0.037) 

individual data sets.  The 177 larvae of the 2005 dataset had 104 distinguished haplotypes, 

with an average number of pairwise nucleotide differences of k = 20.867.  The 127 larvae 

from 2006 had 87 distinguished haplotypes with an average number of pairwise nucleotide 

differences of k = 19.114.  The 304 individual sequences of the combined dataset included 

188 haplotypes with an average number of pairwise nucleotide differences of k = 22.354.  

The YB estuary larvae had a slightly lower haplotype diversity than larvae collected off 

shore (h = 0.866, π = 0.038).  There were 63 variable sites within the 2006 dataset 

including 66 mutations.  The 2005/2006 combined dataset included 80 variable sites with 

85 mutations.  The 2006 ocean larval population consisted entirely of silent substitutions, 

yielding an identical amino acid sequence within the analyzed region.  The combined two-

year dataset showed five replacement substitutions, changing expected amino acid 

sequence.  Of these five replacement substitutions, four were found both in YB estuary 

samples from 2006 (YB06) and CH ocean larvae from 2005 (CH05).  

Larval sequences from individual populations collected in 2006 had an average 

number of pairwise nucleotide differences ranged from a low of k = 14.400 (GH06) to a 

high of k = 19.610 (YB06).  
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Table 2.  Haplotype (h) and diversity (π) indices.  k = mean number of pairwise nucleotide 
differences.  n = number of sequences 

 
 

ID h π k n 

GH06 0.900 0.028 14.400 5 

WB06 1.000 0.031 15.933 6 

CR05 0.951 0.036 18.433 77 

CR06 0.981 0.031 15.948 46 

CM05 0.974 0.036 18.758 20 

CM06 1.000 0.027 13.967 16 

CH05 0.954 0.048 24.817 60 

CH06 0.972 0.037 18.944 9 

NH05 0.933 0.018 9.444 10 

NH06 0.974 0.035 18.163 18 

YB06 0.866 0.038 19.610 27 

HH05 0.867 0.021 10.978 10 

2005 0.952 0.040 20.867 177 

2006 0.984 0.037 19.114 127 

All 0.978 0.043 22.354 304 
 

  

Haplotypes were compared both within and among the two years of the data set 

(Table 3).  The single most common haplotype (H1) occurred within the 2005 ocean 

sample set (n = 33).  All of these samples were harvested off of the Columbia River in 
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2005 (CR05).  This haplotype contains samples collected both in the spring (n = 12) and 

fall (n = 21) of 2005 (Table 1).  In the two-year data set, the most common haplotype 

(H1) was shared by 33 of the total 304 individuals, all of these were from 2005.  The 

second and third most common haplotypes (H2, H3) were identified in both years of the 

study.  There were no further haplotypes spanning both years.  Of the 137 individuals that 

shared a haplotype with at least one other individual, 57 are from CR.  Of the 27 larval 

samples taken from the YB estuary in 2006 (YB06), 10 shared a single haplotype (H3).  

This haplotype was also found in five samples from the previous year, offshore to the 

north (CH05).  Haplotypes consisting of a single individual (singletons) numbered 169, or 

55.59% of all larval samples.  There were no universal haplotypes shared among all of the 

populations in the combined two-year data set (Table 3).  

Neutrality statistics for both yearly data sets showed significant negative values for 

Fu’s FS statistic. 2005 data showed an FS value of –23.749 (p = 0.006) and 2006 data 

showed an FS value of –23.903 (p = 0.000) (Table 2).  The combined two-year dataset 

showed an FS value of –23.547 (p = 0.006).  When individual populations were examined, 

FS reached significance at only one subpopulation, CM06 (FS = –6.491, p = 0.006). 

Tajima’s D test of neutrality (Table 4) was significant (p > 0.95) at D = 1.547 for 

2005 and at D = 2.026 for the 2006 dataset.  The combined two-year dataset was also 

significant at D = 2.282.   

 When individual populations within the 2005 or 2006 dataset were examined, five 

(CR05, CR06, CM05, CH05, NH06) yielded a significant result under Tajima’s D statistic 
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(p > 0.95).  The remaining seven populations did not yield significant results, and two 

showed negative values.  These were spread among both yearly collections.  

Table 3.  Haplotype distribution and composition ( where n > 2 ).  Ocean 05 = ocean larval 
subpopulations of 2005. Ocean 06 = ocean larval subpopulations of 2006.  YB Adults 05 = Yaquina 
Bay adults samples of 2005. 
 

  Common Haplotypes (n > 2)   

ID H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 

GH06                 2   

WB06        1    

CR05 33 9  7 7       

CR06  3    3 5 2 2 2 

CM05  1   2       

CM06       1 1  1 

CH05  2 5 6 2       

CH06  2          

NH05            

NH06  1    3  2    

YB06   10   1      

HH05            

Total 33 18 15 13 11 7 6 6 4 3 

           
Ocean 

05 33 12 5 13 11           

Ocean 
06   6       6 6 6 4 3 

           
YB 

Adults 
05 

11 5     14           
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Table 2.  Tests of neutrality.  Bold values indicate significance (Tajima's D, p > 0.95; and Fu's FS, p 
< 0.02). 
 
 

ID Tajima's D Tajima's D p-value Fu's FS  FS p-value 

GH06 1.146 0.859 2.209 0.785 

WB06 0.251 0.603 -0.290 0.240 

CR05 1.605 0.951 -9.125 0.034 

CR06 1.820 0.978 -9.124 0.011 

CM05 1.552 0.970 -1.359 0.263 

CM06 0.548 0.760 -6.491 0.006 

CH05 2.241 0.991 -4.103 0.162 

CH06 1.297 0.931 0.192 0.435 

NH05 -0.664 0.271 -0.435 0.338 

NH06 1.592 0.974 -1.579 0.201 

HH05 -0.886 0.215 1.093 0.674 

YB06 1.158 0.915 1.247 0.743 

2005 1.547 0.951 -23.749 0.006 

2006 2.026 0.979 -23.903 0.000 

All 2.282 0.980 -23.547 0.006 
 

 

Genetic distance between populations of the combined 2-year data set, examined 

as FST values, yielded many significant results (shown with asterisks in Table 5).  The FST 

data from 2005 shows the CH05 population was significantly different from two (NH05, 

HH05) of other four populations from that year (p < 0.05).  The only other significant 

difference was between the HH05 and CM05 populations (p < 0.05).  FST values from 

2006 were highly significant (p < 0.001) between the YB06 estuary samples and four of 
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the six remaining ocean populations (CR06, CM06, CH06, and NH06).  The GH06 and 

WB06 populations showed a significant difference (p < 0.05) with YB06.  NH06, the 

nearest ocean population in proximity to YB, showed highly significant restricted gene 

flow between itself and YB06 (FST = 0.190, p = 0.00).  There was no significant genetic 

distance evident in any of the 2006 ocean larval populations as none of the FST values 

reached significance (Table 3).  

In comparing populations that occur in both 2005 and 2006 data, there were highly 

significant (p < 0.001) differences from one year to the next between three of the four 

collections (CR, CM, NH).  CH was the only population that did not show a significant 

difference (p = 0.28) over the two years of collection.  

The largest subpopulation, CR, contained samples from both 2005 and 2006.  In 

addition CR05 and CR06 contained samples from both spring and fall sampling.   

Comparing CR05 spring samples with CR05 fall samples showed a highly significant FST 

of 0.53 (p = 0.00).  Comparison of CR06 spring samples against those from CR06 fall 

showed a significant FST of 0.16 (p = 0.004). 
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Table 3.  Pairwise FST values and significance as assessed by AMOVA in 2005 (05) and 2006 (06).   
(* = p < 0.05; ** = p < 0.001).  WB = Willapa Bay, GH = Gray's Harbor, CR = Columbia River, CM 
= Cape Meares, CH = Cascade Head, NH = Newport, YB = Yaquina Bay, HH = Heceta Head. 

ID GH06 WB06 CR05 CR06 CM05 CM06 
GH06 0       
WB06 0.05601 0      
CR05 0.34405** 0.19918 0     
CR06 0.08948 -0.04114 0.20101** 0    
CM05 0.35484** 0.19966* 0.03069 0.21694** 0   
CM06 0.10918 -0.0767 0.2278** -0.01642 0.2409** 0 
CH05 0.16399* 0.09554 0.06074 0.12058 0.09295 0.13905* 
CH06 0.12681 0.05457 0.08639* 0.05244 0.10961* 0.09293 
NH05 0.61957** 0.46589* 0.04297 0.38251** 0.08117 0.46406** 
NH06 0.0101 0.02743 0.20126** 0.02458 0.21655** 0.05738* 
HH05 0.57498** 0.38867** 0.05093 0.32899** 0.11994* 0.40346** 
YB06 0.16976* 0.21568* 0.40869** 0.26851** 0.41297** 0.26932** 

         
YB05 Adult 0.79242** 0.69173** 0.16717** 0.55163** 0.31173** 0.66291** 
       
       

ID CH05 CH06 NH05 NH06 HH05 YB06 
GH06             
WB06        
CR05        
CR06        
CM05        
CM06        
CH05 0       
CH06 0.01067 0      
NH05 0.1455* 0.27813** 0     
NH06 0.07846* -0.00036 0.39663** 0    
HH05 0.13349* 0.25586** 0.0312 0.36163** 0   
YB06 0.20382** 0.2424** 0.53972** 0.19022** 0.5189** 0 

       
YB05 Adult 0.29225** 0.54341** 0.12508* 0.67072** 0.20469** 0.70411** 
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Unweighted Pair Group Method with Arithmetic mean (UPGMA) clustering 

method was used to visualize a dendrogram calculated on the basis of distance values 

(FST).  Branches are considered significant at FST values greater than 0.05.  The UPGMA 

dendrogram of the 2005 oceanic larval collections supported a three-way grouping of the 

five sites based on latitude (Figure 2).  The CH05 population offered a central branch 

positioned between a northerly branch consisting of CR05 and CM05 populations and a 

southerly branch containing NH05 and HH05 populations.  This grouping did not occur in 

the 2006 UPGMA dendrogram (Figure 3).  There was some evidence of a north-to-south 

grouping within the 2006 tree.  GH06, being the most northerly of the six ocean 

populations, formed its own branch.  The other five populations formed two separate 

branches showing little differentiation from within.  WB06, CR06 and CM06 formed one 

branch which contains adjacent geographical populations.  The other branch formed a 

more southerly grouping of CH06 and NH06 populations.  However, it should be 

reiterated that the separation between these three branches was not significant.  The YB06 

population was always the most distantly separated from other populations, as shown in 

the 2006 UPGMA (Figure 3), and years-combined UPGMA diagrams (Figure 4).  

When comparing the two yearly populations in single dendrogram, the patterns 

mentioned above were maintained (Figure 4).  A pattern of three significant groups was 

formed; the 2005 ocean larvae, the 2006 ocean larvae, and the 2006 YB estuary larvae.  

These three groups were also examined as a whole by FST pairwise distances, and all 

comparisons between the three populations showed high significance (p = 0.000) (Table 6) 
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 CR05

 CM05

 CH05

 NH05

 HH05

0.000.010.020.030.040.050.06  

 
Figure 2.  UPGMA dendrogram of FST distances among groups of larvae collected in different areas 
in 2005 (05).  CR = Columbia River, CM = Cape Meares, CH = Cascade Head, NH = Newport, HH 
= Heceta Head. 

 GH06

 CM06

 WB06

 CR06

 CH06

 NH06

 YB06

0.000.020.040.060.080.10  

 
Figure 3. UPGMA dendrogram of FST distances among groups of larvae collected in different areas 
in 2006 (06).  WB = Willapa Bay, GH = Gray's Harbor, CR = Columbia River, CM = Cape Meares, 
CH = Cascade Head, NH = Newport, YB = Yaquina Bay. 
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Figure 4.  UPGMA dendrogram of FST distances among groups of larvae collected in different areas 
in both 2005 (05) and 2006 (06).  WB = Willapa Bay, GH = Gray's Harbor, CR = Columbia River, 
CM = Cape Meares, CH = Cascade Head, NH = Newport, YB = Yaquina Bay, HH = Heceta Head. 

 
 
Table 6.  Pairwise FST values and significance as assessed by AMOVA.  Oceanic larvae of 2005, 
Oceanic larvae of 2006, and Yaquina Bay larvae of 2006).  (* = p < 0.05; ** = p < 0.001).   
 

  Ocean 2005 YB 2006 Ocean 2006 

Ocean 2005 0    

YB 2006 0.40191** 0   

Ocean 2006 0.1605** 0.31914** 0 
 

 

The AMOVA performed on three groupings of populations: ocean larvae from 

2006, ocean larvae from 2005, and the YB estuary larvae from 2006 (Table 7 ) supported 

significant differentiation among the three groupings.  Minimal variation was shown within 
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the three groupings (percentage of variation = 2.69%), with the majority of variation being 

represented within the populations as a whole (percentage of variation = 70.93%). 

Table 7.  Parameters and test statistics analyzed by AMOVA.  (** = p-value < 0.001) 
 
 

Source of   Sum of Variance Percentage 
variation d.f. squares components of variation 
       
Among groups 2 226.951 3.762 Va 26.38 
       
       

5 122.726 0.384 Vb 2.69 Among groups within 
populations      
       
Within populations 286 2895.449 10.123 Vc 70.93 
       
Total 293 3245.126 14.273   
       

Group 1= 2005 Ocean Larvae        FSC :       0.0366** 

Group 2 =2006 Ocean Larvae        FST :      0.29071** 

Group 3 =2006 YB Estuary Samples         FCT :       0.26376** 

 

 

The AMOVA comparing the oceanic larvae of 2005 and those of 2006 (Table 4), 

showed results similar to those of the three-way grouping, with minimal variation being 

shown within the two groupings (percentage of variation = 4.75%), and the majority of 

variation represented within the population as a whole (percentage of variation = 80.18%). 
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Table 4.  AMOVA Oceanic larval groupings only (excluding YB) (** = p-value < 0.001). 
 
 

Source of  Sum of Variance Percentage 
variation d.f. squares components of variation 
     
Among groups 1 251.807 1.744 Va 15.06 
     
     

9 188.637 0.550 Vb 4.75 Among groups within 
populations     
     
Within populations 265 2459.818 9.282 Vc 80.18 
     
Total 275 2900.261 11.576  
     

Group 1= 2005 Ocean Larvae FSC : 0.05595** 

Group 2 =2006 Ocean Larvae FST : 0.19817** 

   FCT : 0.15065** 

 

 

DISCUSSION 
  
 

We expected to find evidence of strong widespread gene flow and a lack of 

significant genetic distances between populations of N. californiensis larvae that were 

sampled offshore.  This is according to the expectation that long-lived larvae developing 

for six to eight weeks (Dumbauld et al. 1996) would be dispersed widely by the highly 

active currents off the coast of Oregon and Washington.  The assumption here was that 

high flow rates of larvae in the California Current would result in net larval dispersal to the 

south and out of the immediate sampling range.  This would leave little evidence of 

significant gene flow from the previous season’s dispersal event, as haplotypes would 
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more often enter southern sites.  The assumption was also made that the lack of barriers to 

gene flow within ocean populations sampled in 2005 would be confirmed by subsequent 

sampling during the 2006 season.   

 The haplotype diversity found within both the 2005 and 2006 seasons' samplings 

indicated a large percentage of the haplotypes were unique and not shared among 

individuals (singletons).  These findings are in accordance with a sudden expansion 

scenario (Slatkin & Hudson 1991).  This also supports a highly reproductive population 

with widely dispersing larvae (Dawson 2001).  

Neutrality test results from Fu’s FS supported an excess of rare alleles within the 

population leading to a proliferation of haplotypes (Fu 1997; Tajima 1989).  The possible 

explanations for the findings range from a recent demographic expansion to selective 

pressure.  A reduction in population size or a balancing selection could be occurring.  

Examining individual subpopulations by Tajima’s D show that there is a possibility of 

certain polymorphisms being over-represented, such as in a founder effect. 

Four of five ocean populations that were sampled across each of the two years of 

this study showed a genetic distance that is highly significant based on FST values (Table 

3).  There were 35 pairwise combinations of populations that could be compared between 

2005 and 2006.  Genetic distance was significant in 31 of these comparisons.  This 

supports the inference that from one year to the next there was a rapidly changing 

population of larvae present off of the coast. 

An examination of larvae sampled at the Columbia River within ocean waters 

(CR05) showed significant genetic distance between samples taken during spring, early in 
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the dispersal season, and later into the fall, when recruitment to estuaries occurs.  This 

observation is further corroborated by similar results in the next year (CR06).  Therefore, 

genetic distance between populations seems high not only from year to year but also 

between cohorts of spring and fall recruitment. 

 The examination of samples within the 2006 set of ocean larvae revealed no 

evidence of either restricted gene flow or geographic barrier to dispersal.  This was 

consistent with data of the previous year’s (2005) ocean sampling despite the fact that the 

2006 population was extended to cover a larger range (extending to the north, into 

southern Washington). 

 The larval samples taken in 2006 from within Yaquina Bay (YB06) showed weak 

gene flow in all comparisons to offshore populations within the same year.  This was also 

true when the estuary larvae were compared to the previous year’s ocean population.  All 

comparisons showed significant genetic distance between the estuary and ocean 

populations.  FST values of the Yaquina Bay population compared against either year’s 

ocean populations were highly significant (Table 3), indicating a lack of mixing.  Yaquina 

Bay samples also were differentiated from larval samples collected at the nearest offshore 

population which was Newport (NH), located only 1-10 miles from the mouth of the 

Yaquina Bay estuary.  It must be noted that the time period of ocean sampling does not 

coincide directly with the estuary sampling.  The variation was as much as one month 

prior and two months following the estuary collection. 
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Haplotype diversity within the YB sampling was lower than within either yearly 

ocean population.  Haplotypes from the YB population had the highest percentage of a 

single common haplotype and lowest percentage of singletons.  

These observations suggest recruitment of larvae from nearby offshore populations 

to within the estuary was not as extensive as, or may have been more complex, than 

previously supposed.  Larvae may have been entrained (following release from local adult 

populations or entry from the ocean) for an extended period. Any tendency toward 

enclosed populations has been shown to increase phylogeographic structure (Dawson 

2001).  

Adult N. californiensis sequences from an associated study within Yaquina Bay 

during 2005 (Doan unpublished data), showed no common haplotypes and a significant 

genetic distance with the larvae from within YB in 2006 (Table 3).  This does not agree 

with the previous inference of an entrained population. 

 The data indicates that larval dispersal and recruitment was complex and varied in 

time.  The most common haplotype from within YB larvae of 2006 (H3) was also among 

the most common haplotypes found in one of the ocean populations off of  Cascade Head 

in the previous year (CH05).  However, these two subpopulations showed low gene flow 

(FST = 0.204) (Table 5).  Yaquina Bay adult shrimp from 2005 and YB larvae from 2006 

did not share any haplotypes.  However, they each shared haplotypes with several ocean 

subpopulations to the north (Table 3).  In pairwise comparisons of FST values, the YB 

adult population of 2005 showed a highly significant genetic distance as compared to all 

ocean populations and to the YB 2006 larvae (Table 5).  
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It is not clear what was occurring in the exchange of YB larvae with ocean 

populations and subsequent recruitment.  Another possibility is that the estuary samples 

dispersal was largely to ocean populations not within the sample area, perhaps farther to 

the south along the dominant offshore current.  There is however no evidence in this study 

that directly supports this inference.  

Distribution of zooplankton from various species throughout Yaquina Bay has 

been previously studied (Frolander et al. 1973).  Larvae found within the estuary during 

the summer months were predominantly from adults that were found in highest density 

along coastal areas to the north of Yaquina Bay.  This pattern corresponded to the 

prevailing southerly flow of the California Current during the same time frame.  Larvae 

found within the estuary during winter months were predominantly from species with 

adults located to the south of Yaquina Bay.  This supports the inference that many larvae 

collected during this study from within Yaquina Bay would likely have dispersed to the 

south as well.  As a result, this would have left them outside the sample area, which was 

primarily to the north of Yaquina Bay. 

A recent study of the Mediterranean Shore Crab, Carcinus aestuarii, examined 

populations in the Venice Lagoon of Italy (Marino et al. 2010), and suggests another 

plausible explanation for the significantly different larval and adult sampling within YB.  

The presence of significant differences on a micro-geographic scale within the YB estuary 

may be due varying selective pressures at these different sites.  This is also suggested by 

other studies (Barber et al. 2002; Mackie et al. 2009).  Sampling methodology could have 
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therefore led to a significant difference in genetic distance depending on location within 

the estuary.  There is also evidence that this pattern was variable from year to year. 

However, data in the present study does not suggest selection is the simplest 

explanation for why there would be site-to-site mitochondrial DNA differences in N. 

californiensis populations.  The fact that oceanic larval pools adjacent to estuaries may 

differ in genetic composition from one year to the next (as  was shown in the 2005 and 

2006 samples compared here), suggests that randomness in where particular sets of larvae 

are moved into estuaries could in fact explain much of the genetic differences seen in the 

estuary populations.  

It may be that genetic differentiation within estuaries is absent.  Analysis of sites 

within 20 estuaries in the Oregonian region (Parr and Mackie, unpublished data) supports 

a general lack of within-estuary genetic differentiation among adults.  The Yaquina Bay 

adult samples of 2005 (YB05) did not show significant genetic distance among any of the 

three sample locations throughout the estuary.  However larval samples of the following 

year (YB06) do show highly significant genetic distance to those of 2005 adults, though 

sampled just across the estuary (Figure 5).   



     31 

 

 
Figure 5.  Yaquina Bay sample locations.  Rectangle = 2005, Oval = 2006.  Map data (c) 
OpenStreetMap (and) contributors, CC-BY-SA.   

 
The Yaquina Bay larvae sampled and sequenced as part of this study were all 

classified as stage I, which has been established to correspond to an age of ten days or less 

(Cassidy 2009).  Therefore it is likely that all of these larvae were released in near 

proximity to the sample site and form a comparatively homogeneous group.  This is 

supported by the genetic analysis within this study.  In addition, all of the YB06 larvae 

were sampled within a thirteen day period of July 2006 (Table 1).  It is possible that COI 

variation between the YB05 adults and the YB06 larvae is simply due to a recent larval 

release by a small group of adults near the YB06 sampling site.  The lack of any temporal 

variation in sampling, does not allow for a complete picture of the larval population within 
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YB.  It is known that shrimp larvae may be released over any of a number of months in 

this species (Dumbauld et al. 1996). This may also exacerbate the statistical differences 

between the estuary larvae and the ocean larvae, especially in light of the fact that the 

ocean samples were collected over a range of several miles while the YB06 samples were 

collected in a single location.  The fact still remains that both the larval and adult samples 

within this study form a highly genetically distinct group, both in comparison to each 

other, and to offshore populations. 

Examination of ocean currents within the sampling area for the sampling period 

may offer insight into nature of larval retention.  It has been show that both the velocity 

and direction of localized currents within the immediate sampling area vary greatly over 

the sampling period from 2005 to 2006 (Kosro 2006; Kosro et al. 2006).  Velocities at 

times reach as high as 80 cm/s at locations near our sampling sites.  This would lead to 

rapid larval dispersal.  Specifically, when examining current rates in July off the coast of 

Newport, Oregon, there were significantly higher velocities toward the southwest in late 

July of 2005 than in July of 2006 (Figure 6).  This corresponds to the time frame of YB06 

larval sampling from within the estuary.   

Evidence of the effect of strong deviations in current flow during the 2005 season 

on the resulting recruitment of several other species along this coastline has been reported 

by Barth et al. (2007).  Wind and temperature alterations significantly delayed early season 

(April through June) and intensified late season (August through September) upwelling 

currents.  This was shown to significantly alter recruitment patterns of barnacles and 

mussels at sampling stations that are also within the sample area of this study.  Ocean 
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currents and conditions varied significantly over the 2005-2006 seasons covered by this 

study.  These data support the conclusion that the journey of larvae would vary greatly 

from one season to another, and perhaps particularly in 2005-2006. 

 
Figure 6.  Ocean currents off Newport OR, July 2005 and July 2006. 

  

Variation in larval release times over a number of months by adults within the 

estuary may lead to distinct genetic groups exiting to the ocean at any one time.  

According to this explanation, genetic drift may play a major role in determining 

population diversity.  It can be expected that long planktonic duration within the ocean 

currents would lead to a mixing of such groups over a number of months.  A genetically 

homogenous ocean population at any time may lead, through a variety of causes (larval 

7/14/05 7/21/06 



     34 

release timing, ocean currents, and possibly post-settlement selection) to a highly 

structured population within an estuary such as Yaquina Bay (Marino et al. 2010).  

Temporal variation in ocean borne larval pools over the course of a season or several 

years, would contribute to this further.  An interesting and important question in terms of 

population maintenance is how density of recruitment varies from year to year.  Current 

evidence suggests that recruitment levels differ greatly from year to year (Barth et al. 

2007).  

 This study shows that there was significant genetic distance between the 

populations of one year (2005) to those of the subsequent year (2006) in a benthic 

estuarine crustacean, Neotrypaea californiensis.  We found no evidence of a significant 

barrier to gene flow along the portion of coastline included in this study, within either of 

two sampled years.  Yaquina Bay estuary samples had significant genetic distance from 

nearby drifting oceanic larvae, and other adult populations (Parr and Mackie unpublished 

data), suggesting that overall, gene flow among even neighboring estuaries was limited.  

One interpretation is that larvae may have been entrained within the estuary and under a 

variety of selective pressures.  An alternative possibility is that if any dispersal was 

occurring, these larvae may have been evicted from the sample area quickly.  As a result, 

any subsequent recruitment to estuary populations would have arrived from sources 

somewhat distant geographically.  Therefore if any of the Yaquina Bay estuary larvae 

within this study reached the adult reproductive stage, they would have likely done so at a 

location different from their natal site.  These adults would therefore not have contributed 

greatly to the larval population found off of the coastline sampled in this study.  Site-
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specific differences in natural selection would not have evolutionary effect, because due to 

oceanic current activity and lack of philopatric dispersal mechanisms, populations in 

different estuaries may tend to become outbred over many years, as different sets of larvae 

arrive in different years.   
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