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ABSTRACT 
FLOW CYTOMETRY OF ALEXANDRIUM CATENELLA FROM ELKHORN SLOUGH, 

CALIFORNIA. 
 

 
by Phillip R. Hawkins 

 
This study describes the use of flow cytometry for the enumeration of the toxic 

marine dinoflagellate Alexandrium catenella in both estuarine samples from Elkhorn 

Slough, California and from sea water samples from inner Monterey Bay.  Samples were 

subjected to a density-barrier sample enrichment technique employing percoll to separate 

debris from phytoplankton prior to sample fixation, labeling and analysis.  Clarified, 

enriched preparations of phytoplankton were subjected to whole cell Fluorescent In Situ 

Hybridization (FISH) using a ribosomal DNA (rDNA) probe specific for the North 

American ribotype (NA1) of the dinoflagellate genus Alexandrium and analysis by flow 

cytometry.  Flow cytometry was validated using epifluorescence microscopy on paired 

samples.  Density-barrier sample enrichment and flow cytometry employing multi-

parametric logical gating enabled detection Alexandrium catenella down to 

concentrations of 10 cells L-1.  

Samples were taken semimonthly from 10 stations along the entire length of 

Elkhorn Slough and 1 station a mile offshore of the Moss Landing harbor entrance over a 

two year period from July 2006 to July 2008.  In samples taken from the entrance to 

Elkhorn Slough, Alexandrium catenella was detected in low concentrations by flow 

cytometry and epifluorescence microscopy.  In samples taken from the inland portions of 

Elkhorn Slough, rare occurrences of a few A. catenella cells were detected by flow 

cytometry while no A. catenella was detected by epifluorescent microscopy. 
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PREFACE  

 
This thesis consists of three chapters, appendices and references cited.  Chapter I 

is a detailed introduction to the general effects of Harmful Algal Blooms, description of 

the toxic marine dinoflagellate Alexandrium catenella, characterization of Monterey Bay 

and Elkhorn Slough, current methods of detection for Alexandrium, flow cytometry, and 

environmental sample labeling.  Chapter II is presented in manuscript format consistent 

with the journal “Harmful Algae.”  Chapter II reports the application of flow cytometry 

to detect A. catenella in both open water and estuarine environments.  A density–barrier 

enrichment technique was used as a sample preparative step prior to Fluorescent In Situ 

Hybridization (FISH) of the samples followed by flow cytometry and epifluorescence 

microscopy.  Chapter III consists of general conclusions about the use of flow cytometry 

in the field of Biological Oceanography, the use of flow cytometry as an environmental 

monitoring tool, a survey of other instrumentation designed specifically to monitor for 

species causing Harmful Algal Blooms (HABs), and possible future applications to flow 

cytometry in monitoring for HABs.  The appendices provide additional supportive data, 

techniques, methods of data analysis, locations and bathometry of sample sites for both 

Elkhorn Slough and Monterey Bay as well as a description novel equipment 

manufactured for the acquisition of vertical samples in Elkhorn Slough presented in this 

research. 
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CHAPTER I   
INTRODUCTION 
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1. Introduction 
 
1.1. Harmful Algal Blooms 
 

Phytoplankton are microscopic single celled, free-floating aquatic plants that are 

the primary producers in the marine environment.  Phytoplankton, through 

photosynthesis, release oxygen from carbon dioxide and water using light energy 

produced via photosynthetic pigments.  After viruses and bacteria, phytoplankton are the 

most numerous organisms in the ocean and form the base of trophic interactions in the 

marine environment.  Some phytoplankton produce toxins.  Under favorable conditions, 

toxic phytoplankton (algae) can form dense surface populations in coastal waters often 

referred to as Harmful Algal Blooms (HABs) that are associated with finfish death and 

contamination of shellfish that are consumed by humans.  HABs are caused by harmful 

marine phytoplankton of the taxonomic division Dinophyta, often referred to as 

dinoflagellates (Greek dinos, whirling flagella).  

Dinoflagellates are phytoplankton characterized by having two flagella, one 

transverse and the other longitudinal, which give the cell its characteristic whirling 

motion.  Dinoflagellates are an ancient group of organisms, first appearing in the fossil 

record 240 million years ago.  Taxonomically dinoflagellates were once considered an 

intermediate kingdom (“mesokaryota”) due to having a nucleus lacking histones and 

having condensed chromosomes throughout the cell division cycle (Hackett et al., 2004).  

Dinoflagellates have chloroplasts containing the pigments chlorophyll a and c, β-carotene 

and peridinin.  Peridinin is a taxonomic marker accessory pigment found only in 

dinoflagellates (Loblich, 1984).  Dinoflagellates can be autotrophic, mixotrophic or in 
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some cases heterotrophic (Stoecker, 1999).  Under bloom conditions, dinoflagellates can 

discolor sea surface water to form red-tides that are associated with shellfish 

contamination (Shumway, 1990).  

1.2. Alexandrium catenella 

One genus of dinoflagellates, Alexandrium, produces potent neurotoxins that can 

cause paralytic shellfish poisoning (PSP) in humans who have eaten contaminated 

shellfish (Carreto et al., 2001).  The symptoms of PSP in humans include numbness in the 

mouth and extremities, ataxia, dizziness, headache, respiratory distress, paralysis and 

death (Whittle and Gallacher, 2000).  One of the earliest recorded PSP-related events on 

the west coast occurred in 1793 in British Columbia during the Vancouver expedition. 

Several crew-members suffered deaths caused by paralysis and asphyxiation after eating 

shellfish taken from what is now known as “Poison Cove”.  In 1927 PSP-related deaths in 

San Francisco were attributed to human consumption of mussels contaminated with 

Alexandrium (Horner et al., 1997).   

The genus Alexandrium consists of more that 30 different species worldwide 

(Steidinger et al., 1997).  In the genus Alexandrium, 3 species (A. catenella, A. tamarense 

and A. fundyense) are found off the North American coasts with A. catenella being found 

off the Pacific coast and in Monterey Bay (Scholin et al., 1995).  Alexandrium catenella 

(Whedon & Kofoid) Balech 1985, is a moderately sized phytoplankter ranging from 35 to 

45 µm in diameter and 30 -35 µm in length, and is a chain-forming, toxin producing 

species.  Blooms of Alexandrium may be associated with relaxation of seasonal marine 

upwellings in conjunction with shifts in wind patterns in late summer.  These shifts in 
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wind patterns force warmer offshore water, with associated populations of Alexandrium, 

onshore (Horner et al., 1997).  HABs that occur near the surface of the water can be 

influenced by wind waves and tangential water flow forming “stripes” of concentrated 

phytoplankton, called Langmuir cells (Evans and Taylor, 1980).  Because of Langmuir 

circulation, concentrations of HAB- forming species, may be sporadic on surface water 

affecting the direct monitoring of HABs.  

1.3. Monterey Bay and Elkhorn Slough 

Monterey Bay, off the coast of Central California, is best known for its unique the 

deep submarine canyon that is in close proximity to the shore.  From the Monterey 

Submarine Canyon deep, cold nutrient-rich water upwells to the surface under the 

influence of the California Current System (Collins et al., 2003).  Elkhorn Slough is an 

estuary which is connected to Monterey Bay and the Salinas River, and has a large tidal 

prism (water exchange) with Monterey Bay.  The mouth of Elkhorn Slough (termed the 

lower slough) interacts with Monterey Bay in a way more typical of California coastal 

marine conditions of cold, deeper waters.  In contrast to the lower slough, the inland 

region of Elkhorn Slough (termed the upper slough) is shallower and more turbid with 

warmer water temperatures.  These contrasting conditions in Elkhorn Slough exhibit a 

range of phytoplankton diversity in which the upper slough is biologically less diverse 

than the lower slough (Welschmeyer, 2007).  Because A. catenella is typically found in 

colder, nearshore waters (and not in warmer environments) the upper slough is not an 

ideal environment to support a population of A. catenella.  This dichotomy of 

environmental conditions within Elkhorn Slough with respect to water temperature, 
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turbidity, biological diversity and depth, present challenges to detecting A. catenella in 

seawater samples using flow cytometry. Alexandrium catenella is known to exist in 

Monterey Bay and the colder, more nutrient replete waters off-shore are ideal for A. 

catenella.  

1.4. Alexandrium catenella detection 

Current methods for the detection Alexandrium include monitoring seawater 

samples for Alexandrium catenella that has been fluorescently stained for enumeration by 

epifluorescent microscopy. Other methods of detection for A. catenella include 

monitoring seawater samples or animal tissue for the presence of proxy indicator toxins 

called saxitoxins. Alexandrium saxitoxins in shellfish extracts are detected by high 

performance liquid chromatography (HPLC) (Yu et al., 1998). Some other biochemical 

tests for detecting Alexandrium include, fast fluorometric assay (FFA) for saxitoxin 

determination (Gerdts et al. 2002), and a mouse bioassay (MBA) (AOAC 1999). HPLC 

can be used to detect of dinoflagellate-specific pigments such as peridinin (Caretto et al., 

2001).  A ship-board method, the Maritime in vitro Shellfish Test (MIST) AlertTM , can be 

used to determine the presence of saxitoxin (Jellet et al., 2002). Molecular based methods 

for detection of Alexandrium include an enzyme-linked immunosorbant assay (ELISA) 

and the polymerase chain reaction (PCR) (Penna and Magnani, 1999).  A novel method 

to detect Alexandrium in environmental samples uses DNA microarrays.  This method 

detects cDNA derived from total RNA from samples that hybridizes with Alexandrium 

specific oligonucleotides spotted onto a solid substrate (Gescher et al., 2008).  
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1.5. Flow cytometry 

Modern methods of detecting HAB forming species in marine samples employ 

short processing times and automation.  Flow cytometry is an automated cell enumeration 

method used extensively in the fields of medical technology, cell biology and 

immunology.  The instrument interrogates each cell as it flows through a laser beam.  The 

interaction between the laser and each cell is measured with photodiodes and photo-

detectors, and characterizes each cell within a complex mixture.  Flow cytometers were 

developed primarily for differential analysis of human white blood cells (WBC) using 

small sample volumes, typically 50 µL - 500 µL.  Since normal human blood contains on 

average 4,500 to 10,000 WBC’s µL-1, very little blood is needed for flow cytometric 

analysis.  Using flow cytometry for environmental marine samples with low cell densities 

requires concentrating cells within the sample.  Some species of phytoplankton have cell 

densities as low as a 5-10 cells per liter.  Detecting a few cells of a species of interest in 

an environmental marine sample containing high concentrations of other cells and 

suspended debris is challenging.  Since the flow cytometer is highly sensitive and has a 

small orifice (typically 100 µm), suspended debris and sediment must be removed prior 

to applying the sample to the instrument.  In this study we employed a two-step 

centrifugation strategy that enabled concentrating phytoplankton cells and separating 

them from debris and sediment in the sample prior to analyzing the sample on the flow 

cytometer.  

A flow cytometer measures fluorescence emission as well as physical cellular 

properties such as size and granularity (complexity) (Collier, 2000).  Size is measured by 
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diffraction of light scattered by the cell which is termed forward scatter (FSC). 

Granularity of a cell (measured by the refraction and reflection of light) is termed side 

scatter (SSC).  In a blood sample, the properties of forward scatter and side scatter can 

differentiate between granulocytes and lymphocyte subpopulations, but cannot 

differentiate lymphocytes such as T lymphocytes from B lymphocytes.  To identify and 

enumerate cell populations of similar size and morphology by flow cytometry, other 

cellular parameters such as intrinsic or induced fluorescence emission must be used.  

Fluorescence emission can be accomplished using specific antibodies, labeled with a 

fluorophore.  T lymphocytes and B lymphocytes are identical in size and granularity.  

Antibodies specific to each cell type can be labeled with different fluorescent chemicals 

(fluorophores) such as fluorescein isothiocyanate (FITC) and phycoerythrin (PE).  Using 

this technique T lymphocytes and B lymphocytes in the same blood sample can be 

distinctly enumerated with a flow cytometer (Calvelli et al., 1993).  

A flow cytometer uses an argon laser to excite fluorescently labeled cells.  The 

argon laser incorporated within many flow cytometers has a peak excitation wavelength 

of 488 nm.  This laser is used to excite a number of fluorophores that are conjugated to 

DNA molecules, antibodies, or lectins that can adhere to cellular surfaces (Anderson et 

al., 1999; Costas et al., 1994).  A typical flow cytometer, such as a Beckton and 

Dickenson TM FACScalibur flow cytometer, has three or four different fluorescent photo-

detectors, depending on the model, along with forward and side scatter detectors.  Most 

of the photo-detectors are photomultiplier tubes (PMTs) with the exception of the 

forward scatter detector which is a photo-diode.  PMTs convert incident photonic energy 



   

 9 

into electrical charge (photoelectric effect).  A photocathode, amplifies that electric 

charge, and converts the charge into a current pulse with the use of an anode (Hamamatsu 

K.K, 2006).  The analog signal produced by the PMT pulse current is converted into a 

digital signal with an A to D converter.  The digital signal is then processed and recorded 

by computer (BD Biosciences, 2000).  A PMT detects incident photons within a broad 

specified range of wavelengths, typically from 200 nm to 900 nm. For detection of 

discrete wavelengths via a PMT, filters are placed in front of each detector that limits the 

fluorescence emission permitted to interact with the detector.  

The Becton-Dickenson family of flow cytometers, the FACscanTM, FACSsortTM , 

and the FACScaliburTM all use at least three PMT’s for signal detection and are capable of 

analyzing forward scatter (FSC), side scatter (SSC) and fluorescence.  Each fluorescence 

detector within the flow cytometer is designed to respond to a specific wavelength band.  

Fluorescence detector-1 (FL-1) is sensitive to 530±30 nm, fluorescence detector #2 (FL-

2) is sensitive to 585±42 nm, and fluorescence detector-3 (FL-3) is sensitive to ≥670 nm.  

Light emitted from each cell is measured with respect to the parameters FSC, SSC, FL-1, 

FL-2 and FL-3 simultaneously, and is termed an event.  Noise in a flow cytometer can be 

caused by inert particles reflecting and refracting light.  This sample “noise” can be 

removed by setting a threshold value for one or more of the parameters allowing only 

light with values above a cut-off value to be recorded.  It is desirable to achieve a high 

signal to noise ratio to accurately identify and enumerate cells of interest.   

For a flow cytometer to identify and enumerate single cells within a complex 

sample, cells must be interrogated one at a time.  This is accomplished through 



   

 10 

hydrodynamic focusing in which a stream of unordered cells is constricted into a narrow 

stream of ordered, single cells for interrogation by the laser (Yang et al., 2007).  The 

samples are interrogated in a flow cell at a defined rate of 60 µL min-1.  This defined flow 

rate allows for quantitative analysis and calculation of a cell concentration in cells mL-1. 

Studies pertaining to species complexity of phytoplankton communities from 

environmental samples have been performed using flow cytometry.  Flow cytometry has 

been used to enumerate phytoplankton by measuring autofluorescence of naturally 

occurring pigments within the algal cells.  These algal pigments include alloxanthin and 

chlorophyll a, which are detected on a flow cytometers FL-2 and FL-3 PMT’s 

respectively (Welschmeyer, 2007).  Using auto-fluorescent properties, along with FSC 

and SSC parameters, enables the use of multiparametric logical gating to enumerate 

phytoplankton in moderate concentrations within the samples (Sinigalliano et al., 2009). 

Signal amplification of a target species can be achieved with the use of a DNA 

probe that is labeled with FITC and can be detected by the flow cytometers FL-1 

detector.  With the use of species-specific FITC labeled probe, it is possible to expand a 

multiparametric logical gate to include enhanced FL-1 signaling thereby increasing the 

signal to noise ratio.  Using a multiparametric logical gating scheme, an event must fall 

within each of the pre-defined parameters for it to be recorded as a positively detected 

event.  A logical gate used in sample analysis would then include auto-fluorescent 

signaling from chlorophyll a (FL-3), FITC labeled probe (FL-1) as well as forward 

scatter and side scatter.  Using these four parameters in a multiparametric logical gate 
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analysis, it may be possible to enumerate a rare phytoplankton species within a densely 

populated environmental sample with a flow cytometer (Sinigalliano et al., 2009). 

1.6. Sample Labeling 

To accurately identify Alexandrium cells in environmental samples, a species-

specific DNA probe was used on fixed cells (Sako et al., 2004).  DNA probes were 

hybridized to fixed samples at specific temperatures and conditions for optimal specific 

binding of the probe to the correct cell and minimize non-specific reactions.  Fixing the 

target cells prior to hybridization maintains their morphology.  The process of fixing the 

cells followed by probe hybridization is called fluorescent in situ hybridization (FISH).  

Cells subjected to DNA-directed FISH can be identified by their acquired fluorescence, 

size and morphology using both epifluorescent microscopy and flow cytometry (Adachi 

et al., 1996).  Epifluorescent microscopy is accurate and extremely time consuming, 

whereas flow cytometry is fast and amenable to automation.   

Because of health and economic concerns of HABs and their recent increase in 

frequency in nearshore waters, there is an important need for a quick, simple and 

automated method of detecting of HABs (Hallegraeff et al., 1995).  On the east coast of 

the United States, the Massachusetts Water Resources Authority has developed a 

contingency plan that describes a caution level for Alexandrium tamarense as  

100 cells L-1 for nearshore fisheries (Hornbook, 2002).  In recent years Monterey Bay has 

had several large HABs consisting of different dinoflagellate species, such as Akashiwo 

sanguinea and Cochlodinium spp. (Curtiss et al., 2008; Kudela et al., 2008).  Large 

concentrations of A. catenella cells in seawater samples, as well as saxitoxins in finfish 
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and shellfish tissue, have been detected in Monterey Bay (Jester et al., 2009).  With the 

presence of Alexandrium in Monterey Bay, there is a need for robust, quantitative and 

simple monitoring methods. Monitoring environmental samples using NA1-directed 

FISH and flow cytometry may be useful in rapidly evaluating a large number of 

environmental samples for A. catenella. 

In this study a DNA probe (NA1) is homologous to a small portion of the large 

ribosomal sub-unit of Alexandrium catenella/tamarense North American ribotype 

(Scholin et al., 1994) (hereafter referred to as A. catenella).  The probe was used to detect 

A. catenella in environmental samples taken from Elkhorn Slough and Monterey Bay. 

The NA1 probe is an oligonucleotide which is dual-labeled at the 5’ and the 3’ end with 

FITC. The probe was used for DNA-directed FISH of the samples which were analyzed 

by epifluorescence microscopy and flow cytometry to detect NA1-FITC labeled  

A. catenella.  In our samples, epifluorescent microscopy showed that the upper Elkhorn 

Slough was devoid of A. catenella, whereas flow cytometry detected a few “events”. 

However in samples from the lower slough, and analyzed by flow cytometry and 

epifluorescent microscopy, A. catenella was consistently detected in moderate 

concentrations.  The flow cytometry results obtained were highly correlated to observed 

epifluorescent microscopy results.  Samples were processed in a novel way to concentrate 

phytoplankton yet remove debris and sediment.  This method enabled us to analyze 

samples without fouling the flow cytometer and reduced false positive results due to non-

specific binding of the NA1 probe to debris. 
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CHAPTER II  

FLOW CYTOMETRIC DETECTION OF ALEXANDRIUM CATENELLA FROM 
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 14 

 

FLOW CYTOMETRIC DETECTION OF ALEXANDRIUM CATENELLA FROM 
ELKHORN SLOUGH AND MONTEREY BAY, CALIFORNIA. (USA). 

 
 

P.R Hawkins1, N.A. Welschmeyer 2, J.T. Boothby1*   

1Department of Biological Sciences, 
San Jose State University 

San Jose, CA 95192 
 

 
2 Moss Landing Marine Laboratories 

 8272 Moss Landing Road 
Moss Landing, CA 95039-9647 

 
 

 

* Corresponding author. Mailing address: San Jose State University, Department of 
Biological Sciences, One Washington Square, San Jose, CA 95192. 

   Phone: (408) 924-4850. Fax: (408) 924-4840. Email: jboothby@email.sjsu.edu. 
 

 

 

 

 

 

 

 

 

 

 



   

 15 

 

ABSTRACT 

Flow cytometry, originally designed for use in clinical research in human blood 

analysis and human cell biology, has since been adapted by various groups for fast 

analysis of specific target populations of bacteria and phytoplankton in environmental 

samples.  We used the ribosomal DNA (rDNA) sequence-based probe specific for 

Alexandrium North American ribotype (NA1), natural chlorophyll fluorescence, size and 

granularity in quantitative flow cytometry to enumerate Alexandruim catenella.  To 

concentrate the samples for analysis by flow cytometry a new preparative technique was 

developed and applied to the detection of A. catenella in seawater samples of moderate 

turbidity.  Environmental samples of 500 mL were collected semi-monthly from July 

2006 to July 2008 from eleven stations in Elkhorn Slough, and Monterey Bay, CA.  

Samples were concentrated to 1 mL using a density-barrier enrichment protocol, with the 

use of percoll as the density-barrier media.  The resulting sample, enriched for 

phytoplankton, was devoid of debris.  Whole cell fluorescence in situ hybridization 

(FISH) of the enriched samples was done using the NA1 probe and the universal control 

probe uniR, then analyzed by flow cytometry and epifluorescent microscopy for the 

presence of A. catenella.  Using multiparametric sequential logical gating in analyzing 

the flow cytometric results, A. catenella within the enriched samples could be detected to 

a resolution of 10 cells L-1.  A. catenella was consistently detected in low concentrations 

(40-50 cells L-1) in samples taken from entrance of Elkhorn Slough.  In samples taken 

from the shallower inland regions of Elkhorn Slough, no A. catenella were detected by 
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epifluorescent microscopy, while rare occurrences of a few events were detected by flow 

cytometry.  Flow cytometry, augmented with density–barrier sample enrichment and 

multiparametric logical gating, was shown to accurately enumerate A. catenella from a  

wide range of sample environments.  

1. Introduction  

Dense concentrations of nearshore toxic marine phytoplankton leading to 

formation of Harmful Algal Blooms (HABs) are reported to be increasing worldwide in 

coastal areas, bays and estuaries (Hallegraeff et al., 1995; Heisler et al., 2008).  HABs 

due to the dinoflagellate Alexandrium catenella can cause Paralytic Shellfish Poisoning 

(PSP) (Tillman et al., 2002).  Increased incidence of HABs is an economic and public 

health concern which affects humans that consume shellfish contaminated with 

Alexandrium (Shumway, 1990). 

Dinoflagellates of the genus Alexandrium occur on both the west and east coasts 

of the United States as well as temperate waters of Western Europe, Australia and the 

Japanese Islands (Scholin et al., 1995).  The genus Alexandrium consists of more than 20 

species that are classified by morphometric features, such as plate tabulation (Steidinger 

et al., 1997).  The Alexandrium North American species complex is a grouping of 

Alexandrium found in North America which consists of the species A. catenella and its 

ribotype relatives ( A. tamarense and A. fundyense).  Alexandrium catenella is 

exclusively distributed along the west coast and A. fundyense is found on the east coast, 

while A. tamarense is distributed on both the west and east coast of the United States 

(Scholin et al., 1995).  Alexandrium catenella/tamarense occurs in open nearshore high 
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salinity zones and are transported into bays and estuaries by tidal influences (Cloern and 

Dufford, 2005).  Most of the species within the Alexandrium genus produce a potent 

array of voltage-gated sodium ion-channel blocking neurotoxins such as saxitoxin (STX), 

neosaxitoxins (neoSTX) and gonyotoxins (GTX) (Kao et al., 1982).  These toxins are 

produced by Alexandrium and are sequestered in filter feeding bivalves that ingest them.  

Subsequent human ingestion of these bivalves can lead to PSP.  The symptoms of PSP in 

humans include numbness in the mouth and extremities, ataxia, dizziness, headache, 

respiratory distress, paralysis and death (Whittle and Gallacher, 2000). 

Current methods of detection of toxic Alexandrium include high performance 

liquid chromatography (HPLC) to detect the presence of the STX toxin in seawater (Yu, 

1998), HPLC to detect dinoflagellate-specific pigments such as peridinin in seawater 

samples (Zapata et al., 2000; Caretto et al., 2001), a fast fluorometric assay (FFA) for 

STX determination (Gerdts et al., 2002), mouse bioassay (MBA) (AOAC, 1999), and the 

Maritime In Vitro Shellfish test (MIST) AlertTM  to determine the presence of STX in 

real-time (Jellet et al., 2002).  Molecular methods for detecting of Alexandrium include 

polymerase chain reaction (PCR) and an enzyme-linked immunosorbant assay (ELISA) 

(Penna and Magnani 1999; Penna and Magnani 2000; Peperzak et al., 2000).  A remote in 

situ ELISA system for detecting harmful algal species termed the Environmental Sample 

Processor (ESP) has been used for automated detection of Alexandrium as well as other 

HAB species (Greenfield et al., 2008). 

Flow cytometry is a fast, quantitative method that can give insight into the 

ecology and presence of an individual algal species during HABs (Collier, 2000).  Flow 
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cytometry was developed for clinical laboratory analysis of human blood in order to 

enumerate and differentiate white blood cells, and was later adapted for analysis of algal 

cells under environmental conditions (Cunningham, 1986).  Flow cytometry characterizes 

and enumerates cells based upon size and granularity using laser diffraction and 

refraction (Collier, 2000).  In the fields of oceanography and environmental biology, flow 

cytometry has recently made a large impact as a versatile quantitative instrument.  Early 

work in flow cytometry on environmental samples was limited by the size of cells and 

autofluorescence spectra of naturally occurring algal pigments (Phinney and Cuccu, 

1989).  Cells of an individual species that has been tagged with a specific fluorescent 

probe can also be enumerated based on relative fluorescence.  

Complex populations of phytoplankton have been differentiated by flow 

cytometry by detecting multiple natural auto-fluorescent pigments contained within the 

phytoplankter (Sinigalliano, 2009).  Automated methods to enumerate phytoplankton 

include the use of solid-phase cytometry (SPC) using the ChemScanTM system 

(Chemunex, Irvy, France) (Lemarchand, 2001) and the FlowCAM system (Fluid Imaging 

Technologies) (Buskey and Hyatt, 2006).  Future refinements in flow cytometry 

applications in the marine environment that include specific probes may enhance our 

ability to characterize and enumerate individual species within a complex mixture in a 

rapid fashion to evaluate their changes over time.  To increase fluorescence intensity, 

DNA binding dyes such as SYTOX Green and SYBER Green have been used in flow 

cytometry (Marie et al., 1997; Veldhuis et al., 1997).  Flow cytometric cell sorting has 

augmented investigations in metabolic studies using 13C tracer uptake by phytoplankton 
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(Roel et al., 2004).  Trophic level interactions in plankton have been investigated with the 

use of flow cytometry (Pires et al., 2004).  Viruses and other parasites that internally 

infect microplankton have also been detected by flow cytometry (Brussaard et al., 1999). 

Specific molecular probes such as monoclonal antibodies specific to Alexandrium 

(Aguilera et al., 1996; Anderson et al., 1999), plant lectins which bind to Alexandium’s 

outer theca (Costas and Rodas, 1994; Rhodes et al., 1995), and nucleic acid sequences 

specific to Alexandrium rRNA have been employed using epifluorescent microscopy and 

flow cytometry.  Fluorescent in situ hybridization (FISH) (Adachi et al. 1996; Miller and 

Scholin, 1998, Vreiling et al., 1994) has the advantage of specifically staining fixed cells 

directly prior to visual detection by fluorescent microscopy or by flow cytometry.  

Fluorescein isothiocyanate (FITC), with its 495 nm absorption peak and 520 nm emission 

peak, allows for detection of the hybridized target cells by instruments that incorporate 

both an argon laser (peak excitation at 488 nm) and a detector sensitive to 530 nm ± 30 

nm (Allman et al., 1990). 

A major impediment to using flow cytometry for environmental monitoring is the 

highly variable amounts of suspended particles and sediment that may be present in the 

sample.  Turbidity in bays and estuaries caused by suspended particles, eutrophication 

from increased nutrient loading and mixing due to tidal prism, make direct detection of 

HAB forming species using flow cytometry problematic.  Flow cytometers, originally 

designed for use on human blood samples are easily fowled by turbid environmental 

samples with suspended debris and sediment.  Suspended debris includes seasonal 
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zooplankters such as copepods, invertebrate larvae, and larger multi-cellular colonial 

phytoplankton. 

Another issue in adapting flow cytometry for environmental assessment is that 

flow cytometers in clinical settings typically analyze small sample volumes (usually less 

than 200 µL.  Concentrating the sample prior to analysis by flow cytometry is important 

when monitoring minority populations during HABs or species in non-bloom conditions 

where large sample volumes may be required.  A recent study has evaluated the use of 

filtration and centrifugation of natural seawater samples prior to hybridization to reduce 

debris and concentrate microorganisms in the sample (Hosoi-Tanabe and Sako, 2005). 

Inevitably these methods incur cell losses leading to underestimates of ground-truth 

environmental cell concentrations. To decrease the loss of phytoplankton in samples 

collected, we developed an adaptation of a density-enrichment method originally 

designed to retrieve dinoflagellate cysts from sediment (Swinghamer, 1991).  We 

employed this method to enrich surface seawater samples for phytoplankton while 

removing debris.  The goal of this study was to evaluate the distribution and seasonal 

variation of A. catenella in estuarine and inshore marine environments in Elkhorn Slough 

and Monterey Bay, CA. using rDNA probe directed FISH and flow cytometry.   

2. Materials and methods  

2.1. Dinoflagellate cell culture isolation 

Dinoflagellate cells used in this study, were isolated from Elkhorn Slough, CA 

(Alexandrium catenella, Prorocentrum micans), and South San Francisco Bay (Heterocapsa 

triquetra and Karenia mikimotoi), and brought to unialgal culture.  Individual cells for each 
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species were identified microscopically in seawater samples and captured with a P-20 

micropette tip.  A single cell was then transferred to a six-well microtiter plate with each well 

containing 3 mL of filtered seawater and incubated for one week at 15oC, under 12:12 L/D 

cool white fluorescent lights with a photon flux density of 70 µmol m-2 s-1.  After this initial 

incubation period, 3 mL of f/2 media at pH 8.0 was added to wells containing viable, motile 

cells. If cells were found to be viable, an additional 3 mL of f/2 media was added and 

allowed to incubate for an additional week.  After two weeks, 2.0 mL viable cell cultures 

were transferred to 15 mL polypropylene FalconTM  tubes each containing 5 mL of f/2 media 

at pH 8.0 and incubated further.  One week later an additional 5 mL of f/2 media was added 

to actively replicating cultures and the cultures, were incubated to confluency.  Confluent 

cultures were split 1:40 in f/2 medium, and maintained in continuous log phase growth.  

2.2. Sampling sites 

Seven samples from Monterey Bay were taken off the R/V Point Sur outside the 

entrance of Elkhorn Slough along the northern edge of the Monterey canyon on 14 March 

2007 (Fig. 1A). 
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Fig 1A.  Location of seven surface marine sample sites in Monterey Bay selected 
for analysis by NA1-directed FISH flow cytometry and epifluorescent microscopy. 
 
Nearshore marine and estuarine samples were collected from one station in Monterey 

Bay and ten stations from Elkhorn Slough, in Monterey County, California a tidal salt 

marsh connected to Monterey Bay and the Salinas River.  Surface samples were taken 

twice a month over a two year period.  All samples were prepared as described below and 

analyzed by flow cytometry and epifluorescent microscopy (Fig. 5). 
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Fig. 1B.  Location of eleven sample sites (one Monterey Bay and ten Elkhorn   
Slough) selected for analysis by NA1–directed FISH flow cytometry and    
epifluorescence microscopy. 
 
2.3. Sample preparation 

Near surface samples from Elkhorn Slough and Monterey Bay were collected in 1 

liter dark bottles.  Samples were taken semimonthly from July 2006 to July 2008 at high 

tide +/- 1 hr, stored at 4oC, and processed within a week.  A 500 mL aliquot of each 

sample was initially filtered through a 70 µm nylon cell strainer (Becton Dickenson, 

Franklin Lakes, NJ).  A pre-filtered 500 mL aliquot of sample was centrifuged at 300 x g 

at 16oC for 15 min. and resuspended in 5.0 mL of sample in filtered seawater.  The 

concentrated seawater sample (representing a 500 mL sample volume) was then 
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overlayed dropwise  onto 5.0 mL of PercollTM (density 1.130 g/mL) (GE Healthcare, 

Piscataway, NJ) (Fig. 2).  The tubes were then centrifuged at 280 x g at 16oC for 30 

minutes and decelerated with no brake as not to disturb the PercollTM -sample interface.  

Located in the bottom of this 6 ml fraction, at the interface between the denser percoll 

layer and the seawater layer, is a discrete band of phytoplankton dominated by 

dinoflagellates, cryptophytes and smaller diatoms, referred to as the “phytoplankton 

band”.  Following this rate-zonal centrifugation, the top 6 mL including of the interface 

was collected and transferred to a new 15 mL falcon tube.  All other debris along with 

larger, more dense diatoms are concentrated at the bottom of the tube below the percoll 

layer (Fig. 2).  The phytoplankton band and the upper layer were transferred to a new 15 

mL falcon tube. 
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Fig. 2.  Preparations of seawater samples of a resuspended pellet from 250 mL for   
FISH analysis by density-barrier enrichment before (left) and after (right)   
centrifugation. 

Six milliliters of 0.2 µm filtered seawater was then added to the concentrated sample to 

dilute out any residual PercollTM and the tube was centrifuged at 280 x g for 15 min.  The 

phytoplankton pellet was then resuspended in 1.0 mL of filtered seawater and transferred 

to a 1.6 mL microfuge tube for FISH hybridization.  The sample was then split equally 

into two 1.6 mL microfuge tubes (500 µL each).  Each one these duplicate samples were 

then hybridized using the centrifuge based FISH protocol for flow cytometrc analysis and 

for epifluorescence microscopy (Sako et al., 2004).  One tube was hybridized to the NA1 
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Alexandrium genus specific DNA probe and the other tube hybridized to the uniR 

universal negative control DNA probe (Baker and Cowan, 2004). 

2.4. Sample hybridization 

The hybridization temperature was adjusted from 40oC to 370C, for the 

centrifuge-based FISH protocol using the NA1 probe and the hybridization wash step 

temperatures were adjusted from 50oC to 47oC.  Completed hybridizations of 750 µL in 

5x SSC (83 mM NaCl, 83 mM Sodium Citrate) were split into two aliquots for a side-by-

side comparisons of flow cytometry (375 uL) and epifluorescent microscopy (375 uL). 

To monitor hybridization efficiency, cultured Alexandrium, was hybridized to the 

uniR probe (universal negative control), uniC probe (universal positive control) and a 

hybridization containing no probe.  To test for probe cross-reactivity during 

hybridization, three marine armored dinoflagellates, Heterocapsa triquetra, 

Prorocentrum micans and Karenia mikimotoi were used in addition to the cultured 

Alexandrium.  DNA probes were synthesized with 6-FAM (FITC) fluorochromes on both 

the 5’ and the 3’ ends of the synthesized DNA oligonucleotide and PAGE-purified 

(Oligos Etc. Wilsonville, OR).  Three probes that were used, NA1 probe specific for 

Alexandrium North American ribotype (FITC 5’-AGT GCA ACA CTC CCA CCA-3’ 

FITC) , uniC positive universal control for conserved 18S ribosome (FITC 5’- GWA 

TTA CCG CGG CKG CTG-3’ FITC) and the negative universal control uniR, (FITC 5’-

CAG CMG CCG CGG UAA UWC-3’ FITC) the reverse complement to the uniC probe 

(Baker and Cowan, 2004; Suziki and Giovannoni,1996).  Using the centrifuge-based 

FISH protocol described by Sako et al. 2004, 0.5 µM of each probe was used in each 
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hybridization in this study.  Along side of these probe hybridizations a no probe control 

was processed in order to scale relative fluorescence.  For sample controls 2500 cultured 

Alexandrium cells in log phase growth were hybridized to the probes NA1, uniR and 

uniC. Data from paired samples prepared for flow cytometry and epifluorescent 

microscopy as described above were compared to evaluate efficacy of flow cytometric 

detection of Alexandrium in turbid bay and estuarine waters. 

2.5. Flow cytometry data acquisition and analysis 

Flow cytometry on environmental samples was performed on a FACScanTM   flow 

cytometer (Becton-Dickenson, San Jose, CA.) using distilled water as sheath fluid.  Flow 

cytometer data acquisition parameters used for sample enumeration were as follows: 

Forward scatter (FSC) photodiode voltage set to E-1, Side Scatter (SSC) photomultiplier 

tube (PMT) voltage set to a value of 220, FL-1 (FITC Channel) photomultiplier voltage 

set to 451, FL-3 (Chlorophyll a channel) photomultiplier tube voltage set to 308. 

Threshold was assigned to FL-3 at a value of 130.  Flow cell rate was set on high (60 µL 

min-1) and samples were collected for 5.0 min.  Data analysis was done with CellQuestTM, 

with multiparameter logical gating of defined regions using laboratory cultured A. 

catenella.  Region #1 (FSC vs. SSC) defines the physical characteristic of Alexandrium 

with respect to size and granularity (Fig. 3A).  Region #2 (FL1 vs. SSC) defines the 

population of Alexandrium labeled with NA1 FITC labeled probe (Fig. 3B).  Region #3 

(FL3 vs. SSC) defines that region of Alexandrium that exhibits chlorophyll a 

fluorescence (Fig.3C).  Gate #1 was a logical gate of R1 and R2 and R3, and was 
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represented on a scatter plot of FL1 vs. FL3. Events arising from environmental samples 

that fell within gate #1 were designated as Alexandrium cells (Fig. 3 Box D). 
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Fig. 3.  Flow cytometry dot plots of a sample prepared from a pure laboratory culture 
of Alexandrium subjected to NA1-directed FISH and sequential logical gating. 
  
Box A: Size and granularity, Box B: Alexandrium NA1 probe hybridized, Box C:   
Alexandrium intrinsic chlorophyll a fluorescence, Box D: Gated Alexandrium. 
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Alexandrium concentrations in environmental samples are calculated from the equation 

adapted from (Paul, 2001) where N equals the number of Alexandrium cells existing in 

the environment in cells L-1, C is the number of events acquired, T is the duration of 

analysis in minutes, and R is sample delivery rate (µl min-1) (Paul, 2001). 

 

                         Eq. 1      N = [C x (Vc/T R)]/CF where CF = Va/Ve 

 

Ve is the environmental cell sample volume, Va is the volume of unconcentrated 

sample analyzed and Vc is the volume of concentrated sample applied to the cytometer.  

The CF is the coefficient of the fractional volume of sample used for flow cytometry, 

where total environmental sample volume is 1000 mL (Ve) (used in cells L-1calculation), 

and the analyzed environmental sample volume (Va) represents the unconcentrated  

volume (125 mL) interrogated by the flow cytometer ; therefore CF = 125 mL/ 1000 mL 

= 0.125. 

In this procedure (using the NA1 or the uniR probe) 500 mL of an environmental 

sample was processed by density-barrier centrifugation and concentrated to 1.0 mL.  This 

concentrated sample was then split equally into two 500 µL samples in which one was 

NA1–directed FISH treated and the other uniR directed FISH treated.  Following 

hybridization both sampled were resuspended in 750 µL and split into two 375 µL 

aliquots to be analyzed.  To one aliquot, 300 µL was analyzed by flow cytometry and to 

the other aliquot 300 µL of cells were layered on to a polycarbonate filter and analyzed 

by epifluorescent microscopy. Using these calculations, one event (C in the equation 
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above) reported by the flow cytometer is equivalent to 10 cells L-1 in environmental 

concentration. 

3. Results  
 

In preparation for flow cytometry and epifluorescent microscopy, starting samples 

of 500 mL seawater containing zooplankton, phytoplankton, suspended debris were 

concentrated to 5 mL then over-layed on top of percoll for density barrier enrichment in 

which phytoplankton were segregated into a distinct band (Fig. 2).  The resulting 

phytoplankton bands included dinoflagellates (naked and armored) as well as ciliates, 

chlorophytes, cryptophytes and some smaller bacillariophytes (data not shown) and a 

debris pellet consisting of particulate matter, sediment and most large bacillariophytes.  

Preliminary tests using pure Alexandrium catenella cultures, found that 94% of A. 

catenella was recovered in the phytoplankton band (data not shown).  

In NA1-directed FISH samples from Elkhorn Slough and Monterey Bay, the 

probe showed some cross-reactivity with Akashiwo sanguinea during a large HAB 

formation of A. sanguinea in Monterey Bay during November 2007 (Fig.4A).  
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Fig. 4A.  Single Alexandrium cell showing increased fluorescence during 17 
November 2007 Akashiwo sanguenia bloom in Elkhorn Slough after NA1-directed 
FISH. 
 
This cross-reactivity of the NA1 probe with A. sanguinea was observed at the 

hybridization temperature of 37oC. During the density-barrier centrifugation process in 

enriching the samples and the FISH centrifugation protocol, naked dinoflagellates such as 

A. sanguinea were shown to remain intact.  Alexandrium catenella, which is smaller and 

more spherical in shape than A. sanguinea, has symmetrical epitheca and hypotheca 

which remain intact during density-barrier enrichment centrifugation, allowing for 

identification of A. catenella by staining and morphological characteristics by 

epifluorescent microscopy. 
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Pure A. catenella laboratory cultures, which had been subjected to NA1-directed 

FISH and analyzed by flow cytometry, were used as reference controls for analyzed 

environmental samples.  Multiparameter, logical gating with respect to granularity and 

size (SSC vs. FSC), granularity and NA1 fluorescence (SSC vs. FL-1), granularity and 

chlorophyll a auto-fluorescence (SSC vs. FL-3) was used to define an A. catenella 

specific region in complex environmental samples.  These control laboratory culture-

defined regions detect A. catenella in complex mixtures of phytoplankton (Fig. 4B). 

Our analysis of seawater samples taken from the mouth Elkhorn Slough during 

the November 2008 Akashiwo sanguinea algal bloom in Monterey Bay, (Jessup et al., 

2009) revealed a minority population of A. catenella.  These samples were subjected to 

NA1-directed FISH and analyzed by epifluorescence microscopy and flow cytometry. 

Multiparametric logical gating detected the presence of the minority population of A. 

catenella cells within this algal bloom. Within this A. sanguineum algal bloom, in our 

analysis, the minority population of A. catenella was at a concentration of 40 cells L-1 

(Fig 4B, box E).  These data were confirmed with epifluorescent microscopic 

enumeration of the same sample (Fig. 4A). 
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Fig. 4B.  Flow cytometry dot plots of a field sample from station #1 subjected to 
NA1-directed FISH and sequential logical gating. (see Fig. 4A. for epifluorescence 
microscopy of sample). 
 

Seven near-shore surface samples from Monterey Bay were analyzed using NA1-

directed FISH followed by flow cytometry and epifluorescent microscopy.  In a 
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comparison of flow cytometry and the epifluorescent microscopy results, taken from 

Monterey Bay, all seven samples had good agreement (r2 correlation of 0.8924). For 

stations 107-109, the samples from the most offshore sites had lower concentrations (0 -

10 cells L-1) of A. catenella than the nearshore samples (30- 50 cells L-1).  

(Fig.1A and 5).  
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Fig. 5.  Comparison of NA1-directed FISH flow cytometry and epifluorescent 
microscopy results from surface samples collected at seven sites in Monterey Bay. 
      
The highest concentration of A. catenella was found in samples from the sites near a 

sewage out-flow pipe associated with the Watsonville treatment plant and effluent from 

the Pajaro River (samples 110 and 111).  In these Monterey Bay samples the maximum 

concentration observed was 50 cells L-1 as measured by flow cytometry and 60 cells L-1 

as measured by epifluorescent microscopy.  To characterize how deeply an A .catenella  

population could establish in an estuary, eleven sample sites (one Monterey Bay and ten 
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from Elkhorn Slough) were selected for analysis over a two year period by NA1-directed 

FISH flow cytometry and epifluorescent microscopy.  Comparison of the NA1-directed 

FISH flow cytometry and epifluorescent microscopy results from samples collected from 

these 11 sites showed that the highest concentrations of A. catenella occurred at station 1  

(180 cells L-1, Fig. 6B) which is one nautical mile from the entrance to Elkhorn Slough 

(Fig.1B).  
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Fig.6A. Comparison of NA1-directed FISH flow cytometry and epifluorescence 
microscopy results from samples collected at one station in Monterey Bay and ten 
stations in Elkhorn Slough; FC = Flow cytometry, EF = Epifluorescent Microscopy. 
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Fig. 6B.  Correlation of all 253 NA1-directed FISH flow cytometry and 
epifluorescence microscopy data from Monterey Bay and Elkhorn Slough samples. 
(P (≥3 events) = 0.868). 
 

The P value (Fig. 6B) was calculated from those samples containing equal to or 

more than 3 events of detected Alexandrium as observed by flow cytometry and 

epifluorescent microscopy.  The correlation value r2 for these data is 0.8243 and was 

obtained by comparing epifluorescent microscopy results vs. flow cytometry results of all 

samples from Elkhorn slough and Monterey Bay.  In this graph, the 31 data points are 

representative of all 253 samples where many of the data-points are redundant observed 

values of multiple observations.  In the flow cytometry and the epifluorescent microscopy 

results, because of the degree of concentrating the sample with the density barrier 

enrichment protocol, each cell count on the flow cytometer is equal to a calculated 

environmental concentration of 10 cells L-1. 

Alexandrium catenella concentrations were lowest in the samples that were taken 

more inland on Elkhorn Slough as compared to the samples nearest to Monterey Bay. 

Concentrations of A. catenella were highest at the lower Elkhorn Slough stations with 



   

 38 

deeper water (stations 1 to 3) closest to Monterey Bay as compared to the more inland, 

shallower upper Elkhorn Slough stations (stations 9 to 11) having no occurrences of A. 

catenella as observed by epifluorescent microscopy and few occurrences as observed by 

flow cytometry. 

In this study, three Elkhorn Slough stations (stations 3, 7 and 10) that were 

sampled have automated sensor moorings that record environmental factors 

(www.mbari.org/lobo/lobovis.htm).  Relative temperature, salinity, nitrate, and 

chlorophyll concentrations were extracted from these sensor data for each sample date.  

The environmental factor data from these sample stations; station 3 (Fig 7A), station 7 

(Fig. 7B) and station 10 (Fig. 7C) was collated with A. catenella concentration results 

determined by flow cytometry and epifluorescent microscopy.  These data show that 

temperature varied with season in a similar pattern at all three stations with the highest 

temperature occurring in the summer and the lowest temperatures occurring in the fall 

and the winter.  Highest temperatures were observed at station 10 in the upper slough 

compared to the lower slough and Monterey Bay.  Similar salinity values were observed 

at all three stations with some seasonal variation.  The most seasonal and inter-sample 

variability in salinity values occurred at station 10.  This station also had the highest 

average salinity values of all the stations in the summer months. 
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Fig. 7A. 
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Fig. 7B. 
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Fig. 7C. 
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Fig. 7. Relative temperature, salinity, nitrate, chlorophyll a and Alexandrium  
concentrations in Winter, Spring, Summer and Fall at three different sampling sites 
in Elkhorn Slough. Temperature , Salinity, Nitrate and chlorophyll concentrations 
were extracted from MBARI automated buoy sensors  
(data : www.mbari.org/lobo/lobovis.htm). 
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Nitrate concentrations were highly variable and demonstrated a seasonal pattern, 

with the levels highest in the winter months.  The chlorophyll concentrations were 

highest in the summer at all three stations.  Chlorophyll concentrations were remarkably 

higher and more variable at stations 3 and 10 during the summer.  In general chlorophyll 

concentrations were higher in the upper slough than in the lower slough.  No A. catenella 

was observed using either flow cytometry or epifluorescent microscopy at any time of the 

year in the upper slough station #10.  In the lower portion of Elkhorn Slough (station 3) 

the highest concentrations of A. catenella were observed in the spring and the lowest 

concentrations were observed in the winter months. 

4. Discussion  
 

The goal of this study was to determine concentrations of Alexandrium catenella 

in a variety of marine and estuarine environments during normal, seasonal and HAB 

conditions using flow cytometry.  The use of automated instrumentation provides 

researchers with the opportunities to study individual species concentrations during HAB 

and non-HAB conditions.  Algal blooms, being generally dominated by one species of 

alga, may be composed of toxic as well as non-toxic nuisance species (Gescher et al., 

2008).  Algal demographics during bloom conditions can change due to eutrophication 

and algal grazing (Smayda, 2008).  It is important to monitor populations of toxin-

producing species within an algal bloom to learn more about the conditions leading to 

their ascendance causing the formation of HABs.  

Within an algal bloom, toxin producing or other harmful phytoplankton may 

cause poisoning or detrimental effects in marine mammals, fish populations and shellfish 
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harvested for human consumption.  The complexity of nearshore phytoplankton 

dynamics due to mixing and complex current systems has made enumeration of a single 

phytoplankton species over a wide area difficult.  Horizontal as well as vertical 

concentrations of a specific algal species may vary greatly.  These variations in 

phytoplankton concentration may be due to physical conditions such as localized onshore 

wind conditions, time of day, sunlight availability, temperature and nutrient upwelling. 

Biological responses, such a phototaxis and chemotaxis, affect vertical and horizontal 

migration of phytoplankton (MacIntyre et al., 1997).  These physical and biological 

characteristics tend to cause phytoplankton to form localized patches making any 

sampling regime complex.  The distribution of nearshore phytoplankton populations may 

also change due to anthropogenic influences such as nutrient-laden agricultural run-off 

nearby watersheds (Los Huertos et al., 2006).  In this study we found elevated 

concentrations of A. catenella in nearshore waters proximate the Watsonville sewage 

outflow and effluent from the Pajaro River, which drains water from a major agricultural 

community.  Both of these nutrient filled water sources, as well as Elkhorn Slough, drain 

into Monterey Bay and may influence local nearshore phytoplankton concentrations (Fig. 

1A and Fig. 5). 

To study phytoplankton population dynamics with good resolution, a well 

designed sampling scheme and high numbers of samples are required.  Single species 

enumeration by microscopy is time consuming and labor intensive.  Automated 

monitoring systems for HAB species are under development with the goal of increasing 

sample throughput and increasing analytical capacity.  For an automated system to be 
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effective in evaluating phytoplankton in environmental samples it must be sensitive, 

quantitative, specific for an individual species, robust and fast.  Ideally, an automated 

system should identify and enumerate multiple species simultaneously in a single tube. 

Systems such as the environmental sample processor (ESP) developed by Monterey Bay 

Aquarium Research Institute (MBARI), currently deployed in Monterey Bay for the 

remote monitoring of HAB species exemplifies this approach (Greenfield et al., 2008). 

Use of DNA microarrays utilizing multiple specific, fluorescently labeled DNA probes to 

detect multiple species via PCR products also has great potential (Gescher et al., 2008). 

Other algal monitoring systems are based on chemical detection of saxitoxins, but 

do not quantify the number of toxin–producing cells within a sample.  Receptor-binding 

assays on seawater or shellfish samples can quantify saxitoxin content measured in ug 

STXeq 100 g-1 for extracted tissues, and ng STXeq L-1 for seawater samples (Jester et al., 

2009).   Paralytic Shellfish Poisoning (PSP) toxin composition in the genus Alexandrium 

differs between species and depends on growth conditions (Carretto et al., 2001; Kim et 

al., 1993).  Consequently, methods that detect saxitoxin in seawater samples, which are 

used as a proxy for cell concentration, seem to correlate well with quantitative cell counts 

of Alexandrium sp. from offshore samples.  However, in nearshore samples the 

correlation between toxin levels and cell counts is highly variable (Jester et al., 2009). 

The detection of PSP toxins, either by HPLC, or receptor-binding assays, infers the 

presence of a substantial population of A. catenella producing high levels of toxins.  With 

such sample evaluation methods, the detection of A. catenella below the limits of toxin 

detection, might go undetected and may form a future HAB. 
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In our observations, many of the samples are indicative of low concentrations of 

Alexandrium of less than 50 cells L-1.  In previously published data from samples taken at 

the Santa Cruz Warf and Monterey Bay, Alexandrium concentrations from 2003 to 2005 

rarely reached concentrations above 1000 cells L-1 (Jester et al., 2009).  Determining the 

concentration of Alexandrium cells within an environmental sample, even in low 

concentrations (< 100 cells L-1) may be important in evaluating the potential for A. 

catenella induced HABs.  Specific probe-directed FISH, in conjunction with methods 

that characterize individual cells such as epifluorescent microscopy and flow cytometry, 

may provide for tools for assaying individual phytoplankton species population dynamics 

over time. 

Analysis using epifluorescence microscopy on probe–directed FISH samples for 

phytoplankton enumeration is accurate and sensitive.  Epifluorescence microscopy of 

seawater samples is used to quantify cells of individual species, but is time consuming 

labor intensive and subjective.  If a large number of samples are to be enumerated, 

analysis by epifluorescent microscopy becomes impractical.  Flow cytometry been used 

in laboratories as well as aboard research vessels for real-time enumeration of 

phytoplankton populations (Li, 1989).  Flow cytometry quantifies cells and has potential 

to be automated, fast and accurate.  With the use of multiple fluorochromes conjugated to 

different species specific DNA probes, it may be possible to investigate trophic 

interactions as well as HAB population dynamics in environmental samples within a 

single analysis. 
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Optimizing Alexandrium-specific FISH flow cytometry for this study presented 

two predominant challenges: probe specificity and sample preparation.  Removal of 

debris was critical in preparing samples of moderate turbidity for probe-directed FISH 

and flow cytometry.  This density-barrier sample enrichment step avoided fouling the 

flow cytometer and also increased the signal to noise ratio between the NA1 hybridized 

A. catenella and other phytoplankton.  Cell losses of 6% occurred during the density 

barrier enrichment technique (data not shown) resulting in an underestimation the 

ground-truth density of A. catenella within the samples analyzed (Hawkins, 2010).  Many 

different dinoflagellate species were observed by light microscopy prior to analysis.  

Since the NA1 probe demonstrated cross-reactivity with several dinoflagellates including 

Akashiwo sanguinea, and Prorocentrum micans (data not shown), non-specific probe 

binding using the universal control probe uniR was assessed (Hawkins, 2010).  Our flow 

cytometry analysis protocol used a dot-plot format to define a region using cultured 

Alexandrium as a control for each parameter making the enumeration of Alexandrium in 

environmental samples of high biodiversity possible (Fig.3).   

No A. catenella were observed in samples taken from upper Elkhorn Slough when 

analyzed by epifluorescence microscopy.  The few samples that showed positive events 

in samples from upper Elkhorn Slough by flow cytometry may represent actual 

enumerated A. catenella or maybe due to NA1 cross reactivity probe with other 

phytoplankters of similar size, shape and chlorophyll a content.  Losses in sensitivity may 

occur as an artifact of splitting samples for epifluorescent microscopic and flow 

cytometric enumeration where the environmental concentration of A. catenella is low 
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(<20 cells L-1).  Alexandrium catenella was routinely detected in greater numbers in 

samples taken from the lower Elkhorn Slough stations by both flow cytometry and 

epifluorescent microscopy.  Multiparametric logical gating during analysis, however, 

enabled us to accurately detect low populations of A. catenella in these samples using 

flow cytometry. 

Flow cytometric specificity may be further increased by using newer species 

specific probes currently used in DNA microarray analysis (Gescher et al., 2008).  With 

the advancement of techniques used in molecular biology and the growing size of DNA 

sequence database repositories with respect to ribosomal sequences of phytoplankton, 

fluorescently labeled DNA probes can be designed for many species for enumeration or 

trophic-level investigations. 

The occurrence of A. catenella in Monterey Bay is well documented (Jester et al. 

2009) and monitored monthly by the California biotoxin monitoring program (California 

Department of Health).  Alexandrium catenella also occurs along the entire west coast of 

the United States including Alaska (Trainer, 2002), as well as the Japanese Archipelago 

(Scholin et al., 1994).  In this study we found A. catenella in Monterey Bay and Lower 

Elkhorn Slough using flow cytometry and epifluorescent microscopy. 

Elkhorn Slough has been studied with respect to phytoplankton population 

dynamics and trophic interactions (Welschmeyer et al., 2004). In our study variations in 

A. catenella concentrations in Elkhorn Slough changed with season, temperature and 

nitrogen availability.  Samples taken from the surface at one meter and two meters 

simultaneously at the entrance to Elkhorn Slough demonstrated that A. catenella sub-
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surface concentrations often exceeded surface concentrations (data not shown) (Hawkins, 

2010). 

Our flow cytometry results for A. catenella compared well with epifluorescent 

microscopy.  Populations of A. catenella were absent in true estuarine environments 

existing in upper Elkhorn Slough, and are cosmopolitan at low concentrations in 

nearshore environments in Monterey Bay and lower Elkhorn Slough.  The lower regions 

of Elkhorn Slough (stations 1-5) are nutrient saturated and readily mix with Monterey 

Bay.  The upper regions of Elkhorn Slough (stations 8-11) are dominated by cryptophytes 

and subject to bacterial denitrification that decreases the amount of available nitrate 

(Caffery et al,. 2003; Francis et al., 2005).  The upper regions exhibit a low diversity of 

phytoplankton speciation (Welschmeyer, 2007).  These regions of Elkhorn Slough are 

also subject to agricultural run-off from the Salinas River and nearby agricultural 

operations that increases the Nitrogen/Phosphorus ratio well above the Redfield N/P ratio 

of 16:1 thus increasing the possibility of creating algal bloom conditions (Welschmeyer, 

2007). 

Samples of moderate turbidity, as defined by a Secchi depth of less than 1 meter, 

could be analyzed by flow cytometry when coupled with density-gradient centrifugation. 

Utilizing multiparametric logical gating in a flow cytometry protocol is critical in 

accurately detecting and enumerating cells of multiple HAB forming species within the 

same sample.  With the increase of red-tide and HAB occurrences on a global scale, the 

importance of more advanced automated monitoring systems for HAB forming species is 

increasing.  Combining the tools of molecular biology and immunology, with other 
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chemical and spectroscopic methods will increase the ability to characterize HAB species 

samples in inshore estuarine environments with high resolution. 

In this two-year study the concentrations of A. catenella followed a seasonal 

pattern.  In our study A. catenella was observed year round in the lower portions of 

Elkhorn Slough (Stations 1 to 6), with the highest concentrations of A. catenella 

occurring in the spring.  In samples taken from the upper slough (Stations 7-11) A. 

catenella, occurred only in the fall months, and in far less concentrations than the lower 

slough.  In the lower slough, tidal forcing causes a daily replenishment of water from 

Monterey Bay, while the Upper Slough water circulation is for the most part independent 

(Breaker et al., 2008).  Since Elkhorn Slough is an ebb-dominated estuary, this supports 

the notion that A. catenella should not be found in the shallower portions of the upper 

slough. 

This study represents the first long-term characterization of A. catenella along the 

entire length Elkhorn Slough, a seasonal estuary. The tracking of an individual HAB 

species, with the use of specific probes, is necessary in nearshore environments 

surrounded by fertile agricultural watersheds which could be subject to eutrophication 

and possible algal blooms from Alexandrium seed populations.  Nutrient run-off into 

Elkhorn Slough is influenced by two highly productive agricultural watersheds, the 

Pajaro watershed and the Elkhorn Slough watershed, in which the latter passes through 

Elkhorn Slough (Los Huertos et al., 2006).  These watersheds have been compromised by 

high level of both nitrogen (Nitrate-N) and soluble reactive phosphorus (SRPs) due to 

urban and agricultural usage (Los Huertos et al., 2006).  The stimulation of an algal 
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bloom may not be related to the measured concentration of a single nutrient, but rather a 

ratio of the concentrations between two chemicals, such as nitrogen and phosphorus 

(Anderson et al., 2008).  Our survey of A. catenella in Elkhorn Slough over a two year 

period, found the year round presence of A. catenella in low concentrations in the lower 

slough and the absence of A. catenella in the upper slough. We also discovered that 

surface sampling alone may not accurately reflect A. catenella abundance and distribution 

in low environmental concentrations.  The detection of a HAB species, during non-bloom 

conditions is important in areas of high nutrient loading due to agricultural and urban 

activities.  The presence of a HAB forming species in such areas, and in low 

concentrations, has the potential of forming an algal bloom from seed populations either 

from resting cysts in the sediment or from vegetative cells. With this potential, along with 

increasing anthropogenic eutrophism in nearshore estuaries and tidal embayments, the 

need for extensive environmental monitoring for HAB forming species will become 

critical. 
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Conclusions 

Flow cytometers have become important instruments in biological oceanography 

for the real time assessment of environmental samples both in laboratories and on 

research vessels (Collier, 2000; Li, 1989).  This study showed that a flow cytometer, 

designed to be used on clinical samples, was applied successfully for the enumeration of 

Alexandrium catenella in marine and estuarine samples.  Flow cytometry detected A. 

catenella when concentrations were low during non-bloom conditions.  Monitoring 

systems for HABs which use probe-directed FISH prior to enumeration utilizing 

epifluorescent microscopy is labor intensive and time consuming.  Flow cytometry, being 

automated and fast, can efficiently analyze a large number of samples.  Our flow 

cytometric analysis results of A. catenella concentration from Elkhorn Slough and 

Monterey Bay correlate well with epifluorescent microscopy.  This indicates that flow 

cytometry using DNA-directed FISH may be the method of choice for analyzing 

individual species populations during HABs.  Additionally, surface sampling, without 

attention to vertical depth may be inadequate for reliable detection of HABs forming 

species. 

An important aspect of this work is the use of a novel method for enriching and 

concentrating phytoplankton in marine samples which effectively decreases both 

background noise and sample volume.  This method increases the concentration of 

Alexandrium catenella within the final sample to a volume appropriate for flow 

cytometry.  A second important aspect that enabled us to detect A. catenella within a 

complex phytoplankton population was the use of multiparametric logical gating.  These 
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two contributions (sample enrichment/concentration and logical gating) have enabled us 

to overcome the major obstacles to using flow cytometry for HAB monitoring.  Sample 

loss during sample preparation remains a valid concern for HAB monitoring using this 

method. Sample loss may lead to underestimating the true concentration A. catenella in 

marine samples. 

Methods other than epifluorescent microscopy such as high performance liquid 

chromatography (HPLC) could have been used for comparison. Although A. catenella 

produces a unique repertoire of algal pigments, the small differences between 

dinoflagellate species are not easily discernable using HPLC. Unlike flow cytometry, 

HPLC does not give a quantitative enumeration of cells, but rather concentration of 

pigments per unit volume and is not specific for A. catenella. Epifluorescent microscopy 

quantifies number of cells and was useful in this study. Advanced molecular techniques 

such as quantitative PCR (QPCR) could have been used for comparison. QPCR provides 

for the real-time monitoring of targeted population of cells with the use of specific 

oligonucleotides, similar to those used in standard PCR, but unlike flow cytometry, 

QPCR cannot enumerate cells directly, but can only quantify the number of gene copies a 

cell has.  QPCR also uses a fluorescently labeled reporter probe. With the QPCR system, 

it would have been possible not only to detect A. catenella, but also assess the relative 

concentration of A. catenella within a sample, and compared to flow cytometry results. 

Elkhorn Slough and Monterey Bay provided optimal proof-of-concept study sites 

for detecting of A. catenella by flow cytometry due to the diverse array of environmental 

conditions between the upper slough, the lower slough and the open waters Monterey 
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Bay.  As expected A. catenella was detected in low level concentrations in the lower 

slough and Monterey Bay, but not detected in the upper slough.  These data lead to the 

conclusion that flow cytometry could be used as an effective tool to monitor for A. 

catenella in samples of moderate turbidity (Secchi depth less than two feet).  Since A. 

catenella was successfully detected in Elkhorn Slough, it follows that this technique 

could be used to monitor other marine sites with a wide array of environmental 

conditions.  For example San Francisco Bay, an important economic waterway, could be 

monitored for invasive forms of dinoflagellates belonging to the genus Alexandrium that 

possibly could be introduced by release of ballast seawater from large cargo vessels. 

Alexandrium spp. found in coastal waters of Asia, Europe and the Americas are of unique 

“ribotypes” (organisms encoding a particular 16S rDNA sequence; analogous to genotype 

or phenotype) which are found in Asia and are not found off the Western and Eastern 

seaboard of the United States.  Each species of Alexandrium have different toxin 

production profiles and can present economic and health concerns if they become 

established in new waterways, bays and coastal waters.  Since ballast water from large 

cargo vessels tends to be turbid, methods described in this work, may be useful in real-

time monitoring of ballast water for invasive A. catenella ribotypes. 

In this study, we focused on the detection of A. catenella in Elkhorn Slough and 

Monterey Bay and are known producers of PSP (Caretto, 2001).  Other HAB-forming 

species of economic and health concerns include the dinoflagellates Cochlodinium sp., 

Dinophysis spp. which causes diuretic shellfish poisoning (DSP), and in Southern 
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California Lingulodinium polehedra another toxin producing dinoflagellate.  All these 

HAB forming organisms could be enumerated simultaneously using flow cytometry.  

Application of flow cytometry to monitoring HABs is not limited. HAB’s can 

form from diatoms as well, such as the case with Pseudo-nitzschia spp.  This marine 

diatom is the cause of Amnesic Shellfish Poisoning (ASP) and is causal to mortality in 

marine mammals in Monterey Bay. Pseudo-nitzschia may present a problem to flow 

cytometry analysis.  This problem is due to its pennate morphology (approximately 6-8 

µm in width and 72-144 µm in length).  At these dimensions, Pseudo-nitzschia may 

obstruct the flow cell orifice within the flow cytometer.  

With increased use of flow cytometers in cell biology, immunology and clinical 

sciences, a number of instruments are available.  Clinical laboratories and Universities 

often prefer flow cytometers from Becton and Dickenson which produce the 

FACScaliburTM, FACScanTM and the FACSsortTM.   Routine maintenance, technical help 

and reagents for these flow cytometers are readily available worldwide.  Newer flow 

cytometers are entering the marketplace, and used instruments can be purchased at a 

moderate cost. Instruments marketed for oceanographic research include the FLOWcam 

(Fluid Imaging Technologies, Yarmouth, ME.) are not as common as the more popular 

Becton and Dickenson flow cytometry instruments and maintenance as well as repair 

service for the FLOWcam is more limited. 

A flow cytometer is a versatile instrument of immerging importance in biological 

oceanography and environmental biology.  It has proven useful in characterizing trophic 

level interactions of complex aquatic communities and HABs.  Like any sensitive 
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instrument, there will be limitations in its use, some of which may be overcome with 

innovative sample processing and instrument protocols.  In this work, we have shown 

that flow cytometry can be used successfully quantify a specific phytoplankton species in 

low concentrations in near-shore bodies of water of moderate turbidity. 
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 APPENDIX A. MONTEREY BAY SAMPLING STATIONS DEPTHS AND   
 LOCATIONS (FIG. 1A). 
 

Station    Depth (ft) Latitude Longitude 

107    300 N36 48.454 W121 55.176 

108    250 N36 49.912 W121 53.900 

109    180 N36 51.187 W121 53.030 

110    180 N36 50.367 W121 51.706 

111    200 N36 49.716 W121 50.698 

112    120 N36 48.929 W121 49.407 

113      65 N36 48.071 W121 47.523 

 CTD#1     800 N36 47.862 W121 50.967 

 CTD#2  3800 N36 43.465 W122 00.422 
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APPENDIX B. ELKHORN SLOUGH SAMPLING STATIONS DEPTHS AND 
LOCATIONS (FIG.1B). 
 

Station  
 Depth (ft)    
  high tide Latitude Longitude 

1       65 N36 47.930 W121 48.083 

2       37 N36 48.558 W121 47.155 

3       32 N36 48.749 W121 46.462 

4       30 N36 48.872 W121 45.951 

5       26 N36 48.809 W121 45.449 

6       23 N36 48.975 W121 44.892 

7       23 N36 49.337 W121 44.744 

8       19 N36 49.753 W121 44.857 

9       19 N36 50.178 W121 44.505 

10       16 N36 50.430 W121 44.894 

11       15 N36 50.641 W121 45.234 
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APPENDIX C. SAMPLING DEVISE USED FOR SIMULTANEOUS ACQUISITION 
OF SAMPLES FROM SURFACE, 1 METER AND 2 METERS IN DEPTHS. 
 

       
 

This devise was used to sample from three different depths simultaneously for 

near surface populations of Alexandrium catenella.  Because Alexandrium populations 

are sporadic and somewhat rare when not in bloom conditions, obtaining samples at 

different depths may be a more robust sampling method.  The devise is constructed to 

trigger all three sample bottles simultaneously with the use of fishing line attached to 

sealed elastic plugs.  Sample release is done with the use of three independent ball valves 

which release the sample (800 mL) into collection bottles.  
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APPENDIX D. COMPARISON OF CULTURED ALEXANDRIUM CONCENTRATION 
BEFORE AND AFTER FILTERING AN EQUAL VOLUME OF ALEXANDRIUM 
CELLS THROUGH A 70 MICOMETER FILTER TO DETERMINE LOSS 
ESTIMATED DUE TO FILTRATION PRIOR TO NA1-DIRECTED FISH AND FLOW 
CYTOMETRY (N=3). 
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In this study, the effect of losses due to sample pre-filtering prior to flow 

cytometry was assessed. An average loss of 9.2 % [1-(227/250)] is observed when 

laboratory cultured Alexandrium is passed through a 70 µm filter prior to density barrier 

sample concentration. 

Pre-filtering samples with a 70 µm filter was done to reduce orifice plugging since 

the flow cytometer has a flow cell orifice diameter of 100 µm.  Anything larger that 100 

µm will fowl the flow cytometer flow cell orifice.  Alexandrium size is 35-45 µm. The 

standard of deviation for all three trials for both the filtered counts is large enough to 

infer little difference between the filtered and unfiltered samples (P= 0.665).  Cell counts 

of Alexandrium were done before and after filtration with a light microscope counting 

using a hemocytometer.  Losses may be attributed to error in cell counting, Alexandrium 

adhering to filter, and loss of Alexandrium in concentrating for cell enumeration.  
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APPENDIX E. COMPARISON OF CELL COUNTS OF LABORATORY CULTURED 
ALEXANDRIUM CELLS APPLIED TO AND RECOVERED AFTER DENSITY-
BARRIER ENRICHMENT, FROM THE BARRIER LAYER AND THE  
CELL PELLET AFTER CENTRIFUGATION (N=3, SEE FIG. 2). 
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In three separate trials to determine the loss of sample attributed to the density 

barrier enrichment procedure, an average of 94% recovery [(4250/4500) x100] of 

Alexandrium is observed in the recovered phytoplankton band.  Some cells, (average 

0.6% [(27/4500) x 100], were found in the pellet.  Some cell loss may occur in extracting 

the phytoplankton band away from the percoll layer as the band was extracted visually, 

leaving some of the sample behind which was discarded.  The upper seawater layer and 

the phytoplankton interface band were removed simultaneously from the percoll layer in 

order to limit losses as some of the phytoplankton, being motile, migrate upward and 

away from the phytoplankton band just after centrifugation.  The combined seawater and 

phytoplankton band after removal from the percoll layer were then differentially 

centrifuged and supernatant discarded.  Removal of this supernatant if not carefully done, 

could also lead to loss of cell. 
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APPENDIX F. MEAN FLUORESCENCE AND COEFFICIENT OF VARIATION 
VALUES FOR LABORATORY SAMPLES PREPARED FROM A PURE CULTURE 
OF ALEXANDRIUM: UNSTAINED CONTROLS (NO PROBE), NEGATIVE 
CONTROL (UNIR PROBE), AND SAMPLES SUBJECTED TO NA1-  
DIRECTED FISH USING DIFFERENT CONCENTRATIONS OF NA1 PROBE 
N=3, 3000 CELLS, 6000 CELLS, AND 12000 CELLS. 
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All probes used in this study (NA1 and uniR) are both dual labeled with FITC ant 

the 5’ and the 3’ end.  This dual-labeling increases the signal from the FISH probed 

Alexandrium catenella.  To determine the optimal amount of probe to be used in NA1-

directed FISH prior to flow cytometric analysis, three different Alexandrium cell 

concentrations were used in the NA1-directed FISH probe titration analysis, these 

concentrations were 3000, 6000 and 12,000 cells.  Optimal NA1 probe concentrations for 

Alexandrium NA1-directed FISH in this experiment was 0.50 µM.  In dilutions that were 

analyzed, the coefficient of variation was demonstrated to be the lowest at 0.50 µM NA1 

probe concentration in all three trials.  Alexandrium subjected to NA1-directed FISH is 

had an average mean fluorescence that was 4.7 times brighter than Alexandrium 
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subjected to uniR- directed FISH.  Alexandrium subjected to NA1-directed FISH had an 

average mean fluorescence which was 5.6 times brighter than Alexandrium subjected to 

no probe. 

In this study, the optimal probe concentration for use in centrifugal FISH protocol 

adapted for flow cytometry was best achieved at 0.50 µM, the same probe concentration 

that was previously described (Sako et al., 2004).  The optimal probe concentration for 

FISH directed flow cytometry using the dual FITC labeled probe, 0.50 µM, also resulted 

in the lowest coefficient of variation among all probe concentrations analyzed. 
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APPENDIX G.  A MIXTURE OF TWO LABORATORY PREPARATIONS OF 
ALEXANDRIUM (ETHANOL TREATED AND UNTREATED CONTROL) 
OBSERVED UNDER EPIFLUORESCENCE (A) AND BRIGHT-FIELD (B) 
MICROSCOPY. 
 

 
 

In the procedure for fluorescent in situ hybridization (FISH), prior to fixation with 

paraformaldeyhe, cells are dehydrated with 80% ethanol.  Cultured Alexandrium treated 

with 80 % ethanol for 5 minutes on ice results showed a 15.7 fold decrease in 

endogenous mean chlorophyll a fluorescence as compared to non-treated Alexandrium 

cells as analyzed by flow cytometry of the two mixed populations (flow cytometry data 

not shown) 

Treatment of Alexandrium with 80 % ethanol for 5 minutes quenches most (20%), 

but not all of the chlorophyll a signal (Hosoi-Tanabe and Sako., 2005) which is acquired 

by the FL-3 flow cytometry detector.  Over-quenching for 1 hr with 80% ethanol would 

effectively extract all the chlorophylls from Alexandrium, and would remove one 

parameter from a multiparameter sequential logical gating scheme. 
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APPENDIX H. COMPARISON OF EQUAL INITIAL CELL CONCENTRATIONS    
AND SERIALLY DILUTED, LABORATORY CULTURES OF ALEXANDRIUM 
(LIVE) AND NA1-DIRECTED FISH TREATED ALEXANDRIUM (STAINED) BOTH 
ANALYZED BY FLOW CYTOMETRY AND GATED FOR INTACT CELLS 
(PREVIOUSLY HEALTHY PRIOR TO ANALYSIS). 
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A dilution series of NA1 FITC stained cell enumeration based on gated 

hybridized healthy Alexandrium cells.  Undiluted cells indicate little difference in cell 

numbers between live (untreated) and NA1-directed FISH treated cells, average (N=3) 

loss equal to 2%. [Largest average loss observed at a 1:4 dilution, with an average loss of 

52%.]  As dilution increases, the loss of cells also increases. 

At larger cell concentrations losses are less pronounced.  This may be due to 

removal of reagents from a subsequent centrifugation steps.  Some of the pellet may get 

removed with the discarded supernatant.  Sample preparation technique affects cell loss 

from the sample.  Care must be taken after centrifugation steps, when removing 

supernatants away from pelleted cells as this is the major source of error due to cell loss. 
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APPENDIX I. COMPARISON OF EQUAL INITIAL CELL CONCENTRATIONS, 
AND SERIAL DILUTED, LABORATORY CULTURES OF ALEXANDRIUM (LIVE) 
AND NA1-DIRECTED FISH TREATED ALEXANDRIUM (STAINED) BOTH 
ANALYZED BY EPIFLUORESCENCE MICROSCOPY.  
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In undiluted cell suspensions, NA1-directed FISH of Alexandrium using the 

centrifugation FISH protocol demonstrates and average of 28% loss.  Observed losses 

decrease as dilution increases. 

The disparity in cell counts between the live culture enumeration and the NA1-

directed FISH stained cells as analyzed by epifluorescence microscopy may be caused by 

the existence within sample of non-viable unstained cells incapable of uptake of the NA1 

probe due to degraded ribosomes to which the NA1 probe hybridizes.  As with any multi-

step process, losses may also occur due to sample preparation error.  
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APPENDIX J. PREPARATIONS OF LABORATORY CULTURES CONTAINING A 
MIXTURE OF PHYTOPLANKTON (A AND B) AND A PURE ALEXANDRIUM 
CULTURE (C AND D) SUBJECTED TO NA1-DIRECTED FISH UNDER 480 NM 
EPIFLUORESCENCE MICROSCOPY (A AND C) AND BRIGHT-FIELD 
MICROSCOPY (B AND D). 
 
            

 
 

The NA1 FITC labeled probe specific for Alexandrium North American ribotype 

shows cross reactivity with Prorocentrum micans and Heterocapsa triquetra (A and B). 

Single cells of Alexandrium catenella subjected to NA1-directed FISH and observed 

under epifluorescence microscopy show different morphologies depending on cell 

orientation.  The Alexandrium dorsal or ventral profile cells appear as green fluorescent 
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spheres, while viewed from the side (lateral view) A. catenella appear as fluorescent 

spheres with transverse dark notches (C and D) 

Analysis of NA1-directed flow cytometry of laboratory cultures indicated cross 

reactivity between Alexandrium catenella and Prorocentrum micans.  Therefore, NA1-

directed fluorescence alone is insufficient to distinguish between these genera.  With the 

use of a chlorophyll a parameter (FL-3), sequential logical gating as described in methods 

increased specificity to acceptable levels (Altman, 1994).  Prorocentrum (and 

Heterocapsa) have differing FSC and SSC properties as well as differing chlorophyll a 

fluorescence signatures than Alexandrium.  Sequential logical gating used in flow 

cytometry reduces misidentification is use due to cross reactivity of the NA1 probe 

compared to other fluorescence detection systems such as epifluorescent microscopy.  
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APPENDIX K. FLOW DIAGRAM OF ENVIRONMENTAL SAMPLE 
CONCENTRATION FOR FISH PROBE HYBRIDIZATION FOLLOWED BY  
FLOW CYTOMETRY (FC) AND EPIFLUORESCENT MICROSCOPY (EF). 
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From 500 mL of environmental sample, differential centrifugation is used to 

concentrate the sample to 7 mL.  This sample will ultimately represent two 250 mL 

aliquots to be analyzed, each hybridization equaling a environmental volume of 250 mL. 

This was done to ensure that the analysis between the two probed samples had consistent 

populations of cells between them.  Following differential centrifugation, rate-zonal 

centrifugation was done to separate the phytoplankton from the detritus and other debris. 

Following concentration the sample was equally split for separate hybridizations with 
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NA1 and uniR FITC labeled probes.  After hybridization the samples were once again 

equally split for separate analysis by both epifluorescent microscopy and flow cytometry. 

Although the hybridized samples were resuspended in 375 µL of 5x SSC, only 300 µL of 

the sample was actually analyzed.  This was done to ensure that sample analyzed by flow 

cytometry could collect data for five minutes at 60 µL min-1 without the possibility of 

sample and data loss (pipette error) due to insufficient volume of interrogated sample 

applied to the cytometer.  In the final analysis, the environmental sample interrogated by 

flow cytometry was equivalent to a volume of 125 mL for each probe used.   
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APPENDIX L. FLOW CYTOMETRY DOT PLOTS AND A HISTOGRAM OF A 
SAMPLE PREPARED FROM PURE LABORATORY CULTURES OF ALEXANDRIUM 
CATENELLA AND HETEROCAPSA TRIQUETRA MIXED TOGETHER THEN 
SUBJECTED TO NA1-DIRECTED FISH.  
 
               

A B

C
D

     
 

Alexandrium subjected to NA1-directed FISH and Heterocapsa triquetra 

subjected to NA1-directed FISH are indistinguishable from each other with respect to 

forward scatter vs. side scatter (dot-plot A).  Alexandrium subjected to NA1-directed 

FISH has a 5.7 times greater mean fluorescence value than Heterocapsa subjected to 

NA1-directed FISH (dot-plot B and box D).          

Properties of forward scatter and side scatter of Alexandrium and Heterocapsa 

which have been subjected to NA1-directed FISH cannot resolve between the two 
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separate populations.  To resolve the two populations, the FL-1 (FITC) detector was used 

for specific species enumeration within this sample.  Since the FITC labeled probe 

hybridized in a specific species manner, accurate enumeration of the target species was 

possible.  This species-specific probe is homologous to ribosomal RNA of that species 

(Alexandrium), and thus will not hybridize to non-homologous rRNA of other species 

(Heterocapsa) within that sample.  
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APPENDIX M. FLOW CYTOMETRY DOT PLOTS AND HISTOGRAM SHOWING 
A COMPARISON OF DIFFERENTIAL FLUORESCENCE BETWEEN 
ALEXANDRIUM SUBJECTED TO NA1-DIRECTED FISH AND ALEXANDRIUM 
SUBJECTED TO NO PROBE. 
 

A B

C

D

 
Laboratory cultured Alexandrium subjected to NA1-directed FISH has an 11.8 

times greater fluorescence value than Alexandrium not subjected to NA1-directed FISH 

and enumerated by flow cytometry (dot-plot B and D). 

Alexandrium subjected to NA1-directed FISH shows no difference in forward 

scatter and side scatter signatures while showing great disparity between the Alexandrium 

subjected to NA1-directed FISH and the Alexandrium not subjected to NA1-directed 

FISH with respect to FL1 (FITC) fluorescence.  This amplified the FITC fluorescence 
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signal by labeled cells is caused by NA1 binding specifically to Alexandrium catenella, 

was compared to natural FL1 fluorescence in fixed cells.  In the case of analyzing unfixed 

(Non-FISH) natural samples, the intrinsic FL1 fluorescence of Alexandrium show little 

difference to other phytoplankters in the same sample.  The NA1-directed FISH 

procedure allowed for increased, uniform fluorescence in Alexandrium cells that enabled 

us to in define a region (increased signal to noise ratio) for the purposes setting sequential 

logical gates. 
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APPENDIX N. FLOW CYTOMETRY DOT PLOTS AND HISTOGRAM SHOWING A 
COMPARISON OF DIFFERENTIAL FLUORESCENCE BETWEEN ALEXANDRIUM 
SUBJECTED TO NA1-DIRECTED FISH AND ALEXANDRIUM SUBJECTED TO 
UNIR-DIRECTED FISH. 
 

A B

C
D

 
The Alexandrium subjected to NA1-directed FISH has a 6.0 times greater mean 

fluorescence value than Alexandrium subjected to uniR negative control directed FISH 

using flow cytometry (dot-plot B and box D). 

In this study, the uniR probe acted as a universal control. The sequence of the 

probe is based on prokaryote ribosomal DNA sequences and functions as a control for 

non-specific probe binding.  Alexandrium cells in one sample were subjected to NA1-

directed FISH, and another was stained with uniR-directed FISH. When mixed and 
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analyzed by flow cytometry these two samples showed no difference in forward scatter 

and side scatter values and are indistinguishable (Fig. 13A). They are easily 

distinguishable when the FITC detector was employed (Fig 13 B and C.) 
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APPENDIX O. SENSITIVITY AND SPECIFICITY RESULTS FOR ALL 253 SAMPLES 
FROM MONTEREY BAY AND ELKHORN SLOUGH AS DETERMINED BY NA1-
DIRECTED FLOW CYTOMETRY FISH (TEST) AND EPIFLUORESCENCE 
MICROSCOPY FISH (DEFINITIVE) DATA. 
 
                                                                                                                                                                                                          

  Epifluorescence Microscopy 

  Pos Neg      total 

Flow Cytometry Pos 74 18 92 

 Neg 22 139 161 

 
     
Total 96 157 253 

 
 
Sensitivity = 77.1%     N=253    Specificity = 88.5% 

 
Alexandrium was not demonstrated in 55% of the 253 samples from Elkhorn 

Slough and Monterey Bay, either by flow cytometry or epifluorescent microscopy.  

Alexandrium cells were detected in 114 of the 253 samples (45%) by either flow 

cytometry or epifluorescent microscopy.  Of the 114 samples positive for Alexandrium 

for either flow cytometry or epifluorescent microscopy, in 74 positive samples (65%) 

containing Alexandrium were detected both by flow cytometry and epifluorescent 

microscopy. 

In all the samples, specificity was higher than sensitivity, possibly due to majority 

of the samples having very few (one or two) detected Alexandrium in them in relation to 

more numerous other phytoplankton in the same sample.  The lower sensitivity value 

may be caused by a low signal to noise ratio in sample consisting of a sparse population 

of Alexandrium in a specific sample (one or two Alexandrium cells in a sample), there 

was better agreement in the flow cytometry data and the epifluorescent data in samples 
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with higher numbers of Alexandrium detected.  The decreased specificity value may be 

caused by a low signal to noise ratio in sample consisting the presence of phytoplankters 

other than Alexandrium non-specifically binding to the NA1 probe during FISH, this 

signal to noise problem can be minimized with the use of sequential logical gating.  In 

Elkhorn Slough it is expected not to find Alexandrium in the more inland stations; 

although in very few cases flow cytometry did detect one or two Alexandrium cells, 

where epifluorescent microscopy did not, these detected events may be attributed to noise 

caused by non-specific binding of the NA1 probe to other species. 
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APPENDIX P. COMPARISON OF NA1-DIRECTED FISH FLOW CYTOMETRY 
AND EPIFLUORESCENT MICROSCOPY RESULTS OF SAMPLES FROM CTD 
VERTICAL SAMPLES COLLECTED AT TWO SITES IN MONTEREY BAY (SEE 
FIG. 1A). 
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Monterey Bay samples taken from a cruise on the R/V Point Sur indicate near 

sub-surface populations of Alexandrium in very low concentrations.  Low concentrations 

of Alexandrium (10 -20 cells L-1) was observed at 5 and 10 meters by epifluorescence 

microscopy and flow cytometry while no Alexandrium was detected at the surface; this 

may be due to high irradiance at the surface driving Alexandrium into slightly deeper 

water due to photo-saturation at the surface. 
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APPENDIX Q. COMPARISON OF NA1-DIRECTED FISH FLOW CYTOMETRY 
AND EPIFLUORESCENT MICROSCOPY RESULTS OF SAMPLES FROM 
VERTICAL SAMPLING AT ELKHORN SLOUGH STATION 2 (S1) AND STATION 
3 (S2) (SIMULTANEOUS 0M, 1M AND 2M DEPTH SAMPLE ACQUISITION ) ON 
TWO DIFFERENT DATES. (A= 21 OCTOBER 2008, B= 16 NOVEMBER 2008). 
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Alexandrium was observed at all three depths (0, 1M and 2M) at both stations 

sampled on two different dates.  In some samples Alexandrium was not detected at the 

surface, but was detected at 1 and 2 meters. More Alexandrium was detected at station #3 

than at station #2 and on both dates by flow cytometry and epifluorescent microscopy of 

NA1-directed FISH samples. 

These data indicate that the use of vertical sampling (and not just surface 

sampling) for detection of a specific phytoplankton species may yield a more complete 
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understanding of the trace concentrations at a given sampling site (Grisselson, 2002). 

With the use of only surface samples instead of near surface vertical sampling, the single 

surface sample may yield low or inaccurate results. 
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