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ABSTRACT 

THE EFFECTS OF BORDETELLA PERTUSSIS ON DENDRITIC CELL IMPRINTING 
OF CD4+ T CELLS 

by Sana Waheed 

Bordetella pertussis is an aerobic gram-negative bacterial pathogen that causes 

the human respiratory disease whooping cough.  Despite widespread vaccination, 

whooping cough is reemerging due to decreased vaccine efficacy.  One of the hallmarks 

of infection is lymphocytosis, which is induced by the pertussis toxin.  Lymphocytes such 

as CD4+ T cells navigate to infected tissues through surface-trafficking molecules, which 

are imprinted during their interaction with tissue-associated dendritic cells.  We 

hypothesized that the pertussis toxin affects the imprinting process resulting in altered 

expression of trafficking molecules on CD4+ T cells.  We tested this hypothesis using a 

mouse model of infection.  Imprinting levels on CD4+ T cells were compared to 

Bordetella parapertussis, a related strain that lacks pertussis toxin.  Our results indicated 

that 5 days post-infection, the percentage of lung dendritic cells increased and adopted a 

mature phenotype (displaying an increased capability to migrate and present antigen to T 

cells) in response to B. pertussis infection, and there was an overall downregulation of 

trafficking molecules on CD4+ T cells.  However, 25 days post-infection with B. 

pertussis, dendritic cells continued to express elevated levels of MHC class II, and the 

expression of trafficking markers on CD4+ T cells also increased compared to uninfected 

controls.  These results enable identification of molecules that are specific for 

lymphocyte trafficking to the respiratory airways and contribute to knowledge useful in 

the development of better vaccines. 
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PREFACE 

This thesis is comprised of three chapters and the appendices.  Chapter I provides 

an overview of the research project and includes information regarding each part of the 

project.  The second chapter is presented in journal format according to the guidelines set 

by the Journal of Immunology.  The final chapter includes the conclusions from the 

research as well as a discussion of future directions.  The appendices provide additional, 

supplementary data associated with this study.  
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CHAPTER I 

INTRODUCTION 
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Overview of the Research Project 

Immune cells such as lymphocytes circulate between the blood, lymph nodes, and 

organs due to chemotactic interactions between secreted and surface molecules in tissues 

and surface molecules on immune cells.  This process is termed lymphocyte trafficking 

and is responsible for the recruitment of T lymphocytes to sites of infection (1).  

Lymphocyte trafficking (homing) to infected organs and tissues is crucial for the 

elimination of airborne pathogens and for restoration of a homeostatic environment such 

that unnecessary inflammation and tissue damage is prevented.  T lymphocytes are able 

to home to specific organs due to a special combinatorial pattern of surface trafficking 

molecules that are “imprinted” on their surface during interaction with dendritic cells.  

The trafficking molecules responsible for exclusive homing to the airways remain 

unknown.  We report here our study of CD4+ T cell trafficking using two respiratory 

pathogens, B. pertussis, which produces pertussis toxin and, B. parapertussis, which does 

not.  Pertussis toxin is responsible for lymphocytosis (extremely elevated levels of 

lymphocytes in the bloodstream) and is known to inhibit G proteins, which are 

responsible for cell signaling leading to chemotaxis or cell migration.  Therefore we 

designed this study to observe the effects of pertussis toxin on dendritic cell imprinting of 

trafficking molecules on CD4+ T cells that could lead to preventing their exit from the 

bloodstream and entry into the lungs.       

This project had two main objectives.  The first objective was to analyze the 

presence of homing molecules on CD4+ T cells in three different compartments (lymph 

nodes, blood, and lungs), which was conducted primarily by Brian Kwong.  Imprinting of 
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homing molecules occurs in the lymph nodes so it was important to include the CD4+ T 

cell trafficking levels in our analyses.  Levels of these molecules were also measured for 

CD4+ T cells in the blood and lungs to observe their phenotype after imprinting.  

Together the information from these tissues allowed us to compare the level of each 

trafficking marker in various compartments during experimental infection.  

The second objective of this project was to mimic the in vivo imprinting process 

that takes place in the lymph nodes, and observe the resulting interactions that occur 

between isolated lung dendritic cells and naïve allogeneic splenocytes in an in vitro co-

culture system.  The focus of this thesis was objective two of the overall research project, 

which should inform us about the effects of pertussis toxin on the ability of dendritic cells 

to imprint homing molecules on naïve T cells.  To study this process, a co-culture system 

was developed using isolated lung dendritic cells from uninfected and Bordetella-infected 

mice and co-cultured overnight with naïve splenocytes to allow for imprinting.  The 

expression levels of trafficking molecules on CD4+ T cells from uninfected and 

Bordetella-infected co-cultures were compared by flow cytometry.  These experimental 

results will contribute to our understanding of the pathogenesis of B. pertussis, as well as 

the role of imprinting molecules in respiratory trafficking of CD4+ T cells.  This 

knowledge may lead to improved vaccine development targeting molecules that 

participate in lung homing. 
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CHAPTER II 

THE EFFECTS OF BORDETELLA PERTUSSIS ON DENDRITIC CELL IMPRINTING 

OF CD4+ T CELLS 

 



 

 6 
 

 
 
 

 
 
 
 

THE EFFECTS OF BORDETELLA PERTUSSIS ON DENDRITIC CELL IMPRINTING 

OF CD4+ T CELLS 1 

 
Sana Waheed,* Tzvia Abramson,2* 

 
 

*Department of Biological Sciences, 
San José State University, 

San José, CA 95192 
 
 
 
 
 
 
 
 
 
 

1 This work was supported by funds from Dr. Tzvia Abramson and California State 
University Minigrant (2008).  
 
2 Address correspondence and reprint requests to Tzvia Abramson, Department of 
Biological Sciences, One Washington Square, San José State University, San José, CA 
95192 
 
Abbreviations used in this paper: DCs, dendritic cells; B. pertussis, Bordetella pertussis; 
B. parapertussis, Bordetella parapertussis; PTx, Pertussis Toxin; MHC, major 
histocompatibility complex; CD, cluster of differentiation; PBS, phosphate buffered 
saline; FCS, fetal calf serum; FSC, Forward Scatter; SSC, Side Scatter; PSGL-1, P-
selectin glycoprotein ligand-1; VLA-1, very late antigen-1; LFA-1, lymphocyte function-
associated antigen-1; VLA-4, very late antigen-4; CCR5, chemokine receptor type 5; 
CCR6, chemokine receptor type 6; CXCR3, CXC chemokine receptor 3; VCAM-1, 
vascular cell adhesion molecule-1; CLA, cutaneous lymphocyte antigen. 
 
 
 



 

 7 
 

 
 
 

Abstract 

Bordetella pertussis is an aerobic gram-negative bacterial pathogen that causes 

the human respiratory disease whooping cough.  Despite widespread vaccination, 

whooping cough is reemerging due to decreased vaccine efficacy.  One of the hallmarks 

of infection is lymphocytosis, which is induced by the pertussis toxin.  Lymphocytes such 

as CD4+ T cells navigate to infected tissues through surface-trafficking molecules, which 

are imprinted during their interaction with tissue-associated dendritic cells.  We 

hypothesized that the pertussis toxin affects the imprinting process resulting in altered 

expression of trafficking molecules on CD4+ T cells.  We tested this hypothesis using a 

mouse model of infection.  Imprinting levels on CD4+ T cells were compared to 

Bordetella parapertussis, a related strain that lacks pertussis toxin.  Our results indicated 

that 5 days post-infection, the percentage of lung dendritic cells increased and adopted a 

mature phenotype (displaying an increased capability to migrate and present antigen to T 

cells) in response to B. pertussis infection, and there was an overall downregulation of 

trafficking molecules on CD4+ T cells.  However, 25 days post-infection with B. 

pertussis, dendritic cells continued to express elevated levels of MHC class II, and the 

expression of trafficking markers on CD4+ T cells also increased compared to uninfected 

controls.  These results enable identification of molecules that are specific for 

lymphocyte trafficking to the respiratory airways and contribute to knowledge useful in 

the development of better vaccines. 
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Introduction 

Bordetella pertussis is an aerobic gram-negative bacterium that causes the 

respiratory disease whooping cough in humans.  Considerable mortality was attributed to 

B. pertussis in the early twentieth century, which declined once a vaccine was introduced.  

However, whooping cough is reemerging in both adults and children due to drop in 

vaccine efficacy (2-3).  Vaccinated adults can be carriers of pertussis and manifest a 

prolonged, but relatively mild respiratory disease, which may be transmitted to 

unvaccinated infants (4).  In infants the manifestations can include vomiting, pneumonia, 

hypoxia, seizures or apnea.  Throughout the world there are 300,000 pertussis-related 

deaths each year, mostly in children (5).  Although these cases are mainly seen in 

developing areas of the world, there have been incidents of pertussis outbreaks in the 

United States and, according to the Centers for Disease Control and Prevention, the U.S. 

had over 10,000 reported cases of pertussis in 2007 (6).  The onset of the disease is 

characterized by a persistent, forceful whoop-like cough that can last for several weeks to 

months, even after the clearance of the bacteria. The hallmark of the disease is 

leukocytosis with extreme lymphocytosis, which is attributed to one of the bacterial 

virulence factors, pertussis toxin (PTx) (7-10).   

Bordetella pertussis is an extracellular pathogen that colonizes the upper 

respiratory system and bronchial epithelial cells.  The respiratory system is constantly 

exposed to airborne antigens.  The mucosal immunity maintains a steady state in which 

harmless antigens do not trigger unnecessary immune responses (11-12).  Tissue resident 

DCs sample the airways and are key players in supporting immunological tolerance in 
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response to non-pathogenic antigens (11).  Bordetella pertussis overcomes this 

suppressive mechanism and disrupts these homeostatic conditions in the airways.  Several 

bacterial factors contribute to the pathogenesis of B. pertussis in the respiratory tract.  

PTx is a secreted AB subunit exotoxin that is associated with numerous pathogenic 

functions and immunomodulation.  It is responsible for inhibiting chemotaxis in T cells, 

macrophages, neutrophils, and reduced B cell survival (13).  The A subunit is the 

enzymatically active component that is responsible for ADP-ribosylation and inhibition 

of the alpha subunit of G proteins (Gα) on target host cells (14).  G proteins are coupled 

to chemokine receptors and mediate cell signaling.  PTx prevents activation of Gα and 

interferes with signaling that leads to chemotaxis and cell migration (8, 15).  

Administration of soluble PTx was reported to delay the initial recruitment of immune 

cells such as neutrophils and macrophages, which are responsible for engulfing and 

killing bacteria (16-20).  Impaired neutrophil and macrophage function can lead to 

colonization of B. pertussis in the respiratory tract  

During respiratory infection, DCs sample and pinocytose (internalize) antigen 

from the tracheal lumen and tissue-penetrating antigens.  Immediately after antigen 

internalization, DCs develop a mature phenotype that is comprised of upregulation of 

surface maturation markers such as MHC class II, CD40, and CD86, which facilitate DC 

entry into the lymphatics and migration to the draining lymph nodes where antigen 

presentation to T cells occurs (21-23).  The interaction of mature DCs with naïve T cells 

in the lymph nodes results in T cell activation, signaling, and upregulation of trafficking 

receptors, a mechanism called imprinting.  Mature DCs derived from a specific tissue 
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will then imprint T cells with trafficking receptors that direct them to the area of infection 

where the antigen was originally encountered by the DC (24).  

Lymphocyte trafficking is a multi-step process that allows activated T cells to exit 

the lymph nodes, enter the bloodstream, extravasate, and home to infected tissue (1, 24-

26).  The first step of this process is a rolling/tethering action mediated by selectins that 

loosely bind the T cell to inflamed endothelium and slows its transit in the bloodstream.  

This is followed by attachment and activation of the T cell by chemokine receptors.  The 

third step is mediated by integrins, which completely halt the T cell in the bloodstream 

and mediate extravasation.      

The concept of trafficking receptor imprinting on lymphocytes is well 

documented in the gut and skin where the trafficking molecules and environmental 

factors influencing this interaction have been identified (26).  For example, DCs from gut 

origin imprint T cells in the presence of retinoic acid (a dietary environmental factor) 

with high levels of CCR9 and α4β7, which are the surface molecules that direct T cells to 

the small intestine (1, 25, 27-30).  Trafficking of T cells to the skin is mediated by DCs 

and activated Vitamin D3 derivatives that imprint CCR10, CLA, and CCR4, which leads 

T cells to the skin (1, 31-33).  As of now, the imprinting factors that direct T cell 

trafficking exclusively to the respiratory system have not been described (34). 

In this thesis, we studied the interactions between DCs and T cells during a 

respiratory infection with B. pertussis.  We hypothesized that B. pertussis (via PTx) alters 

DC imprinting of trafficking molecules on T cells.  This may lead to a high degree of 

lymphocytosis in the circulation with reduced levels of trafficking molecules that can 
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orient lymphocyte homing to the lungs.  We tested our hypothesis using B. pertussis and 

Bordetella parapertussis experimental infections in mice.  Bordetella parapertussis lacks 

PTx and was used as a control.  This comparison elucidated the effects of PTx on G 

protein-coupled receptor signaling, as well as DC and T cell interactions leading to T cell 

homing (35-36).  Since defective homing could lead to delayed clearance during B. 

pertussis infection, knowledge in this area should contribute to understanding the 

pathogenesis of this bacterium and aid in vaccine development based on lung associated 

trafficking molecules.   
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Materials and Methods 

All studies using animals have been approved by the Institutional Animal Care and Use 

Committee (IACUC) (Protocol #921) at San José State University, San José, CA. 

 

Bacteria 

Two Bordetella strains were used, B. pertussis 338, which is a nalidixic acid-resistant 

derivative of the Tohama strain, and B. parapertussis, which was obtained from ATCC 

(#9305).  Both strains were grown on Bordet-Gengou blood plates, and single colonies 

were used to inoculate Stainer-Scholte broth containing Heptakis (Sigma-Aldrich, St. 

Louis, MO) prior to experimental infection. 

 

Experimental infection 

Six-week-old female Balb/c mice were inoculated intranasally with 20 µl of 5x106 colony 

forming units of B. pertussis or B. parapertussis.  Uninfected control mice received 20 µl 

of PBS (37-38).  Two time-points of experimental infection were established, 5 days 

post-infection (peak infection) and 25 days post-infection, which were determined by 

performing a time-course experiment where bacterial load in the lungs was measured for 

ten days and again on day 25 (see Appendix A).  To confirm infection and determine the 

bacterial load, lungs from experimentally infected mice were harvested, homogenized, 

and plated on Bordet-Gengou plates prior to each experiment.   
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Preparation of single cell suspensions from lungs and spleen 

Mice were exsanguinated followed by perfusion of lungs with 30-50 ml of PBS.  The 

lungs and trachea were removed, minced and digested in RPMI-1640, 10% FCS, 75U/ml 

DNase I (Sigma-Aldrich) and 250 U/ml Type I Collagenase (Worthington Biochemical 

Corporation, Lakewood, NJ) in a 37ºC orbital shaker for 45 to 60 minutes.  The digested 

lungs were passed through a 40-micron nylon mesh strainer and cells were washed with 

RPMI-1640 to remove residual digest medium.  Digested lung tissue was resuspended in 

40% Percoll (GE Lifescience, Piscataway, NJ), slowly underlaid with 70% Percoll and 

centrifuged for 25 minutes to create a density gradient.  Cells at the 40-70% interface 

(mononuclear cells) were collected and used for enrichment of DCs. The spleens from 

uninfected allogeneic mice were harvested and pressed through a nylon mesh to obtain a 

single cell suspension (39).  Splenocytes were incubated with 3 ml red blood cell lysis 

buffer (Sigma-Aldrich) for 5 minutes and washed with RPMI-1640 with 10% FCS.  Cell 

pellets from the lungs were resuspended in buffer (PBS, 0.5% FCS, 2 mM EDTA) 

suitable for MACS columns. 

 

Enrichment of lung DCs  

All cell enrichments were performed using magnetic microbeads (Miltenyi Biotech, 

Auburn, CA).  For DC enrichment from lungs, CD11c microbeads (N418) were used and 

lung mononuclear cells were enriched for CD11c+ cells using positive selection with a 

MiniMACS separator.  Briefly, lung mononuclear cells were incubated with 100 µl of 

CD11c microbeads for 15 minutes at 4°C.  Cells were washed with MACS buffer (PBS, 
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0.5% FCS, 2 mM EDTA) and resuspended in 500 µl of buffer. One MS column was used 

to enrich for CD11c+ cells.   

 

T cell activation and co-cultures 

For co-culturing experiments, 24-well plates were coated with the purified monoclonal 

antibodies CD3 (1 µg/ml) and CD28 (1 µg/ml) in PBS, and incubated at 4ºC, as adapted 

from Sigmundsdottir (33) and Campanelli (39).  Enriched lung DCs were cultured with 

splenocytes from uninfected allogeneic mice at a 1:25 ratio in RPMI-1640 supplemented 

with 10% FCS, penicillin, streptomycin, IL-2 (12.5 ng/ml) and IL-12 (2.5 ng/ml) (R&D 

Systems, Minneapolis, MN).  Cells were co-cultured overnight at 37ºC with 5% CO2 to 

allow for imprinting, followed by flow cytometry analysis.  T cell activation was 

determined using intracellular antibody staining with Ki-67 (B56) and interferon γ 

(XMG1.2), which served as markers of T cell proliferation in an allogeneic system.  

Briefly, cells were stained for extracellular markers and resuspended in 250 µl 

Fixation/Permeabilization (BD Biosciences, Franklin Lakes, NJ) solution and incubated 

at 4°C for 20 minutes. Cells were washed twice with 1 ml of 1× Perm/Wash Buffer (BD 

Biosciences) and then resuspended in 100 µl of Perm/Wash Buffer containing the 

antibody or negative control. Cells were incubated at room temperature in the dark for 30 

minutes before being washed twice with 1 ml/wash of 1× Perm/Wash Buffer and 

resuspended in staining buffer (0.1% Sodium Azide, 1% FCS, PBS). 
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Flow cytometry 

Analysis of surface and intracellular markers was done by flow cytometry.  Lung derived 

DC phenotyping was measured by the expression of myeloid associated markers [CD11c 

(N418), CD11b (M1/70)] and maturation markers [MHC class II (M5/114.15.2), CD40 

(3/23), CD86 (GL-1)].  Additional trafficking markers were evaluated on DCs as detailed 

for T cells.  Expression of trafficking molecules on CD4+ T cells included CD4 (RM4-5, 

BD Biosciences and Invitrogen, Carlsbad, California), CD38 (90) and the following 

trafficking molecules: CD11a (M17/4), CD49f (GoH3), CD162 (2PH1, BD Biosciences), 

CXCR3 (220803, R&D Systems), CD49a (HMalpha1, ABDSerotec, Raleigh, NC), 

CD49d (9C10 MFR4.B), and CD103 (2E7).  All antibodies were purchased from 

BioLegend (San Diego, CA) unless otherwise indicated.  The levels of these markers 

were compared for B. pertussis and B. parapertussis infections and normalized to 

uninfected controls as explained in the figure legends.  Samples were acquired using the 

FACS Calibur (BD Biosciences) at San José State University and the LSRII (BD 

Biosciences) at Stanford University, and were analyzed using Flowjo. 



 

 16 
 

 
 
 

Results 

Experimental design 

  Balb/c mice were inoculated intranasally with PBS (uninfected controls), B. 

pertussis or B. parapertussis for a period of 5 and 25 days.  At each time-point lungs 

were harvested, mononuclear cells were obtained and enriched for DCs (CD11c+ cells) 

using Miltenyi Microbeads (Fig. 1).  DCs were enumerated and phenotyped for each 

treatment using multicolor flow cytometry (Fig. 2, 4).  Imprinting of trafficking 

molecules was observed in co-cultures of lung DCs with naïve allogeneic splenocytes 

from Swiss Webster mice (Fig. 3, 5). 

 

Peak infection: DCs matured in response to Bordetella infection 

Five days post-infection we found 23% of CD11c+ cells in uninfected control 

lungs, whereas B. parapertussis had 33.1% and B. pertussis had 70.6% (Fig. 2A).  The 

percent DCs was estimated by the overall analysis of CD11c+ cells isolated from the 

lungs.  DC phenotype was characterized using CD11c+ and a second marker (Table I) 

using flow cytometry (Fig. 2B).  Levels of maturation markers were assessed with MHC 

class II, CD40, and CD86 (Fig C-D).  These molecules bind to the T cell receptor, 

CD40L, and CD28 respectively on CD4+ T cells, forming an immunological synapse that 

results in T cell activation and stimulation (11).  Since B. pertussis is an extracellular 

bacterial pathogen, we analyzed MHC class II, which is the molecule responsible for 

presenting antigen to CD4+ T cells.  Lung DCs from uninfected mice revealed low levels 

of MHC class II, CD40, and CD86 (7.72%, 10.64%, 6.11% respectively), whereas B. 
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parapertussis-infected DCs showed increased expression (20.64%, 13.67%, 14.04%).  

Comparatively, lung DCs from B. pertussis infection displayed the highest levels of 

maturation (64.92%, 36.64%, 60.26% respectively).   

The phenotypic marker CD11b is present on myeloid DCs of lung origin (40).  

Relatively low expression of CD11b (10.21%) was observed in lung DCs from 

uninfected control mice while this percentage increased in B. parapertussis infection 

(20.5%), but even more so in B. pertussis infection (61.04%).  Additionally, CCR5 was 

analyzed to observe DC migratory abilities to inflamed tissues.  There was low 

expression of CCR5 in uninfected DCs (7.76%) compared to B. parapertussis (13.95%,) 

and B. pertussis (55.84%).  Together, this data indicate that DCs mature during B. 

pertussis infection and do not appear to be inhibited by PTx. 
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FIGURE 1.  Experimental design.  Balb/c mice were infected and lungs were 
harvested 5 and 25 days post-infection.  Lungs were processed and mononuclear 
cells were obtained to further enrich for CD11c+ cells.  DCs were enumerated, 
phenotyped and analyzed for imprinting abilities in co-cultures with allogeneic 
splenocytes from Swiss Webster mice.  

Uninfected (PBS) B. pertussis B. parapertussis 

Time-points of 5 or 25 days  
post-infection 

Infect Balb/c 
mice on Day 0 

Harvest lungs and digest (separately) 

Obtain mononuclear cells with Percoll gradient 

Enrich for DCs using CD11c microbeads  

DC phenotyping using 
multicolor flow cytometry 

Imprinting of trafficking 
molecules from co-culture of 

lung DCs with allogeneic 
splenocytes from Swiss 

Websters 

Enumerate DCs with 
multicolor flow cytometry 
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TABLE I.  DC phenotypic markers.  The following markers were used to 
phenotype DCs and determine maturation levels for uninfected, B. pertussis 
and B. parapertussis infected lungs. 

 

 Marker  Function  
 CD11c  Expressed primarily on DCs 
 CD40  Co-stimulatory molecule 
 CD86  Co-stimulatory molecule 
 MHC class II   Extracellular antigen presentation molecule 
 CCR5  Allows DC migration to inflamed tissue (24) 
 CD11b  Integrin expressed on DCs and monocytes 
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FIGURE 2.  DC maturation 5 days post-infection with B. pertussis and B. parapertussis.  
Mononuclear cells were isolated from lungs and enriched for DCs.  Percent of CD11c+ 
cells was estimated using quadrants that were placed according to positive controls (A). 
Mononuclear cells were gated on monocytes, and doublets (cell clumping) were removed 
(B).  CD11c+ cells (DCs) were analyzed for a second phenotypic marker as detailed in C.  
(See Table I for a description of the markers).  For DC maturation, we measured levels of 
CD40, CD86, MHC class II; myeloid associated marker CD11b, as well as ability to 
migrate to lymph nodes with CCR5 (C-D).  Data are representative of at least 4 
independent experiments.      
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Infection with Bordetella alters trafficking receptor levels on naïve CD4+ T cells 

In order to verify the imprinting ability of lung DCs derived from experimentally 

infected mice, we co-cultured lung DCs with naïve splenocytes from allogeneic mice.  

Establishing an allogeneic system ensures that imprinting occurs on proliferating T cells, 

where DCs interact through MHC class II with the T cell receptor and trigger non-

specific T cell proliferation.  This leads to transcription of certain patterns of molecules 

that guide the T cell to the site of infection (33).  These homing molecules are a 

combination of chemokine receptors and integrins that interact with inflamed 

endothelium and allow transmigration of the T cell from the bloodstream into the tissue.   
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The proliferative nature of the allogeneic system was confirmed by intracellular 

staining for interferon γ (secreted during T cell activation) and Ki-67 (a nuclear factor of 

proliferation) in activated CD38+ cells (Fig. 3A).  A proliferating population was 

observed in each treatment; 0.5-1.8% of cells were positive for interferon γ and roughly 

2% were positive for Ki-67 indicating that we had a proliferating T cell system.  DC 

ability to imprint trafficking markers on allogeneic T cells was then analyzed.  Since little 

is known about specific lung homing markers, we analyzed a panel of trafficking 

molecules to determine whether the levels of imprinted homing molecules were altered in 

infected co-cultures compared to uninfected controls (Table 2).  Our results indicate an 

overall downregulation of homing molecules on CD4+ T cells during experimental B. 

pertussis infection compared to uninfected controls at 5 days post-infection.  These 

results were normalized to uninfected control values set at 100%.   

Recent studies indicate that CD11a, CD162, and CD103 are important markers 

for trafficking and cell retention in the lungs (28, 41-45).  On day 5 of infection, CD4+ T 

cells from B. parapertussis co-cultures showed upregulation of CD11a (125.9%) and 

CD162 (114.9%) but downregulation of CD103 (81.5%) compared to uninfected controls 

(100%) (Fig. 3C).  In contrast B. pertussis co-cultures showed downregulation of CD11a 

(94.4%) and CD162 (76.1%) with upregulation of CD103 (130.3%).  Additionally, the 

integrins CD49a and CD49d can dimerize with CD29 and have been reported to migrate 

to the respiratory system (21, 46-47).  However, downregulation was observed in both B. 

parapertussis and B. pertussis infections for CD49a (53.6%, 75.6% respectively) and 

CD49d (63.9%, 81.9% respectively) compared to uninfected controls (100%).  Another 
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adhesion molecule, CD49f, may play a role in lung homing and was downregulated more 

in B. pertussis co-cultures (69.9%) than in B. parapertussis (89.6%) (27).  There is also 

evidence in the literature that CXCR3 is involved in T cell homing to the lungs (11, 48-

50).  Five days post-infection with Bordetella, CXCR3 was downregulated in both B. 

parapertussis (49.6%) and B. pertussis (58.7%,) compared to uninfected controls (100%).  

 

 

 

 

 

TABLE II.  Trafficking markers and their functions.  A variety of markers that are 
implicated in the homing process were analyzed, such as molecules involved in tethering 
or rolling and other integrins that mediate attachment to the endothelium and lead to 
extravasation. 

  
  Marker   Function  Receptor Family 

 CD162 (PSGL-1)  Adhesion (43)  Selectin 
 CXCR3  Chemotaxis of T cells (49)  Chemokine receptor 
 CD11a (LFA-1)  Cell adhesion, costimulation (45)  Integrin 
 CD49a (α1)  Involved in T cell adhesion (46)  Integrin 
 CD49d (α4)  Cell migration, adhesion, homing (47)  Integrin 
 CD49f (α6)  Cell adhesion, migration (27)  Integrin 
 CD103 (αε)  Tissue retention of lymphocytes (42)  Integrin 
 CD38  Activation marker  --- 
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FIGURE 3.  Imprinting of trafficking molecules, 5 days post-infection, occurs when DCs 
interact with CD4+ T cells.  Lung DCs were cultured with naïve allogeneic splenocytes 
to allow for imprinting.  Intracellular flow cytometry was used to confirm that co-cultures 
were an allogeneic system using CD38 with Ki-67 and interferon γ (A).  For co-culture 
experiments flow cytometry was used to gate on the lymphocytes, doublets (cell 
clumping) were removed and CD4+ cells were identified to determine the pattern of 
trafficking receptors (B).  In order to observe whether imprinting occurred, levels of the 
chemokine receptor CXCR3 and various integrins (CD11a, CD162, CD49f, CD49a, 
CD49d, and CD103) were measured (C).  (See Table II for a description of the markers).  
Data was normalized to uninfected controls (100%) and are representative of at least 4 
independent experiments. 
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Twenty-five days post-infection: DC maturation levels decrease except for some markers 

in B. pertussis infection 

 In our previous experiment for 5 days post-infection, we observed an increase in 

both percent CD11c+ cells and DC maturation levels during experimental Bordetella 

infection.  In order to establish the phenotypic state of DCs 25 days post-infection, lungs 

were harvested and lung mononuclear DCs were isolated.  In the lungs, the percent gated 

CD11c+ cells decreased for B. pertussis (20.7%) and B. parapertussis (23.1%) infections 

to levels similar to uninfected controls (20.4%) (Fig. 4A).  DC phenotypic levels were 

then analyzed where lung DCs from B. parapertussis infection had reduced expression of 

the maturation marker CD86 (4.14%) compared to B. pertussis (8.04%) (Fig. 4B).  In 

contrast, MHC class II remained upregulated in B. pertussis (18.3%) whereas the levels 

for uninfected controls and B. parapertussis decreased to 6.74% and 7.57% respectively.   

The lung-associated marker CD11b was 5.24% for lung DCs from uninfected 

controls, whereas DCs from B. pertussis infection had elevated levels (13.1%) while DCs 

from B. parapertussis were downregulated (6.56%).  The DC migratory marker CCR5 

was upregulated on DCs from B. pertussis (7.24%) compared to B. parapertussis (3.59%) 

and uninfected controls (3.75%).  Together, this indicates that the effect of Bordetella on 

DC phenotype diminished 25 days post-infection with the exception of B. pertussis 

infection where MHC class II, CD86, CD11b, and CCR5 remained elevated.  
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FIGURE 4.  DC maturation 25 days post-infection with B. pertussis and B. 
parapertussis. After 25 days of infection lung mononuclear cells were obtained, enriched 
for DCs and gated similarly to that shown in Fig. 2B.  We assessed the percent CD11c+ 
cells in each treatment (as determined using quadrants from flow cytometry dot plots) (A) 
and evaluated DC maturation with MHC class II, CD40, CD86; myeloid and lung 
associated markers CD11b, CD11c, and migratory capability with CCR5 (B).  Data are 
representative of at least 3 independent experiments.   
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Trafficking receptor levels decreased in B. parapertussis co-cultures but increased in B. 

pertussis co-cultures 25 days after infection 

Intracellular flow cytometry results of interferon γ and Ki-67 confirmed the 

proliferative ability of each co-culture, as illustrated by the interferon γ positive and Ki-

67 positive populations (Fig. 5A).  The level of trafficking receptors on CD4+ T cells was 

measured to determine whether DCs continued to actively imprint 25 days post-infection.  

In B. pertussis-infected co-cultures, the adhesion and lung retention marker CD11a was 

upregulated to 201.1% whereas it was downregulated in B. parapertussis-infected co-

cultures (113.5%) when compared to uninfected controls (100%) (Fig. 5B).   

The integrins CD49d and CD49f are associated with migration and had reduced 

expression in B. parapertussis co-cultures (96.7% and 95.1% respectively) when 

compared to B. pertussis co-cultures, which displayed elevated levels of CD49d (164.6%) 

but maintained downregulation of CD49f (50.5%).  For B. pertussis co-cultures, CXCR3 

remained downregulated (21.4%) compared to uninfected controls (100%).  This suggests 

that 25 days post-infection, B. pertussis-infected DCs can imprint some trafficking 

molecules on CD4+ T cells, while this is not the case for B. parapertussis-infected co-

cultures, where these molecules are expressed at low levels. 
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FIGURE 5.  The levels of trafficking molecules increase 25 days post-infection in B. 
pertussis infection.  Lung DCs were cultured with naïve splenocytes overnight to allow 
for imprinting.  Intracellular staining with interferon γ and Ki-67 was included to confirm 
that imprinting occurred in the allogeneic co-cultures (A).  To determine the levels of 
imprinted markers, we gated on the lymphocytes, removed doublets (cell clumping), and 
identified trafficking markers on CD4+ cells (gating similar to that shown in Fig. 3B).  
On day 25 of infection we measured levels of lung retention molecules (CD11a, CD162, 
CD103), integrins (CD49a, CD49d, CD49f), and the chemokine receptor CXCR3 (B).  
All values were normalized to uninfected controls (100%).  Data are representative of at 
least 3 independent experiments.   
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Discussion 

Unlike other areas of the body such as the skin and gut where specific homing 

molecules that govern lymphocyte trafficking have been established (26), a unique 

trafficking molecule pattern to the respiratory airways remains to be defined.  We were 

interested in elucidating the role PTx has on DC imprinting of trafficking molecules on 

CD4+ T cells that guides them to the respiratory system.  PTx inhibits G protein 

activation and hinders chemotaxis of cells (8, 13, 15). Therefore, we established an 

experimental respiratory infection model using two bacteria from the Bordetella species: 

B. pertussis (produces PTx) and B. parapertussis (lacks PTx).   

DC origin and their level of maturation are critical components for imprinting. 

Therefore, we utilized flow cytometry to determine DC phenotype for uninfected controls 

and Bordetella-infected DCs.  At 5 days post-infection, CD11c+ cells increased 1.4 times 

in B. parapertussis infection, whereas there was a 3-fold increase in B. pertussis infection 

compared to uninfected controls.  This increase in CD11c+ cells may either be due to 

recruitment of DCs in the lungs during a state of infection or inability to leave the lungs 

and migrate to the lymph nodes, a phenomenon that could be attributed to PTx inhibition 

of chemokine receptors such as CCR7.  However, by 25 days post-infection, the percent 

CD11c+ cells in the lungs decreased for both infections, possibly due to a halt in 

recruitment of these cells to the lungs.   

In contrast to those who report partial DC maturation during B. pertussis infection 

(51), our results indicated that 5 days post-infection, lung DCs from B. pertussis infection 

had upregulated MHC class II, CD40 and CD86 and had generally higher levels of 



 

 33 
 

 
 
 

maturation compared to that in B. parapertussis infection or uninfected controls.  This 

discrepancy between our results and those of others may be attributed to the timing of 

post-infection sampling or differences in bacterial strains.  The phenotype of DCs 

changed 25 days post-infection for B. parapertussis so that MHC class II, CD86, CD11b, 

and CCR5 were downregulated compared to B. pertussis.  However MHC class II 

remained upregulated in B. pertussis, which may be due to continued antigen presentation 

to CD4+ T cells in the regional lymph nodes even at late stages of infection.  Together 

this information indicated that 5 days post-infection, B. pertussis does not prevent DCs 

from acquiring a mature phenotype that is required for imprinting CD4+ T cells.  

However, by 25 days after infection, B. parapertussis-infected lungs appeared to revert to 

steady-state conditions, which may not be the case for B. pertussis infection.  An 

important chemokine receptor, CCR7, is required for entry into lymph nodes (24).  In 

order to further characterize the migratory ability of B. pertussis-infected DCs, CCR7 

assessment will be included in future experiments.  

  Once the DC phenotype was established, isolated lung DCs were co-cultured 

with naïve splenocytes harvested from allogeneic mice, and imprinting of trafficking 

molecules on CD4+ T cells was analyzed.  CD11a and CD162 have been reported to be 

important for adhesion and retention of cells in the lungs (43, 45).  Interestingly, we 

found that on day 5 post-infection, both CD11a and CD162 were downregulated in B. 

pertussis infection but upregulated in B. parapertussis, which suggests that PTx has a 

role in suppressing these molecules during peak infection.  However, on day 25 post-



 

 34 
 

 
 
 

infection, CD11a levels were elevated, suggesting that this marker is upregulated only at 

later stages of infection, perhaps after the effects of PTx have diminished.   

Bordetella pertussis also showed elevated levels of CD103 on day 5 post-

infection, while it was downregulated in B. parapertussis co-cultures.  CD103 has been 

shown to be involved in tissue retention of lymphocytes (42), and perhaps CD4+ T cells 

are retained in the tissue instead of migrating during B. pertussis infection.  There is also 

evidence that CXCR3 is important for CD4+ T cell recruitment to the airways (11) and 

both Bordetella infections showed decreased levels of CXCR3 on day 5 of infection, 

while B. pertussis infection continued to show downregulation on day 25.  This indicates 

that perhaps both species prevent initial T cell recruitment to the lung through this 

chemokine receptor. 

The results from this research project suggest that B. pertussis downregulates 

certain trafficking molecules during peak infection; however, at later stages of infection 

these molecules are upregulated.  Since B. pertussis is a prolonged respiratory disease, it 

is possible that imprinting of trafficking molecules on CD4+ T cells persists during later 

stages of infection, perhaps due to the decreased effects of PTx.  Our experiments 

indicate that the lung environment for B. parapertussis returned to a state of homeostasis 

25 days after infection, whereas this is not the case for B. pertussis infection.   

Further studies can also include additional trafficking molecules such as CLA, 

CCR9 and α4β7 due to their presence on T cells that traffic exclusively to the skin and 

gut respectively.  Therefore, low levels of these molecules may be observed on T cells 

that home to the respiratory system (30, 48, 52).  Additional experiments may include in 



 

 35 
 

 
 
 

vitro infection of uninfected lung DCs pulsed with PTx, to assess the antigen specific 

response and imprinting of trafficking molecules that are PTx-dependent.  Antigen pulsed 

DCs could be co-cultured with naïve splenocytes to allow for imprinting, and results can 

be compared to in vivo experimental Bordetella infection.  In order to further confirm the 

role of PTx, an experimental infection with B. parapertussis complemented with soluble 

PTx could be included and compared to B. pertussis (18).  This information will increase 

our understanding of the pathogenesis of B. pertussis, and the role of PTx in preventing 

lymphocyte recruitment to the respiratory system through trafficking molecule 

modulation.  This line of research may identify the molecules responsible for the 

exclusive recruitment of CD4+ T cells to the airways, leading to a more efficacious 

vaccine design that targets trafficking molecules important in B. pertussis infection.   
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Conclusions 

 These experiments were designed to study the interactions between DCs and 

CD4+ T cells that lead to the imprinting of trafficking markers, which are especially 

important for respiratory illnesses such as B. pertussis.  The discovery of lung specific 

trafficking markers will aid in the development of improved vaccines that target the 

upregulation of such molecules and will enhance the clearance of respiratory pathogens.  

Our results from this research project indicated that DCs are activated and adopt a mature 

phenotype from B. pertussis infection on day 5, and that perhaps PTx interferes with the 

imprinting process, as observed by the downregulation of CD11a and CD162 on CD4+ T 

cells, which are important molecules for T cell retention in the lungs.  However, 25 days 

post-infection with B. pertussis there is continued elevated expression of MHC class II, 

CCR5, and CD11b in addition to upregulation of CD11a and CD49d, which could be due 

to the fading effects of PTx.  This suggests that B. pertussis may initially alter the DC 

imprinting process to avoid T cell recruitment to the lungs. 

 

Future directions 

In order to further investigate the effects B. pertussis has on the respiratory 

system, we plan to perform immunohistochemical analysis of lung sections from 

uninfected and Bordetella-infected mice.  These lung sections will illustrate the degree of 

inflammation and tissue damage inflicted by the bacteria compared to uninfected lungs.  

We will also include fluorescence tagged antibodies specific to T cells to determine 

whether these cells are recruited to the lungs.  In order to broaden our analysis of 
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lymphocyte trafficking we will also incorporate CD8+ T cells to observe whether PTx 

differentially imprints homing molecules on this cell type during infection.  
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APPENDIX A: TIME COURSE EXPERIMENT TO DETERMINE PEAK 

INFECTION 
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FIGURE 6.  A time course of infection shows the peak infection days for B. pertussis 
and B. parapertussis.  In order to determine the optimal day for peak infection, we 
administered 5x106 CFU per 20 µl by intranasal administration and performed a time 
course experiment with two Balb/c mice per time-point.  Lungs were harvested at each 
time-point, homogenized and plated on Bordet-Gengou blood plates.  By day 25 post-
infection, zero colonies of B. pertussis and B. parapertussis were recovered from lungs 
(data not shown).  Experiment and analysis was done by Nicole Tarlton.   
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APPENDIX B: SUPPLEMENTARY DATA 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  
 
FIGURE 7.  DCs mature in response to B. pertussis infection even with smaller doses of 
inoculum.  BALB/c mice were infected intranasally with 5x105 CFU in 20 µl and percent 
DCs were measured in each treatment at a peak infection time of 10 days (A).  Maturation 
markers (MHC class II, CD40, CD86) and lung-associated markers (CD11b, CD207) 
were also measured (B).  Bordetella pertussis-infected DCs were co-cultured with naïve 
splenocytes and levels of CCR5, CCR6, CD103, CD106, CD11a, CD162, CD49d, and 
CD49f were assessed (C).  All values for the co-cultures were normalized to uninfected 
controls (100%). 
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APPENDIX B: SUPPLEMENTARY DATA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Trafficking Molecule Expression During Peak Infection
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APPENDIX B: SUPPLEMENTARY DATA 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 8.  DCs mature in response to Bordetella and downregulation of homing 
molecules on CD4+ T cells was observed in B. pertussis co-cultures.  We assessed the 
percentage of CD11c+ cells in each treatment using quadrants that were placed according 
to positive controls (A).  DC maturation markers observed included MHC class II, CD40, 
CD80, CD86; myeloid and lung associated markers, CD11b, CD207 and migratory 
makers CD103, CCR5, CCR6, CCR7 (B).  After co-culturing, levels of the chemokine 
receptors CCR5, CCR6, CXCR3, and adhesion markers CD11a, CD29, CD49a, CD49d, 
CD106, and CD162 were measured (C).  All values were normalized to uninfected 
controls (100%). 
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FIGURE 9.  25 days post-infection, the pattern of trafficking markers changes compared 
to peak infection.  25 days after infection with Bordetella, levels of CCR5, CCR6, 
CD49f, and CD162 were measured on co-cultured CD4+ T cell.  All values were 
normalized to uninfected controls (100%). 
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