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ABSTRACT 

MARINE MAMMAL RESPONSE TO ECOSYSTEM VARIABILITY IN 
MONTEREY BAY, CALIFORNIA 

by Julia Burrows 

The coastal upwelling ecosystem near Monterey Bay, California is an extremely 

productive, yet variable, ecosystem and an important foraging area for mobile, apex 

predators, such as marine mammals. Longer-term studies are required to better 

understand how marine mammals respond to temporal environmental variability; 

however, few of these studies exist. We conducted monthly shipboard line-transect 

surveys in Monterey Bay from 1997 to 2007, concurrent with hydroacoustic and 

oceanographic sampling. Twenty-two species of marine mammals were identified, and 

monthly and annual densities were calculated for the 12 most commonly sighted species. 

Densities varied among years, whereas species richness remained relatively constant. 

Marine mammals were most evenly distributed but least dense during the anomalous 

upwelling conditions of 2005 and least even but still dense during the 1997/1998 El Nino 

event. No single environmental variable consistently predicted the densities of cetacean 

species, and variables expected to be good predictors explained only a minimal amount of 

variability. Incorporating temporal lags into analyses improved predictive capabilities of 

upwelling index, chlorophyll, and primary productivity, but a more comprehensive prey 

collection methodology may also have improved predictive power. Through long-term 

monitoring programs, we can expand our understanding of how environmental variability 

affects top predators and become better prepared for future oceanic change as it occurs. 
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INTRODUCTION 

Eastern boundary currents, such as the California Current, are among the most 

productive ecosystems in the world (Hickey 1979, Glantz & Thompson 1981). 

Productivity is driven by local-forcing coastal upwelling (Barber & Smith 1981, Carr & 

Kearns 2003) and larger-scale oceanic circulation patterns (such as El Nino/La Nina 

events). Upwelling in the California Current is initiated when northwest winds along the 

North American west coast combine with Coriolis force to create offshore Eckman 

transport of surface waters, resulting in the movement of cool, nutrient rich waters to the 

surface (Barber & Smith 1981, Huyer 1983, Service et al. 1998). Nutrients brought to the 

euphotic zone induce phytoplankton blooms, which increases productivity at multiple 

trophic levels (Hutchings et al. 1995, Pennington & Chavez 2000). 

In coastal upwelling ecosystems, there is a temporal lag between the onset of 

physical oceanographic changes and the biological response to those changes. Increases 

in the strength of upwelling winds precede decreases in sea surface temperatures (SSTs), 

which precede increases in chlorophyll fluorescence (Service et al. 1998). Chlorophyll is 

often used as an index of primary production (Smith et al. 1982, Kahru & Mitchell 2008), 

which is a measure of food availability for grazers. Increases in chlorophyll (primary 

production) precede increases in zooplankton abundance, which ultimately precede the 

arrival of top predators, such as marine mammals (Marinovic et al. 2002, Burtenshaw et 

al. 2004, Littaye et al. 2004, Croll et al. 2005). 

In addition to seasonal coastal upwelling, interannual variability resulting from El 

Nino/La Nina events influences productivity in the California Current (Barber & Chavez 
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1983, Chavez et al. 2002). El Nino events are typically associated with a delayed and 

shortened upwelling season (Bograd et al. 2009), increased SSTs, a deepening of the 

thermocline, reduced nutrient availability, and decreased primary production (Barber & 

Chavez 1983, Hayward 1993, Lenarz et al. 1995, Chavez 1996, Chavez et al. 2002, 

Marinovic et al. 2002). La Nina events often follow El Nino's and result in a cooler, 

more productive environment (Chavez et al. 2002, Marinovic et al. 2002). 

Physical and biological oceanographic variables associated with upwelling and El 

Nino/La Nina events influence the abundance and distribution of mid-trophic level prey 

species (Fiedler et al. 1986, Lenartz et al. 1995, Marinovic et al. 2002, Brodeur et al. 

2006) and ultimately apex predators, such as marine mammals (Sydeman & Allen 1999, 

Benson et al. 2002, Burtenshaw et al. 2004, Keiper et al. 2005, Lowry & Forney 2005). 

Oceanographic variables are often used to predict marine mammal abundance and 

distribution (Smith et al. 1986, Littaye et al. 2004, Tynan et al. 2005, MacLeod et al. 

2007, Gremillet et al. 2008) because they require relatively less cost and effort to obtain 

than prey data. However, prey availability (or a combination of prey and oceanographic 

variables) is likely the best predictor of predator density, because predators distribute in a 

manner that tracks their prey (Weinrich et al. 1997, Benoit-Bird & Au 2003). 

Environmental variability may not only affect the density and distribution of 

species, but also diversity. Researchers who have examined the effect of interannual 

environmental variability on diversity have reported increased species diversity and 

richness in the North Pacific during El Nino years, and attributed the increases to the 

northward movement of species typically associated with warmer waters (Benson et al. 
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2002, Worm et al. 2005, Hooff & Peterson 2006). A similar, yet longer-term, poleward 

expansion of southern species and associated increase in biodiversity in higher latitudes 

already is occurring (or is predicted to occur) as the world's oceans warm (Hughes 2000, 

Beaugrand et al. 2002, Hyrenbach & Veit 2003, Whitehead et al. 2008). The response of 

species to shorter-term variability, such as delayed and weakened seasonal upwelling 

(Snyder et al. 2003) or El Nino events, may be the best predictor of how these species 

will respond to longer-term oceanographic change, such as ocean warming (Trathan et al. 

2007). Understanding how environmental variability affects species density and diversity 

is an important step in anticipating changes that may occur in species composition and 

ecosystem functioning over longer time periods. 

Many researchers have studied the movements or distribution of individual 

species throughout a season or several years (Sydeman & Allen 1999, Friedlaender et al. 

2006, Weise et al. 2006), without monitoring changes in species composition over longer 

time periods (decades). In this study we attempted to determine how a community of top 

predators was affected by environmental variability and to establish if these effects were 

consistent through time. To accomplish this objective we (1) documented changes in 

marine mammal density and diversity in Monterey Bay, California throughout an 11-year 

period (1997-2007), (2) tested for differences in marine mammal density and diversity 

(richness and evenness) between years with warmer and cooler oceanic conditions, (3) 

examined the effects of environmental and prey predictor variables on monthly marine 

mammal density and occurrence patterns, and (4) incorporated temporal lags of 

environmental predictor variables into analyses. 

3 



We hypothesized that marine mammal species typically associated with cooler 

water would be present in greater densities during years dominated by cooler oceanic 

conditions (stronger upwelling, lesser SSTs), and species typically associated with 

warmer water would be present in greater densities during years dominated by warmer 

oceanic conditions (lesser upwelling, greater SSTs). We expected that a greater diversity 

of marine mammal species would be associated with warmer-water years. Additionally, 

we hypothesized that the most direct trophic link (prey) would be the best predictor and 

thus explain the greatest amount of variability in marine mammal density when compared 

with environmental predictor variables. We also expected that there would be temporal 

lags between maxima in environmental predictor variables and maxima in marine 

mammal densities, and that incorporating time lags into analyses would improve 

predictive capabilities. 

METHODS 

Study area 

Monterey Bay, located off the central California coast, is the largest bay 

(approximately 1200 km2) on the west coast of the United States completely open to the 

ocean (Benson et al. 2002, Croll et al. 2005; Fig. 1). The Monterey Submarine Canyon, 

one of the largest canyons in the world (Shepard 1973), divides the bay into two nearly 

equal shallower shelves (up to 140 m deep and 10-15 km wide), with deeper waters over 

the canyon in the center of the bay (Greene et al. 2002; Fig. 1). Monterey Bay is 

influenced seasonally by a coastal upwelling plume that originates approximately 30 km 
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north of the bay at Point Ano Nuevo (Rosenfeld et al. 1994). Upwelling winds off the 

central California coast usually begin in March and continue through August; with 

periods of wind relaxation (Send et al. 1987) becoming more frequent during July and 

August (Pennington & Chavez 2000). A short transitional oceanic period occurs from 

late-August through November, when winds continue to relax and SSTs increase until a 

warmer, less productive winter Davidson Current season begins in December and persists 

through February (Skogsberg 1936, Skogsberg & Phelps 1946, Pennington & Chavez 

2000). 

Line transect field methods 

Monterey Bay was divided into seven transect lines which were surveyed for 

marine mammals throughout the 11-year study (Benson et al. 2002, Croll et al. 2005; 

Fig.l). Transect lines ranged in length from 10 km (5.4 nautical miles; nmi) to 25 km 

(13.5 nmi), and totaled approximately 126 km (68 nmi). The entire survey area 

encompassed approximately 909 km2. The location of the first line was randomly chosen 

from a 3-minute latitudinal range, after which each line was spaced 5.5 km (3 nmi) apart 

for uniform coverage of the bay (Benson et al. 2002). Beginning in September 2006, the 

first line was no longer randomly selected and the same grid of seven lines was surveyed 

during subsequent months. Surveys were conducted at a ship speed of 18.5 km per hour 

(10 knots) from the 55 m (30 fathom) isobath WNW to 122.083°W longitude. Surveys 

were completed during two consecutive days each month from May through November 

1997-2007, with additional surveys in January and March 2003-2007. Lack of funding 

during 2007 meant surveys were conducted only one day a month (five transect lines 
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totaling 82 km) and no surveys occurred during June, September, and October 2007. 

Surveys were occasionally postponed or cancelled due to persistent inclement weather. 

Two observers stationed on top of the bridge (4.3 m above sea level, except for 

March and July 2007 when observers were 5.66 m above sea level) searched for marine 

mammals from the trackline to 90° abeam of the ship using Fujinon 7x50 binoculars 

(with a compass and reticle scale in the oculars). A third centrally located observer 

searched mainly with the naked eye on the trackline near the ship (binoculars were used 

to aid in species identification), while a fourth person entered sightings into a laptop 

computer using the program SeeBirdWinCruz (Holland 2008) with direct input from the 

ship's GPS. When a sighting occurred, all observers assisted with species identification 

(to the lowest taxonomic level) and abundance estimation. Time, latitude, longitude, 

species, number of individuals, cue (body, blow), method (eye, binoculars), compass 

bearing, and number of reticle marks down from the horizon were recorded. 

Environmental conditions (fog or rain, visibility in miles, wind direction and speed, swell 

direction and speed, horizontal and vertical sun position, and Beaufort sea state) were 

continually updated throughout the survey. 

Monthly density estimates 

Marine mammal densities were calculated from line transect data using Distance 

software (Thomas et al. 2006). Sightings from May through November 1997-2007, and 

January and March 2003-2007 were included in analysis to obtain the global detection 

function (g(x) = the probability of detecting an animal, given that it is at distance "x" 

from the line; Buckland et al. 2001). Radial distances of marine mammal groups to the 
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trackline were obtained using binocular reticle measurements and the platform (observer 

eye) height using the formula of Lerczak & Hobbs (1998). Calculations were performed 

in a Microsoft Excel function obtained from the National Marine Mammal Laboratory 

website (http://www.afsc.noaa.gov/nmml/). Radial distances for sightings made using 

the land/ocean interface as a reticle reference rather than the true horizon (sky/ocean) 

were adjusted using the military analyst toolset in ArcMap (ArcGIS 2006). 

Perpendicular distance (x) from the trackline was computed from the radial distance (r) 

and the angle (6) between the trackline and the marine mammal group (x = r * sin ( 0 )). 

Densities of marine mammals were estimated using the Multiple Covariate 

Distance Sampling (MCDS) analysis engine in Distance and were based on the following 

equation: 

. %>•'»• 
D = ^-

2wL 

where D is the density estimate (animals per km2), n is the number of marine mammal 

groups detected; st is the size of the i'h group; w is the truncation distance and half-width 

of the transect, L is the total line length, and pt is the estimated probability of detecting 

the i* group (Buckland et al. 2001, Buckland et al. 2004). 

Detection probability was estimated from the detection function (g(x)), which was 

fitted to the observed perpendicular distances using Distance software. A detection 

function is composed of a key function and optional adjustment function (cosine, simple 

or hermite polynomial), which are series expansion terms. Both half-normal (Hn) and 

hazard-rate (Hr) key functions were considered: 
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Hn:gi(x) = e2a< 

Hr: gXx) = \-e^a'> 

where p is an exponent parameter and at is a scale function that can change based on the 

observation-specific values of covariates (e.g. group size, sea state etc.) and estimated 

parameters. As a( increases the detection probability increases. The observation-

specific detection probability is computed as: 

1 
Pi = fg,(x) — dx. 

The truncation distance (w) was set for each species such that approximately 5% of the 

most distant sightings were excluded (Buckland et al. 2001). Only survey effort that 

occurred in acceptable Beaufort sea states (0-4) and swell heights (1-8 feet) were 

included in analyses. Additionally, only non-collinear covariates with a significant effect 

on perpendicular distance were considered as covariates in MCDS (Beaufort sea state, 

swell height, visibility, and group size). Beaufort was treated as a factor with discrete 

levels 0-4, whereas all other covariates were continuous variables (non-factors). 

Observer was not included as a covariate because there were more than 200 volunteer 

observers during the 11-year study. Because more experienced observers were likely 

better at detecting marine mammals than less experienced observers, not including 

observer as a covariate added to the random error in the density estimates. 

A sequence of models with different sets of covariates were examined, with the 

addition of series expansion terms (cosine, simple or hermite polynomial) to assist in 
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minimizing Akaike's Information Criterion (AIC; Akaike 1973). Model convergence 

was more difficult to achieve using all combinations of covariates and adjustments (i.e. 

too many parameters) for species with fewer sightings. In these cases, the best model 

was chosen from models including only one covariate and no adjustments, or no 

covariates (null model). Additionally, to achieve model convergence using the Hr key 

function in MCDS, starting values for the Hr parameter estimates were manually selected 

using those calculated from the Hn model for the same species, with the power parameter 

coefficient set to two. 

The expected value for group size (E(s)) was estimated as the mean of observed 

group size when size was not included as a covariate in the detection model (i.e. observed 

mean group size did not change with distance). When probability of detection (pi) was a 

function of group size, then the following estimator was used to adjust for size-bias: 

Although Distance Sampling methods assume certain detection on the trackline (i.e. 

g(0) = 1), it is likely some animals were not seen (perception bias) or submerged 

(availability bias) as the vessel passed, resulting in an underestimation of true density. 

However, because the aim of this study was to compare relative densities of animals in 

the same area through time, consistent underestimation should not affect results. 

Additionally, because it was not possible to include uncertainty associated with density 

calculations in subsequent statistical analyses with environmental and prey variables, 

variance estimates for monthly densities were not determined. 

10 



Annual density and diversity 

Once monthly density estimates were obtained, species richness, species 

evenness, species densities, and total density were calculated for each year 1997-2006 

(2007 was excluded from diversity calculations due to reduced effort that year). Species 

richness (S) was defined as the total number of marine mammal species identified each 

year, including rare species. Species evenness was calculated for each year using the 12 

most abundant species (with enough sightings to obtain density estimates) by first 

calculating species diversity using the Shannon-Weiner index (//): 

15T—jjCPiXlogA) 
i=i 

where p, is the proportion of total sample belonging to the ith species. Shannon's 

equitability (EH, evenness) was then calculated as: 

*.--?-
" logS 

where S is the annual species richness of the 12 most abundant species (hereafter focal 

species). Shannon's equitability index for species evenness quantifies the numerical 

equality of the annual densities of each of the 12 focal species. An EM value of one 

indicates complete evenness (i.e. all 12 species were present in equal densities). Because 

of the difficulties associated with identifying common dolphins in the field, long-beaked 

(Delphinus capensis) and short-beaked (Delphinus delphis) common dolphins were 

treated as one species for evenness calculations. Mean annual density and standard error 

(SE) for each focal species were calculated from monthly density estimates (May-Nov), 
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and total annual density was calculated by summing the mean annual densities of the 12 

focal species. 

Prey and environmental variables 

Prey data were collected concurrently with marine mammal line transect data. 

From May 1997 through May 2003 a Simrad EY500 digital echosounder configured with 

a 200 kHz hull-mounted single-beam transducer (ping interval of two seconds) was used 

for collection of prey data. This model was replaced in June 2003 by a Simrad EK60 

digital echosounder operated at 200 kHz with a split beam transducer. The echosounder 

was calibrated once per year using the standard sphere method (Johannesson and Mitson 

1983). Echograms were generated from backscatter data, stored on a laptop computer, 

and subsequently analyzed following methods described in Hewitt & Demer (1993) and 

Croll et al. (1998). Euphausiids (krill) and fish schools were identified using Echoview 

software (SonarData 2007) based on the strength and morphology of backscattering 

aggregations. The nautical area scattering coefficient (NASC) for krill was calculated for 

each km of survey effort to a depth of 5 m above the ocean floor (for depths less than 

200 m) or 200 m (for depths greater than 200 m), and mean NASC (krill backscatter; 

m knO was determined for each survey month. Fish schools detected in the same depth 

range were enumerated and the number per kilometer surveyed also was determined for 

each survey month. Plankton net tows were conducted at 6-10 sampling stations to verify 

that backscatter aggregations were correctly identified and to determine krill abundance 

(# 1000 m"3; Marinovic et al. 2002; Fig. 1). 
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Two chlorophyll (Chi) and primary production (PP) datasets were used in this 

study. The first was obtained from surface water samples (following methods 

recommended by Fitzwater et al. 1982 to avoid trace metal contamination) collected at 

the Ml (36.747°N, 122.022°W) and CI (36.797°N, 121.847°W) sampling stations 

(Fig. 1) during Monterey Bay Aquarium Research Institute's (MBARI) time series 

cruises (which occurred at approximately 21 day intervals). Chlorophyll-a concentrations 

(hereafter in situ Chi; mg Chi m"3) were determined using the conventional fluorometric 

technique of Holm-Hansen et al. (1965) and Lorenzen (1966), with a modified extraction 

procedure described by Venrick & Hayward (1984). Primary production, or carbon 

fixation (hereafter in situ PP; mg C m"3 d"1), was measured as the rate of uptake of the 

radioactive isotope 14C during a 24-hour incubation period in natural light conditions 

(Pennington & Chavez 2000). The second set of Chi and PP data were calculated from 

satellite measurements of spectral reflectance (ocean color) obtained from the Japanese 

Ocean Color and Temperature Scanner (OCTS; Jan-Jun 1997), NASA's Sea-viewing 

Wide Field Sensor (SeaWiFS; Oct 1997-Jun 2002) and combined NASA's SeaWiFS and 

Moderate Resolution Imaging Spectrometer (MODIS) Aqua satellites (Jul 2002-Dec 

2007). Remotely sensed data for July through September 1997 were not available. Mean 

monthly Chl-a (hereafter remote Chi; mg Chi m"3; 1 km pixel resolution) and mean 

monthly depth-integrated net primary production, total primary production minus losses 

due to phytoplankton respiration, (hereafter remote PP; mg C m"2 d"1; 9 km pixel 

resolution) were determined for a 9 x 9 km box around the Ml mooring using the Ocean 

Chlorophyll 4 version 4 (OC4v4) algorithm for remote Chi (O'Reilly et al. 1998) and the 
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Vertically Generalized Production Model (VGPM) for remote PP (Behrenfeld & 

Falkowski 1997, Kahru et al. 2009). The VGPM also used SST (°C; 9 km pixel 

resolution) obtained from OCTS (Jan-Jun 1997), Advanced Very High Resolution 

Radiometer (AVHRR) Pathfinder (Oct 1997-Jun 2002), and MODIS Aqua (Jul 2002-Dec 

2007) satellites. 

Additional environmental variables used included SST and upweiling index (UI). 

Mean monthly SSTs (°C) were calculated from a continuous record of temperature at one 

meter depth at the MBARI Ml mooring (Fig. 1). Mean monthly UIs (m sec 1 100 m-1); 

measures of wind-driven offshore Ekman transport derived from six-hourly synoptic 

surface atmospheric pressure fields) from 36°N 122°W were obtained from NOAA's 

Pacific Fisheries Environmental Laboratory website (http://www.pfeg.noaa.gov/). 

Statistical analyses 

Warmer vs. cooler years 

To determine if mean annual SST and UI affected annual marine mammal density 

and diversity, years were grouped into two categories based on similarities in physical 

oceanographic conditions: cooler (lesser SSTs and greater UIs) and warmer (greater SSTs 

and lesser UIs). Years with clearly lesser UI and greater SST pairings (1998, 2004, 2005, 

and 2006) were categorized as warmer years and years with clearly greater UI and lesser 

SST pairings (1999, 2001, 2002, and 2007) were categorized as cooler years (Fig. 2). 

Discriminate function analysis was then used to categorize years without a clear grouping 

(1997, 2000, and 2003). A two-tailed Student's t-test was used to determine if species 

richness, species evenness, species densities, or total density differed between cooler and 
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Figure 2. Annual means and standard errors for upwelling indices (UI) and sea surface 
temperatures (SSTs) in Monterey Bay, Jan-Dec 1997-2007. 
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warmer years. The assumption of normality was tested using a Kolmogorov-Smirnov 

(KS) test and the assumption of homoscedasticity was tested using Levene's test. If 

variances were heteroskedastic, unequal variance t-tests were performed. Results from 

unequal variance t-tests were confirmed with a randomization test using Resampling 

Stats software (Resampling Stats, Inc. 2003). One analysis included all years surveyed 

(n = 11) and another included only the years used to create the discriminate function 

(« = 8). An additional analysis was performed grouping years as strong upwelling (1999, 

2000, 2001, 2002) and weak and/or delayed upwelling (2004, 2005, 2006; as described in 

California Cooperative Oceanic Fisheries reports, CalCOFI, http://www.calcofi.org/), but 

excluding El Nino years. When the null hypothesis was not rejected, effect size was 

calculated using G*Power software (Faul et al. 2007) for a two-tailed t-test with an alpha 

of 0.05., a power of 0.8, and n = 5 in each group (for species richness and evenness) or 

n = 5 for warmer years and n = 6 for cooler years (for total density and species densities). 

Effect size was then multiplied by the pooled standard deviation (for homoskedastic 

variables only) to determine the difference in means that would have been detected 

statistically. 

Monthly density and occurrence predictors 

Relationships between prey and environmental variables, and density and 

occurrence (presence/absence) patterns, were examined for the six most abundant 

cetaceans. Pinnipeds were not included because their life history characteristics likely 

had a greater impact on their densities than environmental and prey variables. For 

example, California sea lions {Zalophus californianus) breed off southern California and 
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Mexico during the summer (Odell 1975), which results in decreased sea lion densities in 

central California at the time when upwelling and productivity typically increase. All 

statistical analyses were conducted using SYSTAT (SYSTAT Software Inc. 2007) or 

SPSS (SPSS Inc. 2007) software at an alpha level of 0.05. 

The original data were divided into two datasets as recommended by Fletcher et 

al. (2005). For the first dataset, least squares multiple regressions were used to assess the 

effects of environmental and prey variables (UI, SST, in situ Chi, in situ PP, remote Chi, 

remote PP, krill backscatter, krill abundance, and fish regions) on cetacean densities 

(when cetaceans were present). For the second dataset, multiple binary logistic 

regressions were used to test for effects of the same predictor variables on cetacean 

occurrence. Requirements for inclusion in the final model were based on likelihood-ratio 

statistics. Plots of linear regression residuals were screened to assess linearity and 

homoscedasticity. One-sample KS tests were used to assess normality of predictor and 

response variables for all analyses, and non-normal variables were log-transformed to 

achieve normality. The assumption of independence was tested using a Durbin-Watson 

D statistic, and monthly cetacean densities that were temporally autocorrelated were 

transformed using the first-order autocorrelation parameter (p) as described by Neter et 

al. (1996). 

Data were screened for multicollinearity through a forward stepwise multiple 

regression procedure. Changes in the F ratio or changes in the magnitude or direction of 

the regression coefficients from one step to the next were used as indicators of 

multicollinearity. Variance Inflation Factors (VIFs), measures of the extent to which 
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variance of the regression coefficients increased due to multicollinearity (Neter et al. 

1996), were calculated for each predictor variable. Statistical multicollinearity existed if 

VIFs were greater than two, or when significant variables became insignificant when 

another correlated predictor was added to the model (due to variance inflation; Graham et 

al. 2003). In these situations, the correlated predictor explaining the least amount of 

variability was removed from the analysis (for similar logic see Ainley et al. 2005). 

Statistical multicollinearity was not a major issue in this study because either only one or 

two uncorrected predictor variables were significant thus included in the same regression 

model, or predictor variables were lagged one, two, or three months thereby breaking 

most correlations between predictors. 

Pearson correlation analyses were used to determine the most appropriate 

temporal lag between environmental variables and monthly cetacean densities (when 

cetaceans were present). Environmental variables were lagged zero, one, two, and three 

months prior to a density observation. The time lag with the greatest absolute value for 

the correlation was selected as the appropriate temporal lag for each environmental 

predictor variable (UI, SST, in situ Chi, in situ PP, remote Chi, and remote PP). Because 

marine mammal sightings occurred May through November, data for correlation analyses 

were limited to seven months per year. Forward stepwise multiple regression analyses 

were performed once time lags were identified and predictor variables were appropriately 

adjusted. 

For binary logistic regression analyses, used to determine if predictor variables 

had a significant effect on cetacean occurrence, equal sample sizes were required to 
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obtain a balanced model that predicted each outcome (presence or absence) with 

equivalent accuracy. To equate sample size, ' V random subsamples were drawn from 

the category (presence or absence) with the most sightings such that"«" equaled the 

number of samples in the category with the lesser number of sightings. For example, 

sample size for blue whales {Balaenoptera musculus) was originally 18 present and 46 

absent, thus 18 data points were subsampled from the absent category and all data points 

in the present category were used in every subsample for a final sample size of 36. 

Subsamples also were taken for harbor porpoises (Phocoena phocoena; originally 44 

present/19 absent; final n = 38), humpback whales (Megaptera novaeangliae; originally 

52 present/14 absent; final n = 28), Risso's dolphins (Grampus griseus; originally 39 

present/24 absent; final n = 48), Dall's porpoises (Phocoenoides dalli; originally 27 

present/36 absent; final n - 54), and Pacific-white sided dolphins (Lagenorhynchus 

obliquidens; originally 30 present/33 absent; final n = 60). Logistic regression analyses 

were repeated five times for each species using different subsamples. 

RESULTS 

Monthly density estimates 

Twenty-two species of marine mammals were identified during the 11-year study 

(Table 1). Monthly densities were calculated in Distance Sampling for ten species with 

enough sightings (n > 55) to obtain a singe global detection function (Table 2). Monthly 

densities also were calculated for common dolphins (Delphinus spp.) and northern right 

whale dolphins (Lissodelphis borealis) from a shared model with additive swell height, 
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group size, and species effects (Table 2). Sightings for long-beaked and short-beaked 

common dolphins were combined for density estimates due to small sample sizes and 

difficulty distinguishing them in the field. 

The best models chosen for California sea lions, elephant seals (Mirounga 

angustirostris), harbor porpoises, humpback whales, and sea otters (Enhydra lutris), were 

those that minimized AIC. The best models chosen for the remaining species excluded 

models with the lesser AIC if those models violated assumptions or produced unexpected 

results. For example, models with numeric covariates with a coefficient counter to 

expectation, such as positive swell height coefficient for harbor seals {Phoca vitulina) or 

negative visibility coefficients for Dall's porpoises and common dolphins/northern right 

whale dolphins, were disregarded and the next best model was chosen. Coefficients with 

a sign opposite of expectation likely occurred by chance alone, resulting from unequal 

sample size distribution across all levels of a covariate. Adjustment terms were not 

included in the final model for Risso's dolphin density because the probability of 

detection at zero distance with a simple polynomial adjustment was greater than one, 

violating the assumption of certain detection on the trackline. The best half-normal 

model was chosen over hazard-rate models for Pacific white-sided dolphins and Dall's 

porpoises to avoid fitting the spike in sightings at zero distance, likely due to responsive 

movement of these species towards vessels (Williams & Thomas 2007). The model 

minimizing AIC for blue whales included Beaufort coefficients that did not increase from 

Beaufort 4 to Beaufort 0 as was expected (i.e. the distance at which animals were 

detected should have increased in lesser Beaufort sea states), and thus the next best model 
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was chosen. Beaufort coefficients were mostly positive, changing the scale of the 

detection function and increasing the distance at which objects could be detected. 

Annual density and diversity 

Densities of the 12 focal species varied among years (Fig. 3), although mean 

species richness remained relatively constant (13.7 ± 0.396 (SE) species per year; Fig. 4). 

Species richness varied by only four species during the ten-year period, and was 15 

(greatest richness observed) during 1997, 1998, and 2005 (Fig. 4). Marine mammals 

were most evenly distributed, but least dense during 2005, and least even, but dense 

during 1997 and 1998 (Fig. 4). The greatest total density of marine mammals occurred 

during 1997, 1998, and 2007 (Fig. 4). California sea lions, Dall's porpoises, harbor 

porpoises, harbor seals, humpback whales, Risso's dolphins, and sea otters were sighted 

every year, and elephant seals were sighted every year but 2007 (Fig. 3). Northern right 

whale dolphins were absent in 1997, 1998, and 2007, and present in greatest densities 

during 1999 (Fig. 3). Pacific white-sided dolphins were present in greatest densities from 

1999-2002, and decreased densities during 1997, 1998, and 2003-2007 (Fig. 3). 

Common dolphins were present in greatest densities and were the most abundant species 

of marine mammal during 1997 and 1998, but were sighted infrequently or absent in 

subsequent years (Fig. 3). Blue whales were present in greatest densities during 2003, 

and least densities or absent from 1997-1999 and 2005-2007 (Fig. 3). Risso's dolphins 

were present in decreased densities during 1997 and 1998, but were almost ten-times as 

dense during 2002 (Fig. 3). 
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Figure 3. Annual mean densities and standard errors for 12 focal marine mammal species 
identified in Monterey Bay, May-Nov 1997-2007. Note different scales on y-axis. 
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Figure 4. Species richness, species evenness, and total density for marine mammal 
species identified in Monterey Bay, May-Nov 1997-2007. Species richness was 
determined for all species sighted, including rare species, whereas species evenness 
(Shannon's equitability index) and total density were determined for only 12 focal 
species. Species richness and evenness were not calculated for 2007 due to reduced 
effort that year (ND = no data). 
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Warmer vs. cooler years 

Discriminate function analysis indicated that warmer and cooler year groupings 

were significantly different based on UIs and SSTs (n = 8, F = 29.847, p = 0.002), and 

generated scores (-15.863 + 0.626*SST - 0.864*UI) to categorize the remaining years as 

warmer (1997) or cooler (2000, 2003). Species richness, species evenness, and total 

density did not differ significantly between the two groups (Table 3). Pacific white-sided 

dolphins and northern right whale dolphins were the only species with significantly 

greater densities in cooler years, although northern right whale dolphin densities were 

only marginally significant (Table 3). No species had significantly greater densities in 

warmer years (Table 3). Randomization tests performed on heteroscedastic response 

variables (species richness, blue whale, common dolphin, and elephant seal densities) 

confirmed non-significant results of unequal variance t-tests. Performing the same 

analyses using only the eight most disparate years (used to develop the discriminate 

function) did not yield significant results. Performing the same analyses excluding El 

Nino years produced significant results for Pacific white-sided dolphins only (results not 

shown). The calculated mean differences necessary to detect significant differences in 

species evenness (n = 10), total density (« = 11), and species densities (« = 11) between 

warmer and cooler years were approximately 2-17 times greater than the actual observed 

mean differences (Table 3). Calculations were not performed for species richness, blue 

whale, common dolphin, or elephant seal densities because effect size for heteroskedastic 

variables could not be computed using G*Power. 
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Table 3. T-test results for differences in species richness, species evenness, total density, and species 
densities between warmer and cooler years. Mean (standard error; SE), sample size (n)> ^-statistic (/), 
p-value (p), and observed mean differences reported. Calculated mean differences were determined 
using G*Power for a two-tailed Mest with a = 0.05 and power = 0.8. Asterisk (*) indicates significant 
results (a = 0.05). 

Species 
Warmer year Cooler year 
mean (SE) mean (SE) 

Obs. Calc. 
mean mean 
diff. diff. 

Species Richness3 

Species Evenness 

Total density 

Blue whale3 

(Balaenoptera musculus) 

California sea lion 
(Zalophus californianus) 

Common dolphin3 

(Delphinus spp.) 

Dall's porpoise 
(Phocoenoides dalli) 

Elephant seal3 

(Mirounga angustirostris) 

Harbor porpoise 
{Phocoena phocoena) 

Harbor seal 
(Phoca vitulina) 

Humpback whale 
(Megaptera novaeangliae) 

N. right whale dolphin 
{Lissodelphis borealis) 

P. white-sided dolphin 
{Lagenorhynchus obliquidens) 

Risso's dolphin 
{Grampus griseus) 

Sea otter 
(Enhydra lutris) 

13.800(0.800) 5 13.600(0.245) 5 0.239 0.821 0.200 

0.575 (0.090) 5 0.650 (0.054; 

2.932 (0.987) 5 

0.003(0.0002) 5 

0.821 (0.309) 5 

1.489(0.917) 5 

0.066(0.014) 5 

0.016(0.006) 5 

0.065(0.011) 5 

0.055(0.015) 5 

0.037 (0.007) 5 

0.012(0.010) 5 

0.126(0.062) 5 

0.177(0.077) 5 

0.065 (0.016) 5 

3.654 (0.900; 

0.011 (0.005 

2.298(1.056; 

0.129(0.086 

0.061 (0.015 

0.008 (0.002 

0.097 (0.021 

0.065(0.012 

0.052 (0.008 

0.075 (0.024; 

0.553(0.149; 

0.255(0.137 

0.049(0.016 

5 0.717 0.494 0.075 0.336 

6 0.541 0.602 0.722 4.207 

6 1.389 0.211 0.008 

6 1.231 0.250 1.477 3.779 

6 1.477 0.212 1.360 

6 0.259 0.802 0.005 0.065 

6 1.176 0.288 0.007 

6 1.266 0.237 0.032 0.248 

6 0.554 0.593 0.010 0.178 

6 1.498 0.168 0.016 0.033 

6 2.267 0.050* 0.063 

6 2.453 0.037* 0.427 

6 0.471 0.649 0.079 0.525 

6 0.701 0.501 0.016 0.070 

1 Indicates unequal variance t-test used. 
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Monthly density predictors 

Linear regression results (non-lagged) indicated that humpback whale and Risso's 

dolphin densities could be predicted using environmental or prey variables. Log krill 

backscatter and in situ Chi had a significant effect on log humpback whale density using 

the in situ dataset, whereas log krill backscatter was the only significant predictor of log 

humpback whale density using the remote-sensed dataset (Table 4, Fig. 5). Upwelling 

index was the only environmental variable with a significant effect on log Risso's 

dolphin density using either dataset (Table 4, Fig. 5). None of the (non-lagged) 

environmental variables significantly predicted log transformed blue whale (n = 19), 

Dall's porpoise (« = 31), harbor porpoise (n = 51), or Pacific white-sided dolphin (n = 34) 

densities. 

The time frame in which cetaceans responded to environmental predictors varied 

among species (Fig. 6). In situ Chi (lagged three months; Fig. 6) was the only significant 

predictor of log Dall's porpoise density using the in situ dataset (Table 4, Fig. 5), whereas 

remote PP (lagged three months; Fig. 6) was the only significant predictor of log Dall's 

porpoise density using the remote-sensed dataset (Table 4). The significance of remote 

PP in predicting Dall's porpoise density was driven by one outlier, which if removed 

resulted in a non-significant outcome. Log krill backscatter (no lag) was the only 

significant predictor of log humpback whale density using either dataset (Table 4, Fig. 5). 

In situ PP (lagged three months; Fig. 6) was the only significant predictor of Pacific 

white-sided dolphin density using the in situ dataset (Table 4, Fig. 5), whereas none of 

the environmental variables tested significantly predicted Pacific white-sided dolphin 
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Table 4. Significant least squares multiple regression results predicting log transformed cetacean densities using 
environmental and prey variables. Regression coefficients (coef.) and standard errors (SE), sample size (ri), 
adjusted r2, F or t statistic, and p-values (a = 0.05) reported. Number of months lagged shown in parentheses after 
predictor variables. 

In situ Chi and PP dataset 
Not lagged Significant predictors Coef. (SE) r2 Statistic p-value 

Humpback whale density 
(Megaptera novaeangliae) 

Risso's dolphin density 
(Grampus griseus) 

Remote Chi and PP dataset 
Not lagged 

Humpback whale density 
(Megaptera novaeangliae) 

Risso's dolphin density 
(Grampus griseus) 

In situ Chi and PP dataset 
Lagged 

Dall's porpoise density 
(Phocoenoides dalli) 

Humpback whale density 
(Megaptera novaeangliae) 

P. white-sided dolphin density 
(Lagenorhynchus obliquidensJ 

Risso's dolphin density" 
(Grampus griseus) 

Remote Chi and PP dataset 
Lagged 

Dall's porpoise density*1 

(Phocoenoides dalli) 

Humpback whale density 
(Megaptera novaeangliae) 

Risso's dolphin density" 
(Grampus griseus) 

full model 
constant 
log krill backscarter 
in situ Chi 
full model 
constant 
upwelling index 

full model 
constant 
log krill backscatter 
full model 
constant 
upwelling index 

full model 
constant 
in situ Chi (3) 
full model 
constant 
log krill backscatter (0) 
full model 
constant 
in situ PP (3) 
full model 
constant 
upwelling index (1) 

full model 
constant 
remote PP (3) 
full model 
constant 
log krill backscatter (0) 
full model 
constant 
upwelling index (1) 

-2.104 
0.250 

-0.036 

-0.574 
0.002 

-2.151 
0.217 

-0.574 
0.002 

-1.261 
0.048 

-2.151 
0.217 

-0.737 
0.002 

-0.809 
0.003 

-1.272 
0.00009 

-2.151 
0.217 

-0.809 
0.003 

(0.240) 
(0.070) 
(0.016) 

(0.087) 
(0.0007) 

(0.244) 
(0.069) 

(0.087) 
(0.0007) 

(0.119) 
(0.019) 

(0.244) 
(0.069) 

(0.200) 
(0.001) 

(0.103) 
(0.0007) 

(0.138) 
(0.00004) 

(0.244) 
(0.069) 

(0.103) 
(0.0007) 

54 

41 

55 

41 

31 

55 

32 

36 

31 

55 

36 

0.208 

0.139 

0.141 

0.139 
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0.141 

0.131 

0.340 
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0.141 

0.340 

F = 

t = 
t = 
t = 
F = 

t = 
/ = 
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t = 
t = 
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; = 
t = 
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t = 
t = 
F = 
t = 
t = 
F = 
/ = 
/ = 

F = 
t = 
/ = 
F = 
/ = 
t = 
F = 
t = 
t = 

7.961 
8.749 
3.729 
2.230 
7.477 
6.566 
2.734 

9.890 
8.818 
3.145 
7.477 
6.566 
2.734 

6.575 
10.633 
2.564 
9.890 
8.818 
3.535 
5.568 
3.684 
2.383 

19.000 
7.828 
4.358 

5.271 
9.211 
2.296 
9.890 
8.818 
3.145 

19.000 
7.828 
4.358 

<0.001 

O.001 
<0.001 

0.030 
0.009 

O.001 
0.009 

0.003 

O.001 
0.003 
0.009 

O.001 
0.009 

0.016 
<0.001 

0.016 
0.003 

O.001 
0.003 
0.024 

<0.001 
0.024 

<0.001 
O.001 
O.001 

0.029 
<0.001 

0.029 
0.003 

<0.001 
0.003 

O.001 
<0.001 
O.001 

a Sea surface temperature was excluded from analysis due to multicollinearity. 
b Significant results for remote PP (lagged 3 months) are driven by one outlier. If outlier is removed, results 
become non-significant. 
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Figure 5. Relationship between significant environmental and prey predictor variables 
(•) and cetacean densities (A) for humpback whales (Megaptera novaeangliae) and krill 
backscatter, Risso's dolphins {Grampus griseus) and upwelling index (UI), Dall's 
porpoises (Phocoenoides dalli) and in situ chlorophyll (Chi), and Pacific white-sided 
dolphins (Lagenorhynchus obliquidens) and in situ primary production (PP). Each point 
is a monthly observation for Jan-Dec (UI, in situ Chi, and in situ PP), or May-Nov (krill 
backscatter and cetacean densities) 1997-2007. 
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and remote PP (T) ) and cetacean densities (when cetaceans were present). 
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density (n = 32) using the remote-sensed dataset. Upwelling index (lagged one month; 

Fig. 6) was the only significant predictor of log Risso's dolphin density using either 

dataset (Table 4, Fig. 5). Sea surface temperature (lagged two months; Fig. 6) also had a 

significant effect on Risso's dolphin density, but was collinear with UI thus excluded 

from analyses (VIF > 2). None of the lagged environmental variables significantly 

predicted log blue whale (n= 19) or harbor porpoise (n = 52) densities using either 

dataset. 

Harbor porpoise, Pacific white-sided dolphin, and Risso's dolphin densities and 

predictor variables required transformation to reduce temporal autocorrelation for both 

analyses (non-lagged and lagged), whereas blue whale and humpback whale monthly 

densities were not autocorrelated in either analysis. DalPs porpoise densities and 

predictor variables required transformation to reduce temporal autocorrelation for non-

lagged analysis, but transformation was not required when time lags were considered. 

Monthly occurrence predictors 

Results from binary logistic regressions were inconsistent among the five 

subsampled analyses. It was not possible to provide reliable predictive models for blue 

whales, harbor porpoises, humpback whales, or Risso's dolphins. Significant predictors 

existed for all four species, but not for all five subsampled analyses. The only consistent 

results indicated that there were no significant predictors in any of the five subsampled 

analyses for blue whale or Risso's dolphin occurrence using the remote-sensed dataset. 

Significant predictors existed for all five subsampled analyses for Dall's porpoise 

and Pacific-white sided dolphin occurrence, but different combinations of predictors were 
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significant for different subsamples. Only the predictors which were consistently 

significant in all five subsamples were reanalyzed using non-subsampled data. Non-

subsampled results were good representations of subsampled results because sample sizes 

were nearly equal for these two species. Collinear predictor variables UI, SST, and in 

situ Chi were removed from analysis of the Dall's porpoise in situ dataset and SST was 

removed from analysis of the Dall's porpoise remote-sensed dataset. No evidence of 

multicollinearity existed in either Pacific white-sided dolphin analysis. In situ PP 

significantly predicted Dall's porpoise occurrence using the in situ dataset, whereas UI 

significantly predicted Dall's porpoise occurrence using the remote-sensed dataset 

(Table 5). Upwelling index and SST significantly predicted Pacific white-sided dolphin 

occurrence using the in situ dataset, whereas UI and remote Chi significantly predicted 

Pacific white-sided dolphin occurrence using the remote-sensed dataset (Table 5). 

DISCUSSION 

Warmer vs. cooler years 

Species evenness and total density 

The lack of statistically significant differences in marine mammal species 

evenness and total density between warmer and cooler years is likely a result of the 

inconsistent community response of marine mammals to similarly grouped years. For 

example, although 1997/1998 (El Nino event) and 2005 (delayed and weakened seasonal 

upwelling) were classified as warmer years based on oceanographic conditions, the 

response of marine mammals differed between years. Therefore, grouping years as 

33 



Table 5. Significant binary logistic regression results predicting cetacean occurrence 
(presence/absence) using environmental and prey variables. Abbreviations are for sample 
size («) and Hosmer and Lemeshow goodness of fit (H&L GOF) test. Coefficient (coef.) 
standard errors are in parentheses and a = 0.05 for all statistical analyses. 

Statistic 

n presence 
n absence 

Omnibus Chi-squared 

Omnibus p-value 
-2 log likelihood 

Naeelkerke r2 

H&L GOF Chi-square 
H&L GOF p-value 
% correct absence 

% correct presence 
% correct overall 
constant: coef. (SE) 
constant: odds ratio 
Ul: coef. (SE) 
UI: odds ratio 
SST: coef. (SE) 
SST: odds ratio 
Remote Chi: coef. (SE) 
Remote Chi: odds ratio 
In situ PP: coef. (SE) 
In situ PP: odds ratio 

Dall's porpoise 
(Phocoenoides dalli) 

In situ 
dataset 

27 
36 

7.846 
0.005 

78.200 
0.157 
8.408 
0.395 

69.4 
55.6 
63.5 

0.861 (0.514) 
2.365 

-0.006 (0.002) 
0.994 

Remote 
dataset 

27 
36 

6.456 
0.011 

79.590 
0.131 
5.182 
0.738 

72.2 
55.6 
65.1 

0.799(0.517) 
2.224 

-0.007 (0.003) 

0.993 

P. white-sided dolphin 
(Lagenorhynch 

In situ 
dataset 

30 
33 

14.308 
0.001 

72.886 
0.271 

11.969 
0.153 

72.7 
56.7 
65.1 

-11.208(4.467) 

0.00001 
0.014 (0.004) 
1.014 
0.671 (0.300) 
1.957 

us obliquidens) 
Remote 
dataset 

30 
33 

19.078 
<0.001 
68.116 

0.349 
6.058 

75.8 
73.3 
74.6 
-0.596(0.616) 
0.551 
0.012(0.004) 
1.012 

-0.275 (0.097) 
0.760 
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warmer or cooler without considering the initial mechanism of variability (El Nino versus 

anomalous upwelling) may not be an effective method of categorization. Marine 

mammal communities appear to have responded slightly differently each year to the 

various combinations of factors affecting the ecosystem. 

Although grouping years as warmer or cooler may not be effective for some 

analyses, our dataset enabled a comparison of the community response of marine 

mammals between the 1997/1998 El Nino event and the anomalous upwelling year of 

2005. During 2005, warmer than average SSTs (throughout spring and summer), 

decreased primary production and zooplankton abundance (Mackas et al. 2006, Schwing 

et al. 2006, Barth et al. 2007), and reduced catches of mid-trophic level fish species 

(Brodeur et al. 2006) occurred off the west coast of North America. Previous researchers 

reported that the biological effects of the anomalous oceanic conditions of 2005 were 

limited to central California through southern British Columbia (northern California 

Current; Brodeur et al. 2006, Mackas et al. 2006, Sydeman et al. 2006) and documented 

positive zooplankton anomalies (Mackas et al. 2006) from Point Conception, California 

south to Baja, Mexico (southern California Current). Thus, it is likely that decreased 

total density of marine mammals in Monterey Bay during 2005 resulted from the 

redistribution of more mobile species to areas outside the region affected by the 

upwelling anomaly. Indeed, densities of wider-ranging species (e.g. blue whales, DalPs 

porpoises, and Pacific white-sided dolphins) decreased in Monterey Bay during 2005, 

whereas densities of more resident species (e.g. harbor porpoises, harbor seals, and sea 

otters) remained unchanged or increased from the previous year. 
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Increased total densities of marine mammals during the 1997/1998 El Nino event 

can be attributed to the marked increased density of common dolphins during those years, 

in addition to the aggregation of cetaceans species in a narrow nearshore area of 

increased productivity (Benson et al. 2002). Although productivity was reduced in 

Monterey Bay during the 1997/1998 El Nino event compared with other years, there was 

still sufficient nutrient availability nearshore to support some primary production (Kudela 

& Chavez 2000, Chavez et al. 2002). Therefore, during basin-wide decreases in 

productivity (El Nino events) mobile top predators may be more likely to aggregate 

nearshore and less likely to redistribute north-south, to the extent that may have occurred 

during the anomalous upwelling conditions of 2005. 

Species richness 

The lack of a statistically significant difference in species richness between 

warmer and cooler years and the similarity of species richness among all years are 

indications that species richness may not be a good measure of species diversity in this 

study. There were important changes in species composition between years that were not 

evident when only species richness was examined. Species richness did not vary much 

among years because the presence of regularly occurring species (California sea lions, 

DalPs porpoises, elephant seals, harbor porpoises, harbor seals, humpback whales, 

Risso's dolphins, and sea otters) and different rare species totaled approximately the 

same richness every year. In other words, despite changes in the composition of species 

among years the total number of species sighted was similar for all years. Additionally, 

richness may not be a good measure of diversity because extreme differences in species 
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evenness occurred between 1997/1998 and 2005, whereas species richness was identical 

in all three years. 

Individual species densities 

Densities of Pacific-white sided dolphins and northern right whale dolphins were 

significantly greater during cooler years, whereas no species were present in significantly 

greater densities during warmer years. Greater densities of the two cold-temperate 

species during cooler years likely resulted from the southward movement of these species 

with cooler-waters. Barlow & Forney (2007) found similar increased abundances of 

Pacific-white sided dolphins and northern right whale dolphins off California during the 

cooler-water year of 1996, but reported no consistent variation in the abundance of 

common dolphins or Risso's dolphins with warm and cold-water years. We also found 

that warm-temperate common dolphins were not present in greater densities during 

warmer years and attribute this result to the fact that common dolphins did not respond 

consistently to like-years. The drastic increase in common dolphin densities seen in this 

study during the 1997/1998 El Nino event, did not occur again in subsequent warmer 

years (during 2004, 2005, and 2006 no common dolphins were sighted). It is likely that 

during the 1997/1998 El Nino event, large groups of common dolphins moved north with 

warmer waters in search of prey, whereas during 2004, 2005, and 2006 common dolphins 

remained in their normal habitat further south (southern California to Mexico) because it 

was largely unaffected by the upwelling anomalies (Peterson et al. 2006). 

The lack of significantly greater densities of any species during warmer years may 

be attributed to the fact that species responded differently depending on the mechanism 
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of variability (El Nino or anomalous upwelling). It also is possible that non-significant 

results may simply be a consequence of small sample sizes. Although 11 years is a 

reasonably long time series, given the amount of variability in the system, we may have 

lacked the ability to detect significant differences if they existed. The mean differences 

statistically detectable were considerably greater than those actually observed, in some 

cases even greater than what might be biologically realistic. If the calculated mean 

differences we were able to detect were, in fact, biologically unrealistic, it is possible that 

there was a difference between years that was not detected statistically. 

Prey variables as density predictors 

Prey availability may have had a greater effect on marine mammal densities than 

oceanographic variables. For example, densities of Risso's dolphins (which feed almost 

exclusively on squid) increased dramatically in Monterey Bay during 2002, concurrent 

with a marked increase in Humboldt squid (Dosidicus gigas) abundance (Zeidberg & 

Robison 2007). Additionally, market squid {Loligo opalescens) fisheries landings in 

Monterey Bay in 2002 exceeded the previous record by 58% in a near unprecedented 

record-setting year (CDFG 2003). Thus the increase in Risso's dolphin density in 

Monterey Bay during 2002 may have been a direct result of increased prey availability 

that year. 

Although we were unable to quantify squid availability during this study, acoustic 

backscatter and abundance measurements of krill, a major prey source of blue and 

humpback whales, were collected. Results support the hypothesis that the closest trophic 

linkage to top predators, in this case mean krill backscatter, would be the best predictor of 

38 



humpback whale density. Previous researchers primarily examining the relationship 

between baleen whales and krill found a similar association between predators and prey 

(Reid et al. 2000, Benson et al. 2002, Murase et al. 2002, Friedlaender et al. 2006). 

The lack of significance of mean krill backscatter in predicting blue whale density 

was an unexpected finding, particularly because blue whales forage almost exclusively on 

krill, whereas humpback whales forage on krill and small schooling fishes. We thus 

would have expected krill backscatter to be a better predictor of blue whale density than 

humpback whale density. Previous researchers using acoustic backscatter as a 

measurement of krill abundance have reported blue whales were associated with 

seasonally dense aggregations of krill (Croll et al. 1998, Fiedler et al. 1998, Croll et al. 

2005). It is possible that there was a relationship between blue whale density and mean 

krill backscatter, but because there were fewer sightings of blue whales than humpback 

whales, we simply did not have enough statistical power to detect it. It also is possible 

that because of their large size and consequently greater prey requirements, blue whales 

may need extremely dense aggregations of krill in which to forage. Prior studies in 

Monterey Bay support this idea and reported blue whales foraged on krill aggregations 

orders of magnitude greater than krill densities in the remainder of the bay (Schoenherr 

1991, Croll et al. 2005). Consequently, a measure such as maximum krill backscatter 

may have been a better predictor of blue whale density than mean krill backscatter used 

in this study. 

The lack of a significant predictive relationship between krill abundance 

(calculated from net tows) and humpback whale or blue whale densities was another 
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unexpected finding that may be due to the nature of the sampling technique used. Net 

tows to collect krill specimens were limited to certain sampling stations, whereas 

hydroacoustic data were collected continuously while the ship was underway. It is 

possible that hydroacoustic data produce a more representative estimate of prey 

availability over a larger spatial area (as in this study), and net tow data are better suited 

for studies requiring accurate high-resolution prey information over a very small spatial 

area. 

Although hydroacoustic backscattering strength has proved useful when assessing 

krill availability as marine mammal prey, the number of fish schools per kilometer 

surveyed as determined from hydroacoustic data may not be effective in assessing fish 

availability. Fish schools did not predict the densities of any of the piscivorous cetacean 

species studied (Dall's porpoises, harbor porpoises, humpback whales, or Pacific white-

sided dolphins), although previous researchers have reported a significant relationship 

between forage fish abundance and baleen whale abundance (Payne et al. 1986, Piatt et 

al. 1989, Weinrich et al. 1997). The poor association between fish schools and 

piscivorous cetaceans may have resulted from our inability to conduct trawls to verify 

backscattering aggregations were correctly identified as fish (due to the expense and time 

involved). We were thus unable to estimate fish species, density, or biomass. 

Additionally, more fish schools (i.e. increased encounter rate) did not necessarily indicate 

increased density or biomass of fish, because many fish may have been concentrated in 

few large aggregations. Furthermore, all fish schools identified may not have served as 

suitable prey for marine mammals because much of the prey identified as fish may have 
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been too large or an inferior prey species. Thus, although identifying fish schools per 

kilometer surveyed using hydroacoustic data is a relatively quick and easy method of 

estimating marine mammal prey when compared with other more time consuming 

techniques (e.g. net tows), it appears to be too crude of an estimate to have any 

meaningful predictive power in this study. 

Environmental variables as density predictors 

Environmental variables had a significant effect on the densities of some cetacean 

species, but not others. Risso's dolphins were the only species significantly affected by 

upwelling (with a time lag of one month improving the correlation) and also were the 

only species that fed almost exclusively on squid. Because of their rapid growth and 

short lifespan, squid are extremely responsive to changes in environmental conditions, 

such as UI and SST (Jackson & Domeier 2003, Zeidberg et al. 2006). Market squid, 

which spawn annually in Monterey Bay during the upwelling season, form a key 

component of a relatively short trophic system consisting of upwelling, phytoplankton, 

krill, and squid (Mangel et al. 2002, Ish et al. 2004). Therefore, it is possible that UI 

significantly predicted Risso's dolphin density because UI was a good predictor of squid 

size and abundance (Jackson & Domeier 2003, Zeidberg et al. 2006). 

Chlorophyll (in situ) or primary production (in situ or remote) had a significant 

effect on Dall's porpoise, humpback whale, and Pacific white-sided dolphin densities, but 

remote Chi did not affect the densities of any cetacean species studied. The lack of 

significance of remote Chi was surprising, considering it has been used frequently by 

researchers to describe habitat associations for cetaceans on various spatial and temporal 
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scales (Smith et al. 1986, Jaquet et al. 1996, Moore et al. 2002, D'Amico et al. 2003, 

Burtenshaw et al. 2004). Due to the ephemeral nature of primary productivity blooms 

and subsequent consumption or offshore advection, monthly means used in this study 

may have been inadequate to detect the fine-scale effects of Chi or PP on top predators. 

Thus the lack of significance of remote Chi and the minimal amount of variability 

explained by the in situ and remote datasets may have been die result of a temporal 

mismatch in the sampling regimes of cetaceans and environmental variables. 

Adjusting environmental variables to account for the temporal lag from the 

initiation of upwelling to the arrival of foraging cetaceans improved the predictive 

capabilities of models for some odontocete species. Although previous researchers have 

acknowledged the importance of time lags to mysticetes, few have recognized their effect 

on odontocetes. Burtenshaw et al. (2004) observed a time lag of several months between 

spring chlorophyll blooms and the northward migration of blue whales in the northeast 

Pacific Ocean and Croll et al. (2005) reported a time lag of several months between 

seasonal increases in primary production and the arrival of blue whales in Monterey Bay. 

In this study, we also found a three-month time lag, indicative of the time required for 

primary production to move up the trophic links and attract enough prey species to affect 

top predator densities. Because Chi and PP did not significantly predict Dall's porpoise 

or Pacific white-sided dolphin densities without time lags, and did have a significant 

effect when lags were incorporated, results indicate that time lags may be important to 

consider when building predictive models for odontocetes, in addition to mysticetes. 
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The lack of significant predictors for the density of another odontocete species, 

harbor porpoise, may have resulted from incomplete sampling of their habitat or the less 

mobile nature of this species. Field survey effort extended to a depth of 55 m 

(approximately 5 km from shore), whereas harbor porpoise reside mostly in shallow 

(< 55-60 m), neritic waters (Gaskin 1984, Barlow 1988, Carretta et al. 2000). By 

sampling only the outer edge of their habitat, we may have been unable to detect changes 

in harbor porpoise density if they did occur. It also is possible that densities did not 

change with environmental conditions because harbor porpoise in Monterey Bay 

constitute a resident population (Calambokidis & Barlow 1991, Carretta et al. 2007). 

Resident animals would be less likely to move large distances in search of prey and more 

likely to remain in Monterey Bay despite poor environmental conditions. 

Monthly occurrence predictors 

Inconsistent logistic regression results for four of the six cetacean species studied 

indicated that it was not possible to predict cetacean occurrence (presence/absence) with 

the given predictor variables and sample sizes. Because the two species with nearly 

equal (thus largest) sample sizes yielded consistently significant results and other species 

with lesser sample sizes yielded inconsistent results, it is most likely that the samples 

were insufficient to detect consistently significant predictors given the amount of 

variability in the system. However, even models that significantly predicted Dall's 

porpoise and Pacific white-sided dolphin occurrence did not do so with great accuracy. 

In situ PP and UI (remote dataset) were the only variables included in the final 

Dall's porpoise occurrence model, although any of the collinear variables (UI, SST, in 
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situ Chi, or in situ PP) could have been used. The negative coefficients for UI and in situ 

PP indicate that as those predictors decreased below a certain threshold level, Dall's 

porpoise moved into Monterey Bay. It is possible that decreased productivity throughout 

the California Current forced Dall's porpoises to congregate in nearshore regions of 

increased productivity relative to the offshore environment. This effect would be similar 

to the response of cetaceans during El Nino years discussed previously (Benson et al. 

2002). 

Results from Pacific white-sided dolphin logistic regression analysis are difficult 

to explain biologically. The mathematical sign of the partial regression coefficient for UI 

was positive for Pacific white-sided dolphins, whereas it was negative for Dall's 

porpoises. Results from in situ and remote analyses indicate that as upwelling intensity 

exceeded a certain threshold level, Pacific white-sided dolphins moved into Monterey 

Bay. This response of Pacific white-sided dolphins to increased upwelling intensity was 

expected if upwelling increased the abundance of their prey, but the positive partial 

regression coefficient for SST and negative coefficient for remote Chi were surprising. 

Because partial regression coefficients describe the amount of change in the response 

variable for a unit change in the predictor, when all remaining predictor variables are held 

constant, it is possible that given a certain level of increased upwelling, Pacific white-

sided dolphins responded to slightly warmer waters or lesser Chi levels. It also is 

possible that these results occurred by chance alone, thus should be interpreted 

cautiously. More conclusive occurrence predictors may have been obtained if a larger 

spatial area was studied (i.e. California Current). 
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Conclusions 

Monterey Bay is a small region within the larger California Current, which is a 

temporally and spatially dynamic system. Marine mammals are wide-ranging predators 

that respond to prey resources over a large spatial area. By tracking a community of top 

predators in Monterey Bay during an 11-year period, we have documented interannual 

changes in marine mammal density and diversity resulting from ecosystem variability. 

We found that the community response of marine mammals differed depending on the 

mechanism of variability (El Nino or anomalous upwelling events) and that by grouping 

years as warmer and cooler years we were unable to detect statistical differences in 

density (for most species) or diversity (richness and evenness). We believe prey is the 

best predictor of cetacean density and that a more comprehensive prey collection 

methodology may have improved our results. Environmental variables explained some 

degree of variation in the densities of certain species, but lagging environmental variables 

helped improve predictive power. No single environmental variable was superior in 

predictive ability and many variables expected to be good predictors explained only a 

minimal amount of variability. Our limited explanatory ability is likely a result of the 

synergistic effect of environmental forces including, but not limited to, local (upwelling) 

and basin-wide (El Nino/La Nina) phenomena. Each species of marine mammal appears 

to have responded slightly differently to the unique combination of environmental 

factors. 

As the world's climate continues to change, the need to better understand the 

effects of environmental variability on the oceans top predators is becoming increasingly 

45 



important. Longer-term datasets are crucial in helping to achieve this goal, yet few 

marine mammal datasets span over a decade. With 11 years of data, a large number by 

most standards, we have only just begun to understand the processes affecting the 

movements and habitat use of these animals. There is still much to be learned from an 

even longer time-series covering a larger spatial area. Through long-term monitoring 

programs, we should improve our understanding of how environmental variability affects 

ecosystem functioning and be better prepared for future oceanic change as it occurs. 
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