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MMI data were processed to allow appropriate identification of differences between 

MMI-grouped PGA data and official MMI data. 

a) 

 

b) 

 
c) 

 

d) 

 

 
Figure 13. Variations between original and new Cascadia and Seattle earthquake data: a) 

original Cascadia PGA data; b) new Cascadia PGA data; c) original Seattle PGA data; d) 

new Seattle PGA data. 

One of the other issues with ShakeMap’s data that surfaced during the exposure 

assessment process was related to the polygons in the official MMI data file.  Four of the 

twelve earthquakes analyzed (three scenarios and the one historical) reported flawed 

demographic values when state totals were established after merging the shaking and 

demographic data.  An evaluation of the original MMI data using the topology tools in 

ArcMap revealed that some areas had multiple polygons covering the same spatial area.  
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One example of this issue can be seen in Figure 14—the multiple entries for the 

Cascadia_M9_0_mmi dataset show that three polygons are covering the same spatial area 

as the smallest center polygon. 

Figure 14. Polygon overlap data error in Cascadia Earthquake MMI data.  The red arrow 

points out where the dialog to the left is referring to, and the red box in the upper left of 

the dialog shows three entries representing each of the polygons that overlap at the 

arrow’s location. 

Errors in the original MMI data were not the only cause for the inaccurate 

demographic totals.  In certain scenarios when the Census block data and MMI 

earthquake data were merged, the merge created additional polygons in the resulting 

datasets in locations where polygon overlaps did not previously exist.  This problem was 

verified by summarizing the original and ratio demographic attributes of the datasets in 



62 
 

Excel to find any blocks returning ratio summaries greater than the original block value 

(e.g., the ratio sum for the block was 8 when the actual value for the block was 4). 

After additional assessment of the original MMI polygon data and the merged 

output, the high level of detail in both the MMI polygons and the Census block data was 

identified as a potential cause for the unexpected polygon duplication.  The MMI polygon 

data were aggregated to determine if the level of detail was actually the problem’s origin.  

Aggregate MMI data represented only the major MMI classes (3, 4, 5, etc.) rather than 

the original decimal intensity classes (3, 3.2, 3.4, etc.).  Exposures from the generalized 

MMI datasets were unchanged in areas where polygon replication had not occurred and 

were corrected in areas where discrepancies existed.  One exception to this was the 

historical Nisqually Earthquake—this earthquake lost a small number of polygons in the 

generalized MMI VII class; this was corrected for in post-processing since the missing 

data were all in the same MMI class.  Polygon replication did not occur with the PGA 

data, which was likely due to ShakeMap generalizing the polygon PGA data by default. 

A final concern that surfaced during the analysis was the fact that the total 

exposure for the PGA and MMI datasets did not initially match (e.g., Lake Creek 

Earthquake exposed population: 4,228,482 PGA and 4,238,767 MMI—a difference of 

10,285 people [approximately 0.41%]).  This discrepancy occurred as a result of how the 

GIS software spatially transformed the datasets from one coordinate system to another.  

Though both the PGA and MMI data started in the same geographic coordinate system 

and were transformed to the same projected coordinate system, the two datasets 

transformed slightly differently on the northern and southern edges. 
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ShakeMap’s MMI spatial data were more detailed than the PGA spatial data.  The 

greater detail in the MMI data led to more points (vertices) along the modeled earthquake 

boundaries.  With more vertices available in the MMI spatial data, the MMI data were 

able to more accurately transform, or conform, to the projected coordinate system from 

the geographic coordinate system than the PGA data.  This resulted in the MMI data 

extending farther south on both the northern and southern edges of the spatial data than 

the PGA data extended.  

In the Lake Creek Earthquake, the southern boundary was crossing through 

Olympia; the extension south for MMI relative to PGA meant that more people residing 

in Olympia were exposed to MMI shaking than to PGA shaking according to the GIS 

software.  Figure 15 shows the discrepancy between the projected MMI and PGA spatial 

data for the Lake Creek Earthquake. 

a) 

 

b) 

 

 
Figure 15. Boundary discrepancy in projected PGA and MMI ShakeMap data.  The two 

images show: a) the full extent of the Lake Creek Earthquake, with the northern and 

southern boundaries not perfectly matching; and b) the spatial difference between PGA 

and MMI relative to the Olympia city boundary (shown as a magenta band representing 

where MMI data was available but not PGA data). 

Not all scenarios were significantly different between the MMI and PGA exposure 

results.  The SeaTac Earthquake only had a population difference of 14 (4,304,473 MMI 
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and 4,304,459 PGA), and the Cascadia and Cascadia North earthquakes reported no 

difference at all (6,129,661 in both PGA and MMI).  Cascadia and Cascadia North had no 

discrepancies since the inconsistent northern and southern edges of the study area fell 

outside of the state. 

By merging the ShakeMap and demographic data in ShakeMap’s original 

latitude/longitude geographic coordinate system rather than the projected coordinate 

system intended for the final analysis, the north/south distortions were prevented and the 

same total exposures were found.  Areas needed to be calculated to permit dividing 

demographics between MMI classes, so projecting the data was necessary.  The data 

were simply projected after any data merging to accommodate both the need to keep the 

study areas consistent between datasets and the need to calculate exposures based on 

area. 

Regardless of the concerns specified above, both the MMI data and PGA data can 

provide valuable insights into how people could potentially be affected by an earthquake 

as long as the problems possible with the data are known and compensated for when 

possible.  Exposure assessments are not intended to be used as definitive representation 

of affected variables since no model or assessment can truly predict what areas will 

experience what level of shaking or where people actually are.  Exposure assessments 

should be used as general guides rather than the absolute truth.  These results do not say 

that one dataset should be used for exposure assessment rather than the other; they simply 

demonstrate that the two datasets are significantly different spatially and are not 

interchangeable based on these spatial differences. 
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Conclusion 

Two different components of the USGS ShakeMap Project’s earthquake shaking 

data were compared to determine whether they could be used interchangeably for 

exposure analyses.  Modified Mercalli Intensity (MMI) data and peak ground 

acceleration (PGA) data aggregated to approximate MMI were both analyzed to 

determine the difference in demographic exposure as well as the spatial difference 

between MMI classes in the two datasets.  The analysis was conducted at three spatial 

scales: the state level, the county level, and the community level.  Results indicated that 

grouping PGA data from ShakeMap into MMI classes did not directly correspond to 

ShakeMap’s official MMI classes.  The implications of this inconsistency varied 

depending on the spatial scale of the exposure analysis. 

The inconsistency between MMI-grouped PGA data and official MMI data was 

not linear.  More data in the possible lower MMI classes tended to be overestimated when 

converting PGA to MMI, and more data in the potential higher MMI classes were 

underestimated when converting PGA to MMI.  These over- and under-estimates were 

also not consistent: some earthquakes reported MMI-grouped PGA exposure in MMI 

class IX when official MMI data did not. 

Scale did have an effect on the trends seen in the exposure and sampling analyses.  

The state level, as the smallest scale, had the most data to work with, the most variation 

in inconsistency present, and the highest number of significant differences between 

sample MMI class means.  Significant differences were also extremely common at the 

county and community scales, but Thurston County and Olympia both had one 
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earthquake show insignificant differences between MMI class means.  Olympia had an 

additional pair of earthquakes with less (but still) significant differences.  This showed 

that scale may have a small effect on the likelihood that the differences between MMI-

grouped PGA classes and official MMI classes could impact an exposure assessment. 

Scale was not the only aspect that seemed to affect the significance of the 

sampling results.  One of the side tests for the research was to determine if a difference 

was visible between scenario and historical earthquakes: the county and community 

samples had insignificant differences between the two types of MMI for the historical 

earthquake, unlike any of the scenario earthquakes run.  This suggests that the type of 

earthquake potentially has an effect, but since only one historical earthquake was 

analyzed this observation should be kept in context. 

Future research that could be done to expand on the results of this analysis 

consists of three options: assess raster inputs in place of vector polygon inputs, 

incorporate PGV into the analysis and verify its relationship with PGA and MMI, and 

introduce additional historical earthquakes to see if the pattern of insignificance reasserts 

itself in other historical events compared to scenario events.  Replacing the polygon data 

used here with raster data could permit a more accurate exposure assessment both in the 

MMI-grouped PGA data and the official MMI data since the rasters available from 

ShakeMap are far more detailed and precise than the polygon data.  Adding in PGV to 

the PGA and MMI comparison would further confirm or disprove the interchangeability 

of the various ShakeMap outputs.  Finally, since the one historical earthquake showed 

that scale rendered the differences between MMI-grouped PGA classes and official MMI 
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classes insignificant at some scales, processing additional historical earthquakes would 

help see whether this is simply random or not.  If historical earthquake data do more 

accurately pick up significance (or lack thereof) at large scales, then perhaps this could be 

incorporated into ShakeMap’s model to improve their scenario earthquake data.   

Exposure quantifies how society could be affected by a disaster.  Vulnerability 

takes those quantities and augments them with insights that customize the analysis for the 

group being examined.  The spatial aspect of exposure and vulnerability is yet another 

thing to consider when planning for emergencies.  With vulnerability being in part an 

examination of spatiality, knowing as much as possible about the group and area being 

studied will help emergency planners and managers mitigate disaster damages more 

effectively and efficiently. 
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Appendix 1. The Modified Mercalli Intensity Scale (reprinted with permission from 

Wood & Ratliff, 2011) 

MMI Class PGA Range Description of Societal Impact 

I < 0.0017g Not felt except by a very few under especially 

favorable conditions. 

II 0.0017–0.014g Felt only by a few persons at rest, especially on upper 

floors of buildings. 

III 0.0017–0.014g Felt quite noticeably by persons indoors, especially on 

upper floors of buildings.  Many people do not 

recognize it as an earthquake.  Standing motor cars 

may rock slightly.  Vibrations similar to the passing of 

a truck.  Duration estimated. 

IV 0.014–0.039g Felt indoors by many, outdoors by few during the day.  

At night, some awakened.  Dishes, windows, doors 

disturbed; walls make cracking sound.  Sensation like 

heavy truck striking building.  Standing motor cars 

rocked noticeably. 

V 0.039–0.092g Felt by nearly everyone; many awakened.  Some 

dishes, windows broken.  Unstable objects overturned.  

Pendulum clocks may stop. 

VI 0.092–0.18g Felt by all, many frightened.  Some heavy furniture 

moved; a few instances of fallen plaster.  Damage 

slight. 

VII 0.18–0.34g Damage negligible in buildings of good design and 

construction; slight to moderate in well-built ordinary 

structures; considerable damage in poorly built or 

badly designed structures; some chimneys broken.   

VIII 0.34–0.65g Damage slight in specially designed structures; 

considerable damage in ordinary substantial buildings 

with partial collapse.  Damage great in poorly built 

structures.  Fall of chimneys, factory stacks, columns, 

monuments, walls.  Heavy furniture overturned. 

IX 0.65–1.24g  Damage considerable in specially designed structures; 

well-designed frame structures thrown out of plumb.  

Damage great in substantial buildings, with partial 

collapse.  Buildings shifted off foundations. 

X > 1.24g Some well-built wooden structures destroyed; most 

masonry and frame structures destroyed with 

foundations.  Rails bent. 
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Appendix 2. Selected ShakeMap earthquakes—basic statistics 

Earthquake 

MMI Range Demographics (2010) 

PGA* MMI** Population Percent 

Cascadia M9.0 IV—VIII III—IX 6,129,662 91.15% 

Cascadia North M8.3 IV—VIII I—VIII 6,129,662 91.15% 

South Whidbey Island 

Fault (SWIF) M7.4 

IV—IX III—IX 4,660,831 69.31% 

SWIF Southeast M7.2 V—VIII IV—IX 4,450,517 66.18% 

Seattle M7.2 V—IX IV—VIII 4,412,180 65.61% 

Nisqually M6.8 IV—VIII III—VIII 4,374,848 65.06% 

Tacoma M7.1 V—IX IV—IX 4,345,390 64.62% 

SeaTac M7.2 V—VII IV—VII 4,304,453 64.01% 

Nisqually M7.2 V—VII IV—VII 4,241,482 63.07% 

Lake Creek M6.8 IV—IX III—VIII 4,238,818 63.04% 

Canyon River M7.4 V—IX IV—IX 4,209,309 62.60% 

Olympia M5.7 V—VIII III—VII 1,461,174 21.73% 

* The PGA column of MMI range represents the PGA values from the ShakeMap PGA 

data converted into their corresponding MMI values. 

** The MMI column of MMI range represents the MMI classes from the ShakeMap 

MMI data.  
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Appendix 3. MMI-grouped PGA vs. MMI population exposure correlations 

State MMI class exposure correlations 
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King County MMI class exposure correlations 
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Thurston County MMI class exposure correlations 
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Seattle city MMI class exposure correlations 
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Olympia city MMI class exposure correlations 
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Appendix 4. Inconsistency index frequency distributions 

  

  

 

A basic normal distribution form is visible 

in each chart even though sample sizes vary 

between areas.  The majority of the samples 

are skewed slightly low, though Thurston 

County and Olympia are less skewed than 

the state, King County, and Seattle.  The 

extensive area covered by the Cascadia 

earthquakes compared to the remaining 

earthquakes skews state results. 
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Appendix 5. Detailed statistics for spatial analyses 

State-level MMI-grouped PGA descriptive statistics by earthquake 

Earthquake Mean Median Mode 

Standard 

Deviation 

Sample 

Variance 

Canyon River 1.35 0 0 2.37 5.60 

Cascadia 5.72 5 5 0.99 0.98 

Cascadia North 5.05 5 5 0.73 0.54 

Lake Creek 1.15 0 0 2.19 4.80 

Nisqually (h) 1.89 0 0 2.58 6.65 

Nisqually 1.78 0 0 2.73 7.45 

Olympia 0.36 0 0 1.33 1.78 

SeaTac 1.83 0 0 2.75 7.54 

Seattle 1.67 0 0 2.57 6.61 

SWIF 2.31 0 0 2.73 7.43 

SWIF Southeast 1.85 0 0 2.62 6.84 

Tacoma 1.65 0 0 2.50 6.26 

 

State-level MMI descriptive statistics by earthquake 

Earthquake Mean Median Mode 

Standard 

Deviation 

Sample 

Variance 

Canyon River 1.25 0 0 2.23 4.95 

Cascadia 5.16 5 4 1.20 1.44 

Cascadia North 4.30 4 4 1.04 1.08 

Lake Creek 1.00 0 0 1.92 3.69 

Nisqually (h) 1.79 0 0 2.46 6.05 

Nisqually 1.66 0 0 2.54 6.43 

Olympia 0.31 0 0 1.15 1.31 

SeaTac 1.70 0 0 2.55 6.49 

Seattle 1.53 0 0 2.39 5.73 

SWIF 2.07 0 0 2.51 6.30 

SWIF Southeast 1.72 0 0 2.49 6.20 

Tacoma 1.48 0 0 2.29 5.22 
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County-level MMI-grouped PGA descriptive statistics by earthquake: King County 

Earthquake Mean Median Mode 

Standard 

Deviation 

Sample 

Variance 

Canyon River 1.86 0 0 2.47 6.09 

Cascadia 6.11 6 6 0.60 0.36 

Cascadia North 5.08 5 5 0.27 0.07 

Lake Creek 1.82 0 0 2.41 5.79 

Nisqually (h) 5.48 5 5 0.66 0.43 

Nisqually 5.87 6 6 1.03 1.05 

Olympia 0.53 0 0 1.54 2.37 

SeaTac 6.62 7 7 0.53 0.28 

Seattle 6.71 7 7 1.09 1.18 

SWIF 5.93 6 6 0.78 0.60 

SWIF Southeast 5.50 5 5 0.56 0.32 

Tacoma 5.93 6 5 1.27 1.60 

 

County-level MMI descriptive statistics by earthquake: King County 

Earthquake Mean Median Mode 

Standard 

Deviation 

Sample 

Variance 

Canyon River 1.84 0 0 2.44 5.94 

Cascadia 5.76 6 6 0.60 0.36 

Cascadia North 4.73 5 5 0.50 0.25 

Lake Creek 1.45 0 0 1.92 3.70 

Nisqually (h) 5.35 5 5 0.66 0.43 

Nisqually 5.52 6 6 0.90 0.82 

Olympia 0.42 0 0 1.23 1.52 

SeaTac 6.07 6 6 0.52 0.27 

Seattle 6.47 6 7 1.08 1.16 

SWIF 5.79 6 5 0.88 0.77 

SWIF Southeast 5.35 5 5 0.60 0.36 

Tacoma 5.70 6 5 1.31 1.72 
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County-level MMI-grouped PGA descriptive statistics by earthquake: Thurston County 

Earthquake Mean Median Mode 

Standard 

Deviation 

Sample 

Variance 

Canyon River 5.39 5 5 0.49 0.24 

Cascadia 6.93 7 7 0.25 0.06 

Cascadia North 6.20 6 6 0.40 0.16 

Lake Creek 1.25 0 0 2.17 4.69 

Nisqually (h) 6.23 6 6 0.42 0.18 

Nisqually 7.00 7 7 0.00 0.00 

Olympia 5.91 6 5 0.88 0.78 

SeaTac 6.43 6 6 0.50 0.25 

Seattle 5.20 5 5 0.40 0.16 

SWIF 5.00 5 5 0.00 0.00 

SWIF Southeast 5.00 5 5 0.00 0.00 

Tacoma 5.38 5 5 0.49 0.24 

 

County-level MMI descriptive statistics by earthquake: Thurston County 

Earthquake Mean Median Mode 

Standard 

Deviation 

Sample 

Variance 

Canyon River 5.14 5 5 0.60 0.36 

Cascadia 6.77 7 7 0.47 0.22 

Cascadia North 6.01 6 6 0.18 0.03 

Lake Creek 1.00 0 0 1.73 3.00 

Nisqually (h) 6.22 6 6 0.41 0.17 

Nisqually 6.25 6 6 0.43 0.19 

Olympia 5.27 5 5 0.80 0.63 

SeaTac 5.93 6 6 0.44 0.19 

Seattle 4.99 5 5 0.43 0.18 

SWIF 4.12 4 4 0.32 0.11 

SWIF Southeast 4.51 5 5 0.50 0.25 

Tacoma 5.18 5 5 0.55 0.30 
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Community-level MMI-grouped PGA descriptive statistics by earthquake: Seattle 

Earthquake Mean Median Mode 

Standard 

Deviation 

Sample 

Variance 

Canyon River 5.14 5 5 0.35 0.12 

Cascadia 6.85 7 7 0.36 0.13 

Cascadia North 5.00 5 5 0.00 0.00 

Lake Creek 5.00 5 5 0.00 0.00 

Nisqually (h) 5.69 6 6 0.63 0.39 

Nisqually 6.58 7 7 0.49 0.24 

Olympia 1.70 0 0 2.37 5.61 

SeaTac 7.00 7 7 0.00 0.00 

Seattle 7.80 8 8 0.68 0.46 

SWIF 6.45 6 6 0.50 0.25 

SWIF Southeast 6.33 6 6 0.47 0.22 

Tacoma 6.48 6 6 0.52 0.27 

 

Community-level MMI descriptive statistics by earthquake: Seattle 

Earthquake Mean Median Mode 

Standard 

Deviation 

Sample 

Variance 

Canyon River 5.10 5 5 0.29 0.09 

Cascadia 6.21 6 6 0.43 0.18 

Cascadia North 5.00 5 5 0.00 0.00 

Lake Creek 4.05 4 4 0.22 0.05 

Nisqually (h) 5.43 5 5 0.60 0.35 

Nisqually 6.13 6 6 0.33 0.11 

Olympia 1.36 0 0 1.90 3.59 

SeaTac 6.31 6 6 0.46 0.21 

Seattle 7.63 8 8 0.48 0.23 

SWIF 6.39 6 6 0.49 0.24 

SWIF Southeast 6.24 6 6 0.45 0.20 

Tacoma 6.29 6 6 0.47 0.22 
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Community-level MMI-grouped PGA descriptive statistics by earthquake: Olympia 

Earthquake Mean Median Mode 

Standard 

Deviation 

Sample 

Variance 

Canyon River 6.00 6 6 0.00 0.00 

Cascadia 7.00 7 7 0.00 0.00 

Cascadia North 6.00 6 6 0.00 0.00 

Lake Creek 4.84 5 5 0.88 0.77 

Nisqually (h) 6.51 7 7 0.50 0.25 

Nisqually 7.00 7 7 0.00 0.00 

Olympia 7.67 8 8 0.47 0.22 

SeaTac 6.62 7 7 0.49 0.24 

Seattle 5.90 6 6 0.29 0.09 

SWIF 5.00 5 5 0.00 0.00 

SWIF Southeast 5.00 5 5 0.00 0.00 

Tacoma 6.00 6 6 0.00 0.00 

 

Community-level MMI descriptive statistics by earthquake: Olympia 

Earthquake Mean Median Mode 

Standard 

Deviation 

Sample 

Variance 

Canyon River 5.94 6 6 0.24 0.06 

Cascadia 7.00 7 7 0.00 0.00 

Cascadia North 6.00 6 6 0.00 0.00 

Lake Creek 3.87 4 4 0.70 0.49 

Nisqually (h) 6.46 6 6 0.50 0.25 

Nisqually 6.63 7 7 0.48 0.23 

Olympia 6.98 7 7 0.12 0.02 

SeaTac 6.03 6 6 0.18 0.03 

Seattle 5.10 5 5 0.29 0.09 

SWIF 4.21 4 4 0.40 0.16 

SWIF Southeast 4.90 5 5 0.29 0.09 

Tacoma 5.90 6 6 0.29 0.09 
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Summary statistics for paired-samples t-tests 

Spatial Area t-critical 

Degrees of 

Freedon 

State 1.960 1893 

King County 1.977 263 

Thurston County 1.990 91 

Seattle city 1.973 437 

Olympia city 1.999 62 

 


