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ABSTRACT

CLASSICAL MODELS OF THE SPIN 1
2

SYSTEM

by Carlos H. Salazar-Lazaro

We proposed a Quaternionic mechanical system motivated by the Foucault

pendulum as a classical model for the dynamics of the spin 1
2

system. We showed

that this mechanical system contains the dynamics of the spin state of the electron

under a uniform magnetic field as it is given by the Schrodinger-Pauli-Equation

(SPE). We closed with a characterization of the dynamics of this generalized

classical system by showing that it is equivalent with the dynamics of the

Schrodinger Pauli Equation as long as the solutions to the generalized classical

system are roots of the Lagrangian, that is the condition L = 0 holds.
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CHAPTER 1

INTRODUCTION

In spite of conventional wisdom that quantum spin is inherently non-classical,

there is a well known classical analog to the two-level quantum system based on the

classical polarization (CP) of a plane electro-magnetic (EM) wave. Such analogue

comes with some limitations but nevertheless has been used to motivate

introductory quantum mechanics texts like those of Baym [G69] and Sakurai [J.J94]

to illustrate a classical system that has the Spinor-like properties of the spin 1
2

system under a induced uniform magnetic field precession. Under the CP analogy,

the well-known ”Jones vector” and the Spinor | χ > that defines the spin 1
2

state in

quantum mechanics are correlated to explain analogous characteristics of both

theories. For example, the quantum normalization condition 〈χ | χ〉 = 1 corresponds

to a normalization of the energy of the EM wave, and the global phase

transformation | χ >→| χ > exp(iθ) is analogous to changing the phase of the EM

wave. However, the power and depth of the CP analogy has not been widely

appreciated as there are aspects of the analogy that have gone without appreciable

mention in the literature. For example, the CP analogy contains a straightforward

classical picture for a π geometric phase shift resulting from a full 2π rotation of the

spin angular momentum. This fact has gone unnoticed in the literature with one

possible exception by Klyshko [D.N93]. Nevertheless, the CP analogy breaks down

when it is extended to the spin state of an electron under a spatially uniform

time-varying magnetic field. This limitation, along with complications involving
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quantum measurement outcomes has prevented consensus on what makes quantum

spin inherently non-classical.

1.1 New Results and Outline

In the following section, we will extend the CP analogy to two systems: the

modified Foucault Pendulum (FP), which corresponds to two coupled classical

oscillators, and the modified Quaternionic Foucault Pendulum (QFP), which

corresponds to a system of 4 coupled classical oscillators. The modified Foucault

pendulum will be defined to be an extension of the dynamics of the Foucault

pendulum that includes a ”natural” frequency term. The modified quaternionic

Foucault pendulum will be defined as an extension of the dynamics of the modified

Foucault pendulum from complex space to quaternionic space.

We will show that the dynamics of the modified Foucault pendulum reproduce

the quantum dynamics of an unmeasured electron spin state in a spatially uniform

time-varying magnetic field in the y-direction. Similarly, we will show that the

modified quaternionic Foucault pendulum reproduces the quantum dynamics of an

unmeasured electron spin state in a spatially uniform time constant magnetic field

in an arbitrary direction. These results will show that if there is an inherent

non-classical aspect to quantum spin, then such aspect cannot be part of the

quantum dynamics. Further, in the process of showing the correspondence between

the quaternionic Foucault pendulum and the quantum state, we will give an explicit

many-to-one map from the classical system to the quantum system, which can be

interpreted as the classical system having a natural set of ”hidden variables”

available to the classical analog but concealed to the complete specification of the

quantum state.
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The outline of the thesis is as follows:

• In Section (1.2) we give a short introduction to Quaternions to lay the

ground work for subsequent sections

• In Section (2.1) we solve the Schrodinger-Pauli-Equation for the spin 1
2

system under a uniform magnetic field in Spinor notation and quaternionic

notation.

• In Section (2.2) we give an exposition of the Foucault pendulum. We solve

the equations of motion of the Foucault pendulum and derive some of the

associated constants of motion. We also draw analogues between the

Foucault pendulum dynamics and the dynamics of the spin 1
2

system.

• In Section (2.3) we show the special equivalence condition between the

Foucault pendulum dynamics and the spin 1
2

system for the special case of a

time-varying magnetic field in the y direction. This result will establish

precedence for the next section, as it will motivate the definition of the

Quaternionic Foucault Pendulum to include a correpondence with a time

constant magnetic field in arbitrary direction.

• In Section (2.4) we define the Quaternionic Foucault Pendulum and solve

for the equations of motion and the constant motions that are derived from

the quaternionic structure. We also give an interpretation of these constants

of motion by drawing parallels to corresponding constants of motion for the

Schrodinger-Pauli-Equation. We close this section by showing that an

arbitrary quaternionic Foucault pendulum is equivalent to two identical

Foucault pendulums at the same latitude.
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• In Section (2.5) we consider the set of solutions to the quaternionic Foucault

pendulum that are also roots of the Lagrangian, that is, solutions η(t) that

also satisfy L(t, η(t), η̇(t)) = 0. We find conditions on η(t) that are

equivalent to the L = 0 constrain and we use these equivalent conditions to

show the correspondence between the SPE and QFP. We show the derived

correspondence to be a many-to-one map that relies on additional

parameters that do not affect the quantum solution. Such parameters will

be labeled ”hidden variables” from a quantum perspective.

• In Section (2.6) we show a partial corresponding between the QFP and the

SPE with a time-varying magnetic field.

• In Chapter (3) we close the discussion with a summary of the results

exposed.

An appendix has been included to include more preliminary results used by

the derivations of Chapter (2). These results were included in the appendix because

they are too mathematical in nature and provide very little physical insight.

We close this chapter by introducing the notation used for Quaternions.

1.2 Preliminaries

The Quaternions were first discovered by the Irish mathematician Sir William

Hamilton. Quaternions are a division ring of dimension 4 over the real numbers.

That is, they are a vector space R4 with a non-commutative vector product for

which every non-zero vector is a unit (that is, every non-zero element has a

multiplicative inverse). The Quaternion algebra can be defined in different ways.

We define it using the ”scalar plus vector” notation.
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Definition 1.2.1. The Quaternion Algebra is a free vector space with basis 1,~i,~j,~k

equipped with a vector product. That is, H = R1⊕ R~i⊕ R~j ⊕ R~k with a prescribed

vector product that makes H into a division ring. A typical vector v ∈ H will be

called a Quaternion. Using the coordinate representation, v can be represented as:

v = v0 + v1
~i+ v2

~j + v3
~k

Given a Quaternion v = v0 + v1
~i+ v2

~j + v3
~k, we define the scalar or real part

of v as v0. And, we define the vector or imaginary part of v as ~v = v1
~i+ v2

~j + v3
~k.

Hence,

v = v0 + ~v,

Re(v) = v0,

Im(v) = ~v.

Using the scalar plus vector notation for Quaternions, we can define a product

between Quaternions.

Definition 1.2.2. Let v = v0 + ~v and w = w0 + ~w be two Quaternions. Then, we

define the product of v and w as:

vw = (v0 + ~v)(w0 + ~w)

= v0w0 − 〈~v, ~w〉+ v0 ~w + w0~v + ~v × ~w

Where 〈, 〉 is the inner product of two vectors in R3 and × is the vector cross

product between two vectors in R3.

Note that immediate consequences of the product are ~k =~i~j, −~k = ~j~i,

~i~j = −~j~i. Alternatively, the Quaternion algebra can also be defined using the

complexification construction. Recall that the real numbers R form a field. That is,



6

an associative algebra with a commutative product where all non-zero elements have

a multiplicative inverse. This field can be extended to the complex numbers by

adjoining a square root of −1 called ~i =
√
−1. This is done by considering the two

dimensional real vector space C = R1⊕ R~i ' R⊕ R spanned by the basis 1,~i, and

by defining a product between vectors as: let a = a0 + a1
~i, and b = b0 + b1~i be two

complex numbers, then

ab = (a0 + a1
~i)(b0 + b1~i)

= (a0b0 − a1b1) + (a1b0 + b1a0)~i

In tuple notation,

(a0, a1)(b0, b1) = (a0b0 − a1b1, a1b0 + b1a0) (1.1)

It can be shown that this product makes R⊕ R ' C into a field. Note that by

considering C acting on itself by ρ(a)(b) = ab, we can define a map of C into the

general linear group GL2(R) (the group of 2× 2 invertible matrices with real

entries) via the use of the basis 1, i or (1, 0), (0, 1). That is, by defining,

ρ(1) =

 1 0

0 1

 ,

ρ(~i) =

 0 −1

1 0

 ,

ρ(a0 + a1
~i) =

 a0 −a1

a1 a0

 .
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A similar construction applied to C will yield the Quaternion algebra H.

Recall that a typical Quaternion has representation v = v0 + v1
~i+ v2

~j + v3
~k. Also,

note that ~k =~i~j using the Quaternion product. Hence,

v = v0 + v1
~i+ v2

~j + v3
~k (1.2)

= v0 + v1
~i+ v2

~j + v3
~i~j

= (v0 + v1
~i) + (v2 + v3

~i)~j

= v0,1 + v2,3
~j

Where v0,1, v2,3 can be viewed as complex numbers because R⊕ R~i is

isomorphic to C as algebras. This expansion suggests that there is map between H

and C⊕ C~j ' C⊕ C where ~j is another square root of −1 different from ~i. Let us

consider the space C⊕ C~j where ~j is a square root of −1 different form ~i. Clearly,

for two distinct vectors c = c0 + c1~j, d = d0 + d1
~j where c0, c1, d0, d1 ∈ C,

cd = (c0 + c1~j)(d0 + d1
~j)

= (c0d0 + c1~jd1
~j) + (c0d1

~j + c1~jd0)

Note that for any complex number c = c0 + c1~i,

c~j = (c0 + c1~i)~j

= (c0~j + c1~i~j)

= (c0~j − c1~j~i)

= ~j(c0 − c1~i)

= ~jc̄.
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Where we have used ~i~j = −~j~i and c̄ is the conjugate of the complex number c.

Similarly, we can show ~jc = c̄~j. Hence, the product in C⊕ C yields,

cd = (c0d0 + c1d̄1
~j2) + (c0d1

~j + c1d̄0
~j)

= (c0d0 − c1d̄1) + (c0d1 + c1d̄0)~j

Which yields the product in C⊕ C as:

(c0, c1)(d0, d1) = (c0d0 − c1d̄1, c0d1 + c1d̄0) (1.3)

It can be shown that C⊕ C equipped with the above product makes C⊕ C

into an algebra that is isomorphic to the Quaternion algebra. We will call the above

product the right regular product of Quaternions in C⊕ C. Note that by using the

right regular representation ρR : C⊕ C→ GL2(C) defined by,

ρR((d0, d1))((c0, c1)) = (c0, c1)(d0, d1)

ρR((d0, d1)) =

 d0 −d̄1

d1 d̄0

 . (1.4)

we can show that ρR maps H ∼= C⊕ C into GL2(C). Note that by choosing a

slightly different expansion as Equation (1.2),

v = v0 + v1
~i+ v2

~j + v3
~k

= v0 + v1
~i+ v2

~j − v3
~j~i

= (v0 + v1
~i) +~j(v2 − v3

~i)

= w0,1 +~jw2,3

We can deduce a relationship between C⊕~jC ' C⊕ C and H. This relationship

can be inferred from:
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cd = (c0 +~jc1)(d0 +~jd1)

= c0d0 +~jc1d0 + c0~jd1 +~jc1~jd1

= c0d0 +~j2c̄1d1 +~jc1d0 +~jc̄0d1

= (c0d0 − c̄1d1) +~j(c1d0 + c̄0d1)

Hence, we can define a product between vectors of C⊕ C as

(c0, c1)(d0, d1) = (c0d0 − c̄1d1, c1d0 + c̄0d1)

It can be shown that C⊕ C equipped with the above product makes C⊕ C

into an algebra that is isomorphic to the Quaternion algebra. We will call the above

product the left regular product of Quaternions in C⊕C. Note that by using the left

regular representation ρL : C⊕ C→ GL2(C) defined by,

ρL((d0, d1))((c0, c1)) = (d0, d1)(c0, c1)

ρL((d0, d1)) =

 d0 −d̄1

d1 d̄0

 . (1.5)

we can show that ρL maps H ∼= C⊕ C into GL2(C). This shows that ρR and ρL

have the same matrix representation if we use different definitions for the

Quaternion product on C⊕ C. Note that, if we were to identify a matrix that has

the form of Equation (1.4) or Equation (1.5) acting on C⊕ C, we could identify

C⊕ C with H using the left regular product and view the matrix as the pre-image

of a Quaternion under ρL. Alternatively, we could identify C⊕ C with H using the

right regular product and view the matrix as a pre-image under a Quaternion under

ρR. This freedom in identifying C⊕ C with H will help us deduce different but

equivalent Spinor solutions to Spinor ODEs.
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An important map on Quaternions is the Conjugate map.

Definition 1.2.3. Given a Quaternion v = v0 + ~v, the Conjugate of v is defined as:

v̄ = v0 − ~v

If we identify C⊕ C with H using the right regular product, the

(c0, c1) = (c0,−c1). Similarly, if we identify C⊕ C with H using the left regular

product, the (c0, c1) = (c0,−c1). The following proposition summarizes important

properties of the Conjugate map.

Proposition 1.2.4. Let v = v0 + ~v = c1 + c0~j = d0 +~jd1 be a Quaternion, where

c0, c1, d0, d1 are viewed as complex numbers. Then, N(v) (the Norm of v) is defined

as vv, and,

Norm(v) = vv

= vv

= v2
0 + 〈~v,~v〉

= c0c0 + c1c1

= d0d0 + d1d1

Let w = w0 + ~w be another Quaternion. Then,

vw = w̄v̄

2Re(v) = 2v0

= v + v

2Im(v) = 2~v

= v − v

Also,
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N(vw) = N(v)N(w)

= N(w)N(v)

= N(wv)
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CHAPTER 2

CLASSICAL MODELS OF THE SPIN 1
2

SYSTEM

We will propose a classical system motivated by the Foucault pendulum via a

generalization of the complex Lagrangian of the Foucault pendulum to Quaternions.

This will yield a set of Euler-Lagrange equations based on 4-space which will be

shown to contain the dynamics of the spin 1
2

system subjected to a uniform

magnetic field.

2.1 The Electron Spin State under a Uniform Magnetic Field

We will solve the Schrodinger-Pauli Equation (SPE) for the spin state of the

electron χ under a uniform magnetic field and show how the resulting first order

ODE can be mapped to a first order quaternionic differential equation. Let us

consider the (SPE) for a spin 1
2

particle (for instance, electrons) under a uniform

magnetic field. Given a spin 1
2

Spinor χ ∈ C⊕ C representing the spin state of the

particle in the Sz eigenbasis. The SPE predicts the time evolution of χ by the

following first order ODE.

i~
∂χ

∂t
= Hχ (2.1)

Where H is the Hamiltonian of the system. For the spin 1
2

particle, H is given

as,

H = −γ ~B · ~S + ~ω0
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Where ~B is the magnetic field, γ is the gyromagnetic ratio, and ~S is the spin

vector. The −γ ~B · ~S term is the energy of the spin vector in the magnetic field, the

~ω0I is the rest energy term that is introduced to make the correspondence between

the SPE and the Foucault pendulum dynamics possible. One can interpret the rest

energy as a rest mass by use of the equation mc2 = ~ω0. In operator form, we have,

H = −γ(Bx〈~i, ~S〉+By〈~j, ~S〉+Bk〈~k, ~S〉) + ~ω0I

= −γ(BxSx +BySy +BzSz) + ~ω0I

In the Sz eigenbasis, we have:

Sz =
~
2

 1 0

0 −1


Sx =

~
2

 0 1

1 0


Sy =

i~
2

 0 −1

1 0


Also, ~B in spherical coordinates is given by,

B(sin(φ) cos(θ)~i+ sin(φ) sin(θ)~j + cos(φ)~k),

where B is the norm of ~B. Hence, H is given in the Sz eigenbasis as,

H = −γB(sin(φ) cos(θ)Sx + sin(φ) sin(θ)Sy + cos(φ)Sz) + ~ω0I

= −γB~
2

 cos(φ) sin(φ) exp(−iθ)

sin(φ) exp(iθ) − cos(φ)

+ ~ω0I
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Thus, the SPE in operator form is given as,

i~
∂χ

∂t
=

−γB~
2

 cos(φ) sin(φ) exp(−iθ)

sin(φ) exp(iθ) − cos(φ)

+ ~ω0I

χ

Hence, the SPE is equivalent to,

∂χ

∂t
=

γB
2

 i cos(φ) i sin(φ) exp(−iθ)

i sin(φ) exp(iθ) −i cos(φ)

− iω0I

χ

=

γB
2

 i cos(φ) −i sin(φ) exp(iθ)

i sin(φ) exp(iθ) i cos(φ)

− iω0I

χ (2.2)

Where χ is a function χ : R→ C⊕C, or a curve in C⊕C. Note that the SPE

in the form of Equation (2.2) has the form of the right regular or left regular

quaternionic representation depending on the type of product that we define on

C⊕C. We will equip C⊕C with the right regular quaternionic product of Equation

(1.3). Using this product, the SPE can be written as,

∂χ

∂t
=

(
γB

2
ρR(cos(φ)~i+ sin(φ)exp(~iθ)~i~j)− iω0I

)
χ

Where ρR is the quaternionic right regular representation. Using the

identification χ = (χ0, χ1) ∈ C⊕ C with the Quaternion η = χ0 + χ1
~j, we can

re-write the SPE as a Quaternion equation as,

η̇(t) = η(t)(
γB

2
~β0)− (~iω0)η(t) (2.3)

Where ω0 is the rest energy term in H (a real number), and ~β0 is given by the

purely imaginary unit Quaternion:
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~β0 = cos(φ)~i− sin(φ) sin(θ)~j + sin(φ) cos(θ)~k

Equation (2.3) is the equivalent form of the SPE in quaternionic notation.

2.2 The Foucault Pendulum

We will introduce the Lagrangian of the Foucault pendulum and solve the

Euler-Lagrange equations of motion using complex numbers. This will provide a

motivation for the quaternionic Lagrangian of the generalized Foucault pendulum

which we will call the Quaternionic Foucault Pendulum (QFP).

The Foucault pendulum or Foucault’s pendulum, named after the French

physicist Leon Foucault, is a simple device conceived as an experiment to

demonstrate the rotation of the Earth. The experimental apparatus consists of a

tall pendulum free to swing in a vertical plane. The actual plane of swing appears

to rotate relative to the Earth; in fact, the plane is fixed in space while the Earth

rotates under the pendulum once a sidereal day. Figure (2.1) shows a diagram of

the Foucault pendulum on the surface of the Earth. In this figure, a pendulum of

length l and mass m is located at latitude π
2
− φ. As the pendulum moves through

the surface of the Earth, due to the rotation of the Earth, the motion of the

pendulum precesses. The motion of the precession can be predicted in the small

angle-limit approximation with respect to the vertical axis of the pendulum by

making use of the β parameter which equals to Ω cos(φ) and the ω0 parameter

which equals to
√

g
l
; where Ω is the angular velocity of the earth, l the length of the

pendulum, and g is the acceleration due to gravity.
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( )ϕβ  cos Ω=Ω

ϕ

Earth’s 
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Figure 2.1: Depiction of a Foucault pendulum on the surface of the Earth.

The Lagrangian that describes the equations of motion of the Foucault

pendulum (FP) in the small-angle limit approximation is given by
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L =
1

2

{
ẋ1(t)

2 + ẋ2(t)
2
}
− 1

2
ω2

0

{
x1(t)

2 + x2(t)
2
}

+ β {x1(t)ẋ2(t)− x2(t)ẋ1(t)}

Where β = Ω cos(φ) is a real number, and x1(t), x2(t) denote the position of

the pendulum on the tangent plane (horizontal plane with orthogonal axes x1, x2) to

the surface of the Earth at the location of the pendulum, and ω0 =
√

g
l

is the

natural frequency of the pendulum.

We can write this equation in vector form, with ~x = [x1(t)x2(t)]
T , and,

L =
1

2
~̇xT ~̇x− 1

2
ω2

0~x
T~x+ β~̇xT

 0 −1

1 0

 ~x

Note that by mapping ~x→ z = x1(t) + ix2(t) ∈ C, we can think of the

trajectory of the pendulum given by ~x as a curve in the complex plane C. Under

this map, the Lagrangian takes the form,

L(t, z, ż) =
1

2
żż − 1

2
ω2

0zz +Re(ż(iβ)z) (2.4)

=
1

2
żż − 1

2
ω2

0zz +
1

2

{
ż(iβ)z + z(iβ)ż

}
We note that without the Re(ż(iβ)z) term, L is the Lagrangian of two

independent oscillators with the same natural frequency ω0. The term Re(ż(iβ)z)

introduces a coupling between the oscillators given by the x1 and x2 parameters

that is also known as the Coriolis coupling given by the β parameter. Hence, the

Foucault pendulum can be interpreted as two coupled harmonic oscillators with a

Coriolis coupling.

The equations of motion can be deduced by calculating the Euler-Lagrange

(E-L) equations. That is,

d

dt

{
dL

dż

}
=

dL

dz
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For the Lagrangian given by Equation (2.4), we get,

dL

dż
=

1

2
ż +

1

2
z(iβ)

dL

dz
= −1

2
ω2

0z +
1

2
ż(iβ)

Hence, the E-L equations give,

z̈ + 2βiż + ω2
0z = 0

It can be shown that this equation has general solution,

z(t) = c1 exp(β+it) + c2 exp(β−it)

Where,

β+ = −β +
√
β2 + ω2

0

β− = −β −
√
β2 + ω2

0

And, c1, c2 are complex constants.

The solution space to the Euler-Lagrange equations of the Foucault pendulum

deserves special attention because it has analogues in the solution space of the spin

1
2

system. For example, the solution where c1 = 1, c2 = 0 (z(t) = exp(β+it))

corresponds to a normal mode with clockwise rotation of the pendular plane of

oscillation with frequency β+. Similarly, the solution where c1 = 0, c2 = 1

(z(t) = exp(β−it)) corresponds to a normal mode with counterclockwise rotation of

the pendular plane of oscillation with frequency β−. We will see that both of these

normal modes have analogues in the spin 1
2

system by use of Proposition (2.3.1). It
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can be shown that the normal modes correspond to the | y+〉, | y−〉 states of the spin

1
2

system of a negatively charged particle under a uniform magnetic field in the

y-direction, where:

| y+〉 =
1√
2

 1

i


| y−〉 =

1√
2

 1

−i


With the clockwise precession corresponding to | y+〉 and the counterclockwise

precession corresponding to | y−〉.

As supporting evidence of this correspondence, we note that the
√
β2 + ω2

0

factor has the effect of producing two normal mode solutions of the Foucault

pendulum that are equally spaced above and below a natural frequency −β – just

like the Zeeman splitting of the energy levels an electron in a uniform magnetic

field. Also, we note that the precession of the normal modes give evidence of a

Berry phase or geometric phase angle for the Foucault pendulum solutions – a phase

already present in the spin 1
2

system. As it is well known, a linear oscillation in the

x1 direction precesses into a linear oscillation in the x2 direction and then back to

the x1 direction. However, this 2π rotation of ~x = (x1, x2)
T in the solution space

corresponds to a π rotation of the pendular plane of oscillation in physical space.

We note that a similar behavior is present in the spin 1
2

system for a negatively

charged particle under a uniform magnetic field in the y direction with the states,
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| z+〉 =

 1

0


| z−〉 =

 0

1


Figure (2.2) illustrates the precession of the plane of oscillation of a Foucault

pendulum at latitude 300 North. Notice the π rotation of the pendular plane of

oscillation after the pendulum has been moved once around the earth.

Figure 2.2: Precession of a Foucault pendulum at latitude 300 North.
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Additionally, any solution of the E-L equation of the Foucault pendulum is a

linear combination of the normal mode solutions. A property that has as analogue

in the spin 1
2

system the superposition principle of quantum mechanics. A more

concise correspondence between the Foucault pendulum and the spin 1
2

will be given

in Section (2.3).

Now, we proceed to calculate some of the constants of motion of the Foucault

pendulum. Note that C can be viewed as a Lie group under the right regular

product of Equation (1.1). Also, note that for α ∈ C of unit norm (αα = 1),

L(α · t, αz, αż) = L(t, z, ż)

Hence, G = {α ∈ C | αα = 1} is a symmetry group of L. Clearly, G is a circle

and hence G is a Lie group of dimension 1. Thus, by Proposition (A.3.2), there is

exactly one linearly independent constant of motion. In order to calculate this

constant, we first calculate the Lie algebra of G. Clearly, the Lie Algebra is given by

R, and the exponential map exp : R→ G taking the Lie algebra to G is given by:

exp(θ) = exp(iθ) ∈ G ⊂ C

Near the identity 1 ∈ G, the elements of G are given by exp(idθ) where dθ is a

small number. Clearly,

exp(idθ) = 1 + idθ +O(dθ2)

Hence, the infinitesimal generator of the Lie algebra is given by i. Note that

ξi(z) = zi. Also, recall that p = ∂L
∂ż

= 1
2
(ż + βiz). Hence, the constant of motion of
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this symmetry is given by,

Si = 〈p, ξi(z)〉

=
1

2
〈ż + βiz, iz〉

=
1

2
Re(ż + βiziz)

=
1

2

{
i

2
(żz − żz) + βzz

}
=

1

2
{Im(żz) + βzz}

=
1

2

{
x1ẋ2 − x2ẋ1 + β(x2

1 + x2
2)
}

It can be shown that if we let x1 = ρ cos(θ), x2 = ρ sin(θ), then L becomes a

function of ρ, ρ̇, θ, θ̇, and because L is cyclic in θ the canonical momentum

pθ = ∂L
∂θ̇

= ρ2(θ̇ + β) is a constant of motion. Also, by making the transformation

ρ2 = x2
1 + x2

2, θ = arctan(x1

x2
), it can be shown that Si = pθ

2
. This verifies our result.

We note that the canonical momentum given by pθ is not the same as the

angular momentum because the latter is not a conserved quantity. Also, we point

out energy as another conserved quantity corresponding to time translation

symmetry in L.

2.3 A Special Equivalence Between the Foucault Pendulum and the

Spin 1
2

System

For the special case of a time-varying magnetic field in the y direction, one

can show that the Foucault pendulum and the spin 1
2

system have almost the same

solutions provided that one allows the natural frequency of the Foucault pendulum

to vary like
√
ω2

0 − β2.

Proposition 2.3.1. Let X be the solution space of the E-L equations of the

Foucault pendulum with parameters β(t) = γB(t)
2

and natural frequency



23

ω1 =
√
ω2

0 − β(t)2. Let Y be the solution space of the SPE with magnetic field

B(t) = 2β(t)
γ
~j and rest mass frequency ω0. Let z1(t), z2(t) be a basis for Y the

solution space of the SPE. Then, {Re(z1), Re(z2), Im(z1), Im(z2)} is a basis for X

the solution space of the E-L of the Foucault pendulum. That is,

X = Re(Y )⊕R Im(Y ).

Proof. By considering a Foucault pendulum with a time-varying β(t) and natural

frequency ω1, one can deduce the Euler-Lagrange equations as:

z̈ + 2żβi+ zβ̇i+ ω2
1z = 0

Or, in coordinate notation by using the map,

z(t) = x1(t) + ix2(t) → (x1(t), x2(t))
T ,

We deduce that,

 ẍ1(t)

ẍ2(t)

+ 2β(t)J

 ẋ1(t)

ẋ2(t)

+ (ω2
1I + β̇(t)J)

 x1(t)

x2(t)

 =

 0

0



Where J =

 0 −1

1 0

, and I =

 1 0

0 1

. On the other other hand, when

we let the magnetic field be uniform in the y direction B(t) = 2β(t)
γ
~j, and let the rest

mass be ω0, then the SPE takes form:

∂χ

∂t
=

 −iω0
γB(t)

2

−γB(t)
2
−iω0

χ
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By letting χ(t) = (χ1(t), χ2(t))
T where χ1, χ2 are complex valued functions, we

get the 2 dimensional linear ODE.

 χ̇1(t)

χ̇2(t)

 =

 −iω0 β(t)

−β(t) −iω0


 χ1(t)

χ2(t)


= (−iω0I − β(t)J)

 χ1(t)

χ2(t)


Clearly, from this we deduce that:

~̈χ = (−iω0I − β(t)J)~̇χ− β̇(t)J~χ

Where ~χ = (χ1(t), χ2(t))
T . Hence, when ~χ is a solution to the SPE, we calculate,

~̈χ+ 2β(t)J ~̇χ+ ˙β(t)J~χ = −(ω2
0 − β(t)2)I~χ

= −ω2
1~χ

Hence, ~χ is a complex solution to the E-L of the Foucault pendulum with

parameter β(t) and natural frequency ω1. Thus, the SPE yields complex solutions

the E-L equation of the Foucault pendulum. We will use the following elementary

claim to deduce a basis for the solution space X of the E-L equations of the

Foucault pendulum using a basis of the solution space Y of the SPE.

Claim 2.3.2. Let X be a vector space of functions over the complex numbers with

function basis given by {z1(t), z2(t)}. Assume further, that there are no complex

linear combinations of z1(t), z2(t) that yield a purely real function. Then, the set

{Re(z1), Re(z2), Im(z1), Im(z2)} is a linearly independent set of real functions where

linear independence is taken over the real numbers instead of the complex numbers.
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It can be verified that the SPE with rest mass ω0 cannot admit purely real

solutions. This is an elementary result in quantum mechanics. Hence, if the space Y

of solutions to the SPE has basis {z1(t), z2(t)} over the complex numbers. Then, the

set Ξ = {Re(z1), Re(z2), Im(z1), Im(z2)} is a linearly independent set of real

functions with linear independence over the real numbers. Clearly, every complex

function that satisfies the E-L of the Foucault pendulum must have its real and

imaginary part also satisfy the E-L of the Foucault pendulum. Hence, every

function of Ξ solves the E-L of the Foucault pendulum. In particular, Ξ generates a

4 dimensional vector subspace of the solution space X of the E-L of the Foucault

pendulum. Clearly, this must yield that Ξ spans X because X is a 4 dimensional

vector space over the real numbers as well.

We will seek to generalize the Foucault pendulum to 4 dimensions in such a

way that Proposition (2.3.1) holds in some simpler form. We will do this for the

case of a time independent uniform magnetic field.

2.4 The Quaternionic Foucault Pendulum (QFP)

In the previous Section (2.3), it was shown that the solution space X of the

SPE with a special magnetic field B was related to the solution space of the E-L of

the Foucault pendulum. We will seek to generalize this correspondence to an

arbitrary uniform magnetic field. In order to do this, we propose extending the β(t)

parameter to an arbitrary purely imaginary Quaternion. Using the complex

Foucault pendulum as motivation, we will propose a Quaternionic Foucault

Pendulum (QFP). This quaternionic version will be shown to generalize Proposition

(2.3.1) in the special case of an arbitrary magnetic field B(t) that is time
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independent and uniform. The following diagram depicts the generalization

hierarchy from the Foucault pendulum to the quaternionic Foucault pendulum

along with their corresponding correspondences to the SPE.

QFP
L = 0←−−−− SPE, ~B(t) = ~B

∪ ∪

FP ←− SPE, ~B(t) = B0(t)~j

We will then solve the Euler-Lagrange equations for the quaternionic version

and write the solution set in standard form.

The Lagrangian of the Foucault pendulum given by Equation (2.4) is defined

over the complex numbers. We will generalize this Lagrangian to a function of the

quaternionic variables η(t), η̇(t). That is,

L(t, η, η̇) =
1

2
η̇η̇ − 1

2
ω2

0ηη +
1

2

{
η̇βη + ηβη̇

}
=

1

2
η̇η̇ − 1

2
ω2

0ηη +Re(η̇βη)

Where in the above, β is a purely imaginary Quaternion and ω0 is the natural

frequency of the pendulum. As an observation, we note that when η(t), η̇(t), β are

restricted to the complex numbers, L becomes the Lagrangian of the Foucault

pendulum. Hence, it is justified that L generalizes the Foucault pendulum. We note

that because β = ~β is a purely imaginary imaginary Quaternion, it has the property

that β2 = −‖~β‖2.

The correspondence of Proposition (2.3.1) between the solution space of the

FP and the solution space of the SPE can be made more direct if we substitute the

natural frequency of the pendulum ω0 with
√
ω2

0 − ‖β(t)‖2. We note that the E-L

will keep their original forms even though this substitution for ω0 makes ω0 a
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function of t. This substitution amounts, to modifying the Lagrangian of the

Foucault pendulum to:

L(t, η, η̇) =
1

2
η̇η̇ − 1

2
(ω2

0 − ‖β‖2)ηη +Re(η̇βη) (2.5)

Thus, if we define the modified Foucault pendulum to be the dynamical

system given by the solution space of the Euler-Lagrange equations of the

Lagrangian given by Equation (2.5) where η, η̇, β are complex valued functions and

β is purely imaginary. Then, we can rephrase Proposition (2.3.1) as,

Proposition 2.4.1. Let X be the solution space of the E-L equations of the

modified Foucault pendulum with parameters β(t) = γB(t)
2

and natural frequency

ω0. Let Y be the solution space of the SPE with magnetic field B(t) = 2β(t)
γ
~j and

rest mass frequency ω0. Let z1(t), z2(t) be a basis for Y the solution space of the

SPE. Then, {Re(z1), Re(z2), Im(z1), Im(z2)} is a basis for X the solution space of

the E-L of the Foucault pendulum. That is, X = Re(Y )⊕R Im(Y ).

We point out the E-L equations of the modified Foucault pendulum are,

η̈ +
d(ηβ)

dt
+ η̇β + (ω2

0 − ‖β‖2)η = 0

We will take the Lagrangian given by Equation (2.5) as the Lagrangian of the

Quaternionic Foucault Pendulum (QFP) by allowing β, η(t), η̇(t) to be quaternionic

valued functions and forcing β to be a purely imaginary Quaternion.

Definition 2.4.2. The Quaternionic Foucault Pendulum (QFP) is the dynamical

system given by the solution space of the Euler Lagrange equations of the

Lagrangian defined by:

L(t, η, η̇) =
1

2
η̇η̇ − 1

2
(ω2

0 − ‖~β‖2)ηη +Re(η̇βη)
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Where L is defined on R×H×H, η(t), η̇(t) are quaternionic functions, ω0 ∈ R

is the natural frequency of the pendulum, and β is a purely imaginary Quaternion

(i.e., β = ~β).

We note that without the Re(η̇βη) term, the Lagrangian of the QFP is

nothing more that the Lagrangian of four independent oscillators with the same

natural frequency ω0. The term Re(η̇βη) is a coupling term between the four

oscillators that depends on three parameters that will correspond to the components

of the magnetic field of the SPE.

By considering the map,

η(t) = η0(t) + η1(t)~i+ η2(t)~j + η3(t)~k → ~η(t) = (η0(t), η1(t), η2(t), η3(t))
T ,

we can re-write the Lagrangian of the QFP in 4-coordinate vector notation as:

L(t, ~η(t), ~̇η(t)) =
1

2
~̇ηT~η − 1

2
(ω2

0 − ‖~β‖2)~ηT~η + ~̇ηTρR(β)~η (2.6)

Where ρR(β) is the right regular representation of Quaternions under the right

regular product of C⊕ C. Since β is purely imaginary, β = ~β = βx~i+ βy~j + βz~k.

And, ρR(β) is nothing more than the right isoclinic rotation corresponding to β.

That is,

ρR(β) =



0 −βx −βy −βz

βx 0 βz −βy

βy −βz 0 βx

βz βy −βx 0


Where, we have identified C⊕ C with R4 by using the map,

(a0 + a1i, a2 + a3i) → (a0, a1, a2, a3).
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Proposition 2.4.3. Any solution to the E-L equations of the QFP with time

independent β(t) = β parameter has form

η(t) = C+ exp(β+t) + C− exp(β−t)

Where,

β+ =
−‖~β‖+ ω0

‖~β‖
~β

β− =
−‖~β‖ − ω0

‖~β‖
~β

The function exp() is the exponential function defined over the Quaternions H, and

C+, C− are quaternionic constants.

Proof. Using the 4-coordinate vector notation for L, we can deduce the E-L

equations as:

~̈η +
d(ρR(β)~η)

dt
+ ρR(β)~̇η + (ω2

0 − ‖~β‖2)~η = ~0

Or, in quaternionic notation,

η̈ +
d(ηβ)

dt
+ η̇β + (ω2

0 − ‖~β‖2)η = 0

Because β(t) is time independent, we can reduce the E-L equations to

η̈ + 2η̇β + (ω2
0 − ‖~β‖2)η = 0

The result now follows from Proposition (A.2.2).

2.4.1 Constants of Motion of the QFP

We will solve for the constants of motion that are generated by the

symmetries induced by the quaternionic structure of L. For any unit Quaternion

a ∈ H, we consider the diffeomorphisms induced by the Lie structure of H∗:
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Ra(η) = ηa

La(η) = aη

Note that L is almost invariant under the action of Ra whenever a is a unit

Quaternion. That is,

L(t, Ra(η), Ra(η̇)) =
1

2
Ra(η̇)Ra(η̇)− 1

2
(ω2

0 − ‖~β‖2)Ra(η)Ra(η) +Re(Ra(η̇)β̄Ra(η))

=
1

2
˙

(ηa)η̇a− 1

2
(ω2

0 − ‖~β‖2)(ηa)ηa+Re(η̇aβ̄(ηa))

=
1

2
āη̇η̇a− 1

2
(ω2

0 − ‖~β‖2)āηηa+Re(η̇aβ̄āη)

=
1

2
āa ˙̄ηη̇ − 1

2
(ω2

0 − ‖~β‖2)āaηη +Re(η̇(āβa)η)

= L(t, η, η̇) as long as β = aβa

Where we have used the fact that ηη, η̇η̇ are real numbers which commute

with any Quaternion, and that āa = 1 because a is a unit Quaternion. Hence, Ra is

almost a symmetry as long as āβa = β or equivalently βa = aβ. It can be shown

that given a Quaternion β = β0 + ~β, the set of all Quaternions that commute with β

is given by the set:

CH(β) = {η ∈ H | ηβ = βη}

= {η ∈ H | η = a0 + b0
~β

‖~β‖
, a0, b0 ∈ R}

Hence, Ra is a symmetry of L whenever a = a0 + b0
~β

‖~β‖
where a2

0 + b20 = 1.

A similar calculation will yield that La is a symmetry of L for arbitrary unit

Quaternion a ∈ H.
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Proposition 2.4.4. The diffeomorphisms La are symmetries of L for an arbitrary

unit Quaternion a, as well as the diffeomorphisms Ra where a = a0 + b0
~β

‖~β‖
and

a2
0 + b20 = 1. These will be called the symmetries induced by the quaternionic

structure of L. Also, these groups form a group of symmetries isomorphic to

S1 × S3 where Sn is the n-dimensional sphere.

Proof. As it was shown previously, the groups:

H1 = {Ra | aβ = βa, aa = 1}

H2 = {La | aa = 1}

Are symmetry groups of L. Hence, the group 〈H1, H2〉 generated by H1 and

H2 is a symmetry group of L. Note that by the associativity of Quaternion

multiplication, it follows that every element of H1 commutes with H2. Hence, by

the diamond theorem of group isomorphisms 〈H1, H2〉 = H1 ×H2 because

H1 ∩H2 = {1}. Clearly, H2 is isomorphic to the unit Quaternions as a group. This

group is known to be isomorphic to S3. Also,

H1 = {a ∈ H | a = a0 + b0
~β

‖~β‖
, a2

0 + b20 = 1}

By letting cos(θ) = a0, sin(θ) = b0, it follows that,

H1 = {a ∈ H | a = exp(θ
~β

‖~β‖
)}

Clearly, under this representation of H1, H1 is isomorphic to S1. The result

follows.

Now, we proceed to calculate the constants of motion that correspond to these

symmetries. We will do this by applying Proposition (A.3.2). As a first step, we
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calculate

~p(~η, ~̇η) =
∂L

∂~̇η

= ~̇η + ρR(β)~η

This calculation can be derived using Equation (2.6). Next, we calculate ξg(~η).

Recall that in the notation of Proposition (A.3.2), ξg is the vector field generated by

the diffeomorphism Rg which in our case is either Ra or La. It is a standard result

in Lie theory that the exponential map maps the Lie algebra (tangent space of the

Lie group at the identity) to the Lie group. Also, the exponential map can be used

to identify the infinitesimal generators of Ra or La.

Proposition 2.4.5. Let Ra(η) = ηa, La(η) = aη where a is a unit Quaternion.

Then, both Ra and La have the same infinitesimal generators, however, Ra

corresponds to a left invariant vector field and La corresponds to a right invariant

vector field. That is,

ξRa(~η) = ρL(~a0)~η

ξLa(~η) = ρR(~a0)~η

Where a = a0 + ~a and ~a0 = a−a0√
1−a2

0

.

Proof. By assumption, a is a unit Quaternion. Hence, a = a0 + ~a, where

a2
0 + ‖~a‖2 = 1. Let θ be defined such that cos(θ) = a0, sin(θ) = ‖~a‖. Hence,

a = a0 + ‖~a‖ ~a
‖~a‖

= cos(θ) + sin(θ)
a− a0√
1− a2

0

= exp(θ~a0)
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By Theorem (1.3.2) of Duistermaat and Kolk [JD99], ~a0 is the infinitesimal

generator of the diffeomorphisms Ra and La. By Lemma (1.3.1) of Duistermaat and

Kolk [JD99], Ra corresponds to the left invariant vector field generated by ~a0 and

La corresponds to the right invariant vector field generated by ~a0. Hence, by the

definition of left invariant and right invariant vector fields,

ξRa(~η) = ρL(~a0)~η

ξLa(~η) = ρR(~a0)~η

Now, we are ready to calculate the constants of motion induced by the

quaternionic structure of L.

Proposition 2.4.6. Let H1 ×H2 be the symmetry group of the Quaternionic

Foucault Pendulum (QFP) Lagrangian induced by the quaternionic structure of L

as they are given in Proposition (2.4.4). Where,

H1 = {Ra | a = cos(θ) + sin(θ)~β0, ~β0 =
~β

‖~β‖
}

H2 = {La | a = exp(θ~a),~a~a = −1, θ ∈ R}

Let η(t) be a solution to the Euler-Lagrange equations of the quaternionic

Foucault pendulum. Then, the following are the constants of motion induced by

H1 ×H2.

Re(η̇ + ηβ~β0η) Corresponding to H1

Im(η̇ + ηβη) Corresponding to H2

Where ~β0 =
~β

‖~β‖
.
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Proof. By Proposition (A.3.2), the constants of motion are:

S(Ra) = 〈~p(~η, ~̇η), ξRa(~η)〉

= 〈~̇η + ρR(~β)~η, ρL(~a0)~η〉

S(La) = 〈~̇η + ρR(~β)~η, ρR(~a0)~η〉

We note that in quaternionic notation,

ξRa(η) = ~a0η

ξLa(η) = η~a0

p(~η, ~̇η) = η̇ + ηβ

For the group H1, the variable a can take on the ~β0 =
~β

‖~β‖
value. Hence,

S(Rβ) = 〈~̇η + ρR(~β)~η, ρL(~β0)~η〉

= 〈η̇ + ηβ, ~β0η〉

= Re(η̇ + ηβ~β0η)

Where we have used the fact that Re(αγ) = 〈α, γ〉 by using the definition of

Quaternion multiplication.

For the group H2, the variable a can take on an arbitrary unit Quaternion.

Hence, ~a0 can take on an arbitrary purely imaginary unit Quaternion. In particular,

the following quantities must be constants of motion.
S(L~i)

S(L~j)

S(L~k)

 =


Re(η̇ + ηβη~i)

Re(η̇ + ηβη~j)

Re(η̇ + ηβη~k)


= Im(η̇ + ηβη)

Clearly, because ~i,~j,~k generate the Lie Algebra of H2, any constant of motion

corresponding to a g ∈ H2 will be a linear combination of S(L~i), S(L~j), S(L~k).
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Similarly, because ~β0 is the generator of the Lie Algebra of H1, any constant of

motion corresponding to a g ∈ H1 will be a constant multiple of S(R~β0
).

We note that one can calculate these conserved quantities directly. These are

given as,

Im(η̇ + ηβη) = η̇0~η − η0~̇η − ~̇η × ~η − {(η2
0 − ‖~η‖2)~β + 2η0

~β × ~η + 2〈~β, ~η〉~η}

= 2ω0{C−~β0C− − C+
~β0C+}

Re(η̇ + ηβ~β0η) = −η̇0〈~β0, ~η〉+ 〈~̇η, η0
~β0 + ~β0 × ~η〉+ ‖~β‖{‖~η‖2 + η2

0}

= 2ω0{C+C+ − C−C−}

Where, C+, C− are quaternionic constants, and:

η = η0 + ~η

~β0 =
~β

‖~β‖
η(t) = C+ exp(β+

~β0t) + C− exp(β−~β0t)

β+ = −‖~β‖+ ω0

β− = −‖~β‖ − ω0

2.4.2 Interpretation of the Constants of Motion of the QFP

One can interpret the constants of motion of the QFP provided in the

previous section by studying the constants of motion of the SPE. We note that for

the following Lagrangian,

LSPE =
1

2
ηη +

1

2
Re
(
η̇β1η

)
+

1

2
ω0Re

(
ηβ1η~i

)
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The E-L equations are those of the SPE, that is,

η̇ = ηβ −~iω0η

Where ω0 is a real number, β is a purely imaginary Quaternion, and β1 is a

purely imaginary Quaternion satisfying,

(1− β1
~iω0)(

−β1

‖ ~β1‖
) = β

Note that for ω0 = 0, the Lagrangian of the SPE has the same group of

symmetries as the Lagrangian of the QFP. Note that for LSPE, p = ηβ. A direct

calculation of the constants of motion for the groups H1 and H2 using LSPE yields,

S(Rβ1) = 〈ηβ1,
β1

‖β1‖
η〉

= Re

(
ηβ1

β1

‖β1‖
η

)
=

1

‖β1‖
Re
(
β̄1ηβ1η

)
corresponds to H1

S(L~i)

S(L~j)

S(L~k)

 =


Re
(
ηβ1η~i

)
Re
(
ηβ1η~j

)
Re
(
ηβ1η~k

)


= ηη


Re
(
β1
~i
)

Re
(
β1
~j
)

Re
(
β1
~k
)


= ηηβ1 corresponds to H2

The above constants are the analogues of the constants of motion inhereted by

the quaternionic structure of the QFP in the SPE when ω0 = 0. We can further
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calculate these constants explicitly by letting η(t) = Ceβ1t giving,

S(Rβ1) = Re

(
β1C

β1

‖β1‖
C

)
corresponds to H1

S(L~i)

S(L~j)

S(L~k)

 = CCβ1 corresponds to H2

Hence for the H2 group, the QFP constants have as analogues in the SPE

constants of motion that are scalar multiples of the norm of the η(t) state.

Similarly, for the H1 group, the QFP constant has analogue in the SPE the constant

of motion given by Re
(
β1C

β1

‖β1‖C
)

.

For ω0 6= 0, we note that H2 can consist only of unit quaternions that

commute with ~i. Hence, S(L~i) = ηηRe
(
β1
~i
)

is the only constant of motin due to

H2. In which case, H2 has as constant of motion a constant multiple of the norm of

the η(t) state. Thus a similar set of analogies that hold for the ω0 = 0 case also hold

for the ω0 6= 0 case.

2.4.3 A Canonical Reduction for the QFP

We will show how one can transform the solution space of the QFP into the

solution space of a pair of independent Foucault pendulums at the same latitude

using a right isoclinic rotation as long as the β(t) parameter is time independent.

We note that given any solution η(t) to the E-L equations of the QFP, we can

consider the following transformations of functions,

Rγ(η(t)) = η(t)γ

Lγ(η(t)) = γη(t)

Where γ is a unit Quaternion.
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Let R be the group of transformations generated by the Rγ and L be the

group of transformations generated by the Lγ for arbitrary γ. As we know from the

previous section, Lγ(η(t)) is always a solution of the E-L equations of the QFP as

these transformations come from the symmetry group L = H2. We can view these

transformations as gauge transformations because they leave the solution space of

the E-L equations of the QFP invariant. Thus, the group L yields a 3 dimensional

group of gauge transformations. We will see in Section (2.5.2) that these symmetries

will correspond to hidden variables when mapping the solution space of the QFP to

the solution space of the SPE.

On the other hand, Rγ(η(t)) is not always a solution of the E-L equations of

the QFP unless γ commutes with β. The set of these γ is given by the group

H1 ⊂ R. Thus, R has a subgroup of dimension 1 that leaves the solution space of

the E-L equations of the QFP invariant. We may ask, what effect does the

remaining transformations in R\H1 have on the solution space of the E-L equations

of the QFP? We will see in the next proposition that the remaining transformations

in R\H1 will yield a 2 dimensional orbit space that will make all QFP equivalent to

the case when β = α~k.

Proposition 2.4.7. Let η(t) be the solution the E-L equations of the QFP with

constant ~β(t) = ~β parameter and natural frequency ω0. Then, there exist a unit

Quaternion γ independent of η(t) but dependent of ~β such that η(t)γ is the solution

of the E-L equations of the QFP with constant ~β(t) = α~k parameter for some α ∈ R

and natural frequency ω0. In particular, the dynamics of any QFP with constant ~β

parameter is equivalent to the dynamics of a QFP with constant ~β parameter a

constant multiple of ~k. We note that for ~β(t) = α~k, the corresponding magnetic



39

field points in the x-direction not the z-direction, and the unit Quaternion γ

corresponds to an orthogonal rotation of 3-space that maps ~β to α~k in 3-space.

Proof. By Proposition (A.1.3), there is a unit Quaternion γ and real number α such

that:

γ~βγ = α~k

Recall the QFP Lagrangian,

L~β(t, η(t), η̇(t)) =
1

2
η̇η̇ − (ω2

0 − ‖~β‖2)
2

ηη +Re
(
η̇~βη

)
Note that by direct calculation, we can show that,

L~β(t, ηγ, η̇γ) = Lγ~βγ(t, η, η̇)

= Lα~k(t, η, η̇)

In particular, this shows that if η′(t) = η(t)γ is a solution to the E-L equations

of the QFP with ~β(t) = ~β parameter. Then, η(t) = η′(t)γ is a solution to the E-L

equations of the QFP with ~β = α~k parameter.

We note that the solution space of the E-L equations of the QFP with ~β = α~k

parameter is that of two independent Foucault pendulums with the same β

parameter. This is because, in vector notation,

Re
(
η̇α~kη

)
= α~̇ηTρR(~k)~η

= ~̇ηT



0 0 0 −α

0 0 α 0

0 −α 0 0

α 0 0 0


~η
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Which decouples L(t, η(t), η̇(t)) as,

L(t, ~η(t), ~̇η(t)) = L1(t, ~ψ0(t), ~̇ψ0(t)) + L1(t, ~ψ1(t), ~̇ψ1(t))

Where ~ψ0(t) = (η0(t), η1(t))
T and ~ψ1(t) = (η2(t), η3(t))

T , and L1 is the

Lagrangian of the modified complex Foucault pendulum of Equation (2.5) with

β = Ω cos(φ) parameter equal to α. That is, L is the Lagrangian of two identical

but independent Foucault pendulums that are at the same latitude as this

guarantees the same φ and β.

2.5 Equivalence Conditions

We will find necessary and sufficient conditions on the solution set of the QFP,

under the uniform field (constant β) assumption, that satisfy the condition L = 0.

Then, we will show that the L = 0 condition is necessary and sufficient to establish

a correspondence between the SPE and QFP. We start with a proposition that

calculates the function f(t) = η(t)η(t) explicitly, where η(t) is a solution to the E-L

equations of the QFP.

Proposition 2.5.1. Let f(t) = η(t)η(t), where η(t) is a solution to the

Euler-Lagrange equations of the quaternionic Foucault pendulum Lagrangian L.

Assume further, that β(t) = β is a constant of time. Then,

1 The function f ′(t) is equal to,

f ′(t) =
1

‖β‖2
Re(ηη̈β)

2 The function f ′′(t) is equal to,

f ′′(t) = 4{1

2
η̇η̇ − 1

2
(ω2

0 − ‖β‖2)ηη +Re(βη̇η)}
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3 The function f ′′′(t) = −4ω2
0f
′(t).

4 The function,

f(t) = f(0) + α sin(2ω0t) + ε(cos(2ω0t)− 1)

For some real constants α, ε.

Proof. Clearly, f ′(t) =
˙

η(t)η(t) + η(t) ˙η(t). Also, from the E-L equation,

η̈(t) + 2η̇(t)β + (ω2
0 − ‖~β‖2)η(t) = 0

One can solve for the quantities,

η̇(t) =
1

2‖~β‖2
{η̈(t)β + (ω2

0 − ‖~β‖2)η(t)β}

η̇(t) =
1

2‖~β‖2
{−βη̈(t)− (ω2

0 − ‖~β‖2)βη(t)}

From these equations, it follows that,

η̇η + ηη̇ =
1

2‖~β‖2
{−βη̈η + ηη̈β}

=
1

2‖~β‖2
Re(ηη̈β)

Hence, part one follows.

For part two, note that a direct calculation yields,

f ′′(t) = 2η̇η̇ + {η̈η + ηη̈}

Using the E-L equations, one can deduce that,

η̈η + ηη̈ = 4Re(βη̇η)− 2(ω2
0 − ‖~β‖2)ηη
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Thus,

f ′′ = 4{1

2
η̇η̇ − 1

2
(ω2

0 − ‖~β‖2)ηη +Re(βη̇η)}

Hence, part two follows. Now, we show part three. Note that a direct calculation

yields,

d{η̇η̇}
dt

= η̈η̇ + η̇η̈

= (2βη̇ − (ω2
0 − ‖~β‖2)η)η̇ + η̇(−2η̇β − (ω2

0 − ‖~β‖2)η)

= −(ω2
0 − ‖~β‖2){ηη̇ + η̇η}

= −(ω2
0 − ‖~β‖2)f ′(t)

Also, note that,

d{Re
(
βη̇η

)
}

dt
= Re

(
β(η̈η + βη̇η̇)

)
= Re(βη̈η) +Re(βη̇η̇)

= −Re(ηη̈β) + (η̇η̇)Re(β)

= −‖~β‖2f ′(t) + (η̇η̇) ∗ 0

= −‖~β‖2f ′(t)
d{ηη}
dt

= f ′(t)

Hence, it follows by using the formula for f ′′(t) that,

f ′′′(t) = −4ω2
0f
′(t)

Thus part three follows. The previous equation shows that for y(t) = f ′(t),

the function y(t) satisfies the ODE ÿ(t) = −4ω2
0y(t). Clearly, this ODE has solution,

y(t) = f ′(t)

= a cos(2ω0t) + b sin(2ω0t)
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For some real constants a, b. Clearly, the integration of y(t) yields the formula for

f(t). Hence part four follows.

The next proposition gives an explicit calculation of the constants α, ε of part

4 of Proposition (2.5.1).

Proposition 2.5.2. Let η(t) = C+ exp(β+
~β0t) + C− exp(β−~β0t), where

β+ = −‖~β‖+ ω0, β− = −‖~β‖ − ω0, be a solution to the Euler-Lagrange equations of

the quaternionic Foucault pendulum. Then,

1 The function η(t)η(t) equals,

η(t)η(t) = C+C+ + C−C− + 2Re(C+C−) cos(2ω0t)− 2Re(C+
~β0C−) sin(2ω0t).

2 The function η(t)η(t) is a constant of t, if and only if

Re(C+C−) = 0

Re(C+
~β0C−) = 0

3 If η(t)η(t) is a constant, then η(t)η(t) = C+C+ + C−C−.

Proof. Part one is a direct calculation that makes use of the formula for η(t) and of,

η(t) = exp(−β+
~β0t)C+ + exp(−β−~β0t)C−

Clearly,

η(t)η(t) = C+C+ + C−C− + C+ exp((β− − β+)~β0t)C− + C+ exp(−(β− − β+)~β0t)C−

Note that β− − β+ = −2ω0. Hence,

η(t)η(t) = C+C+ + C−C− + 2Re(C+ exp(−2ω0
~β0t)C−)
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A direct calculation of C+ exp(−2ω0
~β0t)C− using the formula for Quaternion

multiplication yields,

Re(C+ exp(−2ω0
~β0t)C−) = Re(C+C−) cos(2ω0t)−Re(C+

~β0C−) sin(2ω0t).

Thus, part one follows. Part two is a clear consequence of part 1 by using the linear

independence of the set of functions {1, cos(2ω0t), sin(2ω0t)} which imples the

unique representation of the zero function as a linear combination of these functions,

0 ∗ 1 + 0 ∗ cos(2ω0t) + 0 ∗ sin(2ω0t) = 0

By letting η(t)η(t) = E0 be a constant, we deduce that:

(C+C+ + C−C− − E0) ∗ 1 + 2Re(C+C−) cos(2ω0t)− 2Re(C+
~β0C−) sin(2ω0t) = 0

Hence, Re(C+C−) = 0 and Re(C+
~β0C−) = 0 and part 2 follows. Part 3 is a clear

consequence of parts 2 and 1.

The next proposition characterizes the solutions η(t) of the E-L equations of

the QFP that satisfy the L(t, η(t), η̇(t)) = 0 condition. This condition will be shown

later to be necessary and sufficient to establish the correspondence of Proposition

(2.4.1) between the SPE and QFP.

Proposition 2.5.3. Let η(t) be a solution to the E-L equations of the QFP. Then,

1 The function η(t) satisfies L(t, η(t), η̇(t)) = 0 if and only if η(t)η(t) is a

constant.

2 The following sets are the same,

{η(t) = C+ exp(β+
~β0t) + C− exp(β−~β0t) | L(t, η(t), η̇(t)) = 0}

{η(t) = C+ exp(β+
~β0t) + C− exp(β−~β0t) | Re(C+C−) = 0, Re(C+

~β0C−) = 0}

{η(t) = C+ exp(β+
~β0t) + C− exp(β−~β0t) | 〈C+, C−〉 = 0, 〈C+, ρR(~β0)C−〉 = 0}
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Proof. Recall that, by Proposition (2.5.1) part 2,

d2{η(t)η(t)}
dt2

= 4{L−Re(η̇β̄η̄) +Re(βη̇η)}

Hence, if η(t)η(t) is a constant, then we must have,

L = Re(η̇β̄η̄)−Re(βη̇η)

We will show that the right hand side of the above equation is zero. This will

establish that η(t)η(t) is a constant implies L(t, η(t), ˙η(t)) = 0. Recall the E-L

equations give,

η̈ + 2βη̇ + (ω2
0 − ‖~β‖2)η = 0

η̈ + 2η̇β + (ω2
0 − ‖~β‖2)η = 0

Hence,

η̈η − 2βη̇η + (ω2
0 − ‖~β‖2)ηη = 0

η̈η − 2η̇βη + (ω2
0 − ‖~β‖2)ηη = 0

Hence, by taking the real part of both of the previous equations, we get:

Re(η̈η)− 2Re(βη̇η) + (ω2
0 − ‖~β‖2)ηη = 0

Re(η̈η)− 2Re(η̇βη) + (ω2
0 − ‖~β‖2)ηη = 0

Because ηη = ηη = 〈η, η〉, we can deduct the previous equations from each

other to yield,

Re(η̈η)−Re(η̈η)− 2Re(η̇βη) + 2Re(βη̇η) = 0

Hence,

Re(η̇βη)−Re(βη̇η) =
1

2
{Re(η̈η)−Re(η̈η)}
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Note that for any two Quaternions α, γ, Re(αγ) = Re(αγ) = 〈α, γ〉. Thus,

Re(η̇βη)−Re(βη̇η) = 0

Establishing that L = 0.

Now, we proceed to show that if η(t) satisfies L(t, η(t), η̇(t)) = 0, then η(t)η(t)

is a constant. We note that the previous calculation showed that for a general η(t)

that satisfies the E-L equations,

Re(η̇βη)−Re(βη̇η) = 0

Hence, for any such η(t),

d2{η(t)η(t)}
dt2

= 4L(t, η(t), η̇(t))

In particular, this shows that the function f(t) = η(t)η(t) has zero second

derivative. Hence, this shows that f(t) = mt+ b for some constants m, b. By

Proposition (2.5.1), f(t) = f(0) + α sin(2ω0t) + ε(cos(2ω0t)− 1). In order for f(t) to

satisfy both functional representations, f(t) must be a constant function. This

shows part 1. Part 2 is a clear consequence of Proposition (2.5.2).

2.5.1 Equivalent Equivalence Conditions

We note that one can identify C⊕ C with H via the map,

(a0 + ia1, b0 + ib1)→ a0 + a1
~i+ (b0 + b1~i)~j.

Using this map, one can solve the SPE and the E-L equations of the QFP in

Spinor notation. That is, by viewing the solutions of these ODEs η(t) as functions

on C⊕C instead of H one can provide for solutions as functions on C⊕C. One can

then solve for an analogous result to Proposition (2.5.3) and Proposition (2.3.1).
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Recall the Spinor form of the SPE as it was given by Equation (2.2),

∂χ

∂t
=

γB
2

 i cos(φ) −i sin(φ) exp(iθ)

i sin(φ) exp(iθ) i cos(φ)

− iω0I

χ

By viewing χ(t) as a function on C⊕ C, one can solve this ODE and find the

general solution in Spinor notation as,

χ(t) =

 χ0(t)

χ1(t)


= fe−iω0teiβt

 cos( θ
2
)

sin( θ
2
)eiφ

+ ge−iω0te−iβt

 sin( θ
2
)

− cos( θ
2
)eiφ


Where f, g are complex constants and β = γB

2
. We note however, that by

mapping C⊕ C→ H using the map (a, b)→ a+ b~j, one can map

χ(t)→ χ0(t) + χ1(t)~j and transform χ(t) from Spinor notation to quaternionic

notation as,

χ(t) = e−
~iω0te

~iβtfβ1 + e−
~iω0te−

~iβtgβ2 (2.7)

Where,

β1 = cos(
θ

2
) + sin(

θ

2
)e
~iφ~j

β2 = sin(
θ

2
)− cos(

θ

2
)e
~iφ~j

One can also re-write the SPE ODE from Spinor notation to quaternionic

notation as

χ̇(t) =
γB

2
χ(t)β0 −~iω0χ(t)
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Where,

~β0 = ~i(cos(θ) + sin(θ)e
~iφ~j)

By Proposition (A.2.1), this ODE has solution,

χ(t) = e−
~iω0tCe

γB
2
~β0t

Where C is a quaternionic constant. The next proposition will provide a map

between solutions to the SPE given by Proposition (A.2.1) and solutions given by

the Spinor notation of Equation (2.7) with the e−
~iω0t term omitted.

Proposition 2.5.4. Let η be the Quaternion valued function η(t) = Ceα
~β0t where

C is a quaternionic constant, α ∈ R, and ~β0 =~i(cos(θ) + sin(θ)e
~iφ~j). Assume

further, that η(t) can be written as,

η(t) = e
~iαtfβ1 + e−

~iαtgβ2

Where,

β1 = cos(
θ

2
) + sin(

θ

2
)e
~iφ~j

β2 = sin(
θ

2
)− cos(

θ

2
)e
~iφ~j

And f, g are complex constants. Then, the following must hold,

g + f~j = e−
~iφ

2Ce
~iφ

2 (sin(
θ

2
) + cos(

θ

2
)~j)

C = e
~iφ

2 (g + f~j)(sin(
θ

2
)− cos(

θ

2
)~j)e−

~iφ
2

Proof. A direct calculation yields,

1−~i ~β0

2
= cos(

θ

2
)β1

1 +~i ~β0

2
= sin(

θ

2
)β2
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Also, one can re-write,

eα
~β0t = cos(αt) + sin(αt) ~β0

=
e
~iαt + e−

~iαt

2
+
e
~iαt − e−~iαt

2~i
~β0

= e
~iαt1−~i ~β0

2
+ e−

~iαt1 +~i ~β0

2

= e
~iαt cos(

θ

2
)β1 + e−

~iαt sin(
θ

2
)β2

Let C = h+m~j where h,m are complex constants. Then, a direct calculation

yields,

Ceα
~β0t = (h+m~j)(e

~iαt cos(
θ

2
)β1 + e−

~iαt sin(
θ

2
)β2)

= e
~iαt{h cos(

θ

2
) +m sin(

θ

2
)e−

~iφ}β1 + e−
~iαt{h sin(

θ

2
)−m cos(

θ

2
)e−

~iφ}β2

Hence,

f = h cos(
θ

2
) +m sin(

θ

2
)e−

~iφ

g = h sin(
θ

2
)−m cos(

θ

2
)e−

~iφ

Or, in matrix notation, g

f

 =

 sin( θ
2
) − cos( θ

2
)e−iφ

cos( θ
2
) sin( θ

2
)e−iφ


 h

m


Hence,  gei

φ
2

fei
φ
2

 =

 sin( θ
2
)ei

φ
2 − cos( θ

2
)e−i

φ
2

cos( θ
2
)ei

φ
2 sin( θ

2
)e−i

φ
2


 h

m


= ρR(sin(

θ

2
)ei

φ
2 + cos(

θ

2
)ei

φ
2~j)

 h

m


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Thus, in quaternionic notation via the map (a, b)T → a+ b~j.

e
~iφ

2 (g + f~j) = (h+m~j)e
~iφ

2 (sin(
θ

2
) + cos(

θ

2
)~j)

Clearly, from this equation, it follows that,

(g + f~j) = e−
~iφ

2Ce
~iφ

2 (sin(
θ

2
) + cos(

θ

2
)~j)

By using the fact that (sin( θ
2
) + cos( θ

2
)~j)(sin( θ

2
)− cos( θ

2
)~j) = 1, we can solve for C in

terms of g + f~j.

Corollary 2.5.5. Let χ(t) be a solution to the SPE with constant magnetic field ~B.

In Spinor form, χ is given as,

χ(t) = e−iω0teiβtfβ1 + e−iω0te−iβtgβ2

Where β = γ‖ ~B‖
2

and γ is the Gyromagnetic ratio which can be approximated as

γ = q
2m

where q is the charge of the particle, and m is the mass of the particle. We

note that γ can be negative as q can be negative. Then, χ(t) can be written as

χ(t) = e−
~iω0tCeβ

~β0t where C is given by Proposition (2.5.4)

Now, we can provide for a solution to the E-L equations in vector notation.

Proposition 2.5.6. Let η(t) = (η0(t), η1(t), η2(t), η3(t))
T be a solution to the E-L

equations in quaternionic form. Then, there are complex constants a, b, c, d such

that,

η(t) = Re

e−iω0t

a
 cos( θ

2
) | y−〉

sin( θ
2
)eiφ | y−〉

 e−i‖~β‖t + b

 sin( θ
2
) | y−〉

− cos( θ
2
)eiφ | y−〉

 ei‖~β‖t

+

Re

e−iω0t

c
 − sin( θ

2
)eiφ | y+〉

cos( θ
2
) | y+〉

 e−i‖~β‖t + d

 cos( θ
2
)eiφ | y+〉

sin( θ
2
) | y+〉

 ei‖~β‖t


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Where,

| y+〉 =
1√
2

 1

i


| y−〉 =

1√
2

 1

−i


Proof. Recall the solution to the E-L equations in quaternionic form.

η(t) = C+e
(−‖~β‖+ω0)~β0t + C−e

(−‖~β‖−ω0)~β0t

Where C+, C− are quaternionic constants. By Proposition (2.5.4), we express,

C+e
(−‖~β‖+ω0)~β0t = e(−‖

~β‖+ω0)itf+β1 + e−(−‖~β‖+ω0)itg+β2

C−e
(−‖~β‖−ω0)~β0t = e(−‖

~β‖−ω0)itf−β1 + e−(−‖~β‖−ω0)itg−β2

For some complex constants f+, g+, f−, g−. By direct calculation these expressions

yield,

η(t) = e−i‖
~β‖t {eiω0tf+ + e−iω0tf−

}
β1 + ei‖

~β‖t {e−iω0tg+ + eiω0tg−
}
β2

Now, define the complex constants a, b, c, d such that,1

f+ =
de−iφ√

2

f− =
a√
2

g+ =
b√
2

g− =
−ce−iφ√

2

Then, under this choice of constants,

η(t) = e−i‖
~β‖t
{
ae−iω0t + deiω0te−iφ√

2

}
β1 + ei‖

~β‖t
{
be−iω0t − ceiω0te−iφ√

2

}
β2

1 In the following equations, we will be identifying i with its quaternionic version ~i.
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By making use of the relations,

β1β1 = 1

β2β2 = 1

~jβ1 = −e−iφβ2

~jβ2 = e−iφβ1

β1β2 = β2β1

= −~je−iφ

β1β2 = β2β1

= ~je−iφ

We can deduce that,

η(t) =
e−iω0tae−i‖

~β‖t
√

2
β1 +

e−iω0tbei‖
~β‖t

√
2

β2 +
eiω0tcei‖

~β‖t
√

2
~jβ1 +

eiω0tde−i‖
~β‖t

√
2

~jβ2

We note that the above equation is really a Spinor solution. That is, by

viewing βi = βi,0 + βi,1~j → (βi,0, βi,1) ∈ C⊕ C where βi,0, βi,1 are complex numbers,

we can view βi ∈ C⊕ C thus giving η as a Spinor. However, we can provide for a

different representation for η(t) that makes use of the fact that each summand

βi,~jβi is a real 4 vector multiplied by complex factor component wise. This

representation will allow for the introduction of hidden variables in the

representation of η(t) that will give physical significance to the correspondence

between different solutions of the QFP that map to the same solution of the SPE.

We will do this by making use of the following identity. Let ~x = (x0, x1, x2, x3)
T be a

4 vector. Clearly, this 4 vector can also be viewed as a Quaternion x under the

natural representation x = x0 + x1
~i+ x2

~j + x3
~i~j. Note that, as a 4-vector

calculation, for any complex number c0 + c1i,
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Re


(c0 + c1i)





x0

x1

x2

x3


± i



−x1

x0

−x3

x2






= c0



x0

x1

x2

x3


∓ c1



−x1

x0

−x3

x2



=



 x0 −x1

x1 x0


 c0

∓c1

 x2 −x3

x3 x2


 c0

∓c1




= (c0 ∓ c1i)

 x0 + ix1

x2 + ix3


= (c0 ∓ c1i)(x0 + x1

~i+ x2
~j + x3

~ij)

We have identified in the above last two equations, a real 4-vector with its

Quaternion counterpart. We note that,



−x1

x0

−x3

x2


= ρL(i)



x0

x1

x2

x3


Hence, we have shown the following identities:

Re(c(~x−
−−→
(ix))) = cx

Re(c(~x+
−−→
(ix))) = cx
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Where ~x,
−−→
(ix) are real 4 vectors and c is complex number. The left hand side

of the above equations involve component wise multiplication of the complex

number c with the components of the vectors ~x,
−−→
(ix). The right hand side of the

above equations involve Quaternion multiplication of the complex numbers c, c with

the Quaternion x.

Consider,

 cos( θ
2
) | y−〉

sin( θ
2
)eiφ | y−〉

 =
1√
2





cos( θ
2
)

0

sin( θ
2
) cos(φ)

sin( θ
2
) sin(φ)


+ i



0

− cos( θ
2
)

sin( θ
2
) sin(φ)

− sin( θ
2
) cos(φ)




=

1√
2

{
~β1 − i

−−→
(iβ1)

}
Where, we have identified β1 with its corresponding 4 vector ~β1 and iβ1 with

its corresponding 4 vector
−−→
(iβ1). Hence,

Re

ae−iω0te−i‖
~β‖t

 cos( θ
2
) | y−〉

sin( θ
2
)eiφ | y−〉


 = Re

(
ae−iω0te−i‖

~β‖t
~β1 − i

−−→
(iβ1)√
2

)

=
e−iω0tae−i‖

~β‖t
√

2
β1

Using the identities,
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 sin( θ
2
) | y−〉

− cos( θ
2
)eiφ | y−〉

 =
~β2 − i

−−→
(iβ2)√
2 − sin( θ

2
)eiφ | y+〉

cos( θ
2
) | y+〉

 =

−−−→
(jβ1) + i

−−−→
(ijβ1)√

2 cos( θ
2
)eiφ | y+〉

sin( θ
2
) | y+〉

 =

−−−→
(jβ2) + i

−−−→
(ijβ2)√

2

Similarly, we can show that,

Re

e−iω0tbei‖
~β‖t

 sin( θ
2
) | y−〉

− cos( θ
2
)eiφ | y−〉


 =

e−iω0tbei‖
~β‖t

√
2

β2

Re

e−iω0tce−i‖
~β‖t

 − sin( θ
2
)eiφ | y+〉

cos( θ
2
) | y+〉


 =

eiω0tcei‖
~β‖t

√
2

~jβ1

Re

e−iω0tdei‖
~β‖t

 cos( θ
2
)eiφ | y+〉

sin( θ
2
) | y+〉


 =

eiω0tde−i‖
~β‖t

√
2

~jβ2

The result follows.

The next proposition will give the analogous conditions on the constants

a, b, c, d of Proposition (2.5.6) that corresponds to the conditions given by

Proposition (2.5.3).

Proposition 2.5.7. Let η(t) be a solution of the E-L equations and choose the

constants a, b, c, d as they are given by Proposition (2.5.6). Then, L(t, η(t), ˙η(t)) = 0

if and only if ad = bc.
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Proof. Recall that, from the proof of Proposition (2.5.6) and the result of

Proposition (2.5.4) that,

C+ = e
~iφ
2

(
b+ de−

~iφ~j√
2

)(
sin(

θ

2
)− cos(

θ

2
)~j

)
e
−~iφ
2

C− = e
~iφ
2

(
−ce−~iφ + a~j√

2

)(
sin(

θ

2
)− cos(

θ

2
)~j

)
e
−~iφ
2

C− = e
~iφ
2

(
sin(

θ

2
) + cos(

θ

2
)~j

)(
−ce~iφ − a~j√

2

)
e
−~iφ
2

~β0 = ~i
(

cos(θ) + sin(θ)e
~iφ~j
)

Clearly, by direct calculation,

C+C− = e
~iφ
2

(
b+ de−

~iφ~j√
2

)(
−ce~iφ − a~j√

2

)
e
−~iφ
2

−~i =

(
sin(

θ

2
)− cos(

θ

2
)~j

)
e
−~iφ
2 ~β0e

~iφ
2

(
sin(

θ

2
) + cos(

θ

2
)~j

)
C+

~β0C− = e
~iφ
2

(
b+ de−

~iφ~j√
2

)
(−~i)

(
−ce~iφ − a~j√

2

)
e
−~iφ
2

Note that, for any Quaternion α = α0 + ~α, we have that,

eθ~xαe−θ~x = eθ~xα0e
−θ~x + eθ~x~αe−θ~x

= α0 + eθ~x~αe−θ~x

Clearly, eθ~x~αe−θ~x is purely imaginary. Hence,

Re
(
eθ~xαe−θ~x

)
= Re(α)
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Hence,

Re
(
C+C−

)
= Re

((
b+ de−

~iφ~j√
2

)(
−ce~iφ − a~j√

2

))
=

1

2
Re
(
−bce~iφ − ba~j − dce−2~iφ~j + dae−

~iφ
)

=
1

2
Re
(
−bceiφ + dae−iφ

)
Re
(
C+

~β0C−

)
= Re

((
b+ de−

~iφ~j√
2

)
(−~i)

(
−ce~iφ − a~j√

2

))
=

1

2
Re
(

(b+ de−
~iφ~j)(~ice

~iφ +~ia~j)
)

=
1

2
Re
(
~ibce

~iφ +~iba~j −~idce−2~iφ~j +~idae−
~iφ
)

=
1

2
Re
(
i(bceiφ + dae−iφ)

)
=

1

2
Im
(
bceiφ + dae−iφ

)
Thus, by Proposition (2.5.3), L = 0 if and only if there are real numbers γ, ε such

that,

−bceiφ + dae−iφ = iε

bceiφ + dae−iφ = γ

Therefore,

2dae−iφ = γ + iε

2bceiφ = γ − iε

In particular,

2bceiφ = γ − iε

= γ + iε

= 2dae−iφ
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Hence, bc = da.

2.5.2 SPE And QFP Correspondence

We will provide for a map between solutions to the quaternionic Foucault

pendulum and solutions to the SPE analogous to the correspondence given by

Proposition (2.4.1). We will see that the L = 0 condition will couple the 4

independent oscillators in the QFP further to reduce the number of free parameters

in the solutions of the E-L equations of the QFP to the number free parameters of

the spin 1
2

system. Thus making the map between the solution space of the QFP

and the solution space of the SPE possible. We start with a Lemma that will

provide for the map used in the correspondence.

Lemma 2.5.8. Let a, b, c, d be complex numbers satisfying ad = bc. Then, there are

complex numbers A,B, f, g such that,

a =
√

2Af

b =
√

2Ag

c =
√

2Bf

d =
√

2Bg

We note that if a, b, c, d can be written in the above form for some constants

A,B, f, g then ad = bc by direct computation.
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Proof. Let the following be the complex polar representation of the complex

numbers a, b, c, d.

a = r1e
iθ1

b = r2e
iθ2

c = r3e
iθ3

d = r4e
iθ4

Note that the ad = bc conditions forces,

r1r4 = r2r3

θ1 + θ4 = θ2 + θ3 mod 2π

Let us assume first that both a, d are not equal to zero. Then, clearly

r1, r2, r3, r4 6= 0. Thus, the following choice of A,B, f, g will suffice,

f =
eiθ1

r4

g =
eiθ2

r3

A =
r4r1√

2

=
r3r2√

2

B =
ei(θ4−θ2)r4r3√

2

=
ei(θ3−θ1)r4r3√

2

Let us assume that a = 0, d 6= 0, c = 0. Then, f = 0, g = 1, A = b√
2
, B = d√

2

suffices.

Let us assume that a = 0, d 6= 0, b = 0. Then, A = 0, B = 1, g = d√
2
, f = c√

2

suffices.
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Let us assume that a 6= 0, d = 0, c = 0. Then, A = 1, B = 0, g = b√
2
, f = d√

2

suffices.

Let us assume that a 6= 0, d = 0, b = 0. Then, f = 1, g = 0, A = a√
2
, B = c√

2

suffices.

The complex constants f, g, A,B of Lemma(2.5.8) will be given

interpretations in the next results. The complex constants

f ′ = f
√
| A |2 + | B |2, g′ = g

√
| A |2 + | B |2 will correspond to different solutions

of the SPE, and the complex constants A,B to hidden variables that are

independent of the SPE solutions.

Proposition 2.5.9. Let η(t) be a solution to the E-L equations of the QFP.

Consider the SPE with constant magnetic field ~B and a negatively charged particle

(that is γ is negative). Assume further that ‖~β‖ = −γ‖ ~B‖
2

. Assume further that

L(t, η(t), η̇(t)) = 0. Let a, b, c, d be constants of Proposition (2.5.6) in the

representation of η(t). Clearly, by Proposition (2.5.7), ad = bc and by Lemma(2.5.8)

there are complex constants A,B, f, g such that:

a =
√

2Af

b =
√

2Ag

c =
√

2Bf

d =
√

2Bg

Then,

(A−B~j)√
| A |2 + | B |2

η(t) = e−iω0t
{
ei‖

~β‖tf ′β1 + e−i‖
~β‖tg′β2

}
Is a solution of the SPE where f ′ = f

√
| A |2 + | B |2, g′ = g

√
| A |2 + | B |2 and

‖~β‖ = −γ‖ ~B‖
2

= −β.
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Proof. Recall, from the proof of Proposition (2.5.6) that:

η(t) =
e−iω0tae−i‖

~β‖t
√

2
β1 +

e−iω0tbei‖
~β‖t

√
2

β2 +
eiω0tcei‖

~β‖t
√

2
~jβ1 +

eiω0tde−i‖
~β‖t

√
2

~jβ2

= e−iω0tA
{
fe−i‖

~β‖tβ1 + gei‖
~β‖tβ2

}
+ eiω0tB

{
fei‖

~β‖t~jβ1 + ge−i‖
~β‖t~jβ2

}
A direct calculation yields,

(A−B~j)η(t) = (| A |2 + | B |2)e−iω0t
{
ei‖

~β‖tfβ1 + e−i‖
~β‖tgβ2

}
Clearly, from this it follows that,

(A−B~j)√
| A |2 + | B |2

η(t) = e−iω0t
{
ei‖

~β‖tf ′β1 + e−i‖
~β‖tg′β2

}
= e−iω0t

{
e−i

γ‖~B‖
2

tf ′β1 + ei
γ‖~B‖

2
tg′β2

}
Which is clearly a solution to the SPE with β = γ‖ ~B‖

2
.

We note that if we parametrize η(t) = (η0(t), η1(t), η2(t), η3(t))
T as a 4-d

function with real valued coordinate functions ηi(t). Then, using the complex

constants A,B, we can define a map between the Quaternion representation to a

Spinor representation by letting,

χ+(t) =
(η0 + iη1)A+ (η2 − iη3)B√

| A |2 + | B |2

χ−(t) =
(−η0 + iη1)B + (η2 + iη3)A√

| A |2 + | B |2

We will call this map θA,B(η(t)) = (χ+(t), χ−(t)). We will denote by θ the

map θ1,0. We note that, by direct calculation,

θA,B(η(t)) = θ

(
(A−B~j)√
| A |2 + | B |2

η(t)

)
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In particular, the last proposition can be paraphrased as the following

Corollary.

Corollary 2.5.10. Let η(t) be a solution to the E-L equations of the QFP with

constant β(t) = ~β parameter. Assume further that L(t, η(t), η̇(t)) = 0. Then, there

is a unit Quaternion u such that,

θ (uη(t))

Is a solution of the SPE with −γ‖ ~B‖
2

= ‖~β‖ for a negatively charged particle

subjected to a uniform magnetic field ~B.

Corollary(2.5.10) is the analogous of Proposition (2.4.1) for the QFP .

2.6 Results for the Time Varying Magnetic Field Case

We will show that the converse of Corollary(2.5.10) is a partial correspondence

of the QFP solution set and the solution set of the SPE for an arbitrary

time-varying magnetic field.

Proposition 2.6.1. Let η(t) be the a solution to the SPE of a negatively charged

particle under a time-varying magnetic field ~B = ‖ ~B‖ ~β0 and rest energy ω0 where

~β0 is a time-varying unit vector. Consider the QFP with time-varying ~β parameter

equal to −γ‖
~B‖

2
~β0. Then, for any unit Quaternion γ, the function γη(t) is a solution

to the E-L equations of the QFP. Further, because any solution of the SPE has

constant norm, by Proposition (2.5.3), the solution γη(t) satisfies the

L(t, γη(t), γη̇(t)) = 0 condition as well.

Proof. We are assuming that ~β(t) = −γ‖ ~B(t)‖
2

~β0(t) and that ‖~β‖ = −γ‖ ~B(t)‖
2

which is

consistent as γ is negative because we are studying the state of a negatively charged
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particle. Clearly, the SPE in quaternionic notation is,

η̇(t) = η(t)

(
γ‖ ~B(t)‖

2
~β0

)
− iω0η(t)

= −η(t)~β − iω0η(t)

Also, the E-L equations for the QFP is,

η̈(t) + 2η̇(t)~β + η(t)
(
−‖~β‖2 + ~̇β + ω2

0

)
= 0 (2.8)

It suffices to show that if η(t) satisfies the SPE, then it must also satisfy the

E-L equations of the QFP. The γ constant on the left η(t) can be shown to respect

the algebraic operations that are to follow. Let us assume that η(t) satisfies the

SPE. Note that,

η̈(t) = −η̇(t)~β(t)− η(t)~̇β(t)− iω0η̇(t)

= −η̇(t)~β(t)− η(t)~̇β(t)− iω0

(
−η(t)~β(t)− iω0η(t)

)
= −η̇(t)~β(t)− η(t)~̇β(t) + iω0η(t)~β(t)− ω2

0η(t)

Hence,

η̈(t) + 2η̇(t)~β + η(t)
(
−‖~β‖2 + ~̇β + ω2

0

)
= (iω0η(t) + η̇(t)) ~β − η(t)‖~β‖2

= −η(t)~β~β − η(t)‖~β‖2

= η(t)‖~β‖2 − η(t)‖~β‖2

= 0
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CHAPTER 3

SUMMARY AND CONCLUSION

In the above sections, we discussed the properties of the Foucault pendulum

as classical analogs of the spin 1
2

system. These properties include the Berry or

geometric phase, the presence of the Zeeman energy splitting phenomenon, and the

superposition of the normal modes. These similarities motivated the formulation of

an equivalence among solutions of the Schrodinger-Pauli-Equation and the modified

Focault pendulum which was given by Proposition(2.4.1). Proposition(2.4.1) had

the shortcoming of being applicable to magnetic fields in the y direction only. This

motivated the definition of the quaternionic Foucault pendulum by first generalizing

the complex Lagrangian of the modified Foucault pendulum to a quaternionic

Lagrangian, second generalizing the real valued parameter β to a purely imaginary

Quaternion, and third defining the QFP as the solution to the E-L equations of the

generalized quaternionic Lagrangian.

Using the quaternionic structure of the Lagrangian of the QFP, two groups

were found to be symmetry groups of the QFP Lagrangian. These groups were

defined using left multiplication by a unit or right multiplication by a unit. The

constants of motion associated with these groups were found using Noether’s

theorem and the infinitesimal generators of the Lie algebras of both of these groups.

These constants were compared to their counterparts in the SPE by postulating a

Lagrangian for the SPE in quaternionic notation. It was also shown that any QFP

with constant β parameter was equivalent to a QFP in canonical form with β

parameter equal to α~k. That is, any QFP with constant β parameter is equivalent
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to the dynamics of two independent modified Foucault pendulums at the same

latitude and of the same length. We called the equivalent QFP with β parameter

equal to α~k the canonical form of the QFP.

We then closed the discussion with an extensive derivation of the equivalence

between solutions of the SPE with time independent magnetic field and solutions of

the QFP with time independent β parameter. The main achievement of this

extensive derivation was the determination that the L = 0 condition is necessary

and sufficient in the SPE equivalence with the QFP. This result is summarized by

Corollary(2.5.10), which gives the existence of a unit quaternion u that makes the

equivalence between the QFP and SPE possible as a many-to-one map. This is a

many-to-one map, in the sense that there are additional parameters in the solution

to Equation (2.8) that can be altered without affecting the corresponding quantum

solution, including an overall phase. From a quantum perspective, these additional

parameters would be called ”hidden variables”.

The similarites between the dynamics of the Foucault pendulum and the

dynamics of the spin 1
2

system has been explored before in the work of Klyshko

[D.N93] but only in the context of the Berry phase. Section (2.3) shows that the

analogy goes beyond the Berry phase analog. Prior efforts to find a classical analog

of the spin 1
2

system have made use of the physical angular momentum vector in real

space as the analog for spin. Under such working assumption, a physical rotation of

the angular momentum vector by 2π does not yield a π geometric phase without

making additional reference to elements outside of the state itself. This is illustrated

by Feynman’s coffee cup demonstration in Feynman and Weinberg [FR87].

We close the discussion by posing the question of whether or not it is possible

to construct a working mechanical or electrical version of the classical oscillators
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described in Section (2.4) for the QFP. Such construction would make a remarkable

demonstration of the dynamics of an unmeasured electron spin state.
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APPENDIX A

APPENDIX

We will derive a few geometrical results about Quaternions, solve two

quaternionic Ordinary Differential Equations (ODEs), and give a formulation of

Noether’s theorem on constants of motion in the context of Lie Groups.

A.1 A Few Geometrical Results about Quaternions

In this section, we will cover a few geometrical results about Quaternions that

will prove useful in the derivation of the results that are covered in the manuscript.

The non-zero Quaternions H∗ equipped with the multiplicative product makes

them a 4 dimensional real Lie group. A Lie group that is isomorphic to SU(2)×R+,

where SU(2) is the Lie group of 2× 2 complex matrices that are unitary and of

determinant 1, and R+ is the multiplicative group of positive real numbers. The

SU(2) component is isomorphic to the group of Quaternions that have norm 1. The

R+ component corresponds to the image of the Norm map.

One can define the Exponential map for Quaternions using the standard

definition of the Exponential function.

Definition A.1.1. Given a Quaternion w. The, Exponential of w is defined as:

exp(w) = 1 +
w1

1!
+
w2

2!
+
w3

3!
+ · · ·

=
∞∑
k=0

wk

k!
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Proposition A.1.2. Let w = w0 + ~w be a Quaternion. Then,

exp(w) = exp(w0)(cos ‖~w‖+
~w

‖~w‖
sin ‖~w‖)

The Exponential map can be viewed as a map from the Lie Algebra to the Lie

Group. Based on the definition given, one can show that the Lie Algebra of the Lie

subgroup of Quaternions of Norm 1 is given by the purely imaginary Quaternions.

We will use the Exponential map to determine the infinitesimal generator of a Lie

group element.

We close this section with a Group theoretic result about Quaternions.

Proposition A.1.3. Let ~β and ~η be purely imaginary Quaternions. Then, there

exist a (not necessarily unique) unit Quaternion γ and a real number a such that,

γ~βγ = a~η

Proof. Without loss of generality, we can assume ~η = ~k. That is, it suffices to show

that for arbitrary ~β, there are γ and a such that γ~βγ = a~k. Once this is shown, we

can find γ1, a1 and γ2, a2 such that,

γ1
~βγ1 = a1

~k

γ2~ηγ2 = a2
~k

Hence,

γ1
~βγ1

a1

= ~k

=
γ2~ηγ2

a2

Thus,

γ1γ2
~βγ1γ2 = γ2γ1

~βγ1γ2

=
a1

a2

~η
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Therefore, γ = γ1γ2 and a = a1

a2
will give the desired result.

We proceed to show that for given β, there exist a unit Quaternion γ and a

non-zero real number a such that γ~βγ = a~k.

Let ~u be an arbitrary unit vector, and θ be the angle between ~u and ~β0 where

~β0 =
~β

‖~β‖
. Note that for,

γ = cos θ + sin θ
~β0 × ~u
‖ ~β0 × ~u‖

= exp(θ
~β0 × ~u
‖ ~β0 × ~u‖

)

We have the relation,

γ ~β0γ = (4 cos2 θ − 1) ~β0 − 2 cos θ~u

In particular, if we choose ~u so that θ = π
3
,

γ =
1

2
+ ~β0 × ~u (A.1)

γ ~β0γ = −~u

The last equation satisfies the conclusion of the proposition if ~u = ~k and ~β can

be joined to ~k by a geodesic arc of length π
3
. Note that, if ~β and ~k could be joined

by a piecewise path of geodesic arcs each of length π
3
, the geodesic path will yield a

series of γi’s and the ordered product of all the γi’s will give,

γ ~β0γ = (−1)l~k

Where l is the number of geodesic arcs in the path joining ~β0 and ~k,

γ = Πl
i=1γi, and γi is the γ constructed by Equation (A.1).
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Hence, the result follows if we are able to show that any two unit vectors in

the unit sphere in R3 can be joined by piecewise path of geodesic arcs each of length

π
3
. We leave it as an exercise to the reader to show that one can always find such a

path and the length of this path is at most 4.

A.2 Special Quaternionic ODEs

We will consider the solution space of the following first order differential

equation in quaternionic space.

η̇(t) = αη(t) + η(t)γ (A.2)

And of the following second order differential equation in quaternionic space.

0 = η̈(t) + 2η̇(t)~β + (ω2
0 − ‖~β‖2)η(t) (A.3)

Where α and γ are two fixed Quaternions, ~β is a purely imaginary Quaternion, and

ω0 is a real number.

The Schrodinger Pauli Equation (SPE) for the spin 1
2

particle will be shown to

be special case of ODE (A.2), and the Euler-Lagrange Equations for the

quaternionic Foucault pendulum will be shown to be given by ODE (A.3).

Proposition A.2.1. Let α and γ be two fixed Quaternions. Then, the following

ODE,

η̇(t) = γη(t) + η(t)α

Has solution,

η(t) = exp(γt)Cexp(αt)
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Where C is a quaternionic constant.

Proof. Recall that using the definition of the exponential function, we get that for

exp(γt),

d exp(γt)

dt
=

d

dt

{
∞∑
l=0

(γt)l

l!

}

=
d

dt

{
∞∑
l=0

tl(γ)l

l!

}

=
∞∑
l=0

tl(γ)l+1

l!

= γ

(
∞∑
l=0

tl(γ)l

l!

)

=

(
∞∑
l=0

tl(γ)l

l!

)
γ

Where we have used the fact that t commutes with any Quaternion because it

is real. Thus, we get that,

d exp(γt)

dt
= γ exp(γt)

= exp(γt)γ

Now, applying the product rule of differentiation for functions of one real

variable to η(t) = exp(γt) ∗ C ∗ exp(αt), we deduce:

η̇(t) = γexp(γt)Cexp(αt) + exp(γt)Cexp(αt)α

= γη(t) + η(t)α

Hence, η(t) = exp(γt)Cexp(αt) is a four dimensional solution set to the ODE

over R. Clearly, the solution set of the ODE is four dimensional over R. Hence, the

result follows.
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Proposition A.2.2. Let ~β be a purely imaginary Quaternion and ω0 a real

number. Then, the second order quaternionic ODE:

0 = η̈(t) + 2η̇(t)~β + (ω2
0 − ‖~β‖2)η(t)

Has solution:

η(t) = C+ exp

(
(−‖~β‖+ ω0)~β

‖~β‖
t

)
+ C− exp

(
(−‖~β‖ − ω0)~β

‖~β‖
t

)

Where C+, C− are quaternionic constants.

Proof. Let us assume a solution of the form η(t) = C exp(αt) where C is a

quaternionic constant. Note that, for this η(t), we must have for arbitrary t:

0 = η̈(t) + 2η̇(t)~β + (ω2
0 − ‖~β‖2)η(t)

= C exp(αt)
(
α2 + 2α~β + (ω2

0 − ‖~β‖)
)

Hence, the ODE is satisfied if and only if α is a root of the following quadratic

equation over H,

α2 + 2α~β + (ω2
0 − ‖~β‖) = 0

We will show that this quadratic equation has exactly two quaternionic roots

α+, α−. Hence, the general solution to the ODE will be given as:

η(t) = C+ exp(α+t) + C− exp(α−t)

The result will follow by giving the exact formula for α+, α−. Let α = α0 + ~α.

Then,
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α2 = α2
0 − ‖~α‖2 + 2α0~α

α~β = −〈~α, ~β〉+ α0
~β + ~α× ~β

Hence,

0 = (α2
0 − ‖~α‖2 − 2〈~α, ~β〉+ ω2

0 − ‖~β‖2) + 2 ∗ (α0~α + α0
~β + ~α× ~β)

Thus, the following conditions must be satisfied,

0 = α2
0 − ‖~α‖2 − 2〈~α, ~β〉+ ω2

0 − ‖~β‖2 (A.4)

0 = α0~α + α0
~β + ~α× ~β (A.5)

Clearly, from Equation (A.5) we deduce ~α× ~β = −α0(~α + ~β). In particular,

this means that ~α× ~β lies in the plane spanned by ~α and ~β. Note that ~α× ~β is

always perpendicular to the plane spanned by ~α and ~β unless ~α and ~β are linearly

dependent. Hence, in order to satisfy Equation (A.5), we must have α0 = 0,

~α× ~β = ~0, and ~α and ~β be linearly dependent. Thus ~α = k~β. Clearly, with this

condition Equation (A.5) is satisfied trivially. Note that Equation (A.4) is

equivalent to,

ω2
0 = ‖~α‖2 + 2〈~α, ~β〉+ ‖~β‖2

= ‖~α + ~β‖2

= (k + 1)2‖~β‖2

This gives a solution for k = −1± ω0

‖~β‖
. Hence, the roots to the quadratic

equation in H is given as:
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α+ =
−‖~β‖+ ω0

‖~β‖
~β

α− =
−‖~β‖ − ω0

‖~β‖
~β

The result follows.

A.3 Noether’s Theorem for Lie Groups

In the following, we shall be interested in finding the constants of motion

associated with a symmetry of a given dynamical system that is defined by a

Lagrangian L. Specifically, the Foucault pendulum and the quaternionic Foucault

pendulum. Both of these systems make use of a real valued Lagrangian L defined

over a division ring (C or H). Also, for both of these systems the division ring at

hand can be viewed as a Lie group under the right regular product of Equations

(1.1) and (1.3). We will see that subgroups of these Lie groups induce symmetries of

L. Hence, it is natural to talk about the symmetry group of the Lagrangian L as a

Lie group as well.

Definition A.3.1. Let L(t, x, ẋ) be a Lagrangian of a system that is real valued,

where x, ẋ ∈ Rn. That is, L is defined on R×Rn ×Rn. Let a Lie group G act on Rn

and R, and be of dimension m. We will call G a symmetry group of L whenever for

all g ∈ G,

L(g · t, g · x, g · ẋ) = L(t, x, ẋ)

Where · is the action of G on Rn and R

It is well known, by Noether’s theorem, that a symmetry of the Lagrangian

corresponds to a constant of motion of the solutions to the Euler-Lagrange
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equations. The following result summarizes this result in the context of Lie groups

and gives an explicit formula for these constants.

Proposition A.3.2. Let L(t, ~x, ~̇x) be a Lagrangian of a system that is real valued,

where ~x, ~̇x ∈ Rn. That is, L is defined on R× Rn × Rn. Let G be a Lie group of

dimension m that is a symmetry group of L. Define ~p as having components

pi = ∂L
∂ẋi

, where x = (x1, · · · , xn)T . Thus, ~p(~x, ~̇x) = ∂L

∂~̇x
. Let Rg(~x) = g · ~x be the

diffeomorphism induced by g under the action of G on Rn. Let ξg be the vector field

generated by the infinitesimal generator of Rg. Then, for given g ∈ G, the following

quantity,

S(Rg) = 〈~p(~x, ~̇x), ξg(~x)〉

Is the constant of motion that corresponds to the symmetry given by g.

A consequence of Proposition (A.3.2) is that one only needs to calculate the

constants of motion given by the vector fields of the generators of the Lie algebra of

G to determine all the constants of motions of G. This is because any constant of

motion induced by G is a linear combination of the constants of motions induced by

the generators of the Lie algebra of G. Hence, by Proposition (A.3.2) there are only

m linearly independent constants of motion induced by G.

In Chapter 2, we will apply Proposition (A.3.2) to get all the constants of

motion of the Foucault pendulum and the quaternionic Foucault pendulum that are

associated with the induced symmetry group in the corresponding background Lie

group C or H.
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