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ABSTRACT 

LOCAL ADAPTATION OF TWO CRYPTIC SPECIES LASTHENIA CALIFORNICA 

AND LASTHENIA GRACILIS TO DISTINCT REGIONS WITHIN A SERPENTINE 

OUTCROP 

by Teri Barry 

Intraspecific variation providing tolerance to specific edaphic conditions may 

contribute to population differentiation, speciation, and species coexistence.  This process 

is often examined using reciprocal transplant experiments of closely related species in 

contrasting edaphic conditions.  The two cryptic species Lasthenia californica and L. 

gracilis occur on a serpentine outcrop in parapatry at Jasper Ridge Biological Preserve.  I 

hypothesized that each species would demonstrate greater fitness in its home range.  A 

reciprocal transplant experiment was conducted in the field to determine home site 

advantage.  Seedlings from each species were planted in both home ranges and in the 

transition zone where both species occur.  Soil was found to vary significantly by outcrop 

region, particularly with respect to the calcium-to-magnesium ratio.  Lasthenia 

californica performed best in its home range, but L. gracilis demonstrated greater 

survival and fitness in the transition zone.  These findings provided evidence of local 

adaptation of L. californica to the bottom of the slope where the soil calcium 

concentration is lower and magnesium concentration is higher, and local adaptation of L. 

gracilis to the transition zone and the drier top of the slope.  Studies on local adaptation 

using reciprocal transplants are ideal tools for understanding plant evolution and provide 

valuable information for habitat restoration.
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INTRODUCTION 

Plant evolution under extreme soil conditions---Extreme edaphic conditions such 

as serpentine, limestone, guano deposits, or mine tailings are ideal models for the study 

of plant evolution because these soil conditions can lead to adaptations that contribute to 

rapid speciation (Rajakaruna, 2004).  In order for adaptation and ultimately speciation to 

occur, there must be intraspecific genetic variation (O’Dell and Rajakaruna, 2011), and 

contrasting soil types allow such variation within species to be maintained (Rajakaruna, 

2004).  Plants often follow a series of steps to become edaphically endemic species, as 

shown in Figure 1 (adapted from Kruckeberg, 1986).  Plants first become tolerant to an 

edaphic condition and evolve in response to selection into an ecotype or race, which is 

unique in edaphic tolerance from the original species.  The ecotypes or races become 

genetically distinct and reproductively isolated from the ancestral species (thus locally 

adapted), leading to speciation (Kruckeberg, 1986; O’Dell and Rajakaruna, 2011).   
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Figure 1.  Possible speciation pathway redrawn from Kruckeberg (1986). 

 Research on local adaptation---Studies on local adaptation in plants are of great 

value to conservation biologists and climate change researchers (Leimu and Fischer, 

2008), and such studies are beneficial in examining how gene flow and other drivers of 

evolution impact natural selection (Kawecki and Ebert, 2004).  Research on local 

adaptation provides valuable information for the planning of successful restoration 

projects.  The source of plants used in restoration projects can be more carefully selected 

if we know how introduced plants will adapt to a new location.  Plants most suitable for 

restoration are usually collected locally or from areas of similar habitats (McKay et al., 

2005). 
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 Studies on local adaptation in plants typically use reciprocal transplant 

experiments in the field and test fitness traits of two or more plant groups transplanted 

into their home site and away sites.  Fitness can be estimated with floral, vegetative, and 

survival measurements.  Ideally seed number or weight measures fitness, but in long-

lived species fitness is often estimated from growth measurements (e.g., plant height) 

because larger plants probably produce more seeds (Wright and Stanton, 2011).  

Flowering time is also an important measure because differences in the maturation of 

reproductive structures can lead to changes in pollination, herbivory, and reproductive 

success (Levin, 2006).  Reciprocal transplant studies have been widely used to determine 

local adaptation.  A meta-analysis of 36 local adaptation studies revealed 71% of the 

plants studied overall showed greater fitness in their home site than in a foreign site but 

showed reciprocal adaptation (both plant types perform better in their home range and 

worse in away sites) only 45.3% of the time (Leimu and Fischer, 2008).  Some experts 

believe adaptation does not always have to be reciprocal; hence, fitness reaction norms do 

not always have to cross to demonstrate local adaptation (Wright and Station, 2011).     

 Numerous studies have been published since Leimu and Fischer’s 2008 meta-

analysis and many other reciprocal transplant experiments were not included in their 

analysis.  I will review some examples of local adaptation to serpentine soil, habitat types 

such as inland and coastal, and elevation differences.  I will also address the importance 

to local adaptation of scale and how long-lived a species is.  I will primarily discuss 

experiments utilizing annuals but will include a few studies on long-lived plant species to 
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show a broader picture of the importance of local adaptation for the ecology, evolution 

and conservation of plants. 

 Reciprocal transplants and serpentine soil---Serpentine soil provides an 

excellent model for the study of plant speciation that can answer questions on how 

adaptation may lead to speciation and how much geographic isolation is needed for 

population differentiation (Kay et al., 2011).  Serpentine soil (weathered products of 

ultramafic rocks) provides a harsh environment for plants resulting in reduced fitness or 

the exclusion of many plants from the soil.  Serpentine soil is generally low in nutrient 

levels such as nitrogen and calcium, but high in levels of magnesium, iron, and trace 

metals such as nickel and chromium (Safford et al., 2005).  Low plant productivity and 

low soil moisture are also characteristic of serpentine soils (Brady et al., 2005).  Plant 

ecologists take interest in serpentine soils because serpentine endemism is prominent 

worldwide (Brooks, 1987).  Serpentine endemism is prevalent in North America, the 

Mediterranean region, Africa, Australia, New Zealand, Asia, New Caledonia, and Cuba 

(Rajakaruna et al., 2009).  In North America, serpentine endemics are primarily found in 

California (Safford et al., 2005), but a few are also found in the Appalachian Mountains 

(Rajakaruna et al., 2009).  Much of California’s plant endemism is due to geoedaphics.  

Twelve and one half percent of all California endemic plant species have some 

association with serpentine soil (Safford et al., 2005). 

 Many reciprocal transplant experiments have been conducted on closely related 

plant populations from serpentine and non-serpentine soils.  One example of local 

adaptation to serpentine soil concerns Collinsia sparsiflora Fisch. & C.A. Mey. 
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(Plantaginaceae; formally Scrophulariaceae) in the North Coast Range of California.  In a 

two-year reciprocal transplant experiment on serpentine and non-serpentine ecotypes of 

C. sparsiflora there was a greater probability of flowering and fruiting in plants grown in 

their home site than a foreign site (Wright et al., 2006).  Wright and Stanton (2007), 

however, found no significant difference in various estimates of fitness such as 

emergence date, cotyledon size, date of first flower, petal width, calyx length, corolla 

length, or petal color intensity between plants grown in serpentine and non-serpentine 

soils.  The authors believed the traits measured in their latter study were not the traits 

driving local adaptation. 

 Alongside edaphic factors, other factors such as facilitation and competition can 

also play roles in driving local adaptation.  When seeds are sown in non-native soil, 

fitness may be positively (facilitation) or negatively (competition) affected depending on 

planting density.  Espelend and Rice (2007) examined intraspecific facilitation (positive 

interactions among species closely growing together) of Plantago erecta E. Morris 

(Plantaginaceae) in serpentine and non-serpentine soil.  When seeds were planted at 

higher densities emergence was decreased, but there was no effect on mortality.  

Facilitation was, however, demonstrated with biomass when seeds from a non-serpentine 

source were planted in serpentine soil.  Average above ground biomass of non-serpentine 

plants growing in serpentine soil increased as planting density increased, but no 

significant biomass increase was shown in serpentine plants growing in non-serpentine 

soil.  Dense planting when competition occurs may also negatively impact plants.  

Sambatti and Rice (2006) found when competition of Helianthus exilis A. Gray 
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(Asteraceae) was prevented local adaptation occurred.  Mortality was generally higher 

with competition.  There was no significant difference in seed production of local and 

non-local plants with competition; however, with low competition serpentine plants 

produced more seeds than non-serpentine plants in serpentine sites.  The authors found 

there was no differentiation between the serpentine and non-serpentine populations 

because of significant gene flow among the populations (demonstrated by microsatellite 

markers).  

 Reciprocal transplants in other contrasting habitats---Ecotypes or subspecies are 

often found in contrasting habitat types other than serpentine, such as inland sand hill and 

coastal dune locations.  These different populations (e.g., races, varieties, and subspecies) 

of a species can be locally adapted to contrasting environments (e.g., Hall and Willis, 

2006; Lowery et al. 2008; Nagy and Rice, 1997).  While soil differences probably play a 

big role, other differences such as climate and moisture may also influence local 

adaptation.  A few reciprocal transplant experiments conducted on inland and coastal 

populations of Mimulus guttatus DC. (Phrymaceae, formally Scrophulariaceae) provide 

evidence of local adaptation to habitat type.  Hall and Willis (2006) provided evidence 

for divergent evolution with differences in flowering time between coastal and inland 

populations of M. guttatus.  They also found that plants had greater fitness in their native 

sites but extremely poor fitness outside their native range.  Morphological and genetic 

differences were found in a subsequent experiment on coastal and inland populations of 

M. guttatus (Lowry et al., 2008).  Molecular markers distinguished the populations as 

genetically different, and the reciprocal transplant experiment conducted found 
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significantly greater survival to flowering and number of flowers when plants were 

transplanted into their home sites.  In another study, inland populations of Gilia capitata 

Sims subsp. capitata (Polemoniaceae) and coastal populations of G. capitata Sims subsp. 

chamissonis (Greene) V E Grant were more likely to emerge and produce the greatest 

number of flowers when transplanted into their home site (Nagy and Rice, 1997).  These 

reproductive traits demonstrated strong evidence of local adaptation, while leaf length did 

not.  Vegetative traits are not as critical for measuring fitness, and thus studies of local 

adaptation often focus on estimating fitness via reproductive traits. 

 Local adaptation is demonstrated more often in contrasting habitats than in 

geographically similar habitats.  For example, local adaptation is more likely to be 

observed between a coastal and inland population than between two different coastal 

populations (e.g., Herford and Winn, 2008).  Six populations of Diodia teres Walt. 

(Rubiaceae) were examined in three types of habitat (coastal dunes, sand hill, and inland) 

and two sets of each population were transplanted into each of six areas (Herford and 

Winn, 2008).  There was no significant difference in number of fruits produced by this 

self-compatible annual when populations from two similar habitat types (e.g., two 

different coastal dune habitats) were reciprocally transplanted, but when habitat type was 

different (e.g., a dune and a sand hill habitat) local adaptation was demonstrated by 

higher numbers of fruits produced at home sites.   

 Intraspecific variation or variation among closely related species is often observed 

along an elevational gradient.  Plants may be locally adapted to a particular elevation or 

range of elevations.  A classic paper by Clausen et al. (1941) found climatic races of 
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Potentilla glandulosa L. (now Drymocallis glandulosa (Lindl.) Rydb.) (Rosaceae), 

Achillea millefolium L. (Asteraceae), and Artemisia vulgaris L. (Asteraceae) varied in 

survival rate when transplanted into their home climatic (elevational) zone compared to 

two other climatic zones.  The California Coast Range races and the Sierra Foothill races, 

for example, did not survive at timberline (10,000 ft).  Local adaptation is often more 

evident in a plants’ mid-range elevation than along the edges where more plant diversity 

often occurs.  This preference for mid-range elevation was demonstrated by Angert and 

Schemske (2005) with a reciprocal transplant of Mimulus cardinalis Benth. (Phrymaceae, 

previously Scrophulariaceae), and Mimulus lewisii Pursh.  Survivorship, growth, and 

fitness were greater in both species at the center of their natural range.  Beyond their 

range plants’ fitness was nearly zero.  Another reciprocal transplant experiment 

demonstrated plants could be adapted to a specific range (often narrow) of elevations.  

Survivorship of the Australian subalpine grass Poa hiemata Vickery (Poaceae) was 

greater in plants transplanted in their altitude of origin (Byers et al., 2007).  High altitude 

P. hiemata had smaller leaf length and larger circumference than lower altitude P. 

hiemata.  These phenotypic expressions were noted in the reciprocal transplant even 

when seedlings from field collected seeds were transplanted out of their home range. 

 Scale of experiments---The scale of the experiment as well as soil, habitat, or 

elevation can impact whether local adaptation is detected.  Adaptation of plants can be 

studied on a smaller local scale, or on a larger regional scale.  Aster amellus L. 

(Asteraceae) seeds and seedlings from six diploid populations in two regions (moderate 

slopes of marl and rocky slopes of limestone) were reciprocally transplanted into each 
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region to determine local adaptation (Raabová et al., 2007).  Local adaptation on a large 

scale was demonstrated; however, some but not all populations were locally adapted to 

their home site on a local scale.  A possible explanation for this variability could be plots 

were not weeded prior to sowing seeds, thus naturally occurring areas of bare soil were 

variable among the plots.  Another important point is ecologically similar habitats 

(climate and vegetation) may be better suited for transplant than a closer, but less similar 

habitat.  Significant increases in fitness on a local scale (sub sites within larger regions in 

Europe) were not seen in the declining grassland perennial Carlina vulgaris L. 

(Asteraceae) (Ute et al., 2006).  On a regional scale, fitness reduced as distance from the 

plants’ origin increased.  Plants grown in their home site had greater survival and fitness 

than plants grown in a foreign site.  Similar results were found with Hypochaeris 

radicata L. (Asteraceae), a short-lived wide spread European perennial (Ute et al., 2008).  

The further away from its home site a plant was planted in general, the lower the 

survivorship and rosette size were.  Region of transplant, however, did not impact fitness.  

On a small scale plants’ fitness varied depending on the site. 

 Vernal pools offer a great model for examining the impact of spatial scale on local 

adaptation.  Vernal pools are depressions over hardpan, and are common in the Central 

Valley grasslands of California.  These pools fill during the wet season, dry up in spring, 

and remain dry until the next wet season.  Plants are often locally adapted to a specific 

pool depth range.  As the pool dries up in spring, rings of different plant species emerge 

throughout the season (Kruckeberg, 2006).  Emery et al. (2009) examined Lasthenia 

fremontii (A. Gray), a species found in vernal pool bottoms, in a study of five common 
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vernal pool species.  Seeds from species found in the bottom, the edges, and the transition 

between the two areas were planted in all three zones of three different pools.  Lower 

fecundity was demonstrated at the pool edge than at the bottom or transition zones.  In a 

later study, Emery et al. (2012) examined spatial scale and the components of niche 

(climate, habitat, and within habit) on members of the genus Lasthenia found in vernal 

pools and found the different axes of niche were often not correlated with each other.  

Lasthenia at the climate axis were more adaptable to change than at the within habitat 

(pool depth) axis, thus adaptability to one axis did not predict adaptability to another axis. 

 Experiment duration and long-lived species---The duration of an experiment and 

how long-lived a plant species is needs to be considered when determining local 

adaptation from reciprocal transplant experiments.  Replication of more than one season 

is ideal; however, many reciprocal transplant experiments conducted on annuals 

demonstrate evidence of local adaptation in a matter of one or a few seasons (Nagy and 

Rice, 1997; Wright et al., 2006; Hereford and Winn, 2008).  Long-lived plant species on 

the other hand may require very long duration experiments to demonstrate local 

adaptation.  Fitness is hard to measure in long-lived species; therefore, vegetative 

measures such as biomass, plant height, diameter, and number of leaves must be used in 

the absence of reproductive structures.  One greenhouse reciprocal transplant experiment 

on Quercus ilex subsp. ballota (Desf.) Samp. (Fagaceae) did not show better performance 

in seedlings planted in their native soil compared to non-native soil.  Populations of Q. 

ilex subsp. ballota are bodenvag meaning they are found on and off serpentine soils.  

Non-serpentine seedlings grew taller and at a faster rate in both soils than serpentine 
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seedlings (Branco, 2009).  Long-term experiments are needed to demonstrate local 

adaptation of Q. ilex subsp. ballota, but the results of this experiment of adaption at the 

seedling stage provide an important baseline for longer-term studies.  Another experiment 

on oak seedlings found that local adaptation could be measured by insect damage (area of 

leaf damaged).  Strong evidence of local adaptation caused by insect herbivores was 

demonstrated in three microhabitats of Quercus rubra L. seedlings in a one-year period 

(Sork et al., 1993).  Total leaf area and leaf area damaged by insects were used to 

determine fitness.  Less insect damage may allow a seedling a better chance at 

establishing, but it is unclear if lifelong fitness can be predicted at such an early stage in a 

plants’ lifecycle.  Long-term studies would give a better picture of local adaptation in 

long-lived plants such as trees.  Wright (2007) found strong support for local adaptation 

of a population of Pinus ponderosa Douglas ex Lawson & C. Lawson (Pinaceae) to soil 

type.  After 20 years local adaptation to serpentine or non-serpentine soil was supported 

by plant height, basal diameter, biomass, and allozyme data.  

 Shrubs, another long-lived plant group, may pose similar challenges in 

determining local adaptation as trees.  Bieger et al. (2012) conducted a post fire 

reciprocal transplant on three species of shrub seedlings (Adenostema fasciculatum Hook. 

& Arn. Rosaceae, Ceanothus cuneatus Nutt. Rhamnaceae, and Eriodictyon californicum 

(Hook. & Arn.) Torr. Boraginaceae) found on serpentine and sandstone soils.  All plants 

from both sources were planted on serpentine and sandstone, both in combination with 

northerly or southerly slopes, at Walker Ridge, California, USA.  None of the three plants 

above exhibited greater survival at home than away at two years of age; although, 
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seedlings from all sources performed better on sandstone than serpentine soil.  Slope 

effects (greater survival on north-facing slopes) were significant, but minimal compared 

to soil effects. 

Lasthenia as a model for local adaptation---The genus Lasthenia (Asteraceae) is 

composed of 21 species and subspecies grouped into seven sections (Chan, 2001).  

Lasthenia are distributed mostly in the Californian Floristic Province and are found in a 

range of edaphically distinct habitats, including serpentine outcrops, salt flats, coastal 

bluffs, vernal pools, deserts, grasslands, open woodlands, and guano deposits 

(Rajakaruna, 2003).  The two closely related species, Lasthenia californica DC. ex Lindl. 

and Lasthenia gracilis (DC.) Greene differ by an 11 base pair deletion in the internal 

transcribed spacer (ITS) region between 18S and 5.8S ribosomal genes (Chan et al., 

2002).  They can therefore serve as a model for research on local adaptation and edaphic 

differentiation (Rajakaruna, 2003; Bohm and Rajakaruna, 2006).  Lasthenia gracilis is 

morphologically distinguishable by an ovate-lanceolate pappus, while L. californica has a 

more linear pappus.  However, populations of both species sometimes do not possess a 

pappus, i.e. epappose (Chan et al., 2002).  The populations at my study site in Jasper 

Ridge are not epappose; therefore, species can be identified by pappus morphology.      

Different races of L. californica were found (Rajakaruna and Bohm, 1999) based 

on two main flavonoid profile types and allozyme banding differences (Bohm et al., 

1989; Desrochers, 1992; Desrochers and Bohm, 1995).  Race A is found primarily in 

ionically harsh, clay soils while race C is found in drier, less ionically harsh soils 

(Rajakaruna and Bohm, 1999).  Lasthenia californica and L. gracilis consist of both race 
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A or C variants (Rajakaruna, 2003).  In both L. californica and L. gracilis race A plants 

are more tolerant to Mg2+ and Na+ and accumulate more of the ions than race C plants.  

Parallel evolution of the edaphic races was suggested because ion accumulation and 

metal tolerance were similar in the two races found in both species (Rajakaruna et al., 

2003a) and the races appear to be partially reproductively isolated both within and 

between species (Rajakaruna and Whitton, 2004).  The populations at Jasper Ridge 

described below are race A/L. californica and race C/L. gracilis.  From this point, I will 

refer to my study populations at Jasper Ridge as L. californica and L. gracilis, not as race 

A and C, to avoid confusion.  

A strong boundary between L. californica and L. gracilis has been documented 

for over three decades on the serpentine outcrop at Jasper Ridge Biological Preserve in 

San Mateo County, California at about 37˚25’N and 122˚2.5’ W (Bohm et al., 1989; 

Bohm and Rajakaruna, 2006).  Lasthenia gracilis is mostly found at the upper reaches of 

the outcrop, while L. californica predominates at the bottom swale (Rajakaruna et al., 

2003c).  The soil at the swale where L. californica is found is higher in pH, clay, Mg²⁺, 

Na⁺, and organic acids than the soil where L. gracilis plants are located (Rajakaruna and 

Bohm, 1999).  The upper reaches of the outcrop, where L. gracilis predominates, are 

chemically benign compared to the bottom swale; however, they appear to be water 

deficient due to the sandy texture of the soil (Rajakaruna and Bohm, 1999).  Lasthenia 

californica and L. gracilis, both winter annuals and obligatory outcrossers (Rajakaruna 

and Bohm, 1999), are associated mostly with Poaceae (natives:  Elymus glaucus Buckley, 

Hordeum brachyantherum Nevski, Danthonia californica Bol., Stipa pulchra Hitchc., 



	
  

	
  14	
  

and Festuca microstachys Nutt. non-natives:  Bromus hordeaceus L., Festuca perennis 

(L.) Columbus & J.P. Sm., and Polypogon monspeliensis (L.) Desf.) at the study site.  

Annuals other than Lasthenia found at the site include Plantago erecta (Plantaginaceae), 

Centaurium (Gentianaceae), owl’s clover and cream sacs in the genus Castilleja 

(Orobanchaceae), Layia (Asteraceae), Sisyrinchium bellum (Iridaceae), and Eschscholzia 

californica (Papaveraceae) (Barry, 2010 personal observation).  The L. californica – L. 

gracilis complex at Jasper Ridge is pollinated by small insects such as Coleoptera 

(Melyridae), Hymenoptera, Lepidoptera (including Arctiidae), and Diptera (Barry, 2010 

personal observation).  Both species are reproductively isolated from each other by a 

seven to ten day lead in flowering time of L. gracilis (Rajakaruna, 2003).  Rajakaruna and 

Whitton (2004) further demonstrated reproductive isolation in a preliminary test on seed 

set and pollen tube growth of seven populations including both species from Jasper Ridge 

(L. californica and L. gracilis).  Lowest pollen tube growth and viable seed counts were 

found in inter-species crosses.  This reduced viability of inter-species crosses supports the 

idea that the species are reproductively isolated under natural conditions.  Other 

preliminary work conducted in spring 2009 on pollen-stigma compatibility also suggests 

reproductive isolation between the species at the Jasper Ridge may be enforced by 

pollen-stigma incompatibility (Kay, unpublished).   The outcrop provides an ideal setting 

for research on local adaptation of the L. californica - gracilis complex to edaphically 

distinct regions within a serpentine outcrop (Bohm and Rajakaruna, 2006).  The L. 

californica - gracilis complex is an ideal model for local adaptation research because 

both species are annuals so the entire life cycle can be examined in one year.  A 
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reciprocal transplant experiment can help answer questions as to why these two closely 

related species could live in such close proximity, yet remain reproductively isolated.  

The small size of L. californica and L. gracilis also makes these plants ideal for a 

reciprocal transplant experiment with minimal environmental impact.    

Three studies on the Lasthenia population at Jasper Ridge have tested the effects 

of soil moisture and chemistry on the fitness of the two species (then L. californica race 

A and C) in the greenhouse.  First, a common garden study was conducted in a 

greenhouse to examine the influence of edaphic factors on fitness estimated by growth 

and measured by flower head production (Rajakaruna and Bohm, 1999).  The results of 

greater flower head production of plants in their native soil demonstrated local 

adaptation.   Rajakaruna et al. (2003b) examined water stress differences in the two 

species.  They found when the two species were exposed to three different watering 

treatments in the greenhouse (high, medium and low) L. gracilis produced significantly 

more flower heads than L. californica, suggesting a greater number of viable seeds in L. 

gracilis.  Finally, a correlation between soil chemistry and accumulation of elements of 

plants was observed in field collected plants and soil (Rajakaruna and Bohm, 1999).  

Discriminant Functional Analysis found calcium, sodium, and calcium-to-magnesium 

ratio to be highly correlated with species distribution at Jasper Ridge.  Magnesium was 

only significantly correlated with L. californica, and potassium was only correlated with 

L. gracilis.  In a later study at Jasper Ridge and other California populations NaCl and 

MgSO₄ tolerance as measured by percent germination, survivorship, and root length was 

greater in race A plants from both L. californica and L. gracilis.  This study was 
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conducted under hydroponic conditions using ion concentrations similar to natural soil 

conditions where the plants grow (Rajakaruna et al., 2003a).  These studies on the Jasper 

Ridge Lasthenia population provide groundwork for a field reciprocal transplant 

experiment because several distinct variables have shown in isolation to be involved in 

local adaptation of each species to its own area of the serpentine outcrop.  A reciprocal 

transplant experiment in the field would better demonstrate how all the habitat variables 

were working in concert.  For example, how soil moisture and soil chemistry change 

together and correlate with plant fitness can be determined only by a study done in the 

field.  There are also many variables in the field such as fluctuating ambient temperature, 

wind, soil microbe activity, and herbivory which may affect the experimental results.  

While all variables were not measured in this study, it is important to verify if a plant is 

locally adapted to a location with all natural conditions present. 

To my knowledge no reciprocal transplant studies have been conducted on the L. 

californica - gracilis complex, although the reciprocal transplant study conducted by 

Emery et al. (2009) previously discussed included Lasthenia fremontii.  Her experiment 

however, compared five species not as closely related as L. californica and L. gracilis.  

The purpose of my study was to show L. californica and L. gracilis at Jasper Ridge are 

locally adapted to different soil conditions within the serpentine outcrop.  I tested the 

hypothesis that both species will show higher fitness and survivorship in their home 

region within the outcrop by conducting a reciprocal transplant experiment and an 

accompanying soil analysis to determine how seasonal changes in soil chemistry 

contributes to natural selection over the growing season.  I addressed the question of 
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whether the boundary previously described still exists with DNA analysis on plants at the 

bud stage and morphological differentiation based on pappus type (Chan, 2001) of 

mature flowers.  Rainfall and ambient temperature play a major role in any seasonal 

distribution; therefore, I collected data on soil moisture in order to examine how it may 

impact plant fitness.  Local adaptation at such a small scale would demonstrate the need 

for very specialized conservation efforts.  If, for example, reintroduction of Lasthenia to 

the upper reaches of the serpentine outcrop (where the population has declined in recent 

years) was desired transplantation of morphologically similar L. californica located just 

meters away at the lower region might prove unsuccessful. 

MATERIALS AND METHODS 

Seasonal distribution study---In fall 2009 I established four transects on the 

serpentine outcrop at Jasper Ridge Biological Preserve parallel to trail 9, starting at the 

fire road and ending at the swale down-slope at the edge of a non-serpentine oak-

grassland (similar to that of Rajakaruna and Bohm, 1999).  Transects were selected based 

on where Lasthenia naturally occurred the previous season.  I marked 1 X 1 meter 

quadrats at three intervals northwest of each transect.  The intervals were at 5 m from the 

fire road where L. gracilis exclusively occurs, at 58 to 64 m where only L. californica is 

found, and at the transition zone (48 m) where both species occur based on preliminary 

sampling along the transects in spring 2009 and previous studies (Rajakaruna and Bohm, 

1999).   

 I sampled four plants at each quadrat starting at the center and spiraling clockwise 

to form a 5 m radius (which included outside the quadrat) in late February and mid-
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March during the bud stage for genotype analysis.  I expanded the sampling areas 

because the Lasthenia density was low within many of the quadrats, and the primary 

purpose of the quadrats was for the reciprocal transplant portion of this study (discussed 

in Local adaptation study section below).  Because the species are not distinguishable 

prior to flowering, I genotyped them for presence/absence of the 11 bp deletion in the ITS 

rDNA locus, identified by Chan et al. (2002).  Approximately 50 mg (four leaves) were 

collected from each plant and stored at minus 80˚C for later DNA extraction.  DNA was 

extracted using a Qiagen DNeasy Plant Mini Kit (Valencia, California, USA) with 

modification.  I disrupted the tissue using a BioSpec Products, Inc., Mini Bead Beater 

(model number 607), and placed about six 2.3 mm Chrome Steel Beads (BioSpec 

Products, Inc.) inside o-ring tubes prefilled with plant tissue.  Next 400 µl of AP1 buffer 

and 40 µl of dilute RNase (36 µl nanopure water plus 4 µl RNase) were added to each 

sample.  I disrupted the tissue in a bead beater for five 30 sec intervals, and incubated the 

samples for 30 min at 65˚C.  Vials were inverted two times during the process.  After 

incubation, I followed steps nine through 19 using the Qiagen handbook protocol.  I 

stored the extracts in a -20˚C freezer until ready for amplification. 

 I amplified DNA extracts using a BiONEER AccuPower™ PCR PreMix kit 

(Alameda, California, USA) and using an Applied Bio Systems GeneAmp® PCR System 

9700 thermal cycler (Foster City, California, USA).  For each reaction, I added 1 µl of 

DNA template, 1 µl each of 10pmol/µl forward L. californica primer (aga acg acc cgt ctt 

gt) and reverse L. californica primer (ggt tgc cca aag gga agt), and 17 µl of nanopure 

water to the prepared 0.2 ml PCR tube provided by BiONEER.  I repeated the above 
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process using L. gracilis 10 pmol/µl forward (ata gca gaa cga ccc gtg aa) and reverse 

primer (ctc atg gtt gcc cam gaa c).  All primers (see Yost et al., 2012) used were designed 

by Dr. Kathleen Kay at UC Santa Cruz and provided by BiONEER.  Following a one-

minute hold at 95˚C, DNA was denatured at 95˚C for one minute, annealed at 55˚C for 30 

seconds, and extended at 72˚C for 30 cycles.  A final two holds at 72˚C for seven minutes 

was programed following the last cycle.  I stored the PCR products in the refrigerator 

until ready for analysis. 

 I prepared a 0.8% TAE gel with 5 µl of GelRed™	
  Nucleic Acid Gel Stain 10,000X 

in water (Biotium; Hayward, California, USA).  I ran the gel using a Fisher Scientific 

(Athens, Georgia, USA) electrophoresis machine (model number FB300).  I loaded 4 µl 

of each PCR product into a well, and Fisher Bio Reagents exACT Gene 50 base pair mini 

DNA ladder (25bp – 650 bp) to the middle and each end well.  The machine was run at 

90 volts for one hour.  Since the primers spanned the boundary of the indel, species 

identity was determined upon amplification of reverse and forward primers from one 

species but not the other (L. californica or L. gracilis).  

 Once full flowers developed species could be determined by pappus morphology 

so I did not do DNA analysis to identify later season plants.  I removed a few disc 

flowers using forceps from 10 flowers from the same quadrat areas used for the DNA 

analysis collections, and collected samples at two-week intervals for the rest of the season 

yielding a total of three sets of collections.  To determine species, I examined disc 

flowers under a dissecting microscope to determine pappus type. 
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Soil analysis---I collected soil samples every two weeks during the flowering 

season for chemical analysis.  I collected the minimum amount of soil (100g), as 

recommended by A & L Western Laboratories, Inc. (Modesto, California, USA) for SN2 

analysis (www.al-labs-west.com), just outside each quadrat sampled from the surface 

down to 10cm.  I air dried the soil samples in paper bags, then crushed and filtered it 

through a 2mm sieve.  Soil chemistry analyses by A & L Laboratories, Inc. were 

conducted following the procedures from the Soil and Plant Analytical Methods of the 

North American Proficiency Testing Program (http:www.naptprogram.org).  Extractable 

K, Mg, Ca, Na, and sulfate sulfur were analyzed using the 1.0 N ammonium acetate at pH 

7.0 method.  Cation exchange capacity for K, Mg, Ca, and Na were determined using the 

ammonium replacement procedure.  Soil pH was measured using the saturated paste 

method.  Nitrate was determined by the 2.0 n KCl/Cadmium reduction procedure.  

Extractible phosphorus was tested with the sodium bicarbonate method for slightly acidic 

to alkaline pH soil, and the dilute acid-fluoride method for neutral pH soil.  Organic 

matter was rated by loss on ignition at 360˚C.  Soluble salts were determined by the 

saturated paste extract method.  Volumetric water content was also measured just outside 

the quadrats once a week using a Spectrum Technologies TDR200 soil moisture meter 

with 6.35cm probes.  The averages of three readings from different sides of each quadrat 

were recorded. 

 Local adaptation study---I arbitrarily collected seeds in April 2009 from 24 

individual L. californica at the bottom of the outcrop about 50 to 60 meters below the fire 

road, and from 24 individual L. gracilis at the top of the outcrop about five to 20 meters 
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down slope of the fire road.  Seeds were not collected randomly along a transect due to 

the heterogeneous distribution of the plants.  I stored the seeds in coin envelopes at room 

temperature until they were ready for germination in winter 2009.  Prior to germination 

seeds and filter paper were surface sterilized with 1% bleach then rinsed three times in 

deionized water then placed in petri dishes (up to 25 seeds per dish).  Next, I placed the 

petri dishes in the refrigerator (for cold striation) for four days then placed them in a 

Conviron E7 Plant Growth Chamber (Winnipeg, Canada) to germinate.  Simulated day 

conditions were 18°C and 12 hours of light from two fluorescent 115 watt bulbs 

(Sylvania Cool White, Canada), and for night 12°C with 12 hours of darkness.  When the 

first true leaves appeared I transferred the seedlings to one-inch germination trays filled 

with Sunshine mix #3 (Canadian sphagnum moss, vermiculite, dolomitic limestone, 

gypsum, and wetting agent), a germination mix by Sun Gro Horticulture Canada Ltd. 

(Seba Beach, Alberta, Canada).  Seedlings were watered as needed (about every other 

day) to keep the germination mix moist.  Seedlings remained in the growth chamber until 

they were about the size of the ones in the field (20 to 50 mm tall).  One week before the 

seedlings were transplanted in the field Conviron temperatures were reduced to 16˚C 

during the day and 6˚C at night so the plants could acclimate to field temperatures.  Of 

the 24 individual flower heads collected from each species, 18 L. gracilis and 14 L. 

californica produced useable (close to height of field plants) seedlings for the transplant.  

In mid-February 2010 I transplanted the seedlings into the same quadrats in the 

serpentine outcrop used for the seasonal distribution study so established species zones 

could be further tested using a reciprocal transplant experiment.  It is ideal to plant seeds 
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directly into the field because local adaptation may occur at the germination stage 

(Hereford and Winn, 2008) but Lasthenia seeds are very small and can have a less than 

50% germination rate (preliminary germination trials, in fall 2009).  I randomly selected 

eight L. californica and eight L. gracilis plants and placed in an alternating pattern within 

each quadrat (Figure 3.).  Plants within each quadrat were from different individuals.  An 

area large enough to accommodate each plant was cleared, but to minimize the 

environmental impact of this experiment I did not weed the remaining areas of the 

quadrats.  Minimal weeding also allowed for natural competition.  To determine if the 

plants are locally adapted to a specific region of the serpentine outcrop natural conditions 

should be altered as little as possible.  I watered the seedlings once a day for the first 

three days, and replaced any plants that died within the first five days because transplant 

shock was assumed. 

 Once plants were established for five days I measured height from soil level to the 

tip of the plant as it stood in the field (plants were not manipulated during measurement) 

every two weeks.  Once the first few transplants reached the flowering stage I recorded 

number of buds, flower heads, green leaves (more than 50% green), and brown leaves 

(less than 50% green) on the same day as height measurements.  Measurements were 

increased to once a week because plants develop quickly during the flowering season.  I 

collected flower heads upon seed set, and calculated percent viable seeds for each plant 

(all flowers from each plant were pooled).  Dark fuller seeds were considered viable, 

while lighter flatter seeds were considered unviable (Rajakaruna, personal 

communication).  I dug up senesced plants, rinsed in deionized water, air dried, and 
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placed them in white paper bags which I later further dried in an Industrial and 

Laboratory oven (National Appliance Company) at 70˚C for one week.  Finally, I 

weighted the above ground biomass on a mettle Toledo AB54-S analytical balance with 

MonoBloc inside weighing technology (maximum 51g, minimum 10mg). 

Data analysis---I performed principal components analyses on all the soil 

variables for each collection date separately to examine which variables accounted for 

most of the variation among the three regions of the outcrop throughout the growing 

season.  I performed a series of repeated measures ANOVAs with deviation contrasts on 

soil variables examined in past studies (Rajakaruna et al., 2003 a & b), and with the 

highest PC1 loading scores (at least > 0.5) to tease out any significant variations in soil 

variables throughout the season.  I tested data used for all ANOVAs for the assumption of 

constant variance by inspecting the residual plot of standardized residuals against 

predicted values if the data points fell within three standard deviations the assumption of 

constant variance was met. 

 To evaluate how both plant fitness and growth varied between each species native 

vs. transplanted habitat I performed multivariate analysis of variance (MANOVA) and 

follow up analysis of variance (ANOVA) for each species on floral (fitness) and 

vegetative (fitness estimates) data with zone, and transect used as fixed factors (found 

under general linear model- multivariate).  The Tukey HSD test was used to determine if 

there were any significant differences among transects.  I reran the MANOVAs with only 

zone as a fixed factor once the main effect of transect was found insignificant.  Square 

root transformations were performed on variables violating the assumption of constant 
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variance. I analyzed survival for each species at each zone using the Kaplan-Meier test 

with compare pair-wise strata.  Four plants were lost to animal disturbance and were 

treated as missing data in all analyses.  In order to rule out the effect of herbivory on the 

results, follow up MANOVAs were performed with plants exhibiting any reduction in 

height (six plants with a reduction in height > 2mm from establishment date, and 

collected above ground biomass 0.0000g) as missing variables (censored). 

 Soil, survival, and floral data from my reciprocal transplant experiment were also 

analyzed using hierarchical modeling aster analysis in R (Shaw et al., 2008) and 

published in the American Journal of Botany (Yost et al., 2012).  Analyses were 

performed using IBM SPSS 20. 

 

RESULTS 

 Seasonal distribution---Species distribution in the top zone near my four plots 

was 100% L. gracilis, and in the bottom zone the distribution was 100% L. californica.  

There was some variation in species distribution in the middle (transition) zone, as L. 

californica distribution ranged from 30 to 55.6% and L. gracilis ranged from 44.4 to 70% 

(Figure 2). 
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Figure 2.  Species distribution throughout the season in the transition zone.  Sample size 

was 12 on first two dates when DNA analysis was required for identification and 

40 on the last three dates when flowers were present for identification. 

Soil analysis---Principal components analysis revealed soil variables tested 

consistently varied between the top, middle, and bottom of the hillside throughout the 

season.  PC1 accounted for 38.255 to 52.555 percent, and the PC2 accounted for 15.590 

to 18.913 percent of the variation for the seven dates sampled (Table 1). 
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Table 1.  Eigenvalues and total variance explained by components 1 and 2 by date. 

Soil Collection 
Date 

PC1 
Eigenvalue 

PC1 % of 
Variance 

PC2  
Eigenvalue 

PC2 % of 
Variance 

02-08-2010 7.730 45.469 3.400 19.998 
02-28-2010 6.503 38.255 2.927 17.218 
03-14-2010 8.561 50.357 3.215 18.913 
03-29-2010 7.775 45.734 3.123 18.370 
04-13-2010 7.214 42.433 2.744 16.142 
04-23-2010 8.934 52.555 2.650 15.590 
05-14-2010 6.910 40.645 2.987 17.569 

 

Calcium to magnesium ratio (Ca:Mg) consistently loaded high on PC1 (accounted for 

most of the variability for all dates but the last, where it was the second highest).  

Potassium (K), organic matter (OM), and estimated nitrogen release (ENR, calculated by 

A&L Laboratories, Inc.) on average were the next highest loaders (Yost et al., 2012), but 

loading order varied by date.  Volumetric water content (VWC) also loaded high on all 

soil collection dates and was often among the top four on PC1.  Some variables such as 

pH and nitrogen loaded high on PC1 some dates and high on PC2 other dates (Table 2).
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Table 2.  Component matrix, extraction method: principal component analysis.  Soil 
collections analyzed by date. 

02-08-2010 
Soil variable PC1 PC2 
Ca:Mg -0.928 -0.29 
Volumetric water content 0.901 0.239 
Na:K 0.886 0.013 
Estimated nitrogen release (lbs/acre) 0.82 -0.164 
Organic matter (%) 0.819 -0.168 
Calcium (ppm) -0.799 0.143 
Magnesium (ppm) 0.758 0.539 
Potassium (ppm) -0.726 -0.003 
pH 0.713 -0.422 
Cation exchange capacity (meq/100/ x g) 0.689 0.602 
Sulfur as SO4

-2 (ppm) -0.631 0.425 
Hydrogen (meq/100 x g) -0.575 0.547 
Phosphorus (Bray-ppm) -0.2 0.691 
Soluble salts (mmhos/cm) 0.478 -0.668 
Phosphorus (Olsen-ppm) 0.419 0.667 
Nitrogen as NO3

- (ppm) -0.117 -0.513 
Sodium (ppm) 0.139 0.489 
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Table 2. (Continued) 

02-28-2010 
Soil variable PC1 PC2 
Ca:Mg -0.961 -0.01 
Organic matter (%) 0.875 -0.276 
Estimated nitrogen release (lbs/acre) 0.875 -0.27 
Volumetric water content 0.785 0.428 
Magnesium (ppm) 0.753 0.375 
Potassium (ppm) -0.702 0.408 
Cation exchange capacity (meq/100/ x g) 0.685 0.433 
Calcium (ppm) -0.673 0.285 
pH 0.629 -0.214 
Hydrogen (meq/100 x g) -0.604 0.253 
Na:K 0.567 0.292 
Sulfur as SO4

-2 (ppm) 0.437 0.029 
Nitrogen as NO3

- (ppm) 0.148 -0.724 
Soluble salts (mmhos/cm) -0.08 -0.71 
Phosphorus (Olsen-ppm) -0.114 0.562 
Sodium (ppm) 0.274 0.531 
Phosphorus (Bray-ppm) 0.246 0.443 
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Table 2. (Continued) 

03-14-2010 
Soil variable PC1 PC2 
Ca:Mg -0.945 0.289 
Organic matter (%) 0.942 0.122 
Estimated nitrogen release (lbs/acre) 0.938 0.121 
Sulfur as SO4

-2 (ppm) 0.905 0.364 
Magnesium (ppm) 0.904 -0.125 
Cation exchange capacity (meq/100/ x g) 0.861 -0.201 
Calcium (ppm) -0.86 0.233 
Volumetric water content 0.846 -0.048 
Nitrogen as NO3

- (ppm) 0.71 -0.405 
Sodium (ppm) -0.631 -0.365 
Phosphorus (Bray-ppm) 0.512 0.151 
Soluble salts (mmhos/cm) 0.383 -0.002 
Hydrogen (meq/100 x g) -0.48 -0.793 
pH 0.356 0.784 
Phosphorus (Olsen-ppm) 0.135 0.734 
Potassium (ppm) -0.473 0.637 
Na:K 0.395 -0.592 
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Table 2. (Continued) 

03-29-2010 
Soil variable PC1 PC2 
Ca:Mg -0.966 -0.126 
Volumetric water content 0.942 -0.154 
Magnesium (ppm) 0.926 -0.219 
Cation exchange capacity (meq/100/ x g) 0.92 -0.212 
Sodium (ppm) 0.892 0.008 
Na:K 0.892 0.256 
Sulfur as SO4

-2 (ppm) 0.892 -0.126 
Potassium (ppm) -0.729 -0.336 
Nitrogen as NO3

- (ppm) 0.728 0.186 
Soluble salts (mmhos/cm) 0.469 0.308 
Organic matter (%) 0.333 -0.312 
Estimated nitrogen release (lbs/acre) 0.33 -0.298 
Phosphorus (Olsen-ppm) -0.001 0.882 
Phosphorus (Bray-ppm) 0.118 0.769 
Hydrogen (meq/100 x g) -0.065 0.717 
pH 0.414 -0.624 
Calcium (ppm) -0.417 -0.457 
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Table 2. (Continued) 

04-13-2010 
Soil variable PC1 PC2 
Ca:Mg -0.891 0.176 
Volumetric water content 0.881 0.07 
Magnesium (ppm) 0.825 0.37 
Na:K 0.808 -0.491 
Organic matter (%) 0.803 -0.062 
Estimated nitrogen release (lbs/acre) 0.802 -0.059 
Cation exchange capacity (meq/100/ x g) 0.755 0.416 
pH 0.744 0.109 
Sodium (ppm) 0.729 0.017 
Potassium (ppm) -0.635 0.415 
Hydrogen (meq/100 x g) -0.585 -0.09 
Phosphorus (Olsen-ppm) 0.549 0.497 
Nitrogen as NO3

- (ppm) 0.072 -0.771 
Calcium (ppm) -0.477 0.65 
Sulfur as SO4

-2 (ppm) 0.265 0.585 
Soluble salts (mmhos/cm) -0.102 -0.502 
Phosphorus (Bray-ppm) 0.078 -0.315 
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Table 2. (Continued) 

04-23-2010 
Soil variable PC1 PC2 
Ca:Mg -0.958 0.08 
Organic matter (%) 0.917 0.049 
Estimated nitrogen release (lbs/acre) 0.913 0.046 
Na:K 0.896 0.189 
Calcium (ppm) -0.871 0.13 
Magnesium (ppm) 0.869 0.1 
Volumetric water content 0.84 0 
Cation exchange capacity (meq/100/ x g) 0.82 0.182 
Potassium (ppm) -0.736 0.271 
Sulfur as SO4

-2 (ppm) 0.685 0.025 
Soluble salts (mmhos/cm) 0.618 -0.007 
Sodium (ppm) 0.56 0.492 
Nitrogen as NO3

- (ppm) 0.41 -0.022 
Phosphorus (Olsen-ppm) -0.158 -0.823 
Hydrogen (meq/100 x g) -0.442 0.775 
pH 0.604 -0.738 
Phosphorus (Bray-ppm) -0.433 -0.636 
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Table 2. (Continued) 

05-14-2010 
Soil variable PC1 PC2 
Calcium (ppm) -0.944 -0.145 
Ca:Mg -0.937 -0.284 
Potassium (ppm) -0.935 -0.096 
Na:K 0.917 -0.004 
Volumetric water content 0.877 0.299 
pH 0.683 -0.569 
Hydrogen (meq/100 x g) -0.627 0.555 
Organic matter (%) 0.584 -0.491 
Estimated nitrogen release (lbs/acre) 0.572 -0.495 
Sodium (ppm) 0.388 -0.175 
Sulfur as SO4

-2 (ppm) 0.25 0.108 
Cation exchange capacity (meq/100/ x g) 0.445 0.781 
Magnesium (ppm) 0.616 0.667 
Phosphorus (Bray-ppm) -0.375 0.413 
Phosphorus (Olsen-ppm) -0.35 0.384 
Nitrogen as NO3

- (ppm) -0.114 -0.361 
Soluble salts (mmhos/cm) 0.246 0.351 

 

When PCA was performed with soil variables averaged over the season sodium, 

phosphorus, nitrogen, and soluble salts loaded high on PC2 (Yost et al., 2012).  The 

principal components clearly vary by zone, and also appear to vary by date within each 

zone (Figure 3).  
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Figure 3.  Variation by zone and date of loading scores from the first two principal 

components.  Each data point represents a date and an outcrop zone.  Zones are 

labeled as follows: square = bottom, circle = middle, and triangle = top. 

Repeated measures ANOVAs performed on Ca:Mg, K, OM, and ENR revealed some 

variations in soil chemistry by date and zone (Figures 4-7).  Ca:Mg varied significantly 

from the seasonal mean on the first collection date F1,9 = 37.157, p<0.001, and date four 
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F1,9 = 5.893, P < 0.05.  All zone comparisons were significantly different (bottom vs. 

middle P < 0.01, bottom vs. top P < 0.001, and middle vs. top P < 0.05).  For all dates 

mean Ca:Mg was highest at the top and lowest at the bottom.  On dates four (F1,9 = 

19.305, P < 0.05) and seven (F1,9 = 54.148, P < 0.001) K significantly varied from the 

seasonal mean.  Tukey tests revealed top vs bottom and top vs middle of the outcrop were 

the only significant comparisons (P < 0.05).  Mean K was highest at the top and lowest at 

the bottom for all dates.  OM and ENR did not significantly vary by date, but all zone 

comparisons were significant (P < 0.05).  Mean OM and ENR were lowest at the top and 

generally highest at the bottom of the outcrop (P < 0.001).  The assumption of sphericity 

(Mauchy’s test) was not violated for any of the above soil variables (P > 0.05). 
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Figure 4.  Variation of Ca:Mg throughout the season within each outcrop zone. 



	
  

	
  37	
  

 

Figure 5.  Mean Potassium (ppm) throughout the season for each outcrop zone. 
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Figure 6.  Variation of organic matter (%) throughout the season (not significant) for each 

outcrop zone. 
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Figure 7.  Variation in estimated nitrogen release (lbs/acre) throughout the season (not 

significant) for each outcrop zone. 

 Plant fitness and growth---MANOVA using Pillai’s trace revealed a significant 

effect of outcrop region on floral and seed production (fitness), V = 0.313, F6,168 = 5.202, 

P < 0.01 but not for vegetative measurements V = 0.087, F8,170 = 0.971, P > 0.05 in  L. 

gracilis.  Both fitness V = 0.496, F6,172 = 9.449, P < 0.01  and vegetative V = 0.461, F8,178 

= 6.672, P < 0.01 measures varied significantly by region in L. californica.  Follow up 

ANOVA post hoc Tukey HSD tests revealed significant (P < 0.05) differences in L. 
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gracilis flower and seed production (viable and total) between the top and middle zones 

and between the middle and bottom zones for viable (not total) seed production.  In L. 

californica, all three floral variables were significantly (P < 0.001) different between the 

top and the middle, and the top and the bottom only.  There were no significant zone 

comparisons for change in height, number of leaves, or above ground biomass in L. 

gracilis, but all four vegetative measures varied significantly (P < 0.05) between the top 

and middle (except peak number of leaves), and the top and bottom of the outcrop in L. 

californica.  All of the floral and vegetative variables were highest at the bottom and 

lowest at the top for L. californica, and all variables except for number of leaves were 

greatest at the middle and lowest at the top for L. gracilis (Table 3, and Figures 8-14).  

Transect was not significant for the model main effects of zone x transect for the floral 

MANOVA (L. gracilis V = 0.129, F9,246 = 1.226, P > 0.05, and L. californica V = 0.075, 

F9,252 = 0.723, P > 0.05) or the vegetative MANOVA (L. gracilis V = 0.127, F12,249 = 

0.920, P > 0.05, and L. californica V = 0.104, F12,261 = 0.783, P > 0.05) using Pillai’s 

Trace.  Similar levels of significance resulted when MANOVAs were rerun with the six 

plants demonstrating evidence of herbivory (as discussed in the data analysis section) as 

missing data.  The only significant finding was the difference between peak numbers of 

leaves at the top compared to the middle was no longer significant in L. californica (note 

that peak number of green leaves was still significant).   

 

 

 



	
  

	
  41	
  

Table 3a.  Means +/- standard error for Lasthenia gracilis floral and vegetative variables. 

Outcrop 
Zone 

Statistic Number 
of 

flowers 

Number 
of 

viable 
seeds 

Total 
number 

of 
seeds 

Above 
ground 
biomass 

(g) 

Height 
change 
(mm) 

Peak 
number 

of 
leaves 

Peak 
number 
of green 
leaves 

Top Mean 1 27 65 0.0105 55.0 12 9 
Standard error 

+/- 
0 7 16 0.0021 7.1 1 1 

Minimum 0 0 0 0.0000 -2.0 5 0 
Maximum 7 144 408 0.0612 135.0 33 27 

Middle Mean 2 68 117 0.0146 72.7 14 11 
Standard error 

+/-  
0 10 19 0.0017 6.6 1 1 

Minimum 0 0 0 0.0002 4.0 8 4 
Maximum 5 209 508 0.0422 137.0 26 24 

Bottom Mean 1 23 77 0.0111 65.6 12 9 
Standard error 

+/-  
0 6 19 0.0031 6.7 1 1 

Minimum 0 0 0 0.0000 -4.0 4 0 
Maximum 7 127 475 0.0919 135.0 34 30 
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Table 3b. Means +/- standard error for Lasthenia californica floral and vegeatative 

variables. 

Outcrop 
Zone 

Statistic Number 
of 

flowers 

Number 
of 

viable 
seeds 

Total 
number 

of 
seeds 

Above 
ground 
biomass 

(g) 

Height 
change 
(mm) 

Peak 
number 

of 
leaves 

Peak 
number 
of green 
leaves 

Top Mean 1 3 26 0.0073 37.2 11 8 
Standard error 

+/-  
0 1 8 0.0014 6.9 1 1 

Minimum 0 0 0 0.0000 -10.0 3 2 
Maximum 4 27 171 0.0359 115.0 19 16 

Middle Mean 2 84 160 0.0210 88.0 14 11 
Standard error 

+/-  
0 17 30 0.0031 8.0 1 1 

Minimum 0 0 0 0.0008 5.0 5 4 
Maximum 6 274 490 0.0637 154.0 22 20 

Bottom Mean 3 124 187 0.0274 109.6 14 12 
Standard error 

+/-  
0 20 30 0.0041 6.0 1 1 

Minimum 0 0 0 0.0000 5.0 8 6 
Maximum 10 404 672 0.1003 162.0 28 26 
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Figure 8.  Variation of the mean number of L. californica (solid line) and L. gracilis 

(dashed line) for flower heads in each outcrop zone.  Error bars are +/- 1 standard 

error. 
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Figure 9.  Variation of the mean number of L. californica (solid line) and L. gracilis 

(dashed line) for viable seeds in each outcrop zone.  Error bars are +/- 1 standard 

error. 
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Figure 10.  Variation of the mean number of L. californica (solid line) and L. gracilis 

(dashed line) for total seeds in each outcrop zone.  Error bars are +/- 1 standard 

error. 
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Figure 11.  Variation of the mean number of L. californica (solid line) and L. gracilis 

(dashed line) for above ground biomass in each outcrop zone.  Error bars are +/- 1 

standard error. 

  



	
  

	
  47	
  

 
 

Figure 12.  Variation of L. californica (solid line) and L. gracilis (dashed line) for the 

mean change in height in each outcrop zone.  Error bars are +/- 1 standard error. 
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Figure 13.  Variation of L. californica (solid line) and L. gracilis (dashed line) for the 

mean peak number leaves in each outcrop zone.  Error bars are +/- 1 standard 

error. 
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Figure 14.  Variation of L. californica (solid line) and L. gracilis (dashed line) for the 

mean peak number green leaves in each outcrop zone.  Error bars are +/- 1 

standard error. 
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 Survival---Kaplan-Meier tests revealed survival for L. gracilis was greater at the 

middle than the top (P< 0.001) and bottom (P < 0.01) of the slope (Figure 15).  Lasthenia 

californica had greater survival at the bottom, and the lowest survival at the top of the 

hill, P < 0.001 for all three comparisons (Figure 16). 

 

Figure 15.  Survival over the season since transplant date for L. gracilis in each of the 

outcrop zones.  Zones labeled as follows:  solid line = middle, dotted line = top, 

and dashed line = bottom.   
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Figure 16.  Survival over the season since transplant date for L. californica in each of the 

outcrop zones.  Zones labeled as follows:  solid line = middle, dotted line = top, 

and dashed line = bottom.   

DISCUSSION 

 The study of local adaptation to variable edaphic conditions provides vital 

information to managers and planners of restoration projects.  Reciprocal transplant 

studies used to examine local adaptation not only offer insight into plant evolution, they 

also are useful in testing the success of plant translocations and reintroductions for habitat 

restoration.  Knowledge of seed source and adaptability to different locations of similar 

habitat are vital to the success of transplants in restoration projects (McKay et al., 2005).   

The presence of L. californica and L. gracilis growing in parapatry at Jasper Ridge 

Biological Preserve demonstrates how two cryptic reproductively isolated species can be 



	
  

	
  52	
  

adapted to distinct areas along an edaphic gradient.  My findings that all plants sampled 

at the bottom of the outcrop were L. californica, that all plants sampled form the top were 

L. gracilis, and that species was variable in the transition zone (also see Yost et al., 2012) 

show the boundary observed by Rajakaruna and Bohm (1999) is still present.   Soil 

chemistry, plant survival, and fitness did vary greatly along the serpentine outcrop.   

As expected, Ca:Mg consistently accounted for much of the soil chemistry 

variation by zone.  Potassium also played a big role, but Na:K was not as consistent.  I 

predicted nitrogen would play a larger role however; OM a predictor of ENR and ENR 

itself were among the top four variables of PC1.  There were some significant variations 

of soil chemistry throughout the season, demonstrated by the changes in PC1 and PC2 by 

date and the repeated measures ANOVAs on the four soil variables accounting for most 

of the variance in PC1 (Ca:Mg, K, OM, and ENR).  The same four edaphic variables 

accounted for most of the variation when PCA was performed with samples from all 

dates in one test (Yost et al., 2012).  Linear regression analysis revealed significant 

variations through time for many of the soil variables (Yost et al., 2012), so I examined 

more closely the four variables accounting for most of the variation in PC1 (listed above) 

using repeated measures ANOVAs with deviation contrasts.  These tests reveled Ca:Mg 

and K varied significantly (P < 0.05) throughout the season.  Although OM and ENR did 

not vary significantly by date, they were significantly (P < 0.001) higher at the bottom 

and lower at the top.  Moisture (VWC) is also important for plant fitness, and was 

significantly higher at the bottom than the top and middle of the outcrop (P < 0.05) as 

demonstrated in figure 17. 
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Figure 17.  Variation in volumetric water content by outcrop zone and soil collection 

date. 

 As predicted, L. californica demonstrated greater fitness in its home range 

(bottom of the hillside) than L. gracilis.  Lasthenia gracilis performed better in its home 

range (top of the hillside) than L. californica, but L. gracilis unexpectedly peaked in the 

transition zone between the two species.  Lasthenia californica produced the most flower 

heads, total seeds, and viable seeds at the bottom and the least at the top of the outcrop as 

expected however; L. gracilis produced the most flowers and seeds in the transition zone 

and the least in their home range (top).  Yost et al. (2012) further supported these results 
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(viable seeds only) with aster analysis where each species was found to have a home site 

advantage, but L. gracilis’ fitness peaked in the transition zone.  Survival was greatest for 

L. californica in its home range, but again L. gracilis performed best in the transition 

zone.  Comparisons of the two species in each zone revealed significant differences 

between the L. californica and L. gracilis at the middle and bottom, but not at the top of 

the outcrop.  There are several plausible explanations as to why L. gracilis peaked in the 

transition zone.  First, L. gracilis may be able to acclimate to the drier, higher Ca:Mg 

conditions at the top of the hill, but thrive in more ideal moisture conditions seen in the 

transition zone.  Another reason is there may be more competition from Plantago erecta 

that appears more abundant in L. gracilis’ home range than in L. californica’s (or in the 

transition zone) and less competition from P. erecta may give an edge for better success 

of L. gracilis in the transition zone.   Thus, my hypothesis that both species would display 

greater fitness and survival home than away was partially supported. 

 Hydroponic studies are ideal for examining a plant’s response to specific soil 

variables. For example, different races of L. californica have been documented to vary in 

survivorship when exposed to solutions of NaCl and MgSO4 (Rajakaruna et al., 2003a).  

General edaphic and species interactions were also revealed using the aster model PC1 x 

species.  Lasthenia gracilis had the highest fitness when PC1 values were low (higher K+, 

lower Mg2+), and L. californica displayed the greatest fitness when PC1 values were high 

(Yost et al., 2012). 

 Many variables I did not measure quantitatively such as herbivory, animal 

disturbance (e.g. gophers and ants), and pollination may also have affected the outcome 
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of my experiment.  In order to account for disturbance the four trampled plants were 

removed from analyses.  Herbivory was not determined to be significant because results 

remained the same in follow up MANOVAs where the six plants estimated to be victims 

of herbivory (> 2mm reduction in height, and above ground biomass = 0.0000g) were 

treated as missing data.  Pollinators appeared to be present and consistent in all outcrop 

regions throughout the flowering season; however, species may have experienced an 

away-site disadvantage due to the relative lack of conspecific pollen donors.  The 

variable of reproductive isolation (self-incompatibility) simply could not be controlled.  

As stated in the introduction L. californica and L. gracilis are also reproductively isolated 

by 7 to 10 day difference in flowering time (Rajakaruna and Bohm, 1999).  This 

difference was noted in my experimental plants as well.  Reproductive isolation in the 

two species was also supported by reduced pollen tube growth in preliminary crossing 

experiments (Rajakaruna and Whitton, 2004).   

 In a field study not all variables can be controlled for; however, my results 

support L. californica and L. gracilis are locally adapted to specific regions within the 

serpentine outcrop.  These findings not only support site-specific tolerance, which can 

lead to speciation (Kruckeberg, 1986), they offer important resources for restoration 

planning.  Successes and more often failures of plant reintroductions for restoration are 

not well documented (Drayton and Primack, 2012).  Restoration efforts should be better 

documented; however, results from my study and other reciprocal transplant studies can 

help managers of restoration projects select suitable seed sources (McKay et al., 2005), 

transplant methods, and assessment of transplant success. 
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FUTURE DIRECTIONS 

 Two important variables including the replication of my study at other locations 

in the species’ geographic range need to be further examined to demonstrate local 

adaptation in the two Lasthenia species.  First, the germination stage is vital to the 

establishment and maintenance of a population.  The germination rate of L. californica is 

generally less than 50% and just over 50% for L. gracilis in a laboratory environment 

(Barry, unpublished).  The germination rates of seeds I started in the growth chamber 

were as follows:  232/542 L. californica and 283/502 L. gracilis seeds.  Higher 

germination rates for L. gracilis were also observed by Rajakaruna (personal 

communication; Rajakaruna and Bohm, 1999).  Failure of seed germination and the 

differences between germination rates should be better quantified in future experiments.  

Second, the viability of future generations should be tested to determine if an annual 

plant population is able to establish past the first season.  I ran some preliminary 

germination trials on 200 seeds from each of my species x outcrop zone combinations 

(except for L. californica planted in L. gracilis’ home range but, not enough dark viable 

seeds were produced to test) from this study.  The trend was that greater numbers of 

seeds germinated from plants transplanted in their home range.  Additionally, all of the 

viable seeds produced from transplants should be tested at the same time in the same 

growing facility in order to minimize any variability resulting from conducting 

germination trials across time and space.  Finally, it is important to replicate this 

experiment at different locations where the two species grow in parapatry.  Reciprocal 

transplant studies on these species are currently ongoing at Palmer Ranch (Monterey 
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county), Coyote Ridge (Santa Clara county), and in the greenhouse (with seeds and field 

collected soil from five additional locations) using seeds (Yost, personal communication).  

These experiments will provide replication, and will examine the germination stage in 

field and laboratory settings.  Another advantage to using seeds in the field, although 

harder to monitor, is the full life cycle from germination to seed set is considered under 

the same conditions.  I found that L. gracilis seeds germinated in slightly greater numbers 

than L. californica seeds when field collected, but when seeds from my reciprocal 

transplant experiment were tested more L. californica seeds from plants transplanted in 

their home range germinated (90/200) than L. gracilis seeds from transplants in their 

home range (58/200).  Seedlings grown in greenhouse or growth chamber conditions may 

be at a disadvantage (e.g. transplant shock) to seedlings that germinated in the field.  

These great preliminary results provide additional insight on how the two species are 

adapted to different regions of the serpentine outcrop and the ongoing field-based 

reciprocal transplant studies will demonstrate what role the germination phase plays in 

local adaptation. 
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